(54) Title: LAMINATED STRUCTURE WHICH IS STABLE WITH RESPECT TO CLIMATE AND CORROSION

(54) Bezeichnung: KLIIMA- UND KORROSIONSSTABILER SCHICHTAUFBAU

(57) Abstract

The invention concerns a laminated structure which is encapsulated such that it is stable with respect to climate and corrosion, the structure having at least one corrosion- and/or moisture-sensitive layer, for example a solar cell, over which a barrier layer is disposed. Thin layers of titanium or molybdenum nitride, aluminium oxide, silicon nitride and silicon oxide nitride are proposed for this purpose. The barrier layer can be combined with an additional laminated structure generally used in solar cells.

(57) Zusammenfassung

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlicht.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>ES</td>
<td>Spanien</td>
<td>LS</td>
<td>Laos</td>
<td>SI</td>
<td>Slowenien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
<td>Litauen</td>
<td>SK</td>
<td>Slowakei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
<td>Luxemburg</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>LV</td>
<td>Lettland</td>
<td>SZ</td>
<td>Sambia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GE</td>
<td>Georgien</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Tschad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GH</td>
<td>Ghana</td>
<td>MD</td>
<td>Moldawien</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>MG</td>
<td>Madagaskar</td>
<td>TJ</td>
<td>Tadschikistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GR</td>
<td>Griechenland</td>
<td>MK</td>
<td>die ehemalige jugoslawische Republik</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Ungarn</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Türkei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>IE</td>
<td>Irland</td>
<td>MN</td>
<td>Mongolei</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IL</td>
<td>Israel</td>
<td>MR</td>
<td>Mauritanien</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IS</td>
<td>Island</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IT</td>
<td>Italien</td>
<td>MX</td>
<td>Mexiko</td>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>JP</td>
<td>Japan</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Usbekistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>KE</td>
<td>Kenia</td>
<td>NL</td>
<td>Niederlande</td>
<td>VN</td>
<td>Vietnam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KG</td>
<td>Kirgisien</td>
<td>NO</td>
<td>Norwegen</td>
<td>YU</td>
<td>Jugoslawien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>NZ</td>
<td>Neuseeland</td>
<td>ZW</td>
<td>Simbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KR</td>
<td>Republik Korea</td>
<td>PL</td>
<td>Polen</td>
<td>AL</td>
<td>Albanien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>PT</td>
<td>Portugal</td>
<td>AM</td>
<td>Armenien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LC</td>
<td>St. Lucia</td>
<td>RO</td>
<td>Rumänien</td>
<td>AT</td>
<td>Österreich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russische Föderation</td>
<td>AU</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
<td>BE</td>
<td>Belgien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Schweden</td>
<td>BJ</td>
<td>Benin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>LS</td>
<td>Laos</td>
<td>SG</td>
<td>Singapur</td>
<td>BR</td>
<td>Brasilien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Klima- und korrosionsstabiler Schichtaufbau.

Um die am Markt gefragten Qualitätsanforderungen zu erfüllen, müssen Solarmodule eine Reihe unterschiedlicher Testverfahren erfolgreich durchlaufen. Eines dieser Verfahren, das die Klimabeständigkeit der Solarmodule überprüfen soll, ist der Damp-Heat-Klimatext. Nach der bekannten Norm IEC 1215 werden die Module dabei unter anderem für 1000 Stunden einer Temperatur von 85°C bei 85 Prozent relativer Luftfeuchtigkeit ausgesetzt.

Laminierte Solarmodule mit bordotierten Zinkoxidelektroden-schichten zeigen bei diesem Testverfahren eine ungewöhnlich starke Degradation, also eine unzulässig hohe Abnahme des Wirkungsgrads nach dem Klimatext. Hauptverantwortlich dafür ist deren Instabilität bezüglich der Leitfähigkeit der bordotierten CVD-Zinkoxidschichten gegen Wasserdampf bei erhöhter Temperatur. Wie an Testlaminaten, bestehend nur aus einer mit Testelektroden versehenen laminierten Zinkoxidschicht, gezeigt werden konnte, steigt der Flächenwiderstand solcher Schichten nach dem Test um einen Faktor von über 10^3 auf einen Wert von mehr als 1 kΩ/Square. Zur Erreichung eines hohen Füllfaktors bei Solarmodulen ist jedoch ein Wert von weniger als 10 Ω/Square erforderlich. Dies kann durch eine einfache Verkapselung mit einem Lamininataufbau mit Hilfe ei-
ner Klebefolie und gegebenenfalls einer zweiten Glasscheibe nicht erreicht werden.

