A sound delivery system (10) such as a hearing aid, a telephone headset, a multimedia headset, or other communications device is capable of being used on either left or right ear of the user. The sound delivery system (10) includes an integral case (22) and ear hook (24) having a rotatable connection for receiving a sound delivery tube (14). The sound delivery tube is formed in a generally L-shaped tube. The sound delivery tube has an eartip (16) at one end configured to be received in the ear canal of the user to secure the end of the sound delivery tube in the ear canal. The tube can be rotated about an axis between a left-ear position and a right-ear position.
AL	Albania	ES	Spain	LS	Lesotho
AM	Armenia	FI	Finland	LT	Lithuania
AT	Austria	FR	France	LU	Luxembourg
AU	Australia	GA	Gabon	LV	Latvia
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova
BB	Barbados	GH	Ghana	MG	Madagascar
BE	Belgium	GN	Guinea	MK	The former Yugoslavia
BF	Burkina Faso	GR	Greece	ML	Mali
BG	Bulgaria	HU	Hungary	MN	Mongolia
BJ	Benin	IE	Ireland	MR	Mauritania
BR	Brazil	IL	Israel	MW	Malawi
BY	Belarus	IS	Iceland	MX	Mexico
CA	Canada	IT	Italy	NE	Niger
CF	Central African Republic	JP	Japan	NL	Netherlands
CG	Congo	KE	Kenya	NO	Norway
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland
CM	Cameroon	KR	Republic of Korea	PT	Portugal
CN	China	KZ	Kazakhstan	RO	Romania
CU	Cuba	LC	Saint Lucia	RU	Russian Federation
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan
DE	Germany	LK	Sri Lanka	SE	Sweden
DK	Denmark	LR	Liberia	SG	Singapore
EE	Estonia	SI	Slovenia	SK	Slovakia
		SN	Senegal	SZ	Swaziland
		TD	Chad	TG	Togo
		TJ	Tajikistan	TM	Turkmenistan
		TR	Turkey	TT	Trinidad and Tobago
		UA	Ukraine	UG	Uganda
		US	United States of America	VN	Viet Nam
		US	United States of America	YU	Yugoslavia
		ZW	Zimbabwe		
AMBIDEXTROUS SOUND DELIVERY TUBE SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to a sound delivery system, such as a hearing aid, a communication device, or a multimedia device, and more particularly, the invention relates to an ambidextrous sound delivery tube system for delivery of sounds to the ear canal of a user.

Brief Description of the Related Art

Sound delivery systems such as hearing aids, telephone headsets, radio headsets, and other communications and sound transmitting systems may be utilized to deliver sounds directly to the ear canal of the user. Such sound delivery systems include those two-way communication systems worn by police, firefighters, secret service agents, and the like to receive sound transmissions from a remote location and transmit sound to the remote location. Other sound delivery systems include the class of hearing aids which are used by the hearing impaired to amplify and process sounds. Traditional hearing aids include “behind the ear” (BTE) hearing aid devices which are attached behind the ear of the user.

The BTE hearing aid devices and other sound delivery systems may include a flexible plastic tube connecting a sound receiving device mounted behind the ear to an earmold eartip positioned within the ear canal. In the case of a hearing aid, the receiving device may include a microphone, an amplifier, processing circuitry, and a speaker. In the case of a sound transmission system, the receiving device includes a receiver or speaker, and processing circuitry.
The tubes for transmitting sound from the case behind the ear to the eartip are generally transparent tubes secured on one end to the case and on the other end to the eartip. The tubes may be either flexible tubes or rigid tubes formed in a preformed shape. With a flexible tube, the eartip must hold the end of the tube securely within the ear canal because the tube itself provides little or no support to the eartip to hold the end of the tube in the ear. Eartips which are used with these flexible tubes are generally custom made devices which conform to the ear canal shape and secure the sound delivery end of the tube in the ear canal. With a more rigid tube having a preformed shape, a wide variety of eartips can be used which are partially held in place in the ear canal by the rigidity of the tube. Examples of preformed tubes are described in U.S. Provisional Patent Application Serial No. 60/053,031, filed July 18, 1997, which is incorporated herein by reference in its entirety. With this rigid tube construction, tubes are made in different sizes to fit different ear sizes and are provided in left and right ear configurations.

