Title: SEAMLESS PRECISION STEEL TUBES WITH IMPROVED ISOTROPIC TOUGHNESS AT LOW TEMPERATURE FOR HYDRAULIC CYLINDERS AND PROCESS FOR OBTAINING THE SAME

Abstract: Process for manufacturing seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders comprising the following steps: -(i) providing a steel having a composition comprising 0.06 - 0.15% by weight of carbon, 0.30 - 2.5% by weight of Mn, and 0.10 - 0.60% by weight of Si, -(ii) hot-rolling the said steel at a temperature higher than Ac3 such as to obtain a seamless steel tube, -(iii) heating the said seamless steel tube at a temperature in the range between Ac1 and Ac3, -(iv) quenching the said heated seamless steel tube, such as to establish a dual (or multi-) phase microstructure in the steel employed, composed of ferrite and martensite and optionally bainite and/or retained austenite, -(v) cold drawing the quenched seamless steel tube such as to provide a seamless precision steel tube of the desired dimensions, -(vi) subjecting the so-obtained seamless precision steel tube to stress relieving treatment to improve its isotropic toughness, and optionally -(vii) straightening the so-obtained seamless precision steel tube with improved toughness.
SEAMLESS PRECISION STEEL TUBES WITH IMPROVED ISOTROPIC TOUGHNESS AT LOW TEMPERATURE FOR HYDRAULIC CYLINDERS AND PROCESS FOR OBTAINING THE SAME.

Field of the invention.

The invention is related to seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders. The invention is also related to a new process for obtaining the same.

Technical background.

The hydraulic cylinder is an actuator that converts hydraulic energy into mechanical energy. It produces linear motion and imparts a force that depends on the pressure of the oil and on the area of the piston. It has many applications in oil hydraulics systems, and is employed for example in earth moving machines, cranes, presses, industrial machinery etc.

The device is composed of a cylindrical housing (also called bore or barrel), a rod with a piston, closed by a cap on both ends. With the term "tubes for hydraulic cylinders" we mean the tubes for the production of the external cylindrical housing, which is common to all types of hydraulic cylinders, see e.g. Fig. 1.

Technical requirements of this product can be reassumed in the following way.

- To ensure proper transmission of force and to avoid losses of the hydraulic medium, the barrel must have good toughness and narrow geometric tolerances in the inner diameter. If these high precision characteristics cannot be directly or almost obtained through the metallurgic production process of the seamless pipe employed for the barrel, downstream machining operations comprising, in this case, highly ablative surface treatments (e.g. skiving plus roller burnishing or honing or boring plus honing) are necessary. Importantly, the former machining step increases the production costs sensibly, since the highly ablative treatments must be followed in their turn by a (stepwise) surface refining, to equalize the newly created surface. In general, the most economic solution is the process of skiving and burnishing, that requires precise and repeatable dimensional tolerances. If these conditions are not met, more expensive solutions must be adopted, for example boring plus honing or boring plus skiving and burnishing.
It follows thus that the final machining costs increase in an over proportional manner with growing geometric tolerances.

- The barrel undergoes fatigue cycles during its life and on top of that, in many applications such as its employment in earth moving machines, cranes and others, it must be able to operate in external conditions of low temperature. Toughness (at least down to -20°C and preferably down to -40°C) is therefore an essential requirement to have "leak before break" behaviour, avoiding in this way brittle fracture, which typically involves a dangerous condition. Indeed, for a number of applications such as pressure equipment, the Laws already demand ductile behaviour in burst tests, or longitudinal and transversal toughness of 27 J at the minimum of the operating temperature [1,2,3].

The manufacturing process of the cylinder barrel is economically more advantageous using a cold finished tube instead of a hot rolled tube, due to the possibility to get:

- Dimensions closer to the final size, with narrower tolerances., thus making the downstream machining process, if any, comparably cheap, due to the only very limited amount of dimensional correction required.
- Higher tensile properties.
- Better surface quality.

The standard cycle is, therefore:

In the standard cycle, cold drawing and stress relieving are necessary to increase the yield strength to the levels commonly required (at least 520 MPa, preferably 620 MPa), but they reduce material toughness and more importantly they cause a high anisotropy between longitudinal and transversal direction of the tube, in particular to the detriment of transversal toughness. Therefore, with the standard cycle, it is not possible to ensure the low temperature characteristics required e.g. by applications in specific climatic conditions as they may be encountered e.g. in northern Europe. Indeed, in such cases even at room temperatures the transversal toughness is not enough in order to avoid brittle fracture.
The alternative cycles today available to improve the toughness at low temperature are:

This solution lowers, however, the tensile properties (yield strength), so a higher wall thickness is necessary to operate at the same pressure, increasing weight and thus energy consumption related to the operation of the respective equipment.