Bei Wärmeschutzverglasungen für Gebäudefassaden und -fenster sind die Glasscheiben mit einer feuchtigkeitsempfindlichen Dünnenschicht beschichtet, die bislang aufwendig durch Ein- schluß feuchtigkeitsabsorbierender Mittel in zum Beispiel laminierte Doppelglasscheiben geschützt werden muß.

Aufgabe der vorliegenden Erfindung ist es, einen feuchtigkeits- und/oder korrosionsunempfindlichen Schichtaufbau anzugeben, der einfach und ohne zu hohen zusätzlichen Fertigungsaufwand herzustellen ist und der sowohl gegenüber den angegebenen Testbedingungen als auch bei einer herkömmlichen Verwendung eine erhöhte Stabilität aufweist.

Diese Aufgabe wird erfindungsgemäß gelöst durch einen Schichtaufbau nach Anspruch 1. Bevorzugte Ausgestaltungen der
Erfindung sowie ein Verfahren zur Herstellung des Schichtaufbaus sind weiteren Ansprüchen zu entnehmen.

In einer bevorzugten Ausgestaltung der Erfindung ist der Schichtaufbau Teil eines elektrischen oder optischen Bauelements, bei dem die Sperrschichten eine Dampfsperr- und/oder eine Korrosionsschutzwirkung haben, wobei optisch aktive und/oder mit elektrischen Potentialdifferenzen arbeitende Teile des Bauelements mit elektrisch isolierenden Sperrschichten bedeckt sind, Schichten ohne Potentialdifferenz dagegen mit leitfähigen Sperrschichten.

Die feuchtigkeits- und/oder korrosionsempfindliche Schicht im Sinne der Erfindung ist eine substratgebundene Schicht, die als Dünn- oder Dickschicht aufgebracht sein kann und amorph, polykristallin oder metallisch ist.

In einer bevorzugten Ausgestaltung der Erfindung ist die zusätzliche Sperrschicht eine Dünnsschicht, die ausgewählt ist aus Aluminiumoxid Al₂O₃, Siliziumnitrid Si₃N₄, Titan nitrid TiN, Molybdän nitrid MoN und Siliziumoxinitrid SiOₓNᵧ. Eine solche Dünnsschicht ist einfach und kostengünstig herzustellen und läßt sich in einfacher Weise in den Herstellprozeß der feuchtigkeits- oder korrosionsempfindlichen Schicht beziehungsweise des diese Schicht enthaltenden Schichtaufbaus oder
Bauelements integrieren, insbesondere wenn die Schicht oder der Schichtaufbau selbst ein Dünnschichtaufbau ist.

Damit werden zur Herstellung des erfindungsgemäßen Schichtaufbaus keine zusätzlichen Apparaturen benötigt. Da sich die Sperrschicht der Funktion der abgedeckten Schicht anpasst und zum Beispiel optisch transparent, elektrisch leitfähig oder isolierend ist, zeigt sie keinen negativen Einfluß auf den Schichtaufbau. Sie beeinträchtigt weder den Betrieb eines den Schichtaufbau enthaltenden optischen oder elektrischen Baulements noch verschlechtert es dessen Eigenschaften.

