发明名称

轧机和操纵该轧机的方法

摘要

本发明涉及一种轧机以及操纵该轧机的方法，该轧机具有设置在牌坊中从而与工作辊和支承辊相对的液压缸。在可轧材料的前端部分咬入在工作辊之间之前，将液压缸的工作油压设定在较高的压力值上以使得作用在轧辊轴座上的压力较高。在可轧材料完全咬入在工作辊之间之后，将液压缸的工作油压设定在较低的数值上以使得作用在轧辊轴座上的压力较低。
1. 一种轧机，包括：
 牌坊；
 可转动地由牌坊借助于轧辊轴承座支撑的上下轧辊；
 压下装置，它设置在牌坊的上部部分中并且用来在轧辊上施加预定的压力；
 加压装置，用来沿着可轧材料的输送方向推压轧辊轴承座以将这些轧辊轴承座压在牌坊上；
 端部探测装置，用来探测正在行进的可轧材料的端部；
 轧制力探测装置，用来探测由轧辊施加的轧制力；以及
 控制装置，该装置基于由端部探测装置所探测出的结果在可轧材料咬入在轧辊之间之前通过加压装置将推压力设定在较高的数值上，并且该装置基于由轧制力探测装置所探测出的结果在可轧材料咬入之后将推压力设定在较低的数值上。

2. 如权利要求 1 所述的轧机，其中根据由端部探测装置探测出的结果，在可轧材料的尾端从轧辊之间通过之前，所述控制装置通过加压装置将推压力设定在较高的数值上。

3. 如权利要求 2 所述的轧机，其中根据由端部探测装置探测出的结果，在可轧材料的尾端从轧辊之间通过之后，所述控制装置通过加压装置将推压力设定在较低的数值上。

4. 如权利要求 1 所述的轧机，其中当多个轧机布置成一排时，在后面阶段中的轧机使用在前面阶段中安装在轧机上的轧制力探测装置作为端部探测装置。

5. 用于操纵轧机的方法，所述轧机包括：牌坊；可转动地由牌坊借助于轧辊轴承座支撑的上下轧辊；设置在牌坊的上部部分中并且用来在轧辊上施加预定压力的压下装置；用于沿着可轧材料的输送方向推压轧辊轴承座以将轧辊轴承座压在牌坊上的加压装置，该方法包括：
在可轧材料咬入在轧辊之间时通过加压装置将推压力设定在较高的数值上；

还包括在可轧材料咬入在轧辊之间之后通过加压装置将推压力设定在较低的数值上。

6. 如权利要求 5 所述的方法，还包括在可轧材料的尾端从轧辊之间通过之前通过加压装置将推动力设定在较高的数值上。

7. 如权利要求 6 所述的方法，还包括在可轧材料的尾端从轧辊之间通过之后通过加压装置将推动力设定在较低的数值上。

8. 如权利要求 5 所述的方法，还包括从在可轧材料的尾端在轧辊之间通过之前开始直到下一个可轧材料的咬入完成通过加压装置将推动力设定在较高的数值上。
轧机和操纵该轧机的方法

包括说明书、权利要求书、附图和摘要在内的2001年8月2日申请的日本专利申请No. 2001-234654其全文在这里被引用作为参考。

技术领域

本发明涉及一种用于将在上下轧辊之间通过的带材等轧制成预定厚度的轧机以及一种操纵该轧机的方法。

背景技术

在普通轧机中，上下工作辊借助于工作辊轴承座可转动地支撑在牌坊内，并且上下工作辊彼此相对。上下支承辊也借助于支承辊轴承座可转动地支撑在牌坊内，并且上下支承辊与上下工作辊相对。在牌坊的上面部分中设有用于借助于上支承辊在上工作辊上施加轧制载荷的压下装置。

因此，带材从牌坊的入口侧被送进，并且在下工作辊和通过压下装置借助于支承辊被施加了预定负荷的上工作辊之间通过，由此将该带材轧制成预定厚度。轧制带材从牌坊的输出侧被输出并且被提供给随后的工序。