(2) - Hot rolling – quench and temper – straightening-surface machining - cut - assemblage of the parts.

(3) - Hot rolling – pickling - cold drawing – quench and temper – straightening-surface machining - cut - assemblage of the parts.

In both of these cases (2), (3), surface quality and tolerances don't reach the standard required by the market for seamless precision tubes and thus require particularly expensive highly ablative downstream machining operations. Case (2) requires a preventive and consistent material removal through a boring operation, followed by skiving and burnishing or honing. In case (3) geometrical variations and distortions induced by martensitic transformation increase ovality and variability of the diameters, affecting the repeatability and the advantage of producing a precision steel tube. The treatment of Q&T also increases the production cost.

This means that, so far, either (i) the use of high wall thickness or (ii) the expense of high production costs is necessary to improve the low temperature performance of hydraulic cylinders.

In an effort to arrive at a production process not displaying the drawbacks of the cycles (1)-(3), an alternative cycle has been adopted in the past.

(4) - Hot rolling - normalization (or on-line normalising) – cold drawing – stress relieving – straightening-surface machining - cut - assemblage of the parts.

While cycle (4) is advantageous from the point of view of the production costs, it guarantees nevertheless good longitudinal toughness only at room temperature and a sufficient one at 0°C. At temperatures below zero degrees, the variability of the process becomes too high and it's difficult to obtain consistent values. The transverse toughness is, on top of that, often unsatisfactory.
This means that cycle (4) does not improve the safety of the hydraulic cylinder, except in warm climatic conditions.

Hence, there remains an urgent need in the art for the provision of new seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders. Desirably, at a working temperature of \(-40^\circ\text{C}\) - reflecting usual conditions in specific areas of the planet - the minimum isotropic (i.e. longitudinal and transversal) toughness should be higher than the prescribed threshold limit of 27J. On top of that, there remains an urgent need in the art for the provision of a new process for obtaining the aforementioned new tubes, the said new process being less expensive than the known cycles (1)-(4) as above.

The new process should be able to employ common low carbon steels, with a minimum content of Mn and Si, and possibly, but not necessarily micro-alloyed with one or more of the further elements, such as Cr, Ni, Mo, V, Nb, N, Al, Ca.

Summary of the invention.

Applicants have now surprisingly found that the above-identified problems and further problems which will appear hereinafter, can be solved by a new process for manufacturing seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders comprising the following steps:

- (i) providing a steel having a composition comprising 0.06 - 0.15% by weight of carbon and 0.30-2.5% by weight of Mn, and 0.10-0.60% by weight of Si,

- (ii) hot-rolling the said steel at a temperature higher than Ac3 such as to obtain a seamless steel tube,

- (iii) heating the said seamless steel tube at a temperature in the range between Ac1 and Ac3,

- (iv) quenching the said heated seamless steel tube, such as to establish a dual (or multi-) phase microstructure in the steel employed, composed of ferrite and martensite and optionally bainite and/or retained austenite,

- (v) cold drawing the quenched seamless steel tube such as to provide a seamless precision steel tube of the desired dimensions,

- (vi) subjecting the so-obtained seamless precision steel tube to stress relieving treatment to improve its toughness, and optionally

- (vii) straightening the so-obtained seamless precision steel tube.
According to a specific embodiment, the process step (ii) may be followed by a normalising step (iia) after hot rolling or may be designed as a normalising rolling (ii)' in order to intermediately refine grain and homogenise the structure prior to the subsequent step (iii).

Applicants have also found that precision seamless steel tubes obtainable by the aforementioned process display a yield strength of at least 520 MPa and a longitudinal and transversal toughness at −40°C of at least 27J, preferably even a longitudinal and transversal toughness of at least 90 J at −20°C, and of at least 45 J at −40°C.

Therefore the new precision steels tubes with improved isotropic toughness allow for the provision of new hydraulic cylinders employable at very low temperatures.

Description of the Figures.

The following Figures 1-3 are attached to the present Application for the sole purpose of illustrating some aspects of the present invention, yet without limiting the same.

Fig. 1 is a graphic representation of an example of a hydraulic cylinder, as contemplated by the invention.

Fig. 2 is a representation of an example of a CVN transition curve of a typical seamless precision pipe obtainable according to the present invention after producing the same on industrial scale with the herein described process.

Fig. 3 is a representation displaying the values of longitudinal and transversal toughness [J] of a seamless pipe of the composition according to the example herein at −20°C, obtained after certain steps of the working cycle according to the present invention (right half of the graph), as opposed to the same pipe obtained instead through the traditional cycle (4) i.e. comprising the normalization treatment (left half of the graph).

