
(12)
(19)-

STANDARD PATENT (11) Application No. AU 2011213666 B2
AUSTRALIAN PATENT OFFICE

(54) Title
Extension point declarative registration for virtualization

(51) International Patent Classification(s)
G06F 9/44 (2006.01)

(21) Application No: 2011213666 (22) Date of Filing: 2011.02.04

(87) WIPONo: WO11/097521

(30) Priority Data

(31) Number (32) Date (33) Country
12/700,723 2010.02.05 US

(43) Publication Date: 2011.08.11
(44) Accepted Journal Date: 2014.05.01

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Sheehan, John M.

(74) Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 2009/0106780 A1



PCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
11 August 2011 (11.08.2011)

(10) International Publication Number

WO 2011/097521 A3

(51) International Patent Classification:
G06F 9/44 (2006.01)

(21) International Application Number:
PCT/US2011/023801

(22) International Filing Date:
4 February 2011 (04.02.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/700,723 5 February 2010 (05.02.2010) US

(71) Applicant (for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft 
Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: SHEEHAN, John M.; c/o Microsoft Corpora­
tion, LCA - International Patents, One Microsoft Way, 
Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available): ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, 
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted 

a patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of 
the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the 
claims and to be republished in the event of receipt of 
amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
29 December 2011

(54) Title: EXTENSION POINT DECLARATIVE REGISTRATION FOR VIRTUALIZATION

Extension Point Virtualization System

1 30 140

______ cA
1

___________

10 120

______ cf
Extension Extension Application Extension

Point Point Data Virtualization Point
Identification Store Environment Registration

Reparse Point Extension Point Extension Point
Creation Access Redirection

150 160 170

W
O

 2
01

1/
09

75
21

 A
3

FIG. 1
(57) Abstract: An extension point virtualization system uses operating system-provided reparse points to provide minimal exten­
sion point registration. Reparse points preserve application isolation while removing the scale problem of writing custom exten­
sion point proxies for each extension point. Instead, the system can use a single file system filter that generically handles applica­
tion virtualization reparse points, and store reparse point data for extension points that need redirection. Many extension points 
can be handled by redirecting the operating system from a typical location for an application resource to a virtualized safe location 
for the application resource. Thus, the system simplifies the process of handling new extension points by allowing an application 
virtualization system to simply register new locations that should be handled with reparse points and to then handle registered io - 
cations generically.



20
11

21
36

66
 

18
 M

ar
 2

01
4

BACKGROUND

[0001] Virtualization refers to the execution of a virtual machine by physical hardware 

and then running operating systems and/or applications virtually on the virtual machine. 

The virtual machine may represent a least common denominator of hardware functionality

5 or may represent a well-known configuration for which it is easy to prepare an operating 

system and applications. Many data centers use virtualization to be able to easily move a 

virtual machine to new physical hardware as resource requirements increase, for 

maintenance cycles, and to balance physical server loads. Virtualization is useful for many 

situations, but can also impose limitations that occur due to many virtual machines

10 contending for the same resources (e.g., central processing unit (CPU), memory, and 

network interface card (NIC)).

[0002] Application virtualization provides a virtual machine at the level of a single 

application. For example, a host operating system may natively run some applications, 

while providing a virtual environment for running others. This may allow the operating

15 system, for example, to run applications designed for a different operating system.

Application virtualization blurs the distinction for the user between applications running 

natively in the host operating system and applications running in a virtual machine. For 

example, both types of applications may appear side by side in a taskbar or menu provides 

by the operating system shell. MICROSOFT Application Virtualization (App-V), for

20 example, transforms applications into centrally mana the ged virtual services that are not 

installed and do not conflict with other applications. In a physical environment, every 

application depends on its operating system (OS) for a range of services, including 

memory allocation, device drivers, and much more. Incompatibility between an application 

and its OS can be addressed by either server virtualization or presentation virtualization-

25 but for incompatibility between two applications installed on the same instance of an OS is 

solved by application virtualization.