在前面的轧机中，在处于压下负荷下的轧制条件下使在牌坊中的工作辊和支承辊的垂直控制期间滞后现象最小化，从而高度精确地控制了轧板的厚度。为此，在工作辊轴承座和支承辊轴承座以及牌坊之间形成有间隙。因此，即使在轧制期间在压下负荷的作用下牌坊出现向内收缩变形，在这些轧辊轴承座之间仍然存在间隙，从而轧机的水平动态刚度可以减小。如果以高轧制力和在带材厚度中的高压下率进行轧制同时轧机的水平动态刚度较低的话，在牌坊或工作辊中出现可能由所轧制带材和工作辊之间的摩擦产生的巨大振动（下面被称为轧机振动），从而妨碍了高效率轧制。

本申请的申请人提交了日本专利申请 No. 2000-187163（日本未审
专利公开 No. 2001-113308)作为一种对上述问题的解决方案。该申请的发明具有：借助于轧辊轴承座可旋转支撑在牌坊中的一对上下工作辊和一对上下支承辊；压下装置，设在牌坊的上面部分中用来在上工作辊上施加预定的压力；以及设在牌坊的入口侧和输出侧上的液压缸机构，所述液压缸机构能够沿着水平方向推动轧辊轴承座。根据这个结构，在轧制期间促动液压缸机构以消除轧辊轴承座和牌坊之间的间隙，从而改善水平动态刚度。因此，轧机振动受到抑制，从而能够进行高效轧制。

实际上，可以通过在轧制期间通过促动液压缸机构来消除在轧辊轴承座和牌坊之间的间隙从而抑制轧机振动。但是由本申请人进行的进一步研究和试验表明由液压缸机构施加在轧辊轴承座上的最优压力根据轧制条件变化。

发明概述

本发明已经解决了上述问题。本发明的目的在于提供一种轧机以及一种用来操纵该轧机的方法，该轧机能够通过抑制在所要轧制材料(在下面被称为可轧材料)接合在轧辊之间时产生出的冲击力来提高轧材的板厚精确度。

作为本发明的一个方面，提供一种轧机，包括：牌坊；可转动地由牌坊借助于轧辊轴承座支撑的上下轧辊；设置在牌坊的上面部分中并且用来在轧辊上施加预定压力的压下装置；用于沿着可轧材料的输送方向推压轧辊轴承座以将轧辊轴承座压在牌坊上的加压装置；用于探测正在行进的可轧材料的端部的端部探测装置；以及控制装置，该装置基于由端部探测装置所探测出的结果在可轧材料咬入在轧辊之间之前通过加压装置将推压力设定在较高的数值上，并且该装置基于由轧制力探测装置所探测出的结果在可轧材料咬入之后将推压力设定在较低的数值上。

因此可以减轻可轧材料的前端部分咬入在轧辊之间时所产生出的冲击力，从而可以提高板厚的精确度。而且，可以防止在轧制期间在牌坊或轧辊中出现轧机振动，从而改善了板材的通过并且可以实现高
效轧制。

在该轧机中，根据由端部探测装置探测的结果，在可轧材料的尾端从轧辊之间通过之前控制装置可以通过加压装置将推压力设定在较高的数值上。因此，可以抑制在可轧材料的尾端离开轧辊时所产生的挠曲或弯曲或蛇行运动。

在该轧机中，根据由轧制力探测装置探测出的结果，在可轧材料的尾端从轧辊之间通过之后控制装置可以通过加压装置将推压力设定在较低的数值上。因此，当针对接下来的可轧材料来再次设定轧机时可以减小阻力，从而可以提高设定的精确度并且可以延长部件的寿命。

在该轧机中，当多个轧机成排布置时，在随后阶段中的轧机可以使用在前面阶段中安装在轧机上的轧机轧制力探测装置作为端部探测装置。因此，可以可靠地探测出可轧材料的端部，从而提高控制的精确度。

根据本发明另一个方面，提供一种用于操纵轧机的方法，该轧机包括：牌坊；可转动地由牌坊借助于轧辊轴承座支撑的上下轧辊；设置在牌坊的上部设置中并且用来在轧辊上施加预定压力的下压装置；用于沿着可轧材料的输送方向推压轧辊轴承座以将轧辊轴承座压在牌坊上的加压装置，该方法包括在可轧材料咬入在轧辊之间时通过加压装置将推力设定在较高的数值上。