Hearing aids are conventionally fitted to a left or right ear of a patient and are not switched between the left and right ears. However, sound delivery devices which are used by police and fire departments for communication or sound delivery devices used for multimedia applications may be used in either the left or right ear of the user. Thus, it would be desirable to provide an ambidextrous sound delivery device which may be used behind either the left or right ear of a user.

In addition, when a sound delivery device is used by different people it would be desirable to have a replaceable and disposable ear tube and/or eartip.

SUMMARY OF THE INVENTION

The present invention relates to an ambidextrous sound delivery system having the ability be easily switched between left ear and right ear configurations.
In accordance with one aspect of the present invention, an ambidextrous sound delivery system includes, a case symmetrically configured to be placed behind the left or right ear of a user, sound receiving and processing circuitry within the case, a sound output port on the case, and an ambidextrous sound delivery tube. The sound delivery tube has a first end for connection to the sound output port and a second end for connection to an eartip. The tube is preformed in a substantially L-shape which can be used in the left or right ear of the user. A rotatable coupling is provided between the sound output port and the sound delivery tube to allow the sound delivery tube to be rotated with respect to the case to allow the system to be used on either the left or right ear of the user.

In accordance with an additional aspect of the present invention, the ambidextrous sound delivery system includes a case for containing sound processing circuitry configured to be received behind either the left or right ear of a user, an ear hook extending from the case in a curved shape which extends over the ear of the user, a sound output port of the ear hook having an axis oriented directly at a tragal notch and ear canal entrance of a user when the case is received behind either the left or right ear, and a coupling of the sound output port for receiving a sound delivery tube in a first position for use on a right ear and in a second position for use on a left ear.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in greater detail with reference to the preferred embodiments illustrated in the accompanying drawings, in which like elements bear like reference numerals, and wherein:

FIG. 1 is a partially exploded perspective view of an ambidextrous sound delivery device according to the present invention;

FIG. 2 is an assembled perspective view of the sound delivery device of FIG. 1 with the sound delivery tube in a left ear position;
FIG. 3 is an assembled perspective view of the sound delivery device of FIG. 1 with the sound delivery tube in a right ear position;

FIG. 4 is a side cross-sectional view of an ambidextrous sound delivery tube and eartip; and

FIG. 5 is a side cross-sectional view of a sound delivery tube connector.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A sound delivery system 10 for delivering sound to the ear canal of the user, as shown in the exploded perspective view of FIG. 1, includes a body 12, a sound delivery tube 14, and an eartip 16. The sound delivery tube 14 is rotatable about an axis X between a first position illustrated in FIG. 2 for use on the left ear of the user to a second position illustrated in FIG. 3 for use on a right ear on the user.

The sound delivery system body 12 as shown in FIG. 1 includes a cable 20 for electrical connection to a communication device such as a telephone, multimedia device, or other transmitting and/or receiving device. The communication device to which the sound delivery system 10 is connected by the cable 20 may be a fixed device or a portable device which may be worn on the person. Although the invention has been illustrated with a cable 20 for connection to external electronics, the cable may be omitted for certain devices and a wireless link may be used. Alternatively, for a hearing aid device, the electronics may be entirely contained within the body 12. The body 12 includes a case portion 22 containing appropriate sound receiving and processing circuitry for a particular application. For example, the case portion 22 may contain a sound processing circuit and a receiver. The case portion 22 is configured to be received and concealed behind the ear of the user and is substantially symmetrical about a central plane containing the axis X so that it can be received behind either the left or right ear. An ear hook portion 24 of the body 12 extends from the case portion
22 and curves over the ear of the user. The ear hook portion 24 supports the body
12 securely on the user's ear. A sound transmission tube (not shown) within the
ear hook transmits sound from a receiver or speaker within the body to the sound
delivery tube 14.

When the ambidextrous sound delivery system 10 according to the present
invention is used as a communications device, a microphone 26 may be mounted
on an upper surface of the ear hook portion 24. The microphone 26 picks up
sounds and allows the sound to be transmitted by the sound delivery system back
to a remote location or processed for use by the hearing impaired user.

