wo 2016/051335 A1 |1 IO OO0 O A AR A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

7 April 2016 (07.04.2016)

(10) International Publication Number

WO 2016/051335 Al

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6F 9/50 (2006.01) HO4L 12/54 (2006.01)

International Application Number:
PCT/IB2015/057432

International Filing Date:
28 September 2015 (28.09.2015)

Filing Language: English
Publication Language: English
Priority Data:

14/502,906 30 September 2014 (30.09.2014) US

Applicant: TELEFONAKTIEBOLAGET L M ERIC-
SSON (PUBL) [SE/SE]; SE-164 83 Stockholm (SE).

Inventor: UNIYAL, Ramesh; 42229 Cameron Parish
Drive, Ashburn, VA 20148 (US).

Agents: CAMERON, Michael G. et al.; 6300 Legacy, MS
EVR 1-C-11, Plano, TX 75024 (US).

(84)

(81) Designated States (uniess otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Bz, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ALGORITHM FOR FASTER CONVERGENCE THROUGH AFFINITY OVERRIDE

COMPUTING DEVICE

STORAGE DEVICE

(MEMORY}
103
PROCESS PROCESS PROCESS
(OSPF) (NSM) (HsL) eee | PROCESS
1054 1058 105C
08
107
PO 5 INTERRUPT |
SCHEDULER 109 | HANDLER 13
AFFINITY MASK 111 AFFINITY
OVERRIDE__

oPU 147

CachE 121A] [cact 1218] JoachE 121¢] foacHE 1210] FAcHE 21E
CORE CORE CORE CORE CORE
1194 1188 1150 1180 119E

FIG. 1

(57) Abstract: A method is implemented by a network device
having a symmetric multi-processing (SMP) architecture. The
method improves response time for processes implementing
routing algorithms in a network. The method manages core
assignments for the processes during a network convergence
process. The method includes determining a number of inter-
rupts or system events processed by a subset of cores of a set
of cores of a central processing unit and identifying a core
within the subset of cores with a lowest number of interrupts
or system events processed. The method further includes
changing an aftinity mask of at least one process implement-
ing the routing algorithms during the network convergence to
target the core within the subset of cores with a lowest num-
ber of interrupts or system events processed.

WO 2016/051335 A1 |IIWAT 00N 00T AR 0O

Published:
— with international search report (Art. 21(3))

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

ALGORITHM FOR FASTER CONVERGENCE THROUGH AFFINITY
OVERRIDE

FIELD OF INVENTION

Embodiments of the invention relate to the field of path computation.
Specifically, the embodiments relate to a method for computing paths in a device with a
symmetric multi-processing (SMP) architecture by overriding core assignment

affinities during a convergence process.

BACKGROUND

A SMP architecture is a system with centralized shared memory operating
under a single operating system (OS). A device such as a computing device or network
device that has an SMP architecture has a set of homogenous processors or “cores”
executing processes independent of one another. The cores can be components on the
same physical die or similarly tightly coupled processing elements. This tightly
coupled set of processing elements, either processors or cores, can be referred to as a
central processing unit (CPU). The processors or cores, referred to herein simply as
cores, for sake of convenience and clarity, share a main memory and each have separate
caches.

In the SMP based architecture, a scheduler of the OS decides which core a
process will run on. Each process is assigned an affinity mask by the OS, which is a
set of bits that each correspond to one of the available cores indicating whether the
respective core is preferred for process assignment for the corresponding process. By
default, the process’s affinity mask is set to all 1s, meaning that the scheduler is
allowed to dispatch this process to any core without any preference, instead
determining the assignment based on whichever core is idle. The affinity mask
associated to a process can be changed to include or exclude certain cores and if so
configured then the scheduler will dispatch the process only to those cores that are set
in the affinity mask. The scheduler will assign each process a core and give it a set of
time or cycles for execution, referred to as a time slice. However, once the affinity

mask is set, the OS will not change it automatically to better utilize unused processors

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

or cores even if a process has to wait to be executed by the assigned core while other
cores are available.

When there is heavy demand for the resources of the CPU (i.¢., the main
memory and cores) by multiple processes at the same time and each process needs an
assigned core of the CPU for much longer than its time slice then OS performance is
hit by continuous cache clean up that occurs in each core because under SMP
architecture the processes get dispatched randomly to any core whichever is available.
The OS performance is hit the worst if an interrupt storm (a large number of clustered
interrupts) also occurs during the high CPU usage interval because some interrupts
are handled by the OS on designated cores only and this increases the likelihood that
a process’s data in the cache of the assigned core will be cleared before it gets
rescheduled on the same core next time.

