
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0199692 A1

US 200401996.92A1

Phelps et al. (43) Pub. Date: Oct. 7, 2004

(54) APPARATUS FOR USE IN A COMPUTER (30) Foreign Application Priority Data
SYSTEMS

Sep. 18, 1998 (GB)... 982O430.8
(76) Inventors: Richard Carl Phelps, Bristol (GB); Sep. 18, 1998 (GB)... 982O428.2

Paul Anthony Winser, Bristol (GB) Sep. 18, 1998 (GB)... 982O412.6
Sep. 18, 1998 (GB)... 982O41O.O

Correspondence Address: O O
POTOMAC PATENT GROUP PLLC Publication Classification
P. O. BOX 855 7 51) Int. Cl." ... G06F 13/36
MCLEAN, VA 22101 (US) 8. U.S. Cl. .. 710/113

(22) Filed: Apr. 20, 2004 Apparatus for use in a computer System comprises a bus
architecture, a plurality of modules connected to the bus
architecture, at least one module being latency tolerant and

Related U.S. Application Data at least one module being latency intolerant. The bus archi
tecture comprises a primary bus (3) having latency intolerant
modules connected thereto, a Secondary bus (4) having

(62) Division of application No. 09/787,353, filed on Jun. latency tolerant modules connected thereto, and a primary to
12, 2001, filed as 371 of international application No.
PCT/GB99/03089, filed on Sep. 16, 1999.

MODULE ... MODULE
1

y
PRMARY BUS

PrMARY-to
SECONARY BUS

INTERFACE MODULE

PriMARY-To
SECONOARYBUS
INTERFACEMOUE

PRIMARY-O-
SECONDARYBUS

INTERFACE MODULE

Secondary bus interface module (5) interconnecting the
primary and Secondary buses.

wn - Min X

MODULE ... MODULE
+ 1 in + X

4.

SECONARY jS

MODULE ...
in 1 in X

5 1

SECONARY BuS

X

MODULE

MODULE ... MODULE
X

52 4.
2

SECONDARYBUS

Patent Application Publication Oct. 7, 2004 Sheet 1 of 16 US 2004/01996.92 A1

CONTROL BUS

MODULE #1 MODULE in
M1 Mn

READ 1 WRITE BUS

F.G. 1 1
(PRIOR ART)

M1 Mn Mn + 1 Mn + X

MODULE . MODULE MODULE ... MODULE
#1 in in - 1 in + X

PRIMARY-To
PRIMARY BUS SECONDARY BUS SECONDARY BUS

INTERFACE MODULE

1H-HO- -->
ATENCY INTOLERANT . LATENCY TOLERANT

MODULES FG 2 MODULES

US 2004/0199692 A1 Oct. 7, 2004 Sheet 2 of 16 Patent Application Publication

ET(nCJONET[nOJOW3TmGOWETTìCJOWETT GOWETf|CJOWETTOJOW3T0C]OW X + u W· | + UW

Patent Application Publication Oct. 7, 2004 Sheet 3 of 16 US 2004/01996.92 A1

M1 Mn : : Mn + 1 Mn+ X

MODULE . . MODULE MODULE ... MODULE
#1 in in + 1 in + X

5
3 4

PRIMARY-TO
SECONDARY BUS
NTERFACE MODULE

PRMARY BUS SECONDARY BUS

MODULE . . . MODULE
in + 1 in + X

SECONDARY BUS
PRIMARY-TO

SECONDARY BUS
NTERFACE MODULE

MODULE ... MODULE
in + 1 in + X

SECONDARY BUS
PRIMARY-TO

SECONDARY BUS
NTERFACE MODULE

FIG. 4

Patent Application Publication Oct. 7, 2004 Sheet 4 of 16 US 2004/0199692 A1

1O 11

MASTER TARGET
UNIT UNT

INPUTS TO UNITS ARE
SIMPLY BUS DROPS

OUTPUTS FROM UNITS
ARE MULTIPLEXED

WITHUPSTREAM DATA

F.G. 5

TRANSFERRED
AS ONE PACKET

TRANSACTION BUS Wa

TIMESLOT t

FIG. 6
t

DATA
WRITE DATABUS TRANSFERRED

ASTWO
HALF-PACKETS

w OLE SLOT ON
TRANSACTION BUS Wa - TRANSACTION BUS

TIM (COULD BE USED FOR IMESLOT t t + 1 READ REQUEST PACKET)

G.7

Patent Application Publication Oct. 7, 2004 Sheet 5 of 16 US 2004/01996.92 A1

r

DATABUS
S UNUSED

TRANSACON BUS Ra

TIMESLOT t

FIG. 8
t

READ DATABUS Roa DATA
TRANSFERRED

TMESLOT t AS ONE PACKET
t

FIG. 9

DATA TRANSFERRED AS
TWO HALF-PACKETS

TIMESLOT t t + 1

FIG 10
t

Patent Application Publication Oct. 7, 2004 Sheet 6 of 16 US 2004/01996.92 A1

ARBTRATION
UNIT

REGUEST STACK
RECEIVE STORAGE
MEANS MEANS

PRIORITYLEVEL
STORAGE MEANS

CONTROL MEANS

F.G. 12

Patent Application Publication Oct. 7, 2004 Sheet 7 of 16 US 2004/01996.92 A1

START

ASSGN INITIAL
STACK

POSITIONS

RECEIVE
TRANSACTION
RECUEST

OBTAN
HIGHEST
PRIORITY
RECQUEST

MASK OUT ALL
LOWER PRIORITY

REQUESTS

OBTAN STACK
POSITIONS OF
REMAINNG
REGUESTS

SELECT
HIGHEST
REQUEST

SEND
TRANSACTION

GRANT
MESSAGE

MODULE STACK
ENTRY PLACEDAT
END OF STACK

Patent Application Publication Oct. 7, 2004 Sheet 8 of 16 US 2004/0199692 A1

28 29

M1 | H
M2 M

M4 H
M5 M

FIG. 14

Patent Application Publication Oct. 7, 2004 Sheet 9 of 16 US 2004/0199692 A1

3.