[0003] Operating systems need to have their behaviors modified to fit the needs of 

customers. For example, the user may install MICROSOFT Word, which registers a file 

type association. This file type association changes how the operating system behaves.

30 When the user clicks on a document with the Word file type association, the operating 

system invokes MICROSOFT Word. File type associations are a specific example of an 

operating system extension point. One part of virtualization is isolation, meaning one 

application cannot see another application and that one application's actions do not affect 

the operating system, or only affect the operating system through a proxy. In the file type

1



20
11

21
36

66
 

18
 M

ar
 2

01
4 association case, one example of a proxy is the MICROSOFT App-V client that detects 

and registers the file type association as a proxy on behalf of the application. In this way, 

MICROSOFT App-V is aware of the operating system modification and can reverse it 

when the virtualized application is removed.

5 [0004] Unfortunately, building a custom proxy for each operating system extension

point is not practical or scalable. There are over 3000 extension points in 

MICROSOFTWINDOWS, making it virtually impossible to write a proxy for each one. 

Moreover, with support for each new operating system, additional extension points need to 

be detected and managed to keep application virtualization working as expected. The

10 constantly expanding number of extension points consumes development and testing time 

and takes time away from other new features.

[0004a] It is desired to address or ameliorate one or more disadvantages or limitations 

associated with the prior art, or to at least provide a useful alternative.

SUMMARY

15 [0005] In one embodiment of the present invention, there is provided a computer-

implemented method for identifying extension points and isolating application use of 

extension points, the method comprising: identifying an extension point that provides a 

manner of extend an operating system or application through third-party extension; adding 

the identified extension point to an extension point data store; receiving an application

20 execution request that specifies a virtual application package; identifying one or more 

application extension point references within the specified virtual application package by 

comparing one or more paths referenced by the virtual application package to those in the 

extension point data store; and creating a reparse point to redirect an identified application 

extension point reference to an isolated location within the specified virtual application

25 package, wherein the preceding steps are performed by at least one processor.

[0005a] In a further embodiment of the present invention, there is provided a computer 

system for generically handling virtualization of operating system and application 

extension points, the system comprising: a processor and memory configured to execute 

software instructions; an extension point identification component configured to identify

30 extension points through which an operating system or application can be extended by 

third party programmatic code; an extension point data store configured to store identified 

extension points in a declarative format; an application virtualization environment 

configured to provide a level of indirection between a virtual application and a host

2



20
11

21
36

66
 

18
 M

ar
 2

01
4 operating system; an extension point registration component configured to detect 

installation of a virtual application package that references an identified extension point; a 

reparse point creation component configured to create a reparse point for an identified 

extension point pointing to the detected virtual application package that references the

5 identified extension point; an extension point access component configured to detect 

access of the created reparse point and invoke an extension point redirection component; 

and an extension point redirection component configured to cause the host operating 

system or an application to look for specified data referenced by a reparse point in a 

location associated with the detected virtual application package.

10 [0006] This Summary is provided to introduce a selection of concepts in a simplified

form that are further described below in the Detailed Description. This Summary is not 

intended to identify key features or essential features of the claimed subject matter, nor is it 

intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

15 [0006a] Preferred embodiments of the present invention are hereinafter described, by

way of example only, with reference to the accompanying drawings, in which:

[0007] Figure 1 is a block diagram that illustrates components of the extension point 

virtualization system, in one embodiment.

[0008] Figure 2 is a flow diagram that illustrates the processing of the extension point

20 virtualization system to identify extension points and setup application redirection for 

identified extension points, in one embodiment.

[0009] Figure 3 is a flow diagram that illustrates the processing of the virtualization 

system to respond to a request to access a resource through an extension point, in one 

embodiment.