因此可以减轻可轧材料的前端部分咬入在轧辊之间时所产生的冲击力，从而可以提高板厚的精确度。

所述用于操纵轧机的方法还可以包括在可轧材料咬入在轧辊之间之后通过加压装置将推力设定在较低的数值上。因此，可以防止在轧制期间在牌坊或轧辊中出现的轧机振动。而且，可以排除在轧制期间所需要力之外的推动力，并且可以对轧辊的垂直运动的阻力最小化。因此，可以确保轧材的板厚精确度。

用于操纵轧机的方法还可以包括在可轧材料的尾端从轧辊之间通过之前通过加压装置将推动力设定在较高的数值上。因此，可以抑制在可轧材料的尾端离开轧辊时所产生的挠曲或弯曲或蛇行运动。
所述用于操纵轧机的方法还可以包括在可轧材料的尾端从轧辊之间通过之后通过加压装置将推动力设定在较小的数值上。因此，当针对接下来的可轧材料来再次设定轧机时可以减小阻力，从而可以提高设定的精确度并且可以延长部件的寿命。

所述用于操纵轧机的方法还可以包括从在可轧材料的尾端在轧辊之间通过之前开始直到完成下一个可轧材料的咬入通过加压装置将推动力设定在较高的数值上。因此，复杂的控制变得不必要了，并且可以提高各个组成部件的耐久性。

附图的简要说明

从下面给出的详细说明以及附图中可以更加全面地理解本发明，这些附图只是以示例性方式给出，而不是限制本发明，并且其中：

图 1 为根据本发明的第一实施方案的轧机的示意性侧视图；
图 2 为沿着图 1 的直线 II-Ⅱ 剖开的剖视图；
图 3 为精轧设备的示意图；
图 4 为时间图，显示出在根据本发明第一实施方案的用于操纵轧机的方法中液压缸的工作油压；
图 5 为时间图，显示出在根据本发明第二实施方案的用于操纵轧机的方法中液压缸的工作油压；
图 6 为时间图，显示出在根据本发明第三实施方案的用于操纵轧机的方法中液压缸的工作油压。

优选实施方案的详细说明

现在将参考附图对本发明的优选实施方案进行详细说明，该说明决不是对本发明进行限制。

[第一实施方案]

如图1和2中所示，在根据第一实施方案的轧机101中，一对上下工作辊轴承座12和13支撑在牌坊11中。一对上下工作辊14和15的轴部分分别由上下工作辊轴承座12和13可转动地支撑，并且上工作辊14和下工作辊15彼此相对。一对上下支承辊轴承座16和17支撑在上工作辊轴承座12和13上面和下面。一对上下支承辊18和19的轴部分分别由上
下支承轭轴承座16和17可转动地支撑，上支承轭18和下工作轭14彼此相对，而下支承轭19和下工作轭15彼此相对。在牌坊11的上部且中设有用于借助于上支承轭18在上工作轭14施加轧制力的压下装置20。

液压缸21至28包括固定在牌坊11上的缸体、可在缸体内运动的活塞以及从活塞中向外伸出并且具有与轧制轴承座12、13、16、17相连的前端部分的活塞杆。液压缸21至28与具有液压容器、液压泵等的液压装置29相连，并且液压装置29连接在控制装置30上。因此，控制装置30控制着液压装置29向液压缸21至28输送油压并和从中抽回油压，从而控制它们的操作。用于探测工作油压的油压传感器31至38安装在液压缸21至28上。根据由这些油压传感器31至38所探测出的结果，控制装置30在液压装置29上面进行反馈控制。

在牌坊11的下面部分中设有测力计39，作为用来探测由工作轭14、15施加在可轧材料S上的轧制力的轧制力探测装置。测力计39将探测的结果输出给控制装置30。而且，在轧机101的入口侧上设置有用来探测可轧材料S的前端部分和尾端部分的端部探测传感器40。

多个这样构成的该实施方案的轧机101布置成排以构成精轧设备。如图3所示，多个精轧机即第一至第六精轧机101、102、103、104、105
和106沿着可伸材料S的输送方向成排设置并且沿着输送方向位于粗轧机(未示出)的下游。精轧机101、102、103、104、105和106实际上具有与上述轧机101相同的结构。也就是说，每个精轧机具有一对上下工作辊14和15。一对上下支撑辊18和19、液压缸21至28、油压传感器31至38以及测力计39。探测出的结果被输出给控制装置30。