ARBTRATION UNIT

33

TO / FROMMODULES

FIG. 20

Patent Application Publication Oct. 7, 2004 Sheet 10 of 16 US 2004/0199692 A1

35 - T R1 W1 R2 W2 R3 W3

361. W W1A W1B W2A W2B W3A W3B

37 - R is . R1A R1B

TME t t t t t t ... t

FIG 21

ARBTRATION UNT

41

TO MODULES

FIG.22

43-1TW
44-1 W
45 -1N R
46 - TR

FIG. 23

Patent Application Publication Oct. 7, 2004 Sheet 11 of 16 US 2004/01996.92 A1

43 - TW W1 W2 W3

44 -- W - W1A W1B W2A W2B W3A W3B

45 NR R1A R1B. R2A R2B

46 ~TR R1 || R2 R3
TME t t t t t t
mo

50 51

MODULE
ADDRESS AVAILABILITY
DECODER RECEPTION

58

ADDRESS /
AVALABILITY
COMPARISON

TO
ARBTRATION

TRANSACTION UNIT
REOUEST

GENERATOR

FIG. 25

Patent Application Publication Oct. 7, 2004 Sheet 12 of 16 US 2004/0199692 A1

()O8

US 2004/0199692 A1 2004 Sheet 13 of 16 9 Patent Application Publication Oct. 7

STÆ, 0/

8z '914 NWN ??

ETTMOTOW

8/

èJELNTIO O ?JEWT SNOO EKONETTOES S}}E_LNÍ TOO EONETTOES >?3 I SVIN }|E||LINTOO EKONETTOES

SOVI BONETTOES NOILOVSN\/?JL

Patent Application Publication Oct. 7, 2004 Sheet 15 of 16 US 2004/0199692 A1

US 2004/0199692 A1 Patent Application Publication Oct. 7, 2004 Sheet 16 of 16

BTOCHOW

US 2004/O199692 A1

APPARATUS FOR USE IN A COMPUTER
SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional of U.S. application
Ser. No. 09/787,353, filed Jun. 12, 2001, which was the
National Stage of International Application No.PCT/GB99/
03089, filed Sep. 16, 1999.

TECHNICAL FIELD OF THE INVENTION

0002 The invention relates to apparatus for use in a
computer System, and in particular, to apparatus utilising a
bus architecture.

BACKGROUND TO THE INVENTION

0.003 FIG. 1 of the accompanying drawings shows a
computer System including a typical communications bus
architecture. A plurality of modules are connected to a
combined read and write bus and to a separate control bus,
both of which are well known tri-state buses. The modules
may be, for example, memory devices, graphics controllers,
CPUs, and so on. The control bus and the read/write bus
Service all the requirements of the System, enabling the
modules to transfer data between one another or externally,
for example to external memory or control devices.

0004. With the ever increasing need to integrate more
complexity and functionality into computer Systems, and in
particular into Systems provided on a Single integrated
circuit, i.e. System-on-chip Solutions, buS architectures need
to be flexible enough to cope with the differing needs that
individual modules will place on the System.

0005 One aspect that a system has to take into consid
eration is “latency'. Latency is the amount of time that a
module has to wait in order to transmit or retrieve data.
Some modules are more Sensitive, or intolerant, to this
waiting period than others. Therefore, if latency Sensitive, or
latency intolerant, modules are forced to wait beyond a
certain time limit, they will behave in a manner that will
adversely affect the System performance and functionality.

0006 AS more modules are connected to a bus, the size
of the bus inevitably needs to be increased. This in turn can
lead to an increased module-to-module distance, which
increases the time taken to transfer data between modules.
This can have an adverse effect on latency Sensitive, or
intolerant, modules.

0007. In systems which use a large amount of data that
must be processed at high Speed, for example graphics
Systems, it is important to be able to have efficient, high
Speed data transfer between modules of the System. A
communications bus is therefore desirable which can enable
different usage of the bus and is able to Support high Speed
and high Volume of traffic data transfer.

SUMMARY OF THE INVENTION

0008. The aim of the present invention is to provide an
improved computer System.

Oct. 7, 2004

0009. According to the present invention, there is pro
Vided apparatus for use in a computer System comprising:

0010)
0011 a plurality of modules connected to the bus
architecture, at least one module being latency tol
erant and at least one module being latency intoler
ant, wherein the buS architecture comprises:

0012 a primary bus having latency intolerant mod
ules connected thereto,

0013 a secondary bus having latency tolerant mod
ules connected thereto, and

0014) a primary to secondary bus interface module
interconnecting the primary and Secondary buses.

a bus architecture;

0015 The length of the secondary bus will usually be
greater than that of the primary bus. The primary bus is
preferably less than, or equal to, three pipeline Stages in
length.

0016 Latency tolerant modules connected to the second
ary bus can be arranged Such that the least tolerant modules
are located closer to the primary bus than the more tolerant
modules.

0017. The bus architecture can have two or more sec
ondary buses, each one connected to the primary bus via a
Separate primary to Secondary interface module.
0018. The primary and/or secondary bus may comprise:

0019 a write data bus for transferring write data
between modules,

0020 a read data bus for transferring read data
between modules,

0021 a transaction bus for transferring control data
between modules,

0022 the read data bus and the write data bus being
physically Separate from one another.

0023. With Such an architecture, a read transaction by a
master module can typically involve placing read address
data indicating the location of the required data on the
transaction bus to which the master module is connected,
and the master module receiving the required read data from
a target module on the read data bus to which the master
module is connected at an arbitrary time after the read
address has been placed on the transaction bus, wherein the
write and transaction buses are available for use during
reception by the master module of the return read data.
0024. The apparatus may further comprise:

0025 means for assigning each module in the sys
tem one of a predetermined number of priority
levels;

0026 means for assigning each module an initial
position within a queue;

0027) means for receiving respective transaction
requests from modules,

0028 means for filtering the transaction requests
from the modules So as to retain the requests from

US 2004/O199692 A1

those modules having the highest priority level of the
modules making Such requests, thereby producing a
Set of filtered requests,

0029 means for selecting from the set of filtered
requests, the transaction request from the module
having the highest position within the queue, and

0030) means for sending a request grant message to
the module from which the selected transaction
request was received.

0031. The number of modules will typically exceed the
predetermined number of priority levels.
0.032 The apparatus preferably also includes means to
place a module receiving a transaction grant message at the
bottom of the queue.
0033. The apparatus can also include a first arbiter means
for controlling initiating transactions on the bus architecture;
and a Second arbiter means for controlling return transac
tions on the bus architecture.

0034. When the primary and/or secondary bus includes
Separate read, write and transaction control buses, the first
arbiter means preferably controls use of the write and
transaction buses and the Second arbiter means preferably
controls use of the read bus.