On the other hand if a process’s affinity is set permanently to a fixed core then
the process loses the advantage of operating in a multi-processor or multi-core system
(i.e., an SMP architecture), because if the assigned cores are busy when the process
needs CPU resources, then the process will have to wait for them to become free even

though the other cores in the system were available.

SUMMARY

A method is implemented by a network device having a symmetric multi-
processing (SMP) architecture. The method improves response time for processes
implementing routing algorithms in a network. The method manages core assignments
for the processes during a network convergence process. The method includes
determining a number of interrupts or system events processed by a subset of cores of a
set of cores of a central processing unit and identifying a core within the subset of cores
with a lowest number of interrupts or system events processed. The method further
includes changing an affinity mask of at least one process implementing the routing
algorithms during the network convergence to target the core within the subset of cores
with a lowest number of interrupts or system events processed.

A network device has a symmetric multi-processing (SMP) architecture
configured to execute a method to improve response time for processes implementing
routing algorithms in a network. The method manages core assignments for the

processes during a network convergence process. The network device includes a non-

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

transitory machine-readable storage medium configured to store an operating system
for the network device and an affinity override module and a processor
communicatively coupled to the non-transitory machine-readable storage medium. The
processor has a set of cores for executing processes. The processor is configured to
execute the operating system and the affinity override module. The affinity override
module is configured to determine a number of interrupts or system events processed
by a subset of cores of the set of cores, to identify a core within the subset of cores with
a lowest number of interrupts or system events processed, and to change an affinity
mask of at least one process implementing the routing algorithms during the network
convergence to target the core within the subset of cores with a lowest number of
interrupts or system events processed.

A computing device has a symmetric multi-processing (SMP) architecture
implementing a plurality of virtual machines for implementing network function
virtualization (NFV), wherein a virtual machine from the plurality of virtual machines
is configured to execute a method to improve response time for processes implementing
routing algorithms in a network. The method manages core assignments for the
processes during a network convergence process. The computing device includes a
non-transitory machine-readable storage medium configured to store an operating
system for the network device and an affinity override module, and a computer
processor communicatively coupled to the non-transitory machine-readable storage
medium. The computer processor executes a virtual machine from the plurality of
virtual machines. The computer processor has a set of cores for executing processes.
The computer processor is configured to execute the virtual machine that implements
the operating system and the affinity override module. The affinity override module is
configured to determine a number of interrupts or system events processed by a subset
of cores of the set of cores, to identify a core within the subset of cores with a lowest
number of interrupts or system events processed, and to change an affinity mask of at
least one process implementing the routing algorithms during the network convergence
to target the core within the subset of cores with a lowest number of interrupts or

system events processed.

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the following description
and accompanying drawings that are used to illustrate embodiments of the invention.
In the drawings:

Figure 1 is a diagram of one embodiment of a computing device having an SMP
architecture.

Figure 2 is a flowchart of one embodiment of the affinity override process.

Figure 3 is a diagram of one embodiment a convergence process where affinity
override is utilized.

Figure 4 is a diagram of one embodiment of a network in which the affinity
override process is implemented by a site integration unit (SIU).

Figure 5 is a diagram of one embodiment of a network device implementing the
affinity override process.

Figure 6A illustrates connectivity between network devices (NDs) within an
exemplary network, as well as three exemplary implementations of the NDs, according
to some embodiments of the invention.

Figure 6B illustrates an exemplary way to implement the special-purpose

network device according to some embodiments of the invention.

DESCRIPTION OF EMBODIMENTS

The following description describes methods and apparatus for efficient
execution of high CPU demand and time sensitive processes in an SMP architecture. In
the following description, numerous specific details such as logic implementations,
opcodes, means to specify operands, resource partitioning/sharing/duplication
implementations, types and interrelationships of system components, and logic
partitioning/integration choices are set forth in order to provide a more thorough
understanding of the present invention. It will be appreciated, however, by one skilled
in the art that the invention may be practiced without such specific details. In other
instances, control structures, gate level circuits and full software instruction sequences
have not been shown in detail in order not to obscure the invention. Those of ordinary
skill in the art, with the included descriptions, will be able to implement appropriate

functionality without undue experimentation.