An enlarged side view of the sound delivery tube 14 and eartip 16 is shown
in FIG. 4. The sound delivery tube 14 includes a connector 30 at a first end of
the sound delivery tube and the eartip 16 at a second end of the sound delivery
tube. The connector 30 is received on a sound output port 32 which extends from
the ear hook portion 24 of the body 12. The connector 30 and sound output port
32 together form a rotatable, snap-fit coupling between the body 12 and the sound
delivery tube 14.

As illustrated in the cross-sectional view of FIG. 5, the connector 30
includes an internal beveled surface 34 at an edge of the connector for ease of
insertion of the sound output port 32. The connector 30 also includes an annular
groove 36 with a hemispherical cross-section for receiving an annular ring 38 of
the sound output port 32. The annular groove 36 and annular ring 38 provide a
secure snap-fit rotatable coupling between the sound delivery tube 14 and body 12.
The connector 30 is formed of a resilient material which stretches over the sound
output port 32 to provide a substantially air tight fit. Other types of rotatable
couplings with one or more grooves and correspondingly shaped rings may also be
used.

The snap-fit coupling allows the sound delivery tube 14 and the eartip 16
to be easily removed from the body 12 and replaced. A disposable sound delivery
tube 14 is particularly advantageous for applications where multiple users use the
same device. For example, police and fire departments may provide a supply of disposable sound delivery tubes 14 for use with the device. In addition, the snap-fit coupling allows the sound delivery tube 14 to be periodically replaced for sanitation purposes.

Although the present invention has been described as including a connector 30 of the sound delivery tube 14 which snaps over the sound output port 32, it should be understood that an ear tube connector may alternatively be fitted inside a sound output port of the body 12 to provide an air tight rotatable coupling. Further, the coupling may be any type of coupling which has at least two positions. For example, a non-rotatable coupling may be provided which has two snap in positions at which the tube is secured by notches or keys within the coupling.

As illustrated in FIG. 4, the sound delivery tube 14 is substantially L-shaped and lies substantially in a plane. The sound delivery tube 14 has a run length L_r between the end of the connector 30 and the lowest part of the tube where the tube bends to enter the ear canal. A distance between the point where the tube bends to enter the ear canal and an end of the eartip 16 is called a duck-in-length L_d. The tube is preferably formed of a soft rubbery material having sufficient resilience to return the tube to the L-shape when the tube is not subject to external forces. The flexibility of the sound delivery tube material allows one size tube to fit substantially all ear shapes and sizes.

A distance between a top of a user’s ear where the ear hook portion 24 rests and the ear canal varies somewhat between users. However, the horizontal portion of the tube 14 will flex up or down to accommodate slight differences in this ear dimension. In addition, ear canal depths vary by approximately $\pm \frac{1}{8}$ inch (3.2 mm) between users. These variations in ear canal depth can be accommodated by allowing the eartip 16 to enter the canal to different depths or allowing the bend 48 of the tube to extend further out of the ear canal into the bowl or concha of the ear.
According to an alternative embodiment of the invention, the sound delivery tube 14 may be formed of a more rigid material. A rigid sound delivery tube 14 may be provided in different sizes with the run lengths L_R and duck-in-lengths L_D varying for different users.

The eartip 16 illustrated in the figures is a flower-shaped eartip formed of a resilient material which includes three flower petals 42 extending from a base 44. A sound output opening 46 is provided at the center of the flower-shaped eartip 16 for delivering sound from the sound delivery system 10 to the ear canal. The eartip 16 retains the end of the sound delivery tube 14 in position within the user's ear canal by engaging the walls of the ear canal with the resilient petals 42 of the flower. The flower-shaped eartip 16 is only one example of an eartip which may be used with the present invention. Many other eartip shapes may also be used including the bud-shaped and guppy-shaped eartips illustrated in U.S. Provisional Patent Application Serial No. 60/053,031 filed on July 18, 1997, which is incorporated herein by reference in its entirety. Other shapes and constructions of custom earmold eartips and stock eartips may also be connected to the sound delivery tube 14 according to the present invention.

The present invention provides a sound delivery system 10 which can be easily worn on either side of the head and can be quickly configured between left-ear and right-ear orientations. The snap-fit connection also allows quick and easy replacement of the sound delivery tube 14 and ear tip 16.