在根据本发明用于操纵轧机的方法中，控制装置30以下面的方式控制液压装置29：在可伸材料S的前端部分咬入在工作辊14和15之间之前，将由液压缸21至28施加在轧辊轴承座12、13、16、17上的压力设定在较高的数值上。在可伸材料S咬入在工作辊14和15之间之后，将该压力设定在较低的数值上。

下面将根据显示在液压缸的工作油压的图4中的时间图对通过控制装置30来控制液压装置29的方法进行详细说明。

如图1、3和4中所示，当将可伸材料S从粗轧机朝着精轧机输送并且正好来到轧机101的前面时，端部探测传感器40探测到该可伸材料S的前端部并且将探测的结果输出给控制装置30。控制装置30在时间t2控制液压装置29，在当端部探测传感器40探测到可伸材料S的前端部分时的时刻t1之后的预定时间T1，从而提高了液压缸21至28的工作油压。在该情况下，必须考虑可伸材料S的输送速度以及用于从液压装置29将油压提供给液压缸21至28的油压供应时间T2。根据这些参数，预定时间T1必须这样设定，从而液压缸21至28的工作油压在可伸材料S的前端部分咬入在工作辊14和15之间之前到达预定的高压数值P1。端部探测传感器40的安装位置可以这样设定，从而时间t1和t2相同，即预定时间T1=0。

在时刻t1时，液压缸21至28的工作油压为高压数值P1。然后，在时刻t2时，可伸材料S的前端部分咬入在工作辊14和15之间。这时，工作辊14和15在与可伸材料S的前端部分接触时承受载荷。因此，使工作辊14和15朝向入口侧移动的巨大力作用在工作辊14、15上，并且它们的转速降低。但是，支撑着工作辊14、15的轧辊轴承座12、13通过液压缸21、23以工作油压P1压在牌坊11上。因此，降低了工作辊14、15朝
着入口侧的移动力。另一方面，由于工作辊14、15的转速降低，所以支承辊18、19承受着巨大的朝向输出侧的力。但是，支撑着支承辊18、19的轧机轴承座16、17通过液压缸26、28以工作油压P2压在牌坊11上。因此，降低了支撑辊16、17朝着输出侧的移动力。

然后，速度控制装置（未示出）增加轧机驱动力以将工作辊14、15的转速恢复到预定的转速上，因为它们的转速已经降低。这时，巨大的力朝向输出侧作用在工作辊上，并且朝着入口侧作用在支承辊18、19上。但是，轧机14、15、18、19通过液压缸22、24、25、27以工作油压P2压在牌坊11上。因此，减小了工作辊14、15和支承辊18、19的移动力。

当可轧材料S的前端部分咬入在工作辊14和15之间时，对轧制的反作用力改变（增加）。根据在对轧制的反作用力中的这个增加，测力计39探测出在工作辊14和15之间的可轧材料S的咬入。在可轧材料S完全咬入在工作辊14和15之间并且其冲击力减小之后，工作辊14、15和支承辊18、19的转速被校正到预定的速度上。在这时候，控制装置30在时刻ts控制液压装置29来降低液压缸21至28的工作油压并且将它保持在预定的低压数值P2上。

在可轧材料的这个轧制期间，响应于压下荷在牌坊11中会出现向内收缩变形量。但是，通过促动液压缸21至28已经将推压力施加在牌坊11上，由此减小了牌坊11的变形量。因此，即使在轧机轴承座12、13、16、17移位的情况下，在轧机轴承座和牌坊11之间也不会出现任何间隙。因此，轧机的水平动态刚度可以保持在高水平上。即使在用高轧制力和高板厚压下率的状态中进行轧制时，在牌坊11或工作辊14、15中也不会出现由于例如可轧材料S和工作辊14、15之间的摩擦而可能导致的巨大轧机振动，因此能够进行高效轧制。

在第一轧机101中，控制装置30控制上述液压缸21至28的工作油压。第二至第六精轧机102至106也进行相同的控制。但是，在第二至第六精轧机102至106的前面没有任何端部探测传感器。另外，可轧材料S的输送速度根据相应轧机之间的距离而不同。因此，根据由端部探测传感器
所探测出的结果采用可轧材料的前端部分的预测来控制会导致精确度不够。因此，第二至第六精轧机102至106采用了在前面阶段中安装在相应轧机101至105上的测力计39作为端部探测传感器，并且根据在对轧制的反作用力中的增加来决定可轧材料S的前端部分的位置。