25 DETAILED DESCRIPTION

[0010] An extension point virtualization system is described herein that uses operating 

system-provided reparse points to provide minimal extension point registration. Reparse 

points preserve application isolation while removing the scale problem of writing custom 

extension point proxies for each extension point. Many extension points can be handled by

30 redirecting the operating system from a typical location for an application resource to a 

virtualized safe location for the application resource. For example, applications that 

previously installed files into the operating system directory may be redirected to install 

those files into the application's own directory (even though application virtualization fools

3



20
11

21
36

66
 

18
 M

ar
 2

01
4

the application into thinking the files are still in the operating system directory). The 

extension point system uses reparse points (referred to below) to reduce the need for 

custom proxies for each extension point. Instead, the system can use a single file system 

filter that generically handles application virtualization reparse points, and store reparse

5 point data for extension points that need redirection. Thus, the system simplifies the

process of handling new extension points by allowing an application virtualization system 

to simply register new locations that can be handled with reparse points and to then handle 

registered locations generically.

[0011] A file or directory can contain a reparse point, which is a collection of user-

10 defined data. The format of this data is understood by the application that stores the data 

and a file system filter, which an application developer installs to interpret the data and 

process the file. When an application sets a reparse point, it stores this data, plus a reparse 

tag, which uniquely identifies the data it is storing. When the file system opens a file with a 

reparse point, it attempts to find the file system filter associated with the data format

15 identified by the reparse tag. If a file system filter is found, the filter processes the file as 

directed by the reparse data. If a file system filter is not found, the file open operation fails. 

For example, reparse points are used to implement NTFS file system links and the 

MICROSOFT Remote Storage Server (RSS). RSS uses an administrator-defined set of 

rules to move infrequently used files to long-term storage, such as tape or optical media.

20 RSS uses reparse points to store information about the file in the file system. This

information is stored in a stub file that contains a reparse point whose data points to the 

device where the actual file is located. The file system filter can use this information to 

retrieve the file. Reparse points are also used to implement mounted folders.

[0012] The extension point virtualization system uses reparse points to eliminate the

25 need for custom proxies for each extension point. Instead, the system can create a single 

file system filter that generically handles application virtualization reparse points, and store

3a



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

reparse point data for extension points that need redirection. For example, the system can 

associate a reparse point with a file or registry key, regardless of the specific extension 

purpose of that file or registry key. Thus, the system simplifies the process of handling 

new extension points by allowing an application virtualization system to simply register 

new locations that can be handled with reparse points and to then handle registered 

locations generically.

[0013] Application virtualization gathers up the file and registry data for an application 

and places this in a store called a package, making the application think that the files and 

registry entries are installed locally, even though they are not. The previous method of 

registering extension points created a proxy for each extension point. This proxy would 

detect that the package was present on the system, and extract enough metadata to register 

the extension point with the operating system. The proxy would be invoked when the 

extension point was invoked, find the right package, and hand off the work to that 

package. In contrast, the extension point virtualization system described herein uses an 

operating system facility, the reparse point (or symbolic link in UNIX), to minimally 

register extension points. A reparse point is an operating system facility that tells the 

operating system that when a particular path is used in an operating system application­

programming interface (API), the operating system should instead look to a substitute path 

for the data.

[0014] The extension point virtualization system causes the redirection to occur to a 

location in virtual package. By doing this, the system provides a way to allow new 

extension points to be added without a proxy, while continuing to isolate the application 

from the operating system. Take the example of the “.txt” file type association, realizing 

this technique works with other types of extension points. The file type association has a 

registry key that causes the operating system to run a command line specifying a path to 

an executable file when a user clicks on this file type association from the operating 

system shell (e.g., MICROSOFTWINDOWS Explorer). In the default case the registry 

key data is “HKEY_CLASSES_ROOT\txtfile\shell\open\command=

%SystemRoot%\system32\NOTEPAD.EXE %1,” which causes the operating system to 

run Notepad to open the file. The extension point virtualization system detects that a 

package registering the “.txt” file type association is on the system, and places a reparse 

point in the registry so that when the shell opens

HKEY_CLASSES_ROOT\txtfile\shell\open\command it will be reparsed to HKCR\[APP

4



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

GUID]\ txtfile\shell\open\command. In this case, [APP GUID] is a package-specific 

globally unique identifier (GUID).