The ability to switch between left-ear and right-ear orientations is provided by the particular shape and orientation of the sound delivery tube 14 and the ear hook portion 24 of the body 12, as well as the rotatable coupling. In particular, the orientation of the longitudinal axis X of the rotatable coupling allows the horizontal portion of the sound delivery tube 14 to be properly received in the ear canal.

The sound delivery system 10 is particularly designed with the sound output port 32 of the body 12 oriented such that its longitudinal axis X extends
directly toward the ear canal entrance via the tragal notch of the ear. This allows
the sound delivery tube 14 to be constructed to include only a single bend 48 and
to lie substantially in a single plane. Switching between the left-ear and right-ear
orientation involves rotating the sound delivery tube 14 about 165 to 195 degrees,
preferably about 180 degrees with respect to the body 12. The flower-shaped
eartip 16 with its multiple resilient petals 42 allows the horizontal portion of the
tube to enter the ear canal at slightly different angles.

The rotatable coupling between the body 12 and sound delivery tube 14 is
designed to provide a substantially air tight acoustic seal. The acoustic seal is
provided by the elastic properties of the sound delivery tube 14 which stretches
over the sound output port 32. In addition, the annular ring 38 on the sound
output port 32 and the annular groove 36 of the sound delivery tube 14 form a
labyrinth which makes air leakage through the coupling difficult and further
improving the acoustic seal. The rotatable connection preserves the high sound
delivery quality for delivery to the ear canal.

Acoustic impedance throughout the length of the rotatable connection is
maintained constant by providing a constant inner diameter of the sound
transmission pathway. In particular, an internal diameter of the sound output port
32 is substantially the same as an internal diameter of the sound delivery tube 14.
The connector 30 is designed to align the inner diameter of the sound output port
32 and the inner diameter of the sound delivery tube 14 with minimal acoustic
interference. Thus, the sound carried from the body 12 to the tube 14 is not
reflected by any imperfections or inconsistencies inside the tubing which may
create standing waves at the tubing junction.

Preferably, the sound delivery tube 14 is formed of a relatively rigid
material which when assembled and fitted on the ear of a user with the eartip 16
inside the ear canal helps to secure the sound delivery system in place. The sound
delivery tube 14 may be formed of any suitable material such as plastic, silicone
rubber, or the like. However, when the sound delivery system 10 is to be used by
firefighters in fire-fighting applications, the sound delivery tube 14 should be formed of a material which does not melt at high temperatures which may be encountered. For example, silicone rubber is a thermosetting material which, once cured, does not melt or soften. The entire sound delivery tube 14, connector 30, and eartip 16 may be molded together as a single piece from a single material. Alternatively, the connector 30 and eartip 16 may be connected to the sound delivery tube 14 by over-molding, adhesive, snap-fit connections, or the like.

While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention.
Claims:

1. An ambidextrous sound delivery system comprising:
 a case symmetrically configured to be placed behind the left or right ear of a user;
 sound receiving and processing circuitry within the case;
 a sound output port on the case;
 an ambidextrous sound delivery tube having a first end for connection to the sound output port and a second end for delivering sound to an ear canal, the tube preformed in a substantially L-shape which can be used in the left or right ear of the user; and
 a rotatable coupling between the sound output port and the sound delivery tube to allow the sound delivery tube to be rotated with respect to the case to allow the system to be used on either the left or right ear of the user.

2. The ambidextrous sound delivery system of Claim 1, wherein the rotatable coupling includes a first tubular connector of the sound output port and a second tubular connector on the first end of the sound delivery tube, wherein the second tubular connector is positioned around and provides a sound transparent acoustic seal with the first tubular member.

3. The ambidextrous sound delivery system of Claim 1, wherein the ambidextrous sound delivery tube is molded in the preformed substantially L-shape from silicone rubber.

4. The ambidextrous sound delivery system of Claim 1, further comprising an eartip connected to the second end of the sound delivery tube for retaining the second end of the sound delivery tube in the ear canal.
5. The ambidextrous sound delivery system of Claim 4, wherein the sound delivery tube and the eartip are molded in one piece.

6. The ambidextrous sound delivery system of Claim 1, wherein the sound delivery tube and a tubular connector of the rotatable coupling are molded in one piece.

7. The ambidextrous sound delivery system of Claim 1, wherein the sound output port has a longitudinal axis which is oriented directly at a tragal notch and ear canal entrance of a user when the case is positioned behind either the left or right ear of the user.