例如，在第二精轧机102中，当第一精轧机101的测力计39探测到在对轧制的反作用力中的增加时，控制装置30确定可轧材料S的前端部分位于第一轧机101中。控制装置30控制液压装置29来提高第二精轧机102的液压缸21至28的工作油压，从而在可轧材料S的前端部分咬入在工作辊14和15之间之前使液压缸21至28的工作油压到达高压力数值P_{1}。

根据轧制力矩或板材通过速度来设定液压缸21、23在可轧材料S咬入在工作辊14和15之间时的工作油压P_{1}以及液压缸21、23在由工作辊14和15进行轧制期间的工作油压P_{2}，或者必要时可以根据可轧材料S的厚度或宽度来设定。

然后，通过第一轧机101进行的可轧材料S的轧制接近完成，并且端部探测传感器40探测到可轧材料S的尾端部分。当测力计39探测到克服轧制的反作用中的变化(下降)时，就确定可轧材料S的尾端部分已经离开第一精轧机101。在确定可轧材料S的尾端部分已经离开第一精轧机101的时刻t_{e}时，控制装置30控制液压装置29来降低液压缸21至28的工作油压。

如上所述，在当前实施方案的轧机以及用于其操作的方法中，在可轧材料S的前端部分咬入在工作辊14和15之间之前，将液压缸21至28的工作油压设定在较高的压力数值P_{1}上，从而在轧辊轴承座12、13、16、17上施加较高的压力。在可轧材料S完全咬入在工作辊14和15之间之后，将液压缸21至28的工作油压设定在较低的压力数值P_{2}上，从而在轧辊轴承座12、13、16、17上施加较低的压力。

因此，通过液压缸21至28可以减轻在轧材S的前端部分咬入在工作辊14和15之间时所产生出的冲击力，即，使工作辊14、15和支承辊18、19沿着输送方向向下游或下游侧移动的力，从而可以提高板厚的精确
度。而且，可以防止在轧制期间在牌坊11或工作辊14、15中出现的轧机振动，从而改善了板材的通过并且可以实现高效轧制。

[第二实施方案]

在根据第二实施方案用于操纵轧机的方法中，控制装置30控制液压装置29，从而在可轧材料S的尾端部分在工作辊14和15之间通过之前，将由液压缸21至28施加在轧辊轴承座12、13、16、17上的压力设定成较高，并且在可轧材料S在工作辊14和15之间通过之后，将该压力设定为较低。

也就是说，如在图3和5所示，由轧机101进行的可轧材料S的轧制接近完成，并且端部探测传感器40探测到可轧材料S的尾端部分。在该情况下，控制装置30在时刻t6控制液压装置29，在端部探测传感器40进行探测之后预定时间，从而提高液压缸21至28的工作油压。在时刻t7，液压缸21至28的工作油压达到高压数值P5 (P5 > P3)。在时刻t8，可轧材料S的尾端部分从工作辊14和15之间出来。这时，可轧材料S的尾端部分可能不充分地被保持住，从而容易出现板材的挠曲或弯曲或蛇行运动。但是，可轧材料S的尾端部分在液压缸21至28的工作油压P5的作用下可靠地被保持住，从而可轧材料S被正确地输送。当测力计39探测到在对轧制的反作用力减小时，可以确定可轧材料S的尾端部分已经离开轧机101。在时刻t9，控制装置30控制液压装置29降低液压缸21至28的工作油压。

如上所述，当前实施方案的轧机以及用于其操作的方法中，在可轧材料S的尾端部分离开工作辊14和15之前，将液压缸21至28的工作油压设定在较高的压力数值P5上，从而在轧辊轴承座12、13、16、17上施加了较高的压力。在可轧材料S完全离开工作辊14和15之后，液压缸21至28的工作油压被降低。因此，可以抑制在可轧材料S的尾端部分离开工作辊14和15时产生的挠曲或弯曲或蛇行运动，并且可以增加板厚的精确度。

与在第一实施方案中一样，第二至第六精轧机102至106采用了在前面阶段中安装在相应轧机101至105上的测力计39作为端部探测传感
器，并且根据在对轧制的反作用力中的增加来确定出可轧材料S的前端部分的位置。[第三实施方案]