In particular, in the left half of the graph, first dot, the longitudinal and transverse toughness at −20°C measured before the cold drawing step of a pipe obtained according to cycle (4) are reported. The second dot shows the longitudinal toughness at −20°C of the same pipe, measured after the cold drawing and stress relieving steps. The third dot shows the transversal toughness at −20°C of the same pipe, measured after the cold drawing and stress relieving steps.
In particular, in the right half of the graph, first dot, the longitudinal and transverse toughness at –20°C measured before the cold drawing step of a pipe obtained according to the present invention are reported. The second dot shows the longitudinal toughness at –20°C of the same pipe, measured after the cold drawing and stress relieving steps. The third dot shows the transversal toughness at –20°C of the same pipe, measured after the cold drawing and stress relieving steps.

Detailed description of the invention.

The inventors, with the aim of solving the above-mentioned problems, have thoroughly studied the cycles (1) – (4) and have analyzed the contribution of each of the production steps to the obtained (as opposed to the desired) features of the thereby manufactured tubes.

In particular, they have noted that while a satisfactory toughness is obtained through the normalization treatment according to cycle (4), the said toughness and in particular its isotropicity is almost completely lost during the subsequent cold-drawing step and cannot be fully re-stored through the subsequent stress-relieving treatment. According to the traditional treatment, such loss is particularly pronounced for the transversal toughness (see **Figure 3**, left part).

However, the employment of a cold-drawing step in an improved new process is considered highly desirable because it is beneficial not only to the achievable yield strength, but also to the dimensional precision of the thereby obtained tube. On the other hand, while it is known, e.g. from US 6,846,371 that so called intercritical heating (as opposed to normalizing) by virtue of the thereby created so-called dual (or multiple) phase microstructure- may be beneficial for various features of a tube, comprising its yield strength, its toughness and even isotropicity of toughness, any down stream cold working treatment of the so-obtained tubes is nevertheless carefully avoided.

This is because, as is largely known, and as US 6,846,371 highlights itself, the working of pipes at a non-recrystallization temperature range due to the elongation undergone during such working- creates an inherent anisotropy in the material, improving the desired features in the deformation direction, but inevitably decreasing the same transversally to the working direction.
On the other hand, without cold working, no precision tubes are obtained, and thus, the pipes achieved according to US 6,846,371 -while satisfactory for their intended use (OTCG)- would be, in a manner similar to the pipes obtainable with working cycle (2) above, in the need of substantial, highly ablative downstream machining operations before being fit for precision applications, as the one contemplated by the present invention.

However, the inventors have now discovered that, unlike in the case of working cycle (4), when an intercritical heat treatment with subsequent quenching is followed by a cold drawing step within a process for obtaining precision tubes, it is nevertheless unexpectedly possible to achieve high isotropy of the cold worked tube's toughness through the subsequent stress relieving treatment. In particular, it is possible to achieve, during the stress relieving, a remarkable increase of the transversal (and also longitudinal) toughness. See Figure 3, right part.

It thus appears that on top of providing, for the first time, without the need for highly ablative downstream machining operations, precision seamless steel tubes suited for hydraulic cylinders employable, if desired, at very low temperatures (lower than heretofore achievable), the new process also brings about an energy saving, due to the lower temperature applied during the intercritical heating as opposed to the traditional normalization step.

As apparent e.g. from Figure 2, with the new process, excellent isotropic (longitudinal and transversal) toughness, e.g. at least 90 J at -20°C, and of at least 45 J at -40°C (and more) is achievable.

The invention will now be explained more in detail.

For the production of the seamless precision steel tubes according to the present invention, steels with a carbon content in the range of 0.06% -0.15% by weight of carbon, are employable. The invention is not limited to particular steel compositions, but typically the steel will comprise, further to 0.06 -0.15% by weight of carbon, 0.30-2.5% by weight of Mn, 0.10-0.60% by weight of Si. Preferably, the typical steel will comprise 0.40-2.10% by weight of Mn, and still more preferably 0.60-1.80% by weight of Mn. Optionally, the aforementioned steel will further comprise one or more of the following elements: Cr, Ni, Mo, V, Nb, N, and Al. The alloy elements employed should be adequately balanced in order to obtain the
desired hardenability and strength at low cost. Those skilled in the art will not only be able to carry out such balancing, but they will also understand that the achievement of the desired hardenability is also possible through the employment of different alloy element mixes as the ones herein described. Of course it is also possible, where desired, to rely on different amounts of alloy elements than the ones herein described, obtaining nevertheless the desired hardenability.

Thus, preferred steel compositions employed in the present invention comprise, by weight, 0.06 - 0.15% C, 0.60 - 1.80% Mn, 0.10-0.60% Si, and optionally 0.0 - 0.60% Cr, 0.0-0.60% Ni, 0-0.50% Mo, 0-0.12% V, 0-0.040 Nb, 0.0040-0.02%N, 0.0-0.040% Al, the remainder being iron and inevitable impurities. Preferably, in the steels as above, the content of the following further elements should be limited as follows: P 250 ppm max., S 100 ppm max., preferably 50 ppm max., Ca 30 ppm max.