[0015] This technique can be generalized to other extension points as well as to extension 

points that do not include a single registry entry but rather multiple registry entries across 

multiple locations, as well as files and directories. The extension point virtualization 

system works with the package (which is the data), the application virtualization 

environment (e.g., the MICROSOFT App-V client), which performs the registration on 

behalf of the package, and a set of extension points. The extension points can be 

expressed in a declarative extensible markup language (XML) syntax, so that the 

application virtualization environment can easily add new extension points without 

requiring modifications to the environment or the package.

[0016] Figure 1 is a block diagram that illustrates components of the extension point 

virtualization system, in one embodiment. The system 100 includes an extension point 

identification component 110, an extension point data store 120, an application 

virtualization environment 130, an extension point registration component 140, a reparse 

point creation component 150, an extension point access component 160, and an extension 

point redirection component 170. Each of these components is described in further detail 

herein.

[0017] The extension point identification component 110 identifies extension points 

through which an operating system or application can be extended by third party 

programmatic code. For example, the component may detect a registry key through which 

application add-ins can be registered to be invoked by the application. In some cases, 

extension points are identified manually by process monitoring or other tools used by an 

administrator to watch an application’s behavior as the application runs. For example, the 

administrator can use a registry monitoring locations to determine the registry locations 

read by an application or the operating system.

[0018] The extension point data store 120 stores identified extension points in a 

declarative format. The extension point data store 120 may include a file (e.g., an XML 

file), a database, a network-based data store, a cloud-based storage service, or other 

storage medium from which a list of identified extension points can be retrieved. An 

administrator or application environment author may add new extension points over time 

as they are discovered, so that even previously deployed virtualized applications can 

benefit from increased operating system isolation by protection from modifications to the 

operating system previously undetected by the application environment. In addition,

5



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

independent software vendors (IS Vs) may contribute lists of their own application 

extension points for addition to the data store 120 so that applications that modify their 

applications can be more easily virtualized and isolated.

[0019] The application virtualization environment 130 provides a level of indirection 

between the virtual application and the host operating system. The wrapper may be very 

thin allowing the application to run nearly natively, such as when the application is 

designed to run on the host operating system. Alternatively or additionally, the wrapper 

may provide APIs and satisfy other constraints expected by applications designed for other 

operating systems or operating system versions. Thus, the application virtualization 

environment 130 provides a virtual application with the environment for which the 

application was designed using the available resources of the host operating system.

[0020] The extension point registration component 140 detects installation of a virtual 

application package that references an identified extension point. The component 140 

accesses the extension point data store 120 to load a list of identified extension points and 

compares the list to packages invoked by a user. If a match is found, the component 140 

invokes the reparse point creation component 150 to create a reparse point redirecting the 

application to look for the extension point data within the application package.

[0021] The reparse point creation component 150 creates a reparse point for an identified 

extension point and the detected virtual application package that references the identified 

extension point. For example, if the extension point registration component 140 detects a 

package registering a file type association, then the reparse point creation component 150 

creates a reparse point for the registry entry within the file type association that describes 

the application to launch when the file type association is invoked. The created reparse 

point redirects the registry entry to a location within the detected virtual application 

package.

[0022] The extension point access component 160 detects access of the created reparse 

point and invokes the extension point redirection component 170 to cause the operating 

system to look for specified data in a location associated with the detected virtual 

application package. Although described as a separate component, the extension point 

virtualization system 100 may rely on default operating system behavior to allow the 

operating system to perform the redirection without informing the extension point 

virtualization system 100. However, the operating system does allow registration of a file 

system filter that is invoked when a reparse point is accessed and the system may, in some 

embodiments, use this functionality to detect access and perform custom handling. This

6



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

may be useful, for example, for debugging and auditing where application requests are 

being redirected.