0035) In apparatus embodying the invention, each mod
ule can be assigned an address range in a memory map of the
apparatus, and the apparatus can then further comprise:

0036 reception means for receiving and storing
availability data indicative of the availability of
modules,

0037 transaction request means for producing a
transaction request including target address data
indicating a target location in the memory map for
the transaction;

0038 decoding means for decoding the target
address data to produce identity data relating to a
target module, the target module being assigned an
address range in the memory map which includes the
target address data;

0039 comparison means for analysing the stored
availability data corresponding to the target module
identified by the identity data; and

0040 transaction means, responsive to the compari
Son means, for terminating the transaction request if
the analyzed availability data indicates that the target
module is unavailable.

0041. Such apparatus can further comprise a control
means for controlling access to the buS architecture by the
modules and wherein the transaction means is operable to
forward the transaction request to the control means, if the
analyzed availability data indicates that the target module is
available.

0.042 Apparatus embodying the invention can also com
prise:

0043 means for receiving data requests from mod
ules for respective required data packets, each
request including address data indicating the location

Oct. 7, 2004

of the data packet concerned, and Sequence data
indicating the timing of the request relative to other
data requests,

0044) means for receiving returned data packets and
asSociated Sequence data,

0045 a storage device for storing the returned data
packets in respective Storage locations therein, in the
order indicated by the associated Sequence data; and

0046 retrieval means for retrieving data packets
from the Storage device in the order of the Storage
locations of the Storage device.

0047 The retrieval means can be operable to cycle
through the Storage locations of the Storage device.
0048. The storage device can be provided by a dual port
RAM device.

0049 Apparatus embodying the invention can also fur
ther comprise:

0050
0051 means for receiving read transaction requests
from modules, each request including address data
indicating the location of the data to be retrieved, and
identity data indicating the Source of the transaction
meSSage,

0052 means for sending the address data to the
storage device,

0053)
0054 means for receiving a retrieved data item from
the Storage device;

0055 means for matching the retrieved data item
with the identity data at the front of the queue, and

0056 means for returning the retrieved data to the
module identified by the matched identity data.

a storage device,

means for Storing the identity data in a queue;

0057. Apparatus embodying the invention can also com
prise:

0058 an arbitration unit for granting access to the
buS in response to requests received from the mod
ules, the granting of access being in the form of a
dedicated data packet issued from the arbitration
unit, whereby only the module which has been
granted acceSS can use that particular dedicated
packet to gain access to the bus, the arbitration unit
being operable to issue empty data packets during
periods when the bus is idle, the empty data packets
being uSable by a module to gain access to the bus
without making a specific request to the arbitration
unit for a dedicated packet.

0059. In such apparatus the first module to use the empty
packet gains access to the bus. Each module may have
means for converting a dedicated packet intended for itself
into an empty packet. The arbitration unit may be located at
one end of the bus.

0060. In apparatus embodying the invention the or each
buS may also comprises:

0061 a plurality of bus connection units for con
necting modules to the bus concerned; and

US 2004/O199692 A1

0062) a plurality of bus portions arranged in series,
each bus portion, except the last in the Series, being
connected to the next portion in the Series by way of
a bus portion connection unit.

0.063 Each bus connection unit may include multiplexer
circuitry for Selectively connecting a module to the bus
concerned. Each bus connection unit may include output
circuitry connected to the bus portions to which the unit is
connected, the output circuitry being optimised for the
length of the bus portions concerned. Preferably, the bus
portions are all Substantially equal in length.

0.064 Embodiments of the invention are usefully imple
mented in a computer System, an integrated circuit, a graph
ics processing System, or a games console including appa
ratus as Set out above.

BRIEF DESCRIPTION OF THE DRAWINGS

0065 For a better understanding of the present invention,
and to show more clearly how it may be carried into effect,
reference will now be made, by way of example, to the
accompanying drawings, in which:

0.066 FIG. 1 shows an apparatus having a known bus
architecture for use in a computer System;

0067 FIG. 2 shows an apparatus having a different bus
architecture for use in a computer System;

0068 FIG. 3 illustrates in more detail the apparatus of
FIG. 2;

0069 FIG. 4 shows an apparatus having a further dif
ferent buS architecture for use in a computer System;
0070 FIG. 5 illustrates an apparatus having a further
different bus architecture for use in a computer System;
0071 FIGS. 6 and 7 illustrate data transfer during write
transactions in the apparatus of FIG. 5;

0072 FIGS. 8, 9 and 10 illustrate data transfers in read
transactions in the apparatus of FIG. 5;
0.073 FIG. 11 illustrates an apparatus incorporating an
arbitration unit for use in a computer System;
0.074 FIG. 12 is a block diagram illustrating the arbitra
tion unit of FIG. 11;

0075 FIG. 13 is a flow chart illustrating a method of bus
arbitration for the apparatus of FIG. 11;
0.076 FIG. 14 illustrates priority level assignments used
in the scheme of FIG. 13;

0077 FIGS. 15 to 19 illustrate register entries for the
method of FIG. 13;

0078 FIG. 20 illustrates an arbitration unit for an appa
ratus for use in a computer System;

007.9 FIG. 21 illustrates transaction implementation
using the arbitration unit of FIG. 20;
0080 FIG.22 shows an arbitration unit for an apparatus
for use in a computer System;

0081 FIG. 23 illustrates a bus structure for use with the
arbitration unit of FIG. 22;

Oct. 7, 2004

0082 FIG. 24 illustrates transaction implementation
using in the arbitration unit of FIG. 22;
0083 FIG. 25 illustrates an address decoding apparatus;
0084 FIG. 26 illustrates a memory map of a computer
System;

0085 FIG. 27 illustrates an address decoder;
0086 FIG. 28 illustrates a representative master module;
0087 FIG. 29 illustrates representative target module;
0088 FIG. 30 illustrates a modular bus topology; and
0089 FIG. 31 illustrates an apparatus for use in a com
puter System, whereby the apparatus uses idle time slots to
reduce latency.

DETAILED DESCRIPTION

0090 Apparatus used in computer systems typically use
a communications bus architecture, or data pipe to intercon
nect modules of the computer System. In this disclosure, a
"module” means a functional unit that connects to the bus,
and that provides a particular function for the computer
System. A module is usually able to transfer data to and from
other modules in the System, and Such a transfer of data is
known as a “transaction'. A module that initiates a transac
tion is known as a “master module' and a module which is
the Subject of a transaction is known as a "target module'.
In order to initiate a transaction, a master module issues a
“transaction request” to an arbitration unit (or “arbiter”)
which determines how access to the bus will be controlled.
A "data packet' is defined as a predetermined number of
data bytes, for example 32, which is used for transferring
data acroSS the bus architecture. A write bus is a bus which
is used for transferring data packets to be Stored at a target
module, and a read bus is a bus used for transferring So
called transaction. “Mature data” is data which is ready to be
returned from a target module to a master module in
response to a read transaction. A “system cycle” is defined
as one clock period of the System clock, and a "pipeline
Stage' is defined as the bus length travelled by a data pulse
in a Single System cycle.