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

23 <,

References in the specification to “one embodiment,” “an embodiment,” “an
example embodiment,” etc., indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodiment. Further, when a
particular feature, structure, or characteristic is described in connection with an
embodiment, it is submitted that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection with other embodiments
whether or not explicitly described.

Bracketed text and blocks with dashed borders (e.g., large dashes, small dashes,
dot-dash, and dots) may be used herein to illustrate optional operations that add
additional features to embodiments of the invention. However, such notation should not
be taken to mean that these are the only options or optional operations, and/or that
blocks with solid borders are not optional in certain embodiments of the invention.

In the following description and claims, the terms “coupled” and “connected,”
along with their derivatives, may be used. It should be understood that these terms are
not intended as synonyms for each other. “Coupled” is used to indicate that two or
more elements, which may or may not be in direct physical or electrical contact with
cach other, co-operate or interact with each other. “Connected” is used to indicate the
establishment of communication between two or more ¢lements that are coupled with
cach other.

The operations in the flow diagrams will be described with reference to the
exemplary embodiments of the other figures. However, it should be understood that
the operations of the flow diagrams can be performed by embodiments of the invention
other than those discussed with reference to the other figures, and the embodiments of
the invention discussed with reference to these other figures can perform operations
different than those discussed with reference to the flow diagrams.

Overview

The throughput of a process or set of processes in computing device having an
SMP architecture can be improved by changing the affinity masks of each process
dynamically, particularly in response to computationally intensive events. The affinity
masks of processes that are integral to handling the event can be updated to prefer

assignments to cores that have been processing fewer interrupts than the other cores in

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

the set of cores in a CPU. A “set,” as used herein refers to any positive while number of
items including one item. In the case of a CPU, the set of cores will include at least
two cores. An affinity override process tracks the handling of interrupts and other
similar events by each of the cores to enable the dynamic update of the affinity masks
including the quick identification of the cores with that have been handling the least
number or interrupts or similar events in a given time window.

The prior art for the handling of core assignments for processes does not take
into account the recent usage of the cores particularly as it relates to interrupt and
similar event handling. Rather, the core assignments are generally fixed or non-
responsive to recent interrupt handling or events. The core assignments may be made
to whatever cores are currently available, without regard to whether the core may be a
designated core for handling interrupts or similar events. In such cases, during certain
events the processes can be interrupted and the data in the caches can be flushed
thereby decreasing the efficiency and speed at which a particular event can be handled.

Figure 1 is a diagram of one embodiment of a computing device having an SMP
architecture. In one embodiment, the computing device 101 includes a storage device
103 and a central processing unit (CPU) 117. The CPU can be any type of processing
device having a set of homogeneous processing elements such as cores 119A-E. There
can be any number or arrangement of cores 119A-E such that each core has similar
processing capabilities. In one embodiment, each of the cores 119A-E is on the same
physical die with the other cores. In other embodiments, the process can be
implemented with cores, processors or similar processing elements that are not on the
same die, but that are in close communication within the same computing device 101.
Each of the cores 119A-E can have a separate cache 121A-E or similar local storage
device in which data and instructions for the processes being executed by the associated
cores 119A-E are being stored. The caches 12A-B can be any size or type and can be
on the same die or similarly integral to the CPU 117. In other embodiments, the caches
121A-E can be off die or similarly external to the CPU 117, but in close proximity to
the CPU 117 and within the computing device 101.

The computing device 101 also includes the storage device 103 that can be
referred to as the main memory of the computing device 101. The storage device 103
can be any type of storage device including dynamic random access memory (DRAM),

an optical storage device, a magnetic storage device or similar storage device capable to

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

store processes and their data to be executed by the computing device 101 as well as the
operating system 107 that manages the resources of the computing device 101
including the scheduling of the processes 105A-C to the cores 119A-E.

The OS can include a scheduler 109, interrupt handler 113 and affinity override
115, amongst other components for managing the resources of the computing device
101. The OS can be any type of OS capable of managing an SMP architecture. The
interrupt handler 113 manages many types of system events and interrupts that preempt
the normal scheduling of processes by the scheduler 109. The interrupt handler 113
and related processes can be assigned to particular cores 119A-E or may be
predominantly handled by particular cores 119A-E in the CPU 117. Thus, the interrupt
handling can degrade the efficiency and speed with which other processes are handled
if assigned to the same cores 119A-E in part due to the loss of the process data in the
corresponding caches that must then be reloaded.