With the new cycle proposed by the inventors of the present Application and adopting the herein disclosed chemistry, it is possible to reach excellent mechanical properties with low carbon steels. It is noted that the confinement to the lower carbon content as compared to the steels commonly employed in the heretofore known standard cycles brings about a better weldability.

Mn and Si are elements always present in carbon and low alloyed steels, as their role is the attainment of sufficient strength by solid solution strengthening of the ferrite matrix; in particular Mn increases significantly the hardenability. However, higher Mn values than the ones herein disclosed are not necessary for cost and because too high Mn levels could produce segregation in the bar during solidification.

Cr, Mo, V can be added at the herein specified levels to improve hardenability and strength after stress relieving, thanks to a secondary hardening during the heat treatment; Nb at the specified levels controls grain refinement during manufacturing process, helping to improve toughness and yield. The Nitrogen content can be controlled to the values herein proposed to have grain refinement with Al, which, at the levels herein specified can also be present as a deoxidizer.

In the steels employed in the present invention, S should be preferably limited to a value of 0.010% (100 ppm) to avoid MnS formation which would be detrimental to
transversal toughness, and preferably to 0.050% (50ppm). P is considered an
impurity and should be limited to 0.025% (250 ppm). Ca can be added to levels up
to 30ppm max., to modify alumina inclusions eventually generated by the optional
desoxidation process.

According to the present invention, the hot rolling of the steel according to step (ii)
at temperature higher than Ac3 is carried out as follows: heating of a billet to a
temperature over Ac3, piercing, rolling, and, optionally, finishing with a stretch
reducing mill or a sizing mill. Accordingly, by carrying out step (ii), a hot finished
seamless steel tube is obtained.

According to a specific embodiment, the process step (ii) may be followed by a
normalising step (iia) after hot rolling or may be designed as a normalising rolling
(ii)' in order to intermediate refine grain and homogenise the structure prior to the
subsequent step (iii). It must however be pointed out that conventional hot rolling
as per step (ii) is fully sufficient to achieve the advantages of the herein described
invention.

According to the present invention, the heating of the aforementioned hot finished
seamless steel tube at a temperature in the range between Ac1 and Ac3, and its
subsequent quenching according to steps (iii) and (iv) can be carried out by (a) by
air cooling the steel as rolled until it reaches a temperature in the range between
Ac1 and Ac3, and then quenching, the same to room temperature, or (b) by
annealing the steel at temperature in the range between Ac1 and Ac3 and then
quenching the same to room temperature. The quenching should be carried out
as rapidly as possible (preferably with water), the exact minimum cooling rate
employable depending on the employed alloy’s chemistry. Those skilled in the art
will be capable to establish suitable minimum cooling rates to bring about, in the
employed steels, the desired dual (or multi-) phase microstructure of. Such
microstructure is constituted by a ferrite matrix, in which martensite and optionally
bainite and/or retained austenite are dispersed.

Accordingly, through steps (iii) and (iv), quenched seamless steel tubes are
obtained.

According to the present invention, the cold drawing of the quenched seamless
steel tube according to step (v) such as to provide a seamless precision steel tube
of the desired dimensions, is carried out preferably imparting a reduction of area between 8 and 30%, preferably between 10 and 25%. The former values are preferred such as to arrive at the desired tensile properties and surface tolerances. Accordingly, through step (v), seamless precision steel tubes are obtained.

According to the present invention, the subjecting of the so-obtained seamless precision steel tube to stress relieving treatment according to step (vi) to improve its isotropic toughness, is carried out heating the tubes to a temperature preferably between at least 0.72 Ac1 and 0.95Ac1 and cooling them in controlled atmosphere furnace or in air to room temperature. It has further been found by the inventors that by carrying out the stress relieving treatment in the range comprised between 0.85Ac1 and 0.92Ac1, preferably between 0.87Ac1 and 0.91Ac1, it is possible to obtain particularly high transversal toughness at low temperature (and, on top of that remarkable toughness isotropicity), yet retaining the yield stress definitely higher than the normally required levels.

According to the present invention, the optional straightening of the so-obtained seamless precision steel tube with improved toughness according to step (vii) can be carried out passing the tube through a series of rolls that bend and press (crush) the pipe. With this operation, if at all necessary, a straightness of 1 mm /1000 mm can be achieved, which is beneficial for both, the later surface refining, and for the later use of the pipes as cylinders itself.