[0023] The extension point redirection component 170 causes the operating system or an 

application to look for specified data referenced by a reparse point in a location associated 

with the detected virtual application package. As noted previously, the extension point 

virtualization system 100 may rely on default behavior of the operating system to perform 

the redirection as a function of the reparse point without involving the extension point 

virtualization system 100.

[0024] The computing device on which the extension point virtualization system is 

implemented may include a central processing unit, memory, input devices (e.g., keyboard 

and pointing devices), output devices (e.g., display devices), and storage devices (e.g., 

disk drives or other non-volatile storage media). The memory and storage devices are 

computer-readable storage media that may be encoded with computer-executable 

instructions (e.g., software) that implement or enable the system. In addition, the data 

structures and message structures may be stored or transmitted via a data transmission 

medium, such as a signal on a communication link. Various communication links may be 

used, such as the Internet, a local area network, a wide area network, a point-to-point dial­

up connection, a cell phone network, and so on.

[0025] Embodiments of the system may be implemented in various operating

environments that include personal computers, server computers, handheld or laptop 

devices, multiprocessor systems, microprocessor-based systems, programmable consumer 

electronics, digital cameras, network PCs, minicomputers, mainframe computers, 

distributed computing environments that include any of the above systems or devices, and 

so on. The computer systems may be cell phones, personal digital assistants, smart 

phones, personal computers, programmable consumer electronics, digital cameras, and so 

on.

[0026] The system may be described in the general context of computer-executable 

instructions, such as program modules, executed by one or more computers or other 

devices. Generally, program modules include routines, programs, objects, components, 

data structures, and so on that perform particular tasks or implement particular abstract 

data types. Typically, the functionality of the program modules may be combined or 

distributed as desired in various embodiments.

[0027] Figure 2 is a flow diagram that illustrates the processing of the extension point 

virtualization system to identify extension points and setup application redirection for

7



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

identified extension points, in one embodiment. Beginning in block 210, the system 

identifies an extension point. For example, the system may receive a list of extension 

points from an operating system vendor or ISV for addition to the extension point data 

store. Alternatively or additionally, a virtualization system developer or system 

administrator using application virtualization may manually identify extension points, 

such as through process monitoring tools.

[0028] Continuing in block 220, the system adds the identified extension point to an 

extension point data store. The extension point data store may comprise a declarative 

format, such as an XML file, that lists known extension points and associated resource 

paths. When the system detects a reference to an extension point path in an application 

package, the system performs the steps described herein to isolate and redirect the 

application’s modification of the operating system. Continuing in decision block 230, if 

there are more extension points to identify, then the system loops to block 210, else the 

system continues at block 240. Note that although illustrated for ease of explanation in the 

same flow diagram, the preceding steps may occur separately from the following steps and 

may occur on an ongoing basis as new extension points are discovered. Likewise, the 

following steps may occur repeatedly for many applications as each virtualized application 

is executed by the system.

[0029] Continuing in block 240, the system receives an application execution request that 

specifies a virtual application package. Typically, this occurs when a user runs an 

application from the operating system shell that has been setup by an administrator to be 

virtualized. The application generally is not even installed on the user’s computer but the 

user’s computer contains a sufficient reference to locate and run the virtual application 

package stored centrally (e.g., on a network). When a virtual application package is 

invoked, the system runs the application virtualization environment described herein as a 

client to guide the application virtualization process.

[0030] Continuing in block 250, the system identifies one or more application extension 

point references within the specified virtual application package by comparing one or 

more paths referenced by the virtual application package to those in the extension point 

data store. For example, an application may register a file type association or a word 

processing application add-in through a registry-based extension point. If the registry 

location is on the list stored by the extension point data store, then the system determines 

that the application package references an extension point. Continuing in decision block

8



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

260, if the system detects an extension point reference, then the system continues at block 

270, else the system completes.