0091. It will be readily appreciated that the bus architec
ture and features described below may be used in a computer
System including individual components connected to one
another by external interfaces, or in an integrated circuit
(on-chip) System in which modules are formed on a single
integrated circuit, or in a combination of the two. Preferably,
Such a System involves the use of an integrated circuit
(on-chip) System.
0092 Primary and Secondary Bus Architecture
0093 FIG. 2 illustrates a computer system including an
improved bus architecture which comprises a primary buS 3
and a secondary bus 4. The primary bus 3 has a plurality of
modules M . . . M. connected thereto. Each module con
nected to the primary bus 3 is a latency intolerant module.
0094. The secondary bus 4 also has a number of modules
M. . . . M. connected thereto. However, each module
connected to the Secondary bus 4 is a latency tolerant
module. The primary bus and Secondary bus are intercon
nected by an interface module 5, known as a primary to
secondary bus interface module 5.

US 2004/O199692 A1

0.095. In this manner, modules which are expected to
operate at relatively high Speed, (i.e. the latency intolerant,
or Sensitive modules), are connected to a dedicated primary
bus 3 that can Service their Speed requirements. Latency
intolerant modules cannot wait for incoming data, and
typically make frequent requests for relatively Small
amounts of data.

0.096 Latency tolerant, or latency insensitive, modules
are connected to the Secondary buS 4. These modules are
prepared to wait for data, and typically make infrequent
requests for relatively large amounts of data.
0097 FIG.3 shows a more detailed view of the computer
system of FIG. 2. The primary bus is preferably only one
pipeline Stage in length. Therefore, if two modules are
connected by a single pipeline Stage, a signal will travel
between the two modules during a Single clock cycle.
Similarly, if a connection between two modules is two
pipeline Stages long, two clock cycles will be required for
the Signal to travel from one module to another.
0.098 Since all the modules connected to the primary bus
are less than one pipeline Stage apart, the primary bus
guarantees that data transfer between any two modules on
the primary bus is always less than one clock cycle.
0099. The secondary bus, on the other hand, can be of any
length, and can be expected to be much longer than the
primary bus. The Secondary bus is made up from a plurality
of pipeline Stages. Thus, the Secondary bus cannot guarantee
a minimum transaction time between a master and a target
module. For example, in FIG. 3, module M is seven
pipelines away from module M. Therefore, data transfer
between modules M and M will take Seven clock
cycles. Although FIG. 3 shows the modules separated at
intervals of approximately one pipeline, they may be Several
pipeline Stage apart, or Several modules may be arranged
within a single pipeline Stage.

0100. The interface module 5 serves as a collation point
for all incoming and outgoing requests to/from the Second
ary bus. The primary to Secondary interface module 5 has a
first-in-first-out register (FIFO) to hold outgoing requests
before they can be accepted on the primary write bus.
0101 Preferably, the interface module 5 includes a FIFO
capable of holding a fixed number of pending read and/or
write requests. The FIFO should be sufficiently large to hold
enough requests to keep the primary bus active should the
interface module 5 be allowed to make consecutive requests,
but Small enough Such that it is not an overhead. Typically,
the FIFO will consist of X entries of n bits (ie. data and
transaction information).
0102) A modification of Such a bus architecture provides
a plurality of Secondary buses. FIG. 4 shows an arrangement
whereby a plurality of Secondary buses 4, 4 and 4 are
connected in parallel. Each Secondary buS has a correspond
ing Secondary to primary interface 5, 5 and 5 for connect
ing each Secondary bus to the primary bus 3.
0103) The provision of a number of secondary buses in
parallel is advantageous when there are too many modules
to connect to a single Secondary bus.
0104. Although the primary bus has been described as
being just one pipeline Stage in length, the primary bus could
Still provide the required latency Sensitivity if it is two, or

Oct. 7, 2004

perhaps three pipeline Stages in length. However, it is
unlikely that a practical embodiment of a System utilising a
Split primary-Secondary bus would use a primary bus having
more than a Single pipeline Stage.

0105 Split Read-Write Buses
0106. In the known bus system of FIG. 1 described
above, the integrated tristate read and write data bus has the
disadvantage that a read transaction from a master module
involves placing the address to be read on an address bus,
and then awaiting the data which has been read from the
target module to return on the combined read/write data bus.
This wait for the read data to be returned on the data bus ties
up the bus activity. Other modules wishing to make trans
actions are unable to gain access to the bus. Furthermore,
when changing from a write transaction to a read transac
tion, (known as turn around), valuable processing time is
lost.

0107 Using a split transaction procedure can overcome
this problem, Since a read transaction can adopt a "fire-and
forget” approach. This means that the read data is returned
at Some arbitrary time after the read address is issued.
However, the combined read and write bus is still tied up
while the read data is returned.

0.108 To overcome this problem, the read and write bus
can be split into Separate read and write buses. In this
manner, read data is returned on a dedicated bus, which
means that the Write data bus and transaction bus are
available to carry out further transactions. A benefit of this
architecture is that the read latency does not consume bus
time, as happens on a conventional bus which is frozen
while the read cycle is serviced. FIG. 5 shows a split
read/write bus. Each module is connected to a write data bus
13 and a read data bus 14. A transaction bus 12 controls data
transfer between any two modules 10, 11. If a data rate of 3.2
GB/s is required, and the operating frequency is 200 MHz,
a 128 bit path will be needed to Sustain this bandwidth.
0109) This approach removes the need for tri-state buses,
Since each module is "tapped' as a simple connection, or by
way of a multiplexer which drives the Segment of bus up to
the next module. This makes the entire Structure point to
point with no tri-State drivers being required. The transaction
buS 12 is provided for information pertaining to the read and
write transactions, for example address traffic. This bus runs
in parallel with the write data bus 13, and flows in the same
direction. The transaction bus 12 can initiate a transaction
every clock cycle at 200 MHz to fit the natural data size of
the external interfaces. A Single transaction consists of a
packet of typically 32 data bytes. Larger transferS are always
Split into packet transactions which are independently arbi
trated. The data bus width is chosen to be typically 128 bits
(or 16 bytes). This means that a transaction takes two cycles
to process on the read or write data buses.
0110 Since read transactions can be initiated every sec
ond cycle, and write transactions likewise, the transaction
buS 12 can alternate initiations of read and write transactions
on each alternate cycle, and keep both data buses Saturated.
In this way, Such a bus structure can Support, for example,
up to 3.2 GB/s of read traffic and up to 3.2 GB/s of write
traffic Simultaneously. In addition, consecutive read trans
actions are also allowed, in the absence of any write trans
actions requests.