It is an important feature of the present invention that the tubes obtained by the process of the present invention, have narrow dimensional tolerances, very close to those required for their use as hydraulic cylinders. Typically, for ID values up to 100mm, a variation equal to or lower than 0.60% is achieved, whereas variations of less than 0.45%, preferably less than 0.30% are achievable for higher ID values.

This means not only that the tubes are fit for the subsequent machining, but more importantly that the said machining, rather than bringing about a high ablation of material, is merely a surface refining, thus considerably reducing material and time loss normally associated with this operations. After machining, the tolerances match those required for the intended use as hydraulic cylinders, e.g. ISO HB.
The invention is further illustrated in, though not limited through the following examples.

Examples.

Experimental Procedure.

A steel of the composition given below was obtained and processed according to the invention.

A fine tuning was performed first by laboratory tests to explore suitable processing conditions. The specimens were taken from as-rolled seamless pipes and subjected to a heat treatment at a temperature in the range between Ac1 and Ac3. Such treatment was performed in a muffle at temperatures from 750 °C to 820 °C (inter-critical treatment or annealing) followed by quenching in stirred water with a cooling rate (CR) of 60 to 70 °C/s, measured by a thermocouple inserted at mid-thickness.

Tensile and Charpy V-notch (CVN) tests according to EN10002-1 and 10045-1 respectively were performed on specimens taken in the transverse and longitudinal directions. The transition curves in the temperature range – 60 °C to 20 °C, together with the Fracture Appearance Transition Temperature (50% FATT), were determined for the tested material.

An industrial trial was then designed on the basis of the results from the laboratory tests.

Design of the Inter-critical Treatment.

The chemical composition of an industrial steel selected for the investigation is shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Nb</th>
<th>Cu</th>
<th>Al</th>
<th>Ca</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.09</td>
<td>1.14</td>
<td>0.27</td>
<td>130</td>
<td>20</td>
<td>0.41</td>
<td>0.13</td>
<td>0.14</td>
<td>0.07</td>
<td>0.024</td>
<td>0.17</td>
<td>0.028</td>
<td>17</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
</table>

Table 1: Chemical composition of the investigated steel.

The material was available as pipes of the following dimensions: OD = 219 mm and WT = 17 mm.
The critical temperatures, calculated by Andrews' empirical relationships (see K.W. Andrews: JISI Vol. 193 July (1965), p. 721) for the considered steel are as follows: \(A_{C1} = 714-715 \degree C\), \(A_{C3} = 831-833 \degree C\) and \(M_s = 456-458 \degree C\).

Table 2 displays the results obtained after normalization and intercritical treatment as specified:

<table>
<thead>
<tr>
<th>IT [\degree C]</th>
<th>YS* [MPa]</th>
<th>UTS [MPa]</th>
<th>Y/T</th>
<th>EI</th>
<th>CVN Energy (J) **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direction [\degree C]</td>
<td>+ 20</td>
</tr>
<tr>
<td>Temperature of Intercritical treatment</td>
<td>750</td>
<td>363</td>
<td>743</td>
<td>0.49</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transverse</td>
<td>n.d.</td>
</tr>
<tr>
<td>Temperature of Intercritical treatment</td>
<td>785</td>
<td>400</td>
<td>784</td>
<td>0.51</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transverse</td>
<td>n.d.</td>
</tr>
<tr>
<td>Temperature of Intercritical treatment</td>
<td>820</td>
<td>443</td>
<td>807</td>
<td>0.55</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transverse</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

* continuous yielding (\(R_{p0.2}\)); ** average of three values (specimen size: 10 x 10 x 55 mm^3)

From the above table, it thus appears that after performing step (iv) according to the present invention, both, the long and the transverse toughness of the so far obtained tubes are by far insufficient.

Industrial Trials.

The industrial trials, performed on the steel as above included the following steps: hot rolling, intercritical heat treatment followed by quenching (IQ), cold drawing (CD), stress relieving (SR), straightening (S).

In some cases normalisation (step (iia)) before IQ has been carried out.

With intermediate normalisation.
For the industrial trials, a temperature of 780 °C ("Cycle A") and 810°C ("Cycle B"), respectively reproducing two of the above conditions tested before in laboratory, was set for the intercritical treatment of the hollow. On top of that, the influence of two different reductions of area was explored in connection with cold drawing in Cycle B. The reductions of area adopted were 12.5% and 17.5%, with final dimensions of 160 x 13.0 mm and 160 x 12.1 mm respectively, see the following table:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>IQ 780°C - 17.5% - SR 580°C</th>
<th>IQ 810°C - 17.5% - SR 580°C</th>
<th>IQ 810°C - 12.5% - SR 580°C</th>
</tr>
</thead>
</table>

The mechanical properties of the IQ tubes confirmed the results obtained in the laboratory: low Y/T ratio and high values of work-hardening coefficient \((n = 0.19-0.21)\). The achievement of a high \(n\) value is important in that the same is necessary to obtain high strength values after cold drawing. After CD the ultimate tensile strength (UTS) was greater than 950 MPa and toughness was strongly reduced (CVN energy < 10 J at −20 °C). Yet the subsequent SR allowed to recover toughness (longitudinal and transversal) at levels equal or greater than 150 J even at low temperature (−20 °C). At even lower temperatures (−40°C), toughness (longitudinal and transversal) was still higher than 70J.