Die genannten Dünnschicht-Sperrschichten lassen sich in bekannten Verfahren als dichte, d.h. porenfreie, optisch transparente und kantenbedeckende Schichten abscheiden. In Abhängigkeit von der Dichte bzw. der Porenfreiheit, mit der eine solche Schicht erzeugt werden kann, kann bereits eine Sperrschicht von 100 μm Dicke ausreichend sein, um einen vollständigen Feuchtigkeits- und/oder Korrosionsschutz zu gewährleisten. Eine dickere Sperrschicht ist natürlich möglich, aber nicht erforderlich. Bei Abscheideprozessen, die zu nicht ganz porenfreien oder nicht vollständig homogenen oder nicht gut kantenbedeckenden Sperrschichten führen, wird vorzugsweise eine höhere Schichtdicke gewählt. Wenn hohe Topographiestufen auf dem Schichtaufbau vorhanden sind, wird für eine gute Kantenbedeckung der Sperrschicht eine Schichtdicke bis ca. 2 μm gewählt.

Die Sperrschicht weist auf den meisten als elektrische oder optische Funktionsschichten verwendeten Materialien eine gute
Haftung auf. Gegebenenfalls kann zusätzlich eine Haftvermittlerschicht erforderlich sein.

Da der erfindungsgemäße Schichtaufbau die Sperrschicht als zusätzliche Schicht zum herkömmlichen Schichtaufbau aufweist, der eine oder beliebig viele Schichten umfaßt, kann sie noch mit einer herkömmlichen Abdeckung, beispielsweise mit einem Laminataufbau abgedeckt sein. Bei Solarmodulen ist es insbesondere ein Laminat, welches zumindest noch eine Kunststoffschicht sowie gegebenenfalls eine Schutzfolie und/oder eine Deckscheibe aus Glas umfaßt. Vorzugsweise ist die Kunststoffschicht eine Schmelzklebeschicht, auf der noch die Abdeckfolie und gegebenenfalls die Glasscheibe auflaminiert sind. Andere Bauelemente können über der Sperrschicht zusätzlich oder alternativ mit anderen Abdeckungen, beispielsweise mit Gießharzschichten oder sonstigen Vergußmassen abgedeckt oder umhüllt sein.

In einer Anwendung der Erfindung für weltraumtaugliche beziehungsweise nur dort zu verwendende Solarzellen ist die Sperrschicht als oberste und abdeckende Schicht für einen Schutz der Solarzelle ausreichend.

Beim erfindungsgemäßen Schichtaufbau ist die Sperrschicht kantenbedeckend so über der zu schützenden Schicht angeordnet, daß deren gesamte Oberfläche einschließlich der Seitenwände abgedeckt ist. Seitlich der empfindlichen Schicht
schließt die Sperrschicht mit einer klimastabilen Schicht ab. Solche Schichten sind gegenüber Feuchtigkeit und/oder heißen und feuchten Umgebungen dicht und zeigen darin auch nach län- gerer Exposition keinerlei Korrosion oder sonstige nachteilli- ge Veränderung.

Vorzugsweise umschließt die Sperrschicht die feuchtigkeitsempfindliche Dünnschicht von oben und von der Seite und schließt an der der Unterkante mit dem beispielsweise aus Glas bestehenden Substrat, einer Metallschicht oder einer Passivierungsschicht ab. Die Passivierungsschicht kann eben- falls eine Sperrschicht sein. Neben den bereits für die Sperrschicht genannten Materialien ist außerdem für besondere Anwendungen noch Siliziumoxid geeignet. Titan- und Molybdän-

nitrid können elektrisch leitend eingestellt werden und sind außerdem besonders hart und kratzfest. Sie sind daher als Passivierungsschicht für eine insbesondere metallische und daher prinzipiell korrosionsempfindliche Elektrodenschicht geeignet, wie sie insbesondere als untere Elektrode für Dünnschichtbauelemente verwendet wird. Auf all den genannten Schichten zeigen die Sperrschichten eine gute Haftung und bilden so feuchtigkeitsdichte und chemisch stabile Grenzflä- chen zu diesen Schichten aus.

In einer Ausführungsform der Erfindung ist der Schichtaufbau ein elektrisches Bauelement mit zumindest zwei Elektroden, bei dem eine Elektrode aus einer direkt über dem Substrat angeordneten Elektrodenschicht ausgebildet ist. Diese Elektroden- schicht kann zur Herstellung der genannten Elektrode strukturiert sein und somit eine Elektrodenstruktur darstel- len, wie sie insbesondere für integriert serienverschaltete Dünnschichtsolarmodule geeignet ist.