US 2004/O199692 A1

0111 FIG. 6 shows data transfer on the write data bus 13
where data is transferred as one packet. In one cycle, t,
information pertaining to the write data (i.e. address, master
ID tag, master Sequence tag) Wis placed on the transaction
buS 12 and the write data W is placed on the write data
pipe.

0112 FIG. 7 shows an alternative whereby the transfer of
data takes place over two cycles. In cycle t, the write address
information W is placed on the transaction bus 12 and the
first half of the data is placed on the write data bus 13.
During cycle t+1, the Second half of the write data packet is
placed on the write data bus 13. This leaves an idle slot on
the transaction buS 12, which could be used to request a read
packet.
0113 FIG. 8 shows that when a read request packet is
made, the transaction bus 12 conveys the information R,
regarding the data-fetch (address etc.). During Such a
request, the write data buS 13 is empty.
0114. The read data pipe 14 is used by target modules to
Send data to the master modules in response to Read requests
as shown in FIG. 8. FIG. 9 shows how the read data bus can
convey the data from the target to the master in one clock
cycle, t.
0115 Alternatively, if only a half-size data bus is used,
the read data is conveyed over two cycles, t and t+1.
011.6 An advantage of partitioning the bus into separate
transaction, write and read buses, is that it is possible to
reduce latency problems in a latency Sensitive environment.
Furthermore, there is no need to rely on tri-State Schemes
that are complex to control.
0117 Arbitration Scheme for Bus Access
0118. In a computer system such as those described
above, which include more than one module, Some form of
arbitration is required to decide which of the modules is to
be allowed access to the communications bus at any one
time.

0119 FIG. 11 illustrates such a computer system, in
which five modules M1 to M5 are connected to a commu
nications bus 20 and also to an arbitration unit (or arbiter)
21. It will be appreciated that the communications bus is
preferably in accordance with those described with reference
to FIGS. 2 to 10 above, but that the arbitration scheme is
applicable to any bus architecture.

0120) The arbitration unit 21 communicates via control
lines 22 with the modules M1 to M5, and the modules
communicate with the bus 20 via links 23. In general terms,
a transaction is completed as follows: the arbitration unit 21
receives a transaction request from a module (the “master
"module for the transaction), and if the bus is available to
that module, then the arbitration unit 21 returns a transaction
grant message. The master module concerned then places
data on to the bus. For example, using the Split read/write/
transaction bus described above, if module M1 is to under
take a write transaction, it requests use of the write buS by
Sending a write transaction request Via control lines 22 to the
arbitration unit 21. The arbitration unit 21 decides whether
the master module M1 is able to use the write bus, in
accordance with the method to be explained in more detail
below. If the master module M1 is able to use the write bus,
the arbitration unit 21 issues a transaction grant message to

Oct. 7, 2004

the master module M1 and a transaction granted message to
the target module. Upon receipt of the grant message, the
master module M1 Supplies address data on the transaction
buS and corresponding write data on the write bus. The target
module then receives the address and write data from the bus
and processes the data appropriately.

0121 FIG. 12 is a block diagram illustrating an arbitra
tion unit 21 for use in the computer system of FIG. 11. The
arbitration unit 21 includes a control means 24 for carrying
out the arbitration Scheme, a request receive means 25 for
receiving transaction requests from modules in the computer
System, priority level Storage means 27 for Storing informa
tion indicating an assigned priority level for each of the
modules in the System, and Stack Storage means 26 for
Storing Stack (or queue) information relating to the modules
in the System.

0122) An arbitration scheme will now be described with
reference to the flow chart of FIG. 13 and the register charts
of FIGS. 14 to 21. The arbitration scheme to be described
can be used for the read and write buses together, or
individually. The result of the arbitration scheme determines
which of the modules M1 to M5 is granted use of the bus
concerned.

0123. Each module M1 to M5 is assigned a relative
priority level. In the example shown in FIG. 14, modules
M1 and M4 are assigned a high priority level, modules M2
and M5 a medium priority level and module M3 a low
priority level. The priority levels are stored in the priority
level storage means 27 in the arbitration unit 21.

0.124. The initial set up of the arbitration scheme is to
arrange the modules into initial Stack positions (step A)
which are Stored in the Stack Storage means 26. These initial
positions are illustrated in FIG. 15. It will be appreciated
that the initial Stack positions are arbitrarily chosen. In the
example shown, M1 is at the top of the stack and M5 at the
bottom.

0.125. In step B, the arbitration unit 21 receives respective
transaction requests from any number of the modules M1 to
M5. For example, all five modules may wish to make
transaction requests at the same time. The transaction
requests are received by the request receive means 25 and
are forwarded to the control means 24. At Step C, the control
means 24 determines which of the transaction requests are
associated with the highest priority level of the modules
issuing requests. In the example where all five modules M1
to M5 issue transaction requests, modules M1 and M4 can
be seen to have the highest priority levels of the requesting
modules. The control means then masks out (Step E) all
requests from lower priority modules. Thus, only the
requests from modules M1 and M4 are processed further.
This is illustrated in FIG. 16.

0.126 The second stage of the arbitration scheme is to
determine the Stack positions (step F) of the modules whose
requests are to be processed further. The transaction request
from the module occupying the highest position in the Stack
is selected for acceptance (step G).

0127. This is illustrated in FIG. 17 in which it can be seen
that the module M1 is at a higher position in the Stack than
the module M4, and so the request from module M1 is
accepted over that from module M4. In Step H, a transaction

US 2004/O199692 A1

grant message is then sent to the Selected module (M1 in this
example) So that the module can use the bus in the pre
Scribed manner (step I).

0128. The entry in the stack relating to module M1 is then
moved (step J) to the bottom of the stack, and the entries
corresponding to the remaining module M2, M3, M4 and
M5 move up the stack as illustrated in FIG. 18. The
arbitration Scheme is then used again with the new Stack
position when the next request or requests are received from
the modules.