在根据第三实施方案用于操纵轧机的方法中，控制装置30这样控制液压装置29，从而可轧材料S的前端部分在工作辊14和15之间通过之前，将由液压缸21至28施加在轧辊轴承座12、13、16、17上的压力设定成较高，并且在可轧材料S在工作辊14和15之间通过并且随后可轧材料S的前端部分完全咬入在工作辊14和15之后，将该压力设定为较低。

也就是说，如在图3和6中所示，由轧机101进行的可轧材料S的轧制接近完成，并且端部探测传感器40探测到可轧材料S的尾端部分。在该情况下，控制装置30在时刻t4控制液压装置29，从而提高液压缸21至28的工作油压。在时刻t7，液压缸21至28的工作油压达到高压数值P3。在时刻t6，可轧材料S的尾端部分从工作辊14和15之间出来。这时，可轧材料S的尾端部分在液压缸21至28的工作油压P3的作用下被可靠地保持住，从而可轧材料S被正确地输送。测力计39探测在对轧制的反作用力中的增加，因此确定出在可轧材料S的尾端部分已经离开轧机101之后下一个可轧材料S的前端部分完全咬入在工作辊14和15之间。

在时刻t9，控制装置30控制液压装置29降低液压缸21至28的工作油压并且将它保持在预定的低压数值P2上。

如上所述，在当前实施方案的轧机以及用于其操纵的方法中，从可轧材料S的尾端部分从工作辊14和15中释放出来之前直到下一个轧材S在工作辊14和15之间的咬入完成，将液压缸21至28的工作油压设定在较高的数值P3上，从而在轧辊轴承座12、13、16、17上施加较高的压力。因此，由控制装置30来对液压装置29和液压缸21至28进行频繁地操作控制就不必要了，并且可以提高控制装置30、液压装置29和液压缸21至28的耐久性。还有，可以减轻在可轧材料S的前端部分咬入在工作辊15和15中出现的冲击力。而且，可以抑制在可轧材料S的前端部分离开工作辊14和15时产生的挠曲、弯曲或蛇行运动，并且可以提高
板厚的精确度。

在精轧设备中，通常在通过前面和随后的轧机施加的沿着纵向方向的张力的情况下通过沿着厚度方向施加下力从而将可轧材料S轧制成具有预定的精确度的板厚。但是，不能将足够的张力施加在可轧材料S的前端部分和尾端部分上。因此，这些部分不能确保高精确度的板厚，并且被处理为废料。在当前实施方中，当通常将变成废料的可轧材料的前端部分咬入在工作辊14和15之间时，或者通常将变成废料的可轧材料S的尾端部分脱离工作辊14和15时，增加液压缸21至28的工作油压以减轻作用在工作辊14、15和支承辊18、19上的冲击力。因此，将成为产品的可轧材料S的区域没有受到损坏，并且可以可靠地抑制在可轧材料S咬入在工作辊14和15之间以及从它们之间释放出来时的冲击。因此，可以增加板厚的精确度。

在上述实施方中，液压缸21至28被设置用于作为轧辊的工作辊14、15和支承辊18、19。但是，液压缸可以设置成只用于工作辊14、15，或者液压缸可以设置成只用于支承辊18、19。另外，液压缸21至28设置在牌坊11的入口侧和输出侧上，但是液压缸可以设置在入口侧和输出侧中的一侧上。

在各个实施方中，加压装置只是液压缸21至28。但是，可以在连接液压装置29和液压缸21至28的液压泵的液压输送和排放管道中设置收缩部分。在轧制期间，轧辊轴承座12、13、16、17可以通过液压缸21至28在这些条件下压在牌坊11上。因此可以消除在轧辊轴承座12、13、16、17和牌坊11之间的间隙，从而提高水平动态刚度。因此，可以抑制轧机振动以实现高效轧制。

此外，本发明的轧机以及用于操作该轧机的方法优选不仅用于普通传统轧机，而且还可以用于横轧机和移位轧机。

虽然已经以上面的方式对本发明进行了说明，但是要理解的是，本发明并不限于此，而是可以以许多其它方式进行变化。这些变型不会被认为脱离了本发明的精神和范围，并且所有对于本领域普通技术人员来说是显而易见的这些改进都将包含在附属权利要求的范围内。
图 2