Zusätzlich zu der erforderlichen Elektrodenstruktur können auch die elektrischen Anschlüsse für die zumindest zwei Elektroden aus dieser unteren Elektrodenschicht ausgebildet und seitlich aus dem Bereich des Bauelements herausgeführt wer-

Sperrschicht über der Solarzelle weist sie eine besonders gute Haftung auf und bildet damit eine besonders gute und dichte Grenzfläche zur Sperrschicht aus.

Im folgenden wird das erfindungsgemäße Verfahren zur Herstellung eines klimastabilen Schichtaufbaus, hier einer Dünn schichtanordnung anhand von Ausführungsbeispielen und der dazu gehörigen acht Figuren näher erläutert.

Figur 1 zeigt einen schematischen Querschnitt durch eine Testanordnung mit einer klimaempfindlichen Dünn schicht.

Figuren 2 bis 5 zeigen schematische Querschnitte durch klimastabile Schichtanordnungen.

Figur 6 zeigt anhand eines schematischen Querschnitts eine Schichtanordnung mit Trennfugen vor der Aufbringungen der Sperrschicht.

Figur 7 und 8 zeigen anhand schematischer Querschnitte durch eine serienverschaltete Dünnsschicht-Solarzelle eine spezielle Anwendung der Erfindung.

Figur 1 zeigt eine als Teststruktur dienende Dünnsschicht anordnung mit einer bekannten Verkapselung. Auf einem Träger 1, bestehend aus einer 2 mm dicken Fensterglasscheibe (Kalknatronglas) wird mittels CVD-Verfahren eine 1,5 µm dicke bordotierte Zinkoxidsschicht 2 so aufgebracht, daß der Träger 1 im gesamten umlaufenden Randbereich frei bleibt. An zwei einander gegenüberliegenden Seiten werden nun metallene Kontaktstreifen 3 so aufgelötet, daß sich die elektrische Flächenleitfähigkeit der Zinkoxidsschicht 2 verläßlich bestimmen läßt. Darüber wird nun ein herkömmlicher Laminataufbau 5 erzeugt, beispielsweise durch Auflaminieren einer Abdeckung mit hilfe einer ca. 0,5 mm dicken EVA-Folie bei ca. 160°C. Der
Laminataufbau weist mit dem Substrat seitlich der Dünn-schichtanordnung einen Überlappungsbereich von 1 cm auf.

Dieser Testaufbau wird nun 1000 Stunden bei 85°C in einer At-mosphäre mit 85 Prozent Luftfeuchtigkeit exponiert. Dabei zeigt sich, daß der Schichtwiderstand der bordotierten Zinkoxidschichten nach dem Klimatext aus bislang unbekannten Gründen um zwei bis drei Größenordnungen ansteigt.

Figur 2 zeigt nun einen ersten erfindungsgemäßen Aufbau, bei dem wiederum eine auf einem Substrat 1 angeordnete bordotierte Zinkoxidschicht 2 mit darauf aufgebrachten Elektroden-streifen 3 als Teststruktur verwendet wird. Erfindungsgemäß wird über dieser Anordnung nun eine Sperrschicht 4 aufgebracht. Zum Aufbringen dient im Ausführungsbeispiel ein Plasma-CVD-Verfahren, das bei niedrigen Prozeßtemperaturen von beispielsweise 200 bis 300°C durchführbar ist. Im Beispiel wird eine Sperrschicht 4 aus ca. 0,5 bis 2 µm und insbesondere 0,8 µm dickem Siliziumnitrid bei 200°C abgeschieden. Dies erfolgt so, daß die Dünnenschicht 2 vollständig mit der Sperrschicht 4 abgedeckt ist. Mit einem ähnlichen Verfahren können alternativ auch die ebenfalls elektrisch isolierenden Al2O3 und SiO2N x Schichten als Sperrschichten abgeschieden werden. Darüber wird wie bereits bei Figur 1 beschrieben ein Lami-nataufbau 5 aufgebracht.