0129. For example, as shown in FIG. 18, if modules M2,
M3 and M5 issue transaction requests together, the first stage
of the arbitration Scheme selects M2 and M5, since these two
modules have the highest assigned priority level of the
requesting modules. The Second Stage of the arbitration then
selects the request from module M2 since module M2 is at
a higher position in the stack than module M5. Module M2
is then moved to the bottom of the Stack, resulting in the
stack shown in FIG. 19, with module M3 at the top of the
stack followed by M4, M5 and M1 with the module M2 at
the bottom.

0130. In the particular bus architecture described above,
using primary and Secondary buses and Split read, write and
transaction buses, the primary write bus arbitration Scheme
as described functions over two clock cycles which allows
Sufficient time to gather transaction requests from master
modules, to arbitrate as described, and to issue transaction
grant message to the Successful master module and its target
module.

0131 In, for example, a graphics System, there can be
five possible master modules which can require use of the
write data bus. These are the processor, the graphics con
troller, the interface controller between the primary and
Secondary bus System, the advanced graphic port, the PC
component interconnect and the memory, ie. RAM bus
connection. There are three possible target modules, the PC
component interconnect, the advanced graphic port and
channels 0 and 1 of the memory, ie. RAM. In such a system,
all masters except the processor have entries in the Stack
System in order to maintain the fairness during arbitration.
The processor is assigned the highest priority of all of the
master modules making requests, and therefore need not be
included in the Stack, Since whenever the processor makes a
request for bus usage, the bus is assigned to the processor.

0132) Preferably, the priority level assigned to each of the
modules in the Stack can be individually programmed (either
during design, or by the user), for example by assigning an
appropriate two-bit code for each module. For example, a
two bit coding Scheme provides three priority levels, low,
medium and high; as well as a disabled level in which no
requests are granted to the module concerned.

0.133 When a master module wishes to make a request,
it transmits its request signal together with the information
concerning the target module and whether a read or write
transaction is to be performed. AS described above, incom
ing requests are assessed firstly according to their incoming
priority level and Secondly according to their position within
the Stack. It is therefore possible to maintain an order of
fairneSS when granting the requests.

Oct. 7, 2004

0.134. Dual Arbitration Units-Dual Transaction Arbiters
0.135 A system can be implemented using an arbitration
unit which contains two separate arbiters. FIG.20 illustrates
an arbitration unit 31 for use in a computer System using
Separate transaction, write and read buses. The arbitration
unit 31 is linked to the modules (not shown) of the system
in order to control access to the bus. Requests to the
arbitration unit and grant Signals are carried by control lines
34.

0.136 The arbitration unit 31 contains an initiation arbiter
32 and a retirement arbiter 33. Each of the arbiters within the
arbitration unit are connected to the modules. It will be
appreciated that many modules can be connected to a single
arbitration unit.

0.137 The initiation arbiter 32 is concerned with initiating
(or launching) read and write transactions on the transaction
buS or on the transaction and write data buses, respectively.
For a read transaction, the initiation arbiter 32 will grant use
of the transaction bus to a master requesting read data. The
use can be granted on the basis of the arbitration method
described above, or on any other basis.
0.138 A write transaction, requires simultaneous use of
both the transaction and write buses for a single cycle.
0.139. The retirement arbiter deals with read data when it
arrives back from a target module. Multiple targets may
mature read data in the same cycle, and So arbitration of the
read data bus is controlled separately from the transaction
and write data bus. The retirement arbiter 33 receives
transaction requests from target modules holding mature
data and assigns use of the read buS in an appropriate way,
for example as described above.
0140. The read data will take time to “mature” at the
target and then appears on the read data bus at Some
indeterminate time in the future after the read request has
been made.

0141 Since the two arbiters 32 and 33 operate indepen
dently, the transaction bus can be fully utilised, by using the
vacant clock cycle associated with a write data transaction to
issue a read transaction on the transaction bus. This is
illustrated in FIG. 21. The transaction bus is ideally alter
nated between read and write States So that the write data bus
is also fully utilised carrying the two packet write data
packets.

0142. The initiation arbiter is able to receive requests and
grant bus use within a single clock cycle. When a module is
granted the use of the transaction bus the transaction address
data is placed on the transaction bus, and, for a write
transaction, write data is placed on the write bus. On the next
clock cycle, a read transaction can be initiated from the same
module or from a different module. This means that trans
actions must not be initiated to targets that cannot respond
to them on that cycle or the transaction will fail. A method
is described in more detail below, in which it is possible to
determine whether a target is able to accept a transaction,
before the transaction is requested.
0143. In addition, multiple modules may request read
data from a Single target. Therefore each maturing data
packet must be retired (returned) back to the master which
requested it. To do this, each target maintains a list of
outstanding read transactions. Preferably this is imple

US 2004/O199692 A1

mented in the form of a first-in-first-out (FIFO) register
having a size equal to the maximum number of read trans
actions that can be processed. Identification data tags can be
used and associated with the requests So that the returning
data can be identified. Such a system will be described in
more detail below.

0144) When read data matures in a target, it requests the
retirement arbiter for use of the read data pipe line. When the
use is granted, it outputs both the data packet and the master
ID tag from the transaction data store. The retirement arbiter
asserts a Strobe to the master unit which originally requested
the data So that master unit can consume that data. An
important assumption in an ideal System is that the master is
able to consume immediately any data packet which it has
requested.

0145 Arbitration for the read bus can be similar to that
for the write bus but can be simplified if each master module
is able to accept the matured read data as Soon as it is made
available. A similar two-stage filter and Stack arbitration
System can be used to arbitrate between the various Sources
of read response data, and no interaction is required from the
write or transaction buses. The read data transfer is achieved
over two cycles (two halfpackets). Once again, the priorities
could be programmable, but in a preferred example, the
priorities are fixed. When mature data is ready at a target,
that target module indicates to the read arbiter that it wishes
to Send data to a particular master module. Use of the read
bus is then controlled by the retirement arbiter.
0146) Dual Arbiters for Split Read/Write Buses
0147 An alternative arbitration unit includes separate
write bus and read bus arbiters, for example as illustrated in
FIG. 22. In such a case, the bus preferably includes two
transaction buses-one for read and one for write. Such a
system is illustrated in FIG. 23 where the transaction bus
TW 43 is associated with the write data bus W 44 and the
read transaction bus TR 46 is associated with the read data
bus R 45. As illustrated in FIG. 24, since the read and write
data buses 44 and 45 and the read and write transaction
buses 43 and 46 are entirely separate, then it is possible to
perform Simultaneous independent read and write opera
tions.

