发明名称
一种电脑电源

摘要
本发明涉及电源技术领域，尤其涉及一种电脑电源，其包括高效率 DC/AC 变换电路、交流电压输出电路、用于控制电压输出的智能控制电路、用于稳定输出电压的功率因数修正器及 PWM 控制电路，所述高效率 DC/AC 变换电路的输入端与 DC/DC 变换电路的输出端连接，高效率 DC/AC 变换电路的输出端与交流电压输出电路的输入端连接，交流电压输出电路的输出端与电脑的外部设备连接；所述功率因数修正器及 PWM 控制电路的输入端与整流滤波电路的输出端连接，功率因数修正器及 PWM 控制电路的输出端分别与 DC/DC 变换电路的输入端、5VSB 待机电路的输入端连接。本发明的输出交流电压稳定、工作效率高。
1. 一种电脑电源，它包括外壳 (1)、设置在外壳 (1) 内部的电路部分，所述电路部分包括依次连接的 EMI 滤波电路 (10)、整流滤波电路 (11)、DC/DC 变换电路 (13)、直流电压输出电路 (14)，与电脑主机 (20) 连接的 5vSB 待机电路 (15)，EMI 滤波电路 (10) 的输入端与交流电源连接，直流电压输出电路 (14) 的输出端与电脑主机 (20) 连接，其特征在于：它还包括高效率 DC/AC 变换电路 (17)、交流电压输出电路 (18)、智能控制电路 (16)、用于稳定输出电压的功率因数修正器及 PWM 控制电路 (12)；

所述智能控制电路 (16) 分别与直流电压输出电路 (14)、交流电压输出电路 (18) 连接，用于控制直流电压输出电路 (14)、交流电压输出电路 (18) 的电压输出的开关；

所述高效率 DC/AC 变换电路 (17) 的输入端与 DC/DC 变换电路 (13) 的输出端连接，高效率 DC/AC 变换电路 (17) 的输出端与交流电压输出电路 (18) 的输入端连接，交流电压输出电路 (18) 的输出端与电脑的外部设备 (30) 连接，为外部设备 (30) 提供稳定的交流电压；

所述功率因数修正器及 PWM 控制电路 (12) 的输入端与整流滤波电路 (11) 的输出端连接，功率因数修正器及 PWM 控制电路 (12) 的输出端分别与 DC/DC 变换电路 (13) 的输入端、5vSB 待机电路 (15) 的输入端连接，用于稳定电脑电源输出的交流电压，
提高电脑电源的工作效率。

2. 根据权利要求1所述的一种电脑电源，其特征在于：所述高效率 DC/AC 变换电路（17）采用具有将直流电转换为交流电功能的集成电路芯片 IC1。

3. 根据权利要求2所述的一种电脑电源，其特征在于：所述集成电路芯片 IC1 的型号为 JHT6M999。

4. 根据权利要求1所述的一种电脑电源，其特征在于：所述交流电压输出电路（18）的输出端连接有国标母座（5），该国标母座（5）设置在电源外壳（1）上，用于与外部设备（30）的电源插头连接。

5. 根据权利要求1所述的一种电脑电源，其特征在于：所述功率因数修正器及 PWM 控制电路（12）采用将功率因数修正器和 PWM 控制器集成于一体的集成电路芯片 U1。

6. 根据权利要求5所述的一种电脑电源，其特征在于：所述集成电路芯片 U1 的型号为 SG6932DZ。

7. 根据权利要求1所述的一种电脑电源，其特征在于：所述智能控制电路（16）采用具有控制直流电压输出电路（14）和交流电压输出电路（18）的电压输出或关断、对直流电压输出电路（14）和交流电压输出电路（18）的电压输出进行过欠压保护与过流保护功能的集成电路芯片 U4。

8. 根据权利要求7所述的一种电脑电源，其特征在于：所述集成电路芯片 U4 的型号为 SG6520DZ。
9. 根据权利要求 1 所述的一种电脑电源，其特征在于：所述 5vSB 待机电路（15）包括依次连接的低功耗电路（151）、DC/DC 变换电路（152）、5vSB 电压输出电路（153），低功耗电路（151）的输入端与功率因数修正器及 PWM 控制电路（12）的输出端连接，5vSB 电压输出电路（153）的输出端与电脑主机（20）连接。