8. The ambidextrous sound delivery system of Claim 1, wherein the sound delivery tube includes only a single bend.

9. The ambidextrous sound delivery system of Claim 1, wherein the rotatable coupling has an assembled inner diameter which is the same as an inner diameter of the sound output port and an inner diameter of the sound delivery tube.

10. The ambidextrous sound delivery system of Claim 1, wherein a center line of the sound delivery tube lies entirely in a single plane.

11. The ambidextrous sound delivery system of Claim 1, wherein the rotatable coupling is a snap-fit coupling and the sound delivery tube is disposable.

12. An ambidextrous sound delivery system comprising:
a case for containing sound processing circuitry configured to be received behind either the left or right ear of a user;
an ear hook extending from the case in a curved shape which extends over the ear of the user;
a sound output port of the ear hook having an axis oriented directly at a tragal notch and ear canal entrance of a user when the case is received behind either the left or right ear; and
a coupling of the sound output port for receiving a sound delivery tube in a first position for use on a right ear and in a second position for use on a left ear.

13. The ambidextrous sound delivery system of Claim 12, wherein the coupling is a rotatable coupling.

14. The ambidextrous sound delivery system of Claim 12, further comprising an ambidextrous sound delivery tube having an L-shape with a first end arranged to be connected to the coupling and a second end having an eartip configured to be received within an ear canal of the user.

15. The ambidextrous sound delivery system of Claim 12, wherein the first position is between about 165 degrees and 195 degrees from the second position.
1. A method of painting parts comprising:
establishing a path of linear movement;
mounting a plurality of carriers for movement along
the linear path;
mounting each carrier for a spinning movement about
a spin axis transverse to the linear path;
establishing a paint spray station along the linear
path;
providing a spray gun at the spray station;
at a loading station spaced along a linear path
before the paint spray station, loading several parts to be
painted onto each carrier at a plurality of locations
positioned radially outwardly of the spin axis of the carrier
and spaced circumferentially around the spin axis of the
carrier;
moving a loaded carrier along the linear path from
the loading station to the spray station;
stopped the movement of the loaded carrier along
the linear path at the spray station;
spinning the loaded carrier at the spray station
about its spin axis while dispensing paint in spray form from
the spray gun onto the parts on the spinning carrier;
causing the spinning movement of the loaded carrier
to stop; and
thereafter resuming the movement of the loaded
carrier along the linear path to an unloading station beyond
the paint spray station while bringing a successive loaded
carrier into position at the spray station for painting of the
parts carried thereby.

2. A method according to claim 1 wherein a
multiplicity of parts are mounted in close circumferential
relation about the entire circumference of the carrier.

3. A method according to claim 2 wherein each part
is elongated and is positioned with its primary axis generally
parallel to the spin axis.
4. A method according to claim 3 wherein each part is positioned on the carrier so as to present a surface that intersects a circular line centered on the spin axis; and
the part surfaces are uniformly spaced and generally parallel to create angled impeller surfaces spaced circumferentially around the spin axis and operative to suck paint laden air into the center of the carrier to facilitate painting of interior surfaces of the parts.

5. A method according to claim 1 wherein the method further comprises:
mounting the spray gun at the spray station for reciprocal movement along a gun path generally parallel to but spaced laterally from the spin axis of a carrier positioned at the spray station;
commencing reciprocal movement of the spray gun along the gun path upon commencement of the spinning of the loaded carrier; and
stopping the reciprocal movement of the spray gun along the gun path; and
causing the spinning movement of the loaded carrier to stop.

6. A method of painting parts comprising;
providing a power conveyor moveable along a linear path;
providing a carrier moveable along the linear path and rotatable about a spin axis generally transverse to the linear path;
providing a paint spray station proximate the linear path;
providing a spray gun at the spray station moveable reciprocally along a gun path generally parallel to the spin axis of the carrier;
at a loading station spaced along the linear path before the paint spray station, loading a plurality of parts to be painted on the carrier at circumferentially spaced locations about the spin axis of the carrier;

engaging the power conveyor with the loaded carrier and moving the loaded carrier along the linear path to the spray station;

disengaging the power conveyor from the loaded carrier to stop the loaded carrier at the spray station;

rotating the loaded carrier about its spin axis while moving the spray gun in reciprocal fashion along the gun path;

stopping the rotation of the carrier and stopping reciprocal movement of the gun; and

reengaging the power conveyor with the loaded carrier to resume movement of the carrier along the linear path away from the spray station to an unloading station spaced along the linear path beyond the paint spray station.