0.148. Address Decoding
0149. As described above, in a computer architecture
employing a bus System and multiple modules connected to
that bus System, Some form of arbitration is required to
determine which of the modules can have access to the bus
system. Preferably, the computer system is defined by a
memory map in which respective address ranges are allo
cated to individual modules. In Such a System, each module
can address the other modules Simply by using a single
address value. Thus, if module M3 wishes to write data to a
particular address, it simply issues address data equivalent to
that address. This address data needs to be decoded to
determine the target module identity. Preferably, each mod
ule M1, M2 and M3 Supplies information to all the other
modules indicating when it is busy (i.e. unavailable for
transactions).
0150. An example of a suitable decoding arrangement 58
is shown in FIG. 25 and comprises a transaction request
generator 53, for producing transaction requests, an address
decoder 50, a module availability reception and Storage

Oct. 7, 2004

means 51, and an address/availability comparison means 52.
The operation of these units will be described with reference
to FIGS.25, 26 and 27. FIG. 26 illustrates the memory map
Space for the computer System and it shows the address
regions assigned to modules M1 and M2. The address
regions are bounded by specific addresses M1A and M1B
for module 1, and M2A and M2B for module 2.
0151. When module M3 wishes to perform a transaction
with module M1, for example, module M3 generates a
transaction request including target address data. The
address decoder means 50 receives the target address data.
The address decoder 22 operates to determine which of the
modules M1 and M2 is assigned the address region into
which the target address data falls.
0152 Aspecific implementation of the address decoder is
shown in FIG. 27 and will be described in more detail
below.

0153. The result of the address decoding is supplied to
the address/availability comparison means 52. The module
availability reception means 51 receives and Stores infor
mation indicating whether the modules M1, M2 and M3 are
busy or able to receive a transaction request. The address/
availability comparison means uses the decoded address
information and the relevant stored module availability data
to determine whether the intended target is able to accept the
transaction. If the availability information corresponding to
the decoded address Signal indicates that the module con
cerned is unavailable, then the requested transaction is
halted until it is available. However, if the signal indicates
that the module concerned is available to receive a transac
tion, then the transaction request is forwarded to the arbi
tration unit.

0154) In this way, the arbitration unit can only be pro
Vided with requests that are made for available modules.
0155 FIG. 27 illustrates one possible implementation of
the address decoder 50. The decoder 50 includes registers 61
and 62 for Storing respectively the upper and lower bound
ary address values of a particular module, In the examples
shown, the upper value M1A of module M1 is stored in
register 61 and its lower value M1B is stored in register 62.
A comparator 63 compares the upper value with the incom
ing address 60 and outputs a high Signal if the address is leSS
than the value given by M1A. Similarly, a comparator 64
outputs a high Signal if the incoming address 60 is greater
than or equal to the lower value M1B. The outputs of the
comparators 63 and 64 are combined by an AND gate 65
Such that if the incoming address is greater than or equal to
the lower value M1B and less than the upper value M1A,
then a high output is Supplied at 66. If, however, the address
Signal indicates that the required address is outside of this
range, then the output 66 is low. Thus, only the selected 66
is high.
0156 The decoding arrangement can thus effectively
provide pre-arbitration Stage, which only allows arbitration
of those transaction requests which are most likely to be
Successful if granted. Any transaction request which speci
fies a target which is already known to be busy, it will simply
not be forwarded to the arbitration unit.

O157. In an alternative arrangement to the above, avail
ability information could be sent to an arbitration unit, and
used within the arbitration proceSS in granting access to the

US 2004/O199692 A1

bus (that is, the module availability reception and storage
means 51 and the address/availability comparison means 52
shown in FIG. 25 could be located within an arbitration
unit).
0158 Data Packet Recording
0159. A complication can arise if a master module
requests read data from two or more targets that Supports bit
transactions. In Such a case there is the possibility that data
may mature from the targets in a different order from that in
which it was requested. The master module could then
receive data packets in the wrong order. This problem, as
will be described in more detail below, can be solved by
providing transaction tag register in each target So that
module ID code and a transaction Sequence code can be
utilised for that module. A sequence code is generated by
each module from, for example, an end bit counter, which is
incremented whenever the module concerned is granted a
read transaction. Thus, when read data is matured in a target
and returned (or retired) back to the requesting master, it has
an associated Sequence code transmitted as well. This means
that the master can re-order the data packets as they arrive.
0160 An advantage of such a scheme is that it is poten
tially deadlock free, Since the only blocking condition is
when a target is full and cannot accept further transactions.
This condition only affects those masters wishing to acceSS
that particular target and will clear as the target processes its
transaction queue. Read data can always be retired since the
requesting masters are defined as always being able to
accept data they have requested.
0.161. A master that makes requests for read data from
more than one target within the overall latency time of any
of those targets may well receive data packets in the wrong
order. Since the master must accept data packets regardless
of the order in which it receives them, Some method is
required to re-order the data packets in the correct order for
consumption by the function provided by the master.
0162 FIG. 28 shows representationally a master module
MN, which is connected to a bus 70, and which provides a
module function 79. The master module MN requests data
using a transaction request inducing transaction address data
Supplied on the transaction bus by a transaction output
request Stage 74. The transaction request also includes a
transaction Sequence tag which is produced by a Sequence
producer counter 71. This sequence tag indicates the relative
order in which the transaction has been produced. When
read data is received, via an input 76, that read data packet
has a read packet Sequence tag associated with it which is
received by an input 77. The read Sequence tag, which is
equivalent to the transaction Sequence tag output by the
master with its transaction request, is used to indicate where
the read data packet should be Stored within a two port
memory, ie. RAM, buffer 75. The read data packet 76 is
input via the memory write port and is written at a position
within the memory indicated by the sequence tag 77.
0163 The consumer counter 72 provides a signal for
controlling the output from the RAM 75. The data packets
are read from the RAM via its read port in strict rotation. The
consumed data 78 is thereby provided to the module func
tion 79.