10. 根据权利要求 9 所述的一种电脑电源，其特征在于：所述低功耗电路（151）采用低功耗集成电路芯片 U2，其型号为 FSDL0165RN。
一种电脑电源

技术领域：

本发明涉及电源技术领域，尤其涉及一种电脑电源。

背景技术：

现在计算机的用电量在日常生活中的比例不断增加。随着全球能源供给越来越紧张，计算机的耗能问题已经引起了各国的注意。例如美国 80 PLUS 能源效率认证和能源之星都要求台式计算机或服务器的工作效率均在 80% 以上，计算机产业气候救助行动（CSCI）更是提出新的节能标准，要求到 2011 年 7 月台式计算机或服务器的工作效率达到 87% ～ 90%；在欧洲新出台的绿色环保标准中规定，进口的计算机的待机功耗不能超过 1W，超过这个标准的计算机禁止进口。

目前，电脑电源主要为电脑主机的各硬件提供电源，而一些电脑的外部设备，如显示器，需要另外连接交流电源，且这些外部设备都设有独立的电源开关，这样，容易造成使用者关闭了电脑主机，却忘记了关闭外部设备，这些外部设备仍然待机工作，导致不必要的电能浪费。

为了解决上述问题，中国专利号为 200520119312.0 的专利文献公开了一种新型的电脑电源，其包括外壳和电源导线、以及设置在其中的电路部分和变压器部分，电路部分包括 EMI（Electron-Magnetic
Interference，电磁干扰）滤波电路、整流滤波电路、DC/DC 变换电路、输出整流滤波电路、直流电压输出电路、开关机控制部分和 PWM 控制部分，所述的电源外壳上设有三脚针孔插座，该三脚针孔插座与上述的电源中的交流电源导线相连接，使得显示器等外部设备可以连接到电脑电源的三脚针孔插座中，由电脑电源统一控制电脑主机和显示器等外部设备的电源的开关，从而避免了由于忘记关闭显示器等外部设备而导致的不必要的电能浪费。但是，从以上技术方案可以看出，所述三脚针孔插座输出的交流电源是直接从电脑电源的交流输入端引出，因此，三脚针孔插座输出的交流电源容易受市电变化的影响，输出电压的稳定性较差，不利于显示器等外部设备的使用，尤其是容易导致显示器产生闪烁感，让使用者的眼睛容易疲劳；而且，由于直流电压输出电路输出的直流电压容易受到较大的谐波干扰，导致输出的直流电压不稳定，从而使得电脑电源的工作效率不高，一般只有 70%以下的工作效率，浪费了大量的电能。

发明内容：

本发明的目的就是针对现有技术存在的不足而提供一种输出交流电压稳定、工作效率高的电脑电源。

为了实现上述目的，本发明采用的技术方案是：

它包括外壳、设置在外壳内部的电路部分，所述电路部分包括依次连接的 EMI 滤波电路、整流滤波电路、DC/DC 变换电路、直流电压输出电路，与电脑主机连接的 5vSB （5Vstandby，5V 备用电源）待机电路，高效率 DC/AC 变换电路，交流电压输出电路，智能控制
电路，用于稳定输出电压的功率因数修正器及 PWM（Pulse Width Modulation，脉冲宽度调制）控制电路；所述 EMI 滤波电路的输入端与交流电源连接，直流电压输出电路的输出端与电脑主机连接；所述智能控制电路分别与直流电压输出电路、交流电压输出电路连接，用于控制直流电压输出电路、交流电压输出电路的电压输出的开关；所述高效率 DC/AC 变换电路的输入端与 DC/DC 变换电路的输出端连接，高效率 DC/AC 变换电路的输出端与交流电压输出电路的输入端连接，交流电压输出电路的输出端与电脑的外部设备连接，为外部设备提供稳定的交流电压；所述功率因数修正器及 PWM 控制电路的输入端与整流滤波电路的输出端连接，功率因数修正器及 PWM 控制电路的输出端分别与 DC/DC 变换电路的输入端、5VSB 待机电路的输入端连接，用于稳定电脑电源输出的交流电压，提高电脑电源的工作效率。

所述高效率 DC/AC 变换电路采用具有将直流电转换为交流电功能的集成电路芯片 IC1。

所述集成电路芯片 IC1 的型号为 JHT6M999。

所述交流电压输出电路的输出端连接有国标母座，该国标母座设置在电源外壳上，用于与外部设备的电源插头连接。

所述功率因数修正器及 PWM 控制电路采用将功率因数修正器和 PWM 控制器集成于一体的集成电路芯片 U1。

所述集成电路芯片 U1 的型号为 SG6932DZ。

所述智能控制电路采用具有控制直流电压输出电路和交流电压
输出电路的电压输出或关断，对直流电压输出电路和交流电压输出电路的电压输出进行过欠压保护与过流保护功能的集成电路芯片 U4。