The said industrial stress relieving treatment has been carried out in a Nassehuer furnace, with heating zone 14.150 m long. Temperature was set at 580°C, with a tube speed of 15 m/h. The specific results are the following:
<table>
<thead>
<tr>
<th>Cycle</th>
<th>RA%</th>
<th>Stress relieving</th>
<th>Rs (MPa)</th>
<th>Rm (MPa)</th>
<th>E%</th>
<th>+20°C</th>
<th>-20°C</th>
<th>-30°C</th>
<th>-40°C</th>
<th>-50°C</th>
<th>-60°C</th>
<th>+20°C</th>
<th>-20°C</th>
<th>-30°C</th>
<th>-40°C</th>
<th>-50°C</th>
<th>-60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17.5%</td>
<td>580°C</td>
<td>713</td>
<td>762</td>
<td>19.0</td>
<td>211</td>
<td>183</td>
<td>nd</td>
<td>158</td>
<td>nd</td>
<td>117</td>
<td>189</td>
<td>154</td>
<td>Nd</td>
<td>135</td>
<td>Nd</td>
<td>102</td>
</tr>
<tr>
<td>B</td>
<td>17.5%</td>
<td>580°C</td>
<td>719</td>
<td>776</td>
<td>20.0</td>
<td>223</td>
<td>206</td>
<td>130</td>
<td>97</td>
<td>83</td>
<td>78</td>
<td>198</td>
<td>150</td>
<td>98</td>
<td>73</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td>C</td>
<td>12.5%</td>
<td>580°C</td>
<td>668</td>
<td>730</td>
<td>18.4</td>
<td>221</td>
<td>218</td>
<td>206</td>
<td>196</td>
<td>n.d</td>
<td>148</td>
<td>208</td>
<td>191</td>
<td>182</td>
<td>134</td>
<td>n.d.</td>
<td>105</td>
</tr>
</tbody>
</table>
The material stemming from Cycle A was also treated in laboratory in controlled conditions, at different temperatures (560°C, 610°C, 650°C) to explore the influence of the SR treatment. The following results have been obtained:

<table>
<thead>
<tr>
<th>RA%</th>
<th>Stress relieving</th>
<th>Rs (MPa)</th>
<th>Rm (MPa)</th>
<th>E%</th>
<th>+20°C</th>
<th>-20°C</th>
<th>-40°C</th>
<th>+20°C</th>
<th>-20°C</th>
<th>-40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5%</td>
<td>560°C x 15'</td>
<td>692</td>
<td>774</td>
<td>18.1</td>
<td>219</td>
<td>210</td>
<td>nd</td>
<td>202</td>
<td>206</td>
<td>nd</td>
</tr>
<tr>
<td>17.5%</td>
<td>610°C x 15'</td>
<td>688</td>
<td>765</td>
<td>19.1</td>
<td>221</td>
<td>230</td>
<td>nd</td>
<td>214</td>
<td>206</td>
<td>nd</td>
</tr>
<tr>
<td>17.5%</td>
<td>650°C x 15'</td>
<td>657</td>
<td>730</td>
<td>19.3</td>
<td>271</td>
<td>273</td>
<td>nd</td>
<td>242</td>
<td>215</td>
<td>nd</td>
</tr>
</tbody>
</table>

Without intermediate normalizing step.

A hollow 177.8 x 14.5 mm, with the following chemical analysis:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Nb</th>
<th>Cu</th>
<th>Al</th>
<th>Ca</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>1.10</td>
<td>0.30</td>
<td>120</td>
<td>10</td>
<td>0.40</td>
<td>0.12</td>
<td>0.14</td>
<td>0.06</td>
<td>0.022</td>
<td>0.17</td>
<td>0.030</td>
<td>20</td>
<td>48</td>
</tr>
</tbody>
</table>

had been treated after hot rolling at 770°C and quenched with water.

The critical temperatures, calculated by Andrews' empirical relationships (see K.W. Andrews: JISI Vol. 193 July (1965), p. 721) for this material, very similar to the prior one, are as follows: \(A_{C1} = 714-715 \, ^\circ\text{C} \), \(A_{C3} = 831-833 \, ^\circ\text{C} \) and \(M_S = 456-458 \, ^\circ\text{C} \).

The tubes were cold drawn to the dimension 165 x 12.75 with a reduction of area of 18%.