0164. The RAM re-order buffer is treated as a circular
queue, which is addressed by the Sequence tags. Packets

Oct. 7, 2004

arriving on the bus are written to a RAM slot indicated by
the input Sequence tag associated with the packet, whilst
packets are read from the buffer in strict order. The con
Sumption of data by the master will Stall during a period of
waiting for the next expected data packet. The arrival of data
packets associated with later transactions are ignored. The
number of transactions that can be awaited in this way is
determined by the number of addresses in the dual port
RAM.

0.165 Target Module Data Tag Queues
0166 A similar function can be provided at a target
module So that the data provided by the target module in
response to a read request is output from the module in the
order in which the transactions are received by the target
module. This can be used in addition to the data packet
re-ordering Scheme mentioned above, or independently of
Such a method.

0.167 As shown in FIG. 29, a representative target mod
ule having a target module function 86 is connected to a bus
80 for transferring data packets to and from requesting
master modules (not shown). A transaction request is
received by the transaction input line 81 and is stored in a
transaction first in first out (FIFO) register 83. If the register
83 is full, then a full flag is returned via a control line 82 to
the requesting module or arbitration unit (not shown).
0168 The first in first out FIFO register 83 supplies
address data to the target function 86, whilst identification
and sequence data is passed to a further first in first out FIFO
buffer 87. This buffer 87 provides a tag queue, and is used
So that master module identification and Sequence data can
be recombined with data packets read by the target function
86. When a data packet to be output to the master is returned
by the target function 86, then the associated tag (ID and
Sequence data) is output onto the bus at the same time,
thereby identifying the output read data. The tags are output
using control lines 88 and the read data packet output on the
line 89.

0169. If the transaction concerned is a write transaction,
where write data is to be written to the target function 86,
then the address and write data is passed to the target
function 86 from the transaction FIFO 83, but the ID and
Sequence data is not transferred to the tag queue, Since no
return data is required in that case.

0170 It will be readily appreciated that the use of first
in-first-out (FIFO) registers 83 and 87 provides a method of
ordering incoming transactions and outgoing data.

0171 Modular Topology

0172 In all the bus architectures described above, the
common aspect is that a number of modules M1, M2 and M3
etc. are connected to a Single bus. It is therefore desirable to
provide a Scheme in which modules can be easily attached
to the bus architecture, without a corresponding change in
buS properties.

0173 FIG. 30 illustrates a modular bus architecture
topology. Three modules are shown in the example of FIG.
30, but any number of modules could be connected in this
way. A bus 90 is punctuated by a number of bus connection
modules 91, 91 and 91 which are preferably, but not
necessarily, equally spaced along the buS 90. Each of the

US 2004/O199692 A1

connection modules 92, 92 or 92 allows a module M1,
M2 or M3 to be connected to the bus.

0.174. The bus connection modules 91, 91 and 91 are
typically controlled such that only one of the modules M1,
M2 or M3 is connected to the bus at any one time. This is
achieved by the connection modules 91 being controlled by
respective inputs 93, 93 and 93 from the bus architecture
arbitration unit (not shown).
0175 Each of the bus connection modules 91 includes
buffering and output circuitry which can be tailored for the
particular length of bus between it and the next connection
module. Thus, the Signal characteristics along the bus can be
optimised since the load on each of the buffers from the
interconnection modules is known. Aparticular advantage of
this System is that if, for example, module M2 is not required
in a particular application, then it can be simply omitted
from the design, but the connection module 91 enables the
bus characteristics to be maintained along the length of the
bus.

0176). In the split bus examples described earlier, using
Split read/write and transaction buses, each of the buses can
be treated in the same way illustrated in FIG. 30. More
particularly, the schematic diagram shown in FIG. 30 is
applicable to each of the read, write and transaction buses
individually as well as appropriate combinations thereof. In
a particular example, the write and transaction buses will be
connected to modules in the manner shown in FIG. 30, but
the read bus could be hard wired and permanently connected
to each of the modules. This could be made possible by
asSociating identity data with the incoming read data So that
each of the modules is able to identify the data packets
intended for its consumption without need for reference to
the arbitration unit. This is a result of the split read/write
buses being able to maintain Separate read and write trans
actions on the bus architecture.

0177 Secondary Bus Idle Usage
0.178 A further improvement may be made to the latency
of the secondary bus by utilising the time when the bus is
idle.

0179 Referring to FIG.31, the secondary arbitration unit
is normally located at the end of the secondary bus 4. When
a master unit, (for example module M), wishes to make
a transaction, a request is sent to the arbitration unit. The
arbitration unit decides whether to grant the request accord
ing to the arbitration techniques described above. Since
module M is located near the arbitration unit, this request
for making a transaction is Serviced in a Small number of
clock cycles.
0180. However, if module M wishes to make a trans
action, the request must also be sent to the arbitration unit,

Oct. 7, 2004

which may be many pipeline lengths away. As a conse
quence, a request from module M takes longer to Service
than a request from module M.
0181 To overcome this problem, whenever the bus is
idle, the arbitration unit places "empty packets on the bus
at every available clock cycle. The empty packets travel
along the bus, and may be used by any module that wishes
to make a transaction. A module can then grab a free packet
rather than requesting a dedicated packet and awaiting its
return.

0.182) If module M2 makes a request for a transaction,
but in the meantime receives an empty packet from the
arbitration unit, it is free to use the empty packet rather than
await for its requested packet to return. However, when the
requested packet eventually returns at a later time, module
M. can then convert this packet which it no longer needs
into an empty packet. This converted packet can then
continue along the bus, and may be used by another module
wishing to make a transaction.
0183). Using the idle bus time in this manner enables the
average transaction request time to be significantly reduced.
0.184 The apparatus described above may be used in
many applications, for example, personal computers, lap
tops, microprocessors, microcomputers, graphics Systems,
Simultaneous Instruction Multiple Data (SIMD) applica
tions, parallel processing, Set-top boxes (satellite decoders
and digital television decoders), or consumer appliances.

1. Apparatus for use in a computer System comprising:
a bus architecture;
a plurality of modules connected to the bus architecture;
a first arbiter means for controlling initiating transactions

on the buS architecture; and
a Second arbiter means for controlling return transactions

on the buS architecture.
2. Apparatus as claimed in claim 1, wherein the bus

architecture has separate read, write and transaction control
buses, and wherein the first arbiter means controls use of the
write and transaction buses and the Second arbiter means
controls use of the read bus.

3. A computer System comprising apparatus as claimed in
claim 1.

4. An integrated circuit comprising apparatus as claimed
in claim 1.

5. A graphics processing System comprising apparatus as
claimed in claim 1.

6. A games console comprising apparatus as claimed in
claim 1.