所述集成电路芯片 U4 的型号为 SG6520DZ。

所述 5VSB 待机电路包括依次连接的低功耗电路、DC/DC 变换电路、5VSB 电压输出电路，低功耗电路的输入端与功率因数修正器及 PWM 控制电路的输出端连接，5VSB 电压输出电路的输出端与电脑主机连接。

所述低功耗电路采用了低功耗集成电路芯片 U2，其型号为 FSDL0165RN。

本发明有益效果在于：

本发明的高效率 DC/AC 变换电路的输入端与 DC/DC 变换电路的输出端连接，高效率 DC/AC 变换电路的输出端与交流电压输出电路的输入端连接，交流电压输出电路的输出端与电脑的外部设备连接；由于交流电压输出电路输出的交流电压经过了高效率 DC/AC 变换电路的转换，其输出的交流电压稳定，适合于电脑的外部设备使用。进一步，所述功率因数修正器及 PWM 控制电路的输入端与整流滤波电路的输出端连接，功率因数修正器及 PWM 控制电路的输出端分别与 DC/DC 变换电路的输入端、5VSB 待机电路的输入端连接；由于功率因数修正器及 PWM 控制电路不容易受谐波干扰，可以稳定输出的直流电压，因此，本发明可提高整个电脑电源的工作效率，工作效率可达 87% 以上。
附图说明:

图1是本发明的结构示意图；

图2是本发明的结构方框图；

图3是本发明高效率DC/AC变换电路和交流电压输出电路的电路原理图；

图4是本发明功率因数修正器及PWM控制电路的电路原理图；

图5是本发明智能控制电路的电路原理图；

图6是本发明5vSB待机电路的电路原理图。

具体实施方式:

下面结合附图对本发明作进一步的说明，见图1、2所示，本发明包括外壳1，设置在外壳1内部的电源风扇2，用于外接交流电源的交流电源插口3，保险丝4，国标母座5，电路部分，所述电路部分包括依次连接的EMI滤波电路10，整流滤波电路11，DC/DC变换电路13，直流电压输出电路14，与电脑主机20连接的5vSB待机电路15，高效率DC/AC变换电路17，交流电压输出电路18，智能控制电路16，用于稳定输出电压的功率因数修正器及PWM控制电路12；所述EMI滤波电路10的输入端与交流电源连接，直流电压输出电路14的输出端与电脑主机20连接；所述智能控制电路16分别与直流电压输出电路14、交流电压输出电路18连接，用于控制直流电压输出电路14、交流电压输出电路18的电压输出的开关；所述高效率DC/AC变换电路17的输入端与DC/DC变换电路13的输出端连接，高效率DC/AC变换电路17的输出端与交流电压输出电路
18 的输入端连接，交流电压输出电路 18 的输出端与电脑的外部设备 30 连接；所述功率因数修正器及 PWM 控制电路 12 的输入端与整流滤波电路 11 的输出端连接，功率因数修正器及 PWM 控制电路 12 的输出端分别与 DC/DC 变换电路 13 的输入端、5vSB 待机电路 15 的输入端连接。

请参考图 3，本实施例的高效率 DC/AC 变换电路 17 采用具有将直流电转换为交流电功能的集成电路芯片 IC1，集成电路芯片 IC1 的型号为 JHT6M999。所述交流电压输出电路 18 由变压器 T5、保险丝 4、连接在交流电压输出电路 18 的输出端的国标母座 5 组成，变压器 T5 的第 1 脚和第 2 脚分别与 IC1 的第 3 脚和第 4 脚连接，变压器 T5 的第 3 脚与保险丝 4 的一端连接，保险丝 4 的另一端与国标母座 5 连接，变压器 T5 的第 4 脚直接与国标母座 5 连接，国标母座 5 设置在电源外壳 1 上，它用于与显示器等外部设备 30 的电源插头连接，为外部设备 30 提供交流电源。其工作原理是：当电脑电源开机工作正常后，由 DC/DC 变换电路 13 输入一组+12V 直流电压给集成电路芯片 IC1，IC1 第 3 脚和第 4 脚就输出一个幅度为 12V 左右的方波，经变压器 T5 升压后，得到一个 220V、50HZ 的稳定交流电压，再经保险丝 4 输出至连接到电脑电源外壳 1 上的国标母座 5 中，并直接给显示器等外部设备 30 供电。由于显示器等外部设备 30 的电源是直接从电脑电源的交流电压输出电路 18 输入，而智能控制电路 16 又统一控制着直流电压输出电路 14、交流电压输出电路 18 的电压输出，所以使得电脑主机 20 和外部设备 30 的电源可以一起开关，
即使用者只要关闭电脑主机 20 的电源，就可以把外部设备 30 的电源也同时关掉，从而避免了使用者关闭了电脑主机 20 却忘记关闭显示器等外部设备 30 的情况发生，防止不必要的电能浪费。而且，交流电压输出电路 18 输出的电压为 220V、50HZ 的稳定交流电压，不会随市电的变化而变化，输出电压的稳定性好，从而提高了显示器等外部设备 30 的使用寿命，尤其改善了显示器明显的闪烁感，让使用者的眼睛不容易疲劳。