Die erfindungsgemäße Dünnenschichtanordnung übersteht den Klimatext ohne nachweisbare Degradation, also ohne daß sich die anfängliche Flächenleitfähigkeit der Dünnenschicht verringert.

Da dieser Parameter wie dargelegt eine ausgezeichnete Sonde für den Nachweis einer Feuchtigkeitseinwirkung ist, zeigt dieses Meßergebnis die hohe Wirksamkeit der erfindungsgemäßen Verkapselung.

Figur 3 zeigt im schematischen Querschnitt einen Schichtauf-bau, bei dem eine feuchtigkeitsempfindliche Schicht und ins-besondere eine Dünnenschicht 2 zwischen einer unteren Elektrode
3a und einer oberen Elektrode 3b auf einem Substrat 1 angeordnet ist. Um zusätzliche Topographiestufen zu vermeiden und eine möglichst planare Anordnung zu erzielen, sind elektrische Anschlüsse 6 vorgesehen, die direkt auf dem Substrat durch Strukturierung der unteren Elektrodenschicht 3a ausgebildet sind. Während die untere Elektrode 3a über einen elektrischen Anschluß 6 kontaktiert wird, ist die obere Elektrode 3b mit dem elektrischen Anschluß 6' verbunden, der durch eine Strukturlinie elektrisch von der unteren Elektrode 3a isoliert ist. Über dieser Anordnung wird nun eine Sperrschicht 4 aufgebracht, die die obere Elektrode 3b und die Dünnschicht 2 vollständig abdeckt. Durch maskiertes Aufbringen oder durch nachträgliches Strukturieren der Sperrschicht sind die elektrischen Anschlüsse 6 und 6' freiliegend und nicht von der Sperrschicht 4 abgedeckt.

Durch Aufbringen eines Laminataufbaus 5 entsprechend den Figuren 1 oder 2 kann die klimadichte Verkapselung des hier dargestellten Bauelements verstärkt werden. Im Ausführungsbeispiel bleiben dabei die elektrischen Anschlüsse 6 und 6' frei von Laminat. Das Dünnschicht-Bauelement kann beispielsweise eine Solarzelle sein.

Figur 4 zeigt eine weitere Ausführungsform der Erfindung.

Diese unterscheidet sich von der Ausführungsform gemäß Figur 3 dadurch, daß die untere Elektrodenschicht 3a vor der Strukturierung vollständig mit einer metallisch leitenden Passivierungsschicht 7 abgedeckt wird. Der weitere Aufbau entspricht dem anhand von Figur 3 beschriebenen Ausführungsbeispiel.

Auf diese Weise wird erreicht, daß die untere Elektrodenschicht, die beispielsweise aus einem korrosionsempfindlichen Metall bestehen kann, durch die elektrisch leitende Passivierungsschicht 7 ebenfalls gegen Feuchtigkeit und andere äußere korrosionsfördernde Einwirkungen geschützt ist.
Diese Anordnung wird beispielsweise in einer CIGS-Solarzelle verwirklicht, die ein Glassubstrat 1, eine Molybdänrückelektrode 3a, eine Titan- oder Molybdänitridpassivierungsschicht 7, die Dünnsschicht 2 mit der einen Halbleiterübergang aufweisenden CIGS-Absorberschicht, sowie eine obere Elektrode 3b, beispielsweise eine bordotierte Zinkoxidelektrode umfaßt. Die Sperrschicht 4 ist eine durch CVD- oder Plasma-CVD aufgebrachte Dünnsschicht aus Aluminiumoxid, Siliziumnitrid oder Siliziumoxinitrid.

Das Ausführungsbeispiel gemäß Figur 5 unterscheidet sich von dem anhand von Figur 4 beschriebenen Ausführungsbeispiel dadurch, daß die untere Elektrodenschicht 3a nur im Bereich der elektrischen Anschlüsse 6 und 6’ mit einer elektrisch leitenden Passivierungsschicht 7 und 7’ abgedeckt ist. Dazu kann die Passivierungsschicht unmittelbar vor der Strukturierung der unteren Elektrodenschicht 3a entweder maskiert aufgebracht oder ganzflächig aufgebracht und anschließend strukturiert werden. Möglich ist es jedoch auch, die Passivierungsschicht 7 und 7’ nach dem Aufbringen der Dünnsschicht 2 bzw. nach dem Aufbringen der oberen Elektrodenschicht 3b zu erzeugen.