The scheduler 109 handles the assignment and time allotment of processes
105A-C to the cores 119A-E. The scheduler 109 can implement any number of
scheduling algorithms that utilize an affinity mask 111 and the current utility of cores
119A-E to make assignments and time allotments. The affinity mask 111 is a data
structure that identifies on a per process basis, which processes prefer assignment to
particular cores 119A-E such that the scheduler can give first priority to assigning these
processes to these designated cores 119A-E.

The affinity override 115 tracks interrupt handling and frequency for each of the
cores 119A-E. The affinity override can then update the affinity masks of processes
related to particular events to set their affinity masks to avoid those cores that are likely
to be servicing interrupts during the particular events that the processes are tied to. For
example, in the case of processing a network convergence those processes that
implement the network convergence are crucial and their responsiveness and speed
dictate the overall performance of the network convergence process, such as a hardware
specific layer (HSL) process 105C of a routing suite (such as the Ericsson Routing
Suite (ERS) by Ericsson of Stockholm, Sweden). Other processes in such events can
include the Open Shortest Path First (OSPF) process 105A, the network service module
(NSM) process 105B or similar processes.

Example uses provided herein relate to the overall network convergence process

and the related implementing processes such as the HSL process 105C, NSM process

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

105B and the OSPF process 105A. However, one skilled in the art would understand
that other general processes and their related subprocesses can also be optimized by use
of the affinity override process 115. The structures, functions and principles described
herein with regard to network convergence are equally applicable to other similar
intensive processes such as processes that operate in short time windows and require
high levels of computing resources whose performance is significantly impacted by
core processor availability and efficient caching.

Figure 2 is a flowchart of one embodiment of the affinity override process. The
illustrated override process can be triggered whenever a designated event occurs that
requires a set of processes to service the event in need of core assignments that have
minimal interruption. In one example embodiment, this is the initiation of a network
convergence process. In one embodiment, the affinity override process begins with the
determination of a number of interrupts or system events processed by a subset of the
cores of a central processing unit (Block 201). The monitoring and tracking of these
interrupts and system events can be continuous and can cover any time frame or
duration preceding the event triggering this process. The monitoring and tracking can
track any number and variety of types of interrupts and system events that impact the
cores of the CPU. This interrupt and system event monitoring data can be tracked in
any type of data structure and can be accessed for use in further analysis as set forth
herein below. The monitoring and tracking of the interrupt and system event core
assignments can be carried out by the affinity override, the scheduler, the interrupt
handler or similar component of the operating system. The set of cores for which data
is tracked or retrieved can be any subset or the entire set of the cores in the CPU
depending on system configuration.

Using the retrieved or accessed interrupt and system event tracking data, the
affinity override can identify a core within the subset of cores that has had the least
number, shortest duration or similar minimal metric for the usage of the cores (Block
203). In other embodiments, any number of cores can be identified that have the least
usage or approximately the least usage, for example the two least used where two core
assignments are needed. A check is then made whether the affinity mask of the process
in need of the identified (target) highly available core already has its affinity mask set
to this target core (Block 205). If the affinity mask already identifies the target core as

the core to be utilized for this process, then no further work needs to be done and the

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

override process can complete. However, where the affinity mask does not identify this
target core, then further work to change the affinity mask is carried out.

In this case, the override process stores the current affinity mask of the process
being handled by the affinity override (Block 207). The current affinity mask can be
stored in any data structure accessible to the affinity override. The current affinity
mask is stored so that it can be restored once the override process and its associated
high demand specific process has completed and the assignments of the cores can go
back to a normal operation. Once the current affinity mask of the specific process has
been backed up, then the affinity mask in use can be changed to indicate that the target
core within the subset of the cores with a lowest metric (i.e., measuring a frequency or
impact of interrupts or system events on the cores of the CPU) should be utilized to
service the specific high demand process, for example a routing algorithm or associated
hardware specific layer. Once the affinity mask has been updated then the triggering
event (e.g., a network convergence) can be processed (Block 211) where the scheduler
will use the identified core in affinity mask of the specific processes of the event such
as HSL and/or OSPF in the case of a network convergence event. A check is then
made to determine when the event triggering the override processes have completed,
¢.g., the network convergence events (Block 213). If the processing of the event is not
completed then the check is repeated until the processing is completed.