请参考图 4，本实施例的功率因数修正器及 PWM 控制电路 12 主要由集成电路芯片 U1、功率开关管 Q1、Q2、PWM 功率开关管 Q3、Q4、整流二极管 D2 等元件组成，集成电路芯片 U1 的型号为 SG6932DZ，U1 的第 7 脚为 FBPF 管脚，该管脚用作电压回馈检测，再通过 U1 来控制功 Q1 和 Q2 的开关时间，经 D2 整流后，得到一个稳定的 400V 直流电压，供后级 PWM 控制电路及其它电路工作，使用稳定的 400V 直流电压工作，能够减少瞬间的大电流，从而减少了谐波干扰，进而提高了工作效率、提高了功率因数，工作效率可达 87%，功率因数可提高到 0.99，且总谐波失真率可控制在 8%以内；U1 的第 8 脚为 IPWM 管脚，该管脚可以通过检测后级负载的轻重来控制 Q3 和 Q4 的导通时间，从而稳定输出的直流电压，提高了工作效率。而且，所述功率因数修正器及 PWM 控制电路 12 采用了 PFC/PWM 交叉工作开关模式，可同步 PFC（Power Factor Correction，功率因数校正）和 PWM，并降低噪声，当电脑电源为轻载时，开关频率将不断降低以减少功耗；所述功率因数修正器及
PWM 控制电路 12 采用低电流工作，其启动和关闭的电压阈值分别为 14V、10V，工作电流低于 10mA；所述功率因数修正器及 PWM 控制电路 1212 还具有过压保护、欠压保护、输入欠压保护、反馈开环保护等功能。

请参考图 5，本实施例的智能控制电路 16 主要由集成电路芯片 U4、光耦芯片 U7、三极管 Q5 等元器件组成，集成电路芯片 U4 的型号为 SG6520DZ。其中，集成电路芯片 U4 的 PS-on 管脚是与电脑主机 20 的开机键连接，当按下开机键启动电脑主机 20 时，U4 的 PS-on 管脚电位拉低，U4 的 FPO 管脚电位也会拉低，然后通过光耦芯片 U7、三极管 Q5 来启动 U1，从而使整个电脑电源正常工作，即开启电脑主机 20 和显示器等外部设备 30 的电源；同样，当再次按下开机键关闭电脑主机 20 时，集成电路芯片 U4 会关闭 U1，使得显示器等外部设备 30 的电源同时关闭。进一步，由于集成电路芯片 U4 具有控制直流电压输出电路 14 和交流电压输出电路 18 的电压输出或关断、对直流电压输出电路 14 和交流电压输出电路 18 的电压输出进行过欠压保护与过流保护的功能，因此，智能控制电路 16 不仅可以控制直流电压输出电路 14 和交流电压输出电路 18 的电压输出或关断，而且对直流电压输出电路 14 和交流电压输出电路 18 的电压输出具有过欠压保护、过流保护等保护功能。

请参考图 6，本实施例的 5vSB 待机电路 15 包括依次连接的低功耗电路 151、DC/DC 变换电路 152、5vSB 电压输出电路 153，低功耗电路 151 的输入端与功率因数修正器及 PWM 控制电路 12 的输
出端连接，5vSB 电压输出电路 153 的输出端与电脑主机 20 连接，所述的低功耗电路 151 采用了功耗较低的集成电路芯片 U2，其型号为 FSDL0165RN，该芯片取代了传统 5vSB 待机电路 15 的晶体管，使得 5vSB 待机电路 15 的功耗大大降低，所述的低功耗电路 151 的节能作用不但体现在电脑的待机状态下，而且在电脑运行的整个过程中，都可以产生显著的节能的作用。综上所述，本发明的输出交流电压稳定、工作效率高，是一种节能环保的电脑电源。

当然，以上所述仅是本发明的较佳实施例，故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰，均包括于本发明专利申请范围内。
图1
图3