In allen Fällen wird die Passivierungsschicht mit einem Dünnsschichtverfahren wie zum Beispiel reaktivem Sputtern oder mit einem plasmaunterstützten CVD-Verfahren abgeschieden oder aufgesputtert. Für eine Titannitridschicht sind beispielsweise 100 bis 150 nm Schichtdicke ausreichend.

Figur 6 zeigt anhand eines schematischen Querschnitts eine Möglichkeit, eine zwischen zwei Elektroden 3a und 3b angeordnete Dünnsschicht 2 mittels zweier bis auf eine klimastabile Schicht reichender Trennfugen 8 zu strukturieren, um durch anschließende Aufbringung einer Sperrschicht 4 (nicht dargestellt) in den Trennfugen 8 einen klimadichten Abschluß bzw. eine klimadichte Haftung der Sperrschicht auf der darunterliegenden klimastabilen Schicht zu erreichen. Im Beispiel
nach Figur 6 dient eine Passivierungsschicht 7 über der unteren Elektrode 3a als klimastabile Schicht. Möglich ist es jedoch auch, in den Trennfugen 8 das beispielsweise aus Glas bestehende Substrat 1 oder eine korrosionsstabile Elektroden-
5 schicht 3a freizulegen. In diesen Fällen kann die ganzflächige Aufbringung der Passivierungsschicht 7 entfallen.

Die Figuren 7 und 8 zeigen anhand schematischer Querschnitte durch ein Solarmodul mit integriert serienvorschalteten Solarzellen in Dünnschichtbauweise eine weitere Ausgestaltung der Erfindung. Die Solarzelle ist beispielsweise auf einem Substrat 1 aufgebracht und umfaßt eine untere Elektrode 3a, einen Dünnschicht 2 mit dem Halbleiteraufbau und eine obere Elektrode 3b. Die Solarzellen sind beispielsweise streifenförmig strukturiert, wobei durch Herunterführen einer streifenförmigen oberen Elektrode 3b auf den jeweils benachbarten Streifen der unteren Elektrode 3a eine Serienverschaltung mit der jeweils benachbarten streifenförmigen Solarzelle erzielt wird.

Zur Herstellung der in Figur 7 dargestellten Dünnschichtso-
larzellenanordnung sind drei Strukturierungsschritte erforderlich. Der erste Strukturierungsschritt dient zur Strukturierung der unteren Elektrode 3a, der zweite zur Strukturie-
25 rung der Halbleiterschichten (Dünnschicht) 2 und der dritte zur Auftrennung der oberen Elektrode 3b. Beim letztgenannten Strukturierungsschritt wird entweder die Halbleiterschicht (Dünnschicht 2) oder die untere Elektrodenschicht 3a freige-
30 legt. In der Figur 7 sind bis zur die unteren Elektrode 3a reichende Strukturierungsgräben P3 dargestellt.

Figur 8 zeigt nun, wie die Strukturierungsgräben P3 durch Aufbringen einer kantenbedeckenden Sperrschicht 4 aufgefüllt und durch Zuwachsen eingeebnet werden. Die Sperrschicht 4
35 wird dabei auf einer Fläche aufgebracht, die den Schichtaufbau auf allen Seiten überragt und auch die elektrischen Anschlüsse 6 und 6' überlappt. Über den elektrischen Anschlüs-
sen 6 und 6' kann die Sperrschicht 4 dann teilweise wieder entfernt werden, um so einen äußeren elektrischen Anschluß zum Beispiel durch Anlöten von Metallstreifen 9 zu ermöglichen.