[0031] Continuing in decision block 270, the system creates a reparse point to redirect an 

identified application extension point reference to an isolated location within the specified 

virtual application package. The reparse point causes accesses of the extension point to 

look for data within the application package and prevents the application package from 

modifying the operating system directly. Continuing in decision block 280, if the system 

detected additional application extension point references, then the system loops to block 

270 to create reparse points for the each additional reference, else the system completes. 

After block 280, these steps conclude.

[0032] Figure 3 is a flow diagram that illustrates the processing of the virtualization 

system to respond to a request to access a resource through an extension point, in one 

embodiment. Beginning in block 310, the system receives a resource access request that 

references a resource path. For example, an application may call a file open API provided 

by the operating system and specify a path to a file that the application requests to open. 

Alternatively or additionally, other applications, such as the operating system shell, may 

attempt to access a resource location through which applications can extend the 

functionality of the operating system or application.

[0033] Continuing in block 320, the extension point virtualization system detects whether 

the resource referenced by the path includes an associated reparse point. For example, the 

operating system may look for data associated with the resource where reparse point data 

is stored. Continuing in decision block 330, if the system detected a reparse point, then 

the system continues at block 340, else the system completes. Continuing in block 340, 

the extension point virtualization system identifies a virtual application package associated 

with the referenced path. For example, the reparse point may include an application 

GUID that identifies the application package. The system may include a common method 

of mapping application GUIDs to application packages, such as storing application 

packages in a well-known location using the application GUID.

[0034] Continuing in block 350, the extension point virtualization system redirects the 

resource request to the identified virtual application package. For example, the operating 

system may forward the resource request to a registered file system driver after detecting 

the reparse point or handle the request in a default manner, such as by redirecting the 

request to a specified location. As an example, the system may replace a file path 

contained in the received request with a file path associated with the virtual application

9



20
11

21
36

66
 

18
 M

ar
 2

01
4

package. Continuing in block 360, the extension point virtualization system responds to the 

redirected resource request by providing access to the requested resource. For example, the 

operating system may open an identified file and provide the file data in response to the 

request. The application behaves as if the data is where the application normally stores it

5 and the virtualization system modifies requests to point to the location where the data is 

actually stored. Because of the redirection performed by the reparse point, the application 

virtualization works correctly whether the resource request comes from the application, 

another process, or other sources. After block 360, these steps conclude.

[0035] In some embodiments, the extension point virtualization system stores

10 application data in a package file format. A package file can be any file format capable of 

storing multiple other files and types of data. For example, common existing package file 

formats include ZIP, CAB, RAR, SFT, and other similar formats. Package files often 

include compression for reducing file size and other features (e.g., encryption) in addition 

to allowing multiple files to be stored in one archive format. A package file for a

15 virtualized application may include registry hives, files, databases, and other types of data 

that are used by the virtual application. The operating system may mount the package files 

like a directory, a volume, a disk drive, or other resource so that the virtual application can 

reference the items stored within the package file using common operating system APIs for 

file and other resource manipulation. In some embodiments, the extension point

20 virtualization system may include virtual application data in the executable of the virtual 

application, so that the application can be distributed as a single EXE file with self­

extracting data. Although several examples are described here, the extension point 

virtualization system is not limited to any particular manner of storing application data, 

and storage mechanisms other than those described can be used to achieve similar results.

25 [0036] From the foregoing, it will be appreciated that specific embodiments of the

extension point virtualization system have been described herein for purposes of 

illustration, but that various modifications may be made without deviating from the scope 

of the invention. Accordingly, the invention is not limited except as by the appended 

claims.

30 [0037] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and 

"comprising", will be understood to imply the inclusion of a stated integer or step or group 

of integers or steps but not the exclusion of any other integer or step or group of integers or 

steps.