7. A method according to claim 6 wherein a multiplicity of parts are mounted in close circumferential relation about the entire circumference of the carrier.

8. A method according to claim 7 wherein each part is elongated and is positioned with its primary axis generally parallel to the spin axis of the carrier.

9. A method according to claim 8 wherein each part is positioned on the carrier so as to present a surface that intersects a circular line centered on the spin axis of the carrier; and

the part surfaces are uniformly spaced and generally parallel so as to create impeller surfaces spaced circumferentially around the spin axis of the carrier operative to suck paint laden air into the center of the carrier to facilitate painting of interior surfaces on the parts.
10. An apparatus for painting parts comprising:
means defining a linear path;
a paint spray station along the linear path;
a plurality of carriers mounted for successive
movement along the linear path from a loading station to the
paint spray station, each mounted for spinning movement about
a spin axis transverse to the linear path and each defining
several part loading locations at circumferentially spaced
locations about the spin axis for respective receipt of
several parts to be painted;
a spray gun at the spray station mounted for
reciprocal movement along a gun path generally parallel to but
spaced laterally from the spin axis of a carrier positioned at
the spray station;
means operative to move a loaded carrier along the
linear path from the loading station to the spray station;
means operative to stop the movement of the loaded
carrier along the linear path at the paint spray station; and
means operative to spin the loaded carrier stopped
at the spray station about its spin axis while moving the
spray gun reciprocally along the gun path and dispensing paint
in spray form from the spray gun onto the parts on the
spinning carrier.

11. An apparatus according to claim 10, wherein a
multiplicity of part loading locations are provided in close
circumferential relation about the entire circumference of
each carrier.

12. An apparatus for painting parts comprising:
a power conveyor moveable along a linear path;
a paint spray station proximate the linear path;
a plurality of spaced carriers each moveable along
the linear path, each rotatable about a spin axis generally
transverse to the linear path, and each defining a plurality
of part loading positions at circumferentially spaced
locations about the spin axis for respective receipt of a plurality of parts to be painted;
means operative to selectively drive the carriers from the power conveyor along the linear path to move the respective carriers successively along the linear path to the spray station and stop the carrier at the spray station;
a spray gun at the spray station moveable reciprocally along a gun path generally parallel to the spin axes of the carriers; and
drive means operative to rotate a loaded carrier stopped at the spray station about its spin axis while moving the spray gun in reciprocal fashion along the gun path.

13. A method for spray painting articles of manufacture comprising the steps of:
 conveying a plurality of said articles as a group along a linear path to a spray station;
 causing the plurality of said articles to travel in a circular path about a stationary spin axis which is proximate the spray station and which is central to said plurality while, at the same time,
 discharging paint from a spray nozzle adjacent but spaced from the articles and along a spray path which intersects the stationary spin axis; and, thereafter
 conveying the plurality of articles as a group along a linear path away from the spray station.

14. The method defined in claim 13 including the further step of reciprocating the nozzle along a path which is essentially parallel to the spin axis during the paint dispensing step.

15. The method defined in claim 14 wherein the speed of travel in the circular path is substantially greater than the nozzle reciprocating speed.
A. CLASSIFICATION OF SUBJECT MATTER
 IPC(6) :H04R 25/00
 US CL. :381/380, 381, 382; 181/135
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 381/60, 322, 324, 327, 328, 330, 374, 380, 381, 382; 181/128, 129, 130, 135

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 NONE

 Electronic database consulted during the international search (name of database and, where practicable, search terms used)
 NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4,864,610 A (STEVENS) 05 September 1989, see col. 2, lines 65-68, and figures 1 and 4.</td>
<td>1-15</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority data claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "*" document member of the same patent family

Date of the actual completion of the international search: 29 JULY 1999
Date of mailing of the international search report: 18 OCT 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
HUYEN LE
Telephone No. (703) 305-4844

Form PCT/ISA/210 (second sheet)(July 1992)*