Sofern die Abscheidebedingungen für die Sperrschicht 4 bezüglich der Abscheide temperatur so gewählt werden, daß Lötstellen unbeschädigt bleiben, kann in einer weiteren Ausführung der Erfindung die Sperrschicht auch nach dem Auflöten der Metallstreifen 9 so aufgebracht werden, daß auch die Lötstelle von der Sperrschicht 4 abgedeckt wird. Auf diese Weise kann die Passivierungsschicht (7) für die untere Elektrode 3a entfallen.

Patentansprüche

1. Schichtaufbau,
- der optisch und/oder elektrisch aktiv ist und über einem Substrat (1) angeordnet ist,
- mit zumindest einer korrosions- und/oder feuchtigkeits-empfindlichen Schicht (2) un
- mit zumindest einer Sperrschicht (4), die über der korrosions- und/oder feuchtigkeitsempfindlichen Schicht (2) angeordnet ist,
- bei dem die Sperrschicht (4) eine Dünnschicht ist und ausgewählt ist aus Al₂O₃, Si₃N₄, TiN, MoN und SiOₓNᵧ.

2. Schichtaufbau nach Anspruch 1,
bei dem über der Sperrschicht (4) ein Laminataufbau (5) mit zumindest einer Kunststoffschicht angeordnet ist.

3. Schichtaufbau nach Anspruch 1 oder 2,
bei dem die Sperrschicht (4) dicht und kantenbedeckend ausgebildet ist.

4. Schichtaufbau nach einem der Ansprüche 1 bis 3,
bei dem die Sperrschicht (4) seitlich des die korrosions- und/oder feuchtigkeitsempfindlichen Schicht (2) enthaltenden Aufbaus mit dem Substrat (1), mit einer Metallschicht oder einer Passivierungsschicht (7) abschließt.

5. Schichtaufbau nach einem der Ansprüche 1 bis 4,
- der Teil eines elektischen oder optischen Bauelements ist,
- bei dem optisch aktive und/oder mit elektrischen Potentialdifferenzen arbeitende Teile des Bauelements mit isolierenden Dampfsperr- oder Korrosionsschutz-Schichten bedeckt sind,
- bei dem Schichten ohne Potentialdifferenz mit leitfähigen Dampfsperr- oder Korrosionsschutz-Schichten bedeckt sind.
6. Schichtaufbau nach einem der Ansprüche 1 bis 5, bei dem die untere Elektrodenschicht (3a) zumindest im Bereich der elektrischen Anschlüsse (6, 6') mit einer elektrisch leitfähigen Sperr- oder Passivierungsschicht (7) abgedeckt ist.

7. Schichtaufbau nach Anspruch 6, der als Solarzelle oder Solarmodul ausgebildet ist.

8. Verfahren zur Herstellung eines klima- und korrosionsstabilen Schichtaufbaus, - bei dem über einer, auf einem Substrat (1) angeordneten hitze- und/oder feuchtigkeitsempfindlichen Schicht (2) eine Sperrschicht (4) kantenbedeckend abgeschieden wird, - bei dem die Sperrschicht ausgewählt wird aus MoN, TiN, Al₂O₃, Si₃N₄ und SiOₓNᵧ, - bei dem die Sperrschicht in einer Dicke von 100nm bis 2µm abgeschieden wird.

9. Verfahren nach Anspruch 8, bei dem die Sperrschicht (4) mit einem gegebenenfalls plasmagesteuerten CVD-Verfahren abgeschieden wird.

10. Verfahren nach einem der Ansprüche 8 oder 9, - bei dem in der Dünnenschicht (2) zunächst eine umlaufende in sich geschlossene Trennfuge (8) erzeugt wird, in der die Oberfläche einer klimastabilen Schicht des Dünnenschicht-Aufbaus freigelag ist - bei dem die Dünnenschicht (2) oberflächlich und an allen Seitenkanten mit der Sperrschicht (4) so abgedeckt wird, daß die Sperrschicht in der Trennfuge mit der Oberfläche der klimastabilen Schicht abschließt.

11. Verfahren nach einem der Ansprüche 8 bis 10, bei dem über der Sperrschicht (4) noch ein Laminataufbau (5) mit zumindest einer Kunststoffschicht aufgebracht wird.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 H01L31/048 H01L31/0203

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used).