10



20
11

21
36

66
 

18
 M

ar
 2

01
4 [0038] The reference in this specification to any prior publication (or information 

derived from it), or to any matter which is known, is not, and should not be taken as an 

acknowledgment or admission or any form of suggestion that that prior publication (or 

information derived from it) or known matter forms part of the common general

5 knowledge in the field of endeavour to which this specification relates.

10a



20
11

21
36

66
 

18
 M

ar
 2

01
4 THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method for identifying extension points and isolating 

application use of extension points, the method comprising:

identifying an extension point that provides a manner of extend an operating 

system or application through third-party extension;

adding the identified extension point to an extension point data store; 

receiving an application execution request that specifies a virtual application

package;

identifying one or more application extension point references within the 

specified virtual application package by comparing one or more paths referenced by the 

virtual application package to those in the extension point data store; and

creating a reparse point to redirect an identified application extension point 

reference to an isolated location within the specified virtual application package, 

wherein the preceding steps are performed by at least one processor.

2. The method of claim 1 wherein identifying an extension point comprises 

receiving a list of extension points from an operating system vendor or independent 

software vendor (ISV).

3. The method of claim 1 wherein identifying an extension point comprises 

automatically identifying the extension point a process monitoring tool that detects an 

application's use of operating system resources.

4. The method of claim 1 wherein the extension point data store comprises a 

declarative format that lists known extension points and associated resource paths.

5. The method of claim 1 wherein receiving an application execution request 

comprises receiving a user request to run a virtualized application.

6. The method of claim 1 wherein receiving an application execution request 

comprises receiving a request to execute an application that is not natively installed on a 

computer system from which the request was received.

7. The method of claim 1 further comprising, upon receiving the application 

execution request, invoking an application virtualization environment in which to run the 

requested application.

8. The method of claim 1 wherein identifying an extension point reference 

comprises identifying a request to register a file type association.

11



WO 2011/097521 PCT/US2011/023801

5

10

15

20

25

30

9. The method of claim 1 wherein creating a reparse point comprises specifying an 

application identifier and an alternative path for accessing the identified application 

extension point reference.

10. The method of claim 1 wherein creating a reparse point further comprises 

preventing the specified virtual application from directly modifying a host operating 

system that executes the virtual application.

11. A computer system for generically handling virtualization of operating system and 

application extension points, the system comprising:

a processor and memory configured to execute software instructions; 

an extension point identification component configured to identify extension points

through which an operating system or application can be extended by third party 

programmatic code;

an extension point data store configured to store identified extension points in a 

declarative format;

an application virtualization environment configured to provide a level of 

indirection between a virtual application and a host operating system;

an extension point registration component configured to detect installation of a 

virtual application package that references an identified extension point;

a reparse point creation component configured to create a reparse point for an 

identified extension point pointing to the detected virtual application package that 

references the identified extension point;

an extension point access component configured to detect access of the created 

reparse point and invoke an extension point redirection component; and

an extension point redirection component configured to cause the host operating 

system or an application to look for specified data referenced by a reparse point in a 

location associated with the detected virtual application package.

12. The system of claim 11 wherein the extension point identification component is 

further configured to automatically identify extension points based on process monitoring 

to detect paths accessed by an application during execution.

13. The system of claim 11 wherein the extension point data store comprises an XML 

file that includes a list of identified extension points.

14. The system of claim 11 wherein the extension point data store is further configured 

to receive new extension points over time as they are discovered, so that previously 

deployed virtualized applications can benefit from increased operating system isolation by

12



WO 2011/097521 PCT/US2011/023801

protection from modifications to the operating system previously undetected by the 

application environment.

15. The system of claim 11 wherein the application virtualization environment is 

further configured to provide the virtual application with an environment for which the

5 application was designed using the available resources of the host operating system.

13



WO 2011/097521 PCT/US2011/023801

1/3

100

Extension Point Virtualization System

110 120

150 160

130 140

170

FIG. 1



WO 2011/097521 PCT/US2011/023801

2/3

FIG. 2



WO 2011/097521 PCT/US2011/023801

3/3

FIG. 3