A batch was treated at 560°C, giving the following results:
<table>
<thead>
<tr>
<th>Tensile test</th>
<th>KV Long. (10x10 mm - Joule)</th>
<th>KV Transv. (10x10 mm – Joule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA%</td>
<td>Stress relieving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rs (MPa) Rs (MPa) E% (MPa)</td>
<td></td>
</tr>
<tr>
<td>18%</td>
<td>560°C 865 890 18.3 n.d.</td>
<td>170 nd 173 nd 74 n.d. 118 Nd 60 n.d n.d.</td>
</tr>
<tr>
<td></td>
<td>+20°C 20°C 30°C 40°C 50°C 60°C</td>
<td>+20°C 20°C 30°C 40°C 50°C 60°C</td>
</tr>
</tbody>
</table>
In this case, very high tensile properties were obtained (Rs: 865 MPa) with transversal toughness at –40°C still higher than 45J.

A second batch was treated at 640°C, giving:
<table>
<thead>
<tr>
<th>RA%</th>
<th>Stress relieving</th>
<th>Rs (MPa)</th>
<th>Rm (MPa)</th>
<th>E%</th>
<th>-20°C</th>
<th>-20°C</th>
<th>-30°C</th>
<th>-30°C</th>
<th>-40°C</th>
<th>-40°C</th>
<th>-50°C</th>
<th>-50°C</th>
<th>-60°C</th>
<th>-60°C</th>
<th>KV Long. (10x10 mm - Joule)</th>
<th>KV Transv. (10x10 mm - Joule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18%</td>
<td>640°C</td>
<td>743</td>
<td>785</td>
<td>17</td>
<td>312</td>
<td>289</td>
<td>n.d.</td>
<td>317</td>
<td>n.d.</td>
<td>313</td>
<td>277</td>
<td>316</td>
<td>n.d.</td>
<td>322</td>
<td>n.d.</td>
<td>299</td>
</tr>
</tbody>
</table>
In this case, tensile properties were reduced, but still largely acceptable, whereas remarkable transversal toughness values were attained. It appears thus that in all cases the ability of the new process to obtain Yield strength higher than 620 MPa, preferably higher than 650 MPa, and excellent isotropic toughness at low temperature is confirmed.

Conclusions.
The industrial trials have confirmed that the new process provided by the present invention can be used to produce seamless precision steel tubes displaying high strength levels (YS > 620 MPa) after CD and SR, maintaining excellent toughness, down to −40°C, in both the transverse and longitudinal directions, thus displaying, in spite of the intermediate CD step, a remarkable isotropicity of the toughness at low temperature. The results here achieved are significantly better than those obtainable with the heretofore known processes. In particular, it appears that with the present invention, at −20°C, a longitudinal and transversal toughness (CVN energy) of at least 90J, preferably of at least 140J, and more preferably of at least 150J can be achieved, whereas at −40°C, a longitudinal and transversal toughness (CVN energy) of at least 45J, preferably of at least 60 J, and more preferably of at least 70J can be achieved. Peak values of transversal toughness up to at least 200kJ and more at −40°C and excellent isotropicity may be obtained. Tensile properties and toughness, can be modulated with an appropriate fine tuning of the stress relieving temperature.

Literature cited.

CLAIMS
1. Process for manufacturing seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders comprising the following steps:
 - (i) providing a steel having a composition comprising 0.06 -0.15% by weight of carbon, 0.30 – 2.5% by weight of Mn, and 0.10 – 0.60%, by weight of Si,
 - (ii) hot-rolling the said steel at a temperature higher than Ac3 such as to obtain a seamless steel tube,
 - (iii) heating the said seamless steel tube at a temperature in the range between Ac1 and Ac3,
 - (iv) quenching the said heated seamless steel tube, such as to establish a dual (or multi-) phase microstructure in the steel employed, composed of ferrite and martensite and optionally bainite and/or retained austenite,
 - (v) cold drawing the quenched seamless steel tube such as to provide a seamless precision steel tube of the desired dimensions,
 - (vi) subjecting the so-obtained seamless precision steel tube to stress relieving treatment to improve its isotropic toughness, and optionally
 - (vii) straightening the so-obtained seamless precision steel tube with improved toughness.

2. Process according to claim 1 in which the steel has a composition comprising 0.40-2.10% by weight of Mn, preferably 0.60-1.80% by weight of Mn.

3. Process according to claim 1 or 2 in which the steel has a composition comprising one or more of the following elements: Cr, Ni, Mo, V, Nb, N, Al.

4. Process according to claim 3 in which the composition of the steel in weight comprises the following elements: 0-0.60% Cr, 0-0.60% Ni, 0-0.50% Mo, 0-0.12% V, 0-0.040% Nb, 0.0040-0.02 % N, 0.0-0.040%Al, the remainder being iron and inevitable impurities.