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | EP 0 301 470 A (NUKEM GMBH) 1 February 1989
see column 2, line 7-35
see column 4, line 49 - column 5, line 31; figure 1 | 1,3,5-9, 12 |
| X | US 4 780 372 A (TRACY C EDWIN ET AL) 25 October 1988
see the whole document | 1,3,5,8, 9 |
| X | US 3 996 067 A (J.D. BRODER) 7 December 1976
see the whole document | 1,2,4,5, 7,8,11, 12 |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance.
 E earlier document but published on or after the international filing date.
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 O document referring to an oral disclosure, use, exhibition or other means.
 P document published prior to the international filing date but later than the priority date claimed.

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

E document member of the same patent family.

Date of the actual completion of the international search
24 June 1997

Date of mailing of the international search report
4. 07. 97

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tél. (+31-70) 340-2040, Tél. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer
Visentin, A

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 16, no. 210 (E-1203), 19 May 1992 & JP 04 035670 A (TAIYO YUDEN CO. LTD.), 5 February 1992, see abstract</td>
<td>1,8</td>
</tr>
<tr>
<td>A</td>
<td>GB 2 080 339 A (ROBERT BOSCH GMBH) 3 February 1982 see the whole document</td>
<td>1,8</td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 010, no. 317 (E-449), 28 October 1986 & JP 61 128576 A (INAX CORP), 16 June 1986, see abstract</td>
<td>1,7,8,12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 0301470 A</td>
<td>01-02-89</td>
<td>DE 3725338 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3875299 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1044072 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 175799 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4869755 A</td>
</tr>
<tr>
<td>US 4780372 A</td>
<td>25-10-88</td>
<td>US 4963012 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2568021 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61036703 A</td>
</tr>
<tr>
<td>US 3996067 A</td>
<td>07-12-76</td>
<td>JP 52083085 A</td>
</tr>
<tr>
<td>GB 2080339 A</td>
<td>03-02-82</td>
<td>DE 3027256 A</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTÄNDES

IPK 6 H01L31/048 H01L31/0203

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchiertes Minderpräzisionsmittel (Klassifikationssystem und Klassifikationszusammenhang)

IPK 6 H01L

Recherchierte aber nicht zum Mindestpräzisionsmittel gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| X | EP 0 301 470 A (NUKEM GMBH) 1. Februar 1989
siehe Spalte 2, Zeile 7-35
siehe Spalte 4, Zeile 49 - Spalte 5, Zeile 31; Abbildung 1 | 1, 3, 5-9, 12 |
| X | US 4 780 372 A (TRACY C EDWIN ET AL)
25. Oktober 1988
siehe das ganze Dokument | 1, 3, 5, 8, 9 |
| X | US 3 996 067 A (J.D. BRODER) 7. Dezember 1976
siehe das ganze Dokument | 1, 2, 4, 5, 7, 8, 11, 12 |

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

"**A**" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolлизiert, sondern nur zum Verständnis der Erfindung zugrundelegender Prinzipien oder der ihr zugrunde liegenden Theorie angegeben ist

"**B**" Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

Datum des Abschlusses der internationalen Recherche:

24. Juni 1997

Abschied datum des internationalen Rechercheberichts

0 4. 07. 97

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 3818 Patentamt 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3014

Bevollmächtigter Bediensteter

Visentin, A

Formular: PCT/ISA/218 (Blatt 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 2 080 339 A (ROBERT BOSCH GMBH) 3.Februar 1982 siehe das ganze Dokument ---</td>
<td>1,8</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>EP 0301470 A</td>
<td>01-02-89</td>
<td>DE 3725338 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3875299 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1044072 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 175799 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4869755 A</td>
</tr>
<tr>
<td>US 4780372 A</td>
<td>25-10-88</td>
<td>US 4963012 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2568021 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61036703 A</td>
</tr>
<tr>
<td>US 3996067 A</td>
<td>07-12-76</td>
<td>JP 52083085 A</td>
</tr>
<tr>
<td>GB 2080339 A</td>
<td>03-02-82</td>
<td>DE 3027256 A</td>
</tr>
</tbody>
</table>