5. Process according to claim 4 in which the composition of the steel in weight further comprises the following elements: P 250 ppm max., S 100 ppm max., preferably 50 ppm max., Ca 30 ppm max.
6. Process according to one or more of the preceding claims in which process step (ii) may be followed by a normalising step (iiia) after hot rolling or may be designed as a normalising rolling (iib) in order to intermediately refine grain and homogenise the structure prior to the subsequent step (iii).

7. Process according one or more of the preceding claims in which steps (iii)-(iv) are carried out by air cooling the steel as rolled until it reaches a temperature in the range between Ac1 and Ac3, and then quenching the same, such as to establish the dual (or multi-) phase microstructure composed of ferrite martensite and optionally bainite and/or retained austenite.

8. Process according to one or more of claims 1-6, in which steps (iii)-(iv) are carried out by annealing the steel at temperature in the range between Ac1 and Ac3 and then quenching the same, such as to establish a dual (or multi-) phase microstructure composed of ferrite martensite and optionally bainite and/or retained austenite.

9. Process according to claim 7 or 8 in which the quenching is carried out in water.

10. Process according to one or more of the preceding claims in which the cold-drawing of step (v) is carried out such as to perform a RA between 8 and 30%, preferably between 10% and 25%.

11. Process according to one or more of the preceding claims in which the stress-relieving treatment according to step (vi) is carried out at a temperature between 0.72Ac1 and 0.95Ac1, preferably in a controlled atmosphere furnace.

12. Process according to claim 11, in which step (vi) is carried out a temperature between 0.85Ac1 and 0.92Ac1, preferably 0.87Ac1-0.91Ac1.

13. Precision seamless steel tubes obtainable by the process according to one or more of the preceding claims, having a dual (or multi-) phase microstructure composed of ferrite and martensite and optionally bainite and/or retained austenite and displaying a yield strength of at least 520 MPa and a longitudinal and transversal toughness at -40°C of at least 27J.
14. Precision seamless steel tubes as per claim 13, displaying a yield strength of at least 620 MPa, preferably of at least 650 Mpa.

15. Precision seamless steel tubes as per claim 13 or 14, having a longitudinal and transversal toughness at \(-40^\circ C\) of at least 45J.

16. Precision seamless steel tubes as per claim 15, having a longitudinal and transversal toughness at \(-40^\circ C\) of at least 60 J.

17. Precision seamless steel tubes as per claim 16, obtainable carrying out the stress relieving step according to claim 12, having a longitudinal and transversal toughness at \(-40^\circ C\) of at least 70 J.

18. Precision seamless steel tubes as per claim 17, having a longitudinal and transversal toughness at \(-40^\circ C\) of at least 100 J, preferably at least 150 J, still more preferably at least 200J."

19. Precision seamless steel tubes according to one or more of claims 13-18, having an ID up to 100 mm and displaying a variation of the ID equal to or lower than 0.6%.

20. Precision seamless steel tubes according to one or more of claims 13-18, having an ID greater than 100 mm and displaying a variation of the ID of less than 0.45%, preferably less than 0.30%.

21. Process for the production of barrels for a hydraulic cylinder, comprising machining precision seamless steel tubes according to one or more of claims 13-20.

22. Barrel for a hydraulic cylinder, obtainable by the process of claim

23. Hydraulic cylinder comprising a barrel as per claim 22.
Fig. 3
INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2006/063701

Classification of Subject Matter

<table>
<thead>
<tr>
<th>INV.</th>
<th>C21D1/18</th>
<th>C21D8/10</th>
<th>C21D9/08</th>
<th>C22C38/02</th>
<th>C22C38/04</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

Fields Searched

Minimum documentation searched (classification system followed by classification symbols)

C21D C22C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

Documents Considered to Be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 288 316 A (KAWASAKI STEEL CO [JP]) 5 March 2003 (2003-03-05) cited in the application paragraphs [0033] - [0036], [0040], [0041]; figures 1,2; tables 1-3</td>
<td>1-3, 13-20</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C. [] See patent family annex.

Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *O* document referring to an oral disclosure, use, exhibition or other means

Date of the actual completion of the International Search

21 March 2007

Name and mailing address of the ISA/ European Patent Office, P.B. 5815 Patentlaan 2 NL-2280 HJ Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Lilimpakis, Emmanuel

Form PCT/ISA/210 (second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 02079526 A1</td>
<td>10-10-2002</td>
</tr>
<tr>
<td>EP 1288316 A</td>
<td>05-03-2003</td>
<td>NO 20024097 A</td>
<td>03-03-2003</td>
</tr>
<tr>
<td>JP 10140250 A</td>
<td>26-05-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 4107214 A</td>
<td>08-04-1992</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>