Once the processing has completed, then the original affinity mask is restored
(Block 215). The original affinity mask of each process is used to overwrite the
modified affinity mask. Thus, the affinity mask is restored to its prior state from the
temporary override state and the override process can complete leaving the affinity
masks of affected processes in the same state they were in prior to the event triggering
the override process.

Example Embodiments

Figure 3 is a diagram of one embodiment a convergence process where affinity
override is utilized. In this example of a network convergence being started in response
to a detected network failure, there are three primary processes that handle the network
convergence process. The HSL process, the NSM process and the OSPF process
implement the network convergence. The HSL process interfaces with the hardware of
the computing device and reports specific hardware failure or network failure events to

the OSPF process. The network convergence include the following actions, (1) finding

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

10

alternative alternate routes to all the affected destinations, (2) programming the new
routes in the hardware for the forwarding path, and (3) cleaning up the failed routes

from the forwarding path. Each of these actions is CPU intensive and the higher the
number of affected routes in the network, the higher the CPU demand by these three
processes.

The OSPF process in the diagram is responsible for finding the alternate routes
to the affected destinations and if alternate routes are available then it sends these new
routes to the NSM process to update the routing information base and then the NSM
sends those routes to the HSL process to program them in the forwarding plane in the
hardware. In this example, the affinity override process is applied to the HSL process
as soon as the OSPF process learns about the link down event, which signals that a
network convergence is being performed and the affinity override can improve the
responsiveness of the computing device to the event.

Figure 4 is a diagram of one embodiment of a network in which the affinity
override process is implemented by a site integration unit (SIU). In the block diagram,
an SIU is illustrated as part of a network positioned between a source node and a
destination node. The SIU is connected with each of these nodes through physical links
with the connection to the destination node being through two links that have been
categorized as a primary route and an alternate or backup route. In this example, the
SIU forwards data traffic originating from the source node to the destination node. The
SIU initially forwards the data traffic over the primary route as long as it is available.
However, in the event of a failure on the primary route, the SIU will switch to
forwarding the data traffic over the alternate or backup route. In this context, the SIU
may implement the affinity override process as described herein above to facilitate this
transition and to provide the fastest and most efficient transition as described above in
regard to Figure 3.

Figure 5 is a diagram of one embodiment of a network device implementing the
affinity override process in a network device.

A network device (ND) is an electronic device that communicatively
interconnects other electronic devices on the network (¢.g., other network devices, end-
user devices). Some network devices are “multiple services network devices™ that
provide support for multiple networking functions (e.g., routing, bridging, switching,

Layer 2 aggregation, session border control, Quality of Service, and/or subscriber

WO 2016/051335 PCT/IB2015/057432

11

management), and/or provide support for multiple application services (e.g., data,
voice, and video).

In one embodiment, the process is implemented by a router 501 or network
device or similar computing device. The router 501 can have any structure that enables

5 itto receive data traffic and forward it toward its destination. The router 501 can
include a multi-core network processor 503 or set of network processors that execute
the functions of the router 501. A ‘set,” as used herein, is any positive whole number of
items including one item. In one embodiment, the multi-core network processor 503 or
the set of network processors are symmetric and form a part of an SMP architecture.

10 The router 501 or network element can execute network convergence computations or
similar computationally demanding or time-sensitive process (€.g., via OSPF) (not
shown) and as well as the affinity override 551, this functionality can be executed via
the network processor 503 or other components of the router 501. The functionality and
the processes implementing it can be managed via an operating system 552 or similar

15 software architecture that manages the resources available to the network processor
503.

In particular, the affinity override functions can be implemented as modules in
any combination of software, including firmware, and hardware within the router. The
functions of the affinity override that are executed and implemented by the router 501

20 include those described further herein above. In the illustrated example, the functions
are implemented by the network processor 503 that executes an affinity override 551
along with the routing information base 505A.

In one embodiment, the router 501 can include a set of line cards 517 that
process and forward the incoming data traffic toward the respective destination nodes

25 by identifying the destination and forwarding the data traffic to the appropriate line
card 517 having an egress port that leads to or toward the destination via a next hop.
These line cards 517 can also implement the routing information base or forwarding
information base 505B, or a relevant subset thereof. In some embodiments, the line
cards 517 can also implement or facilitate the affinity override functions described

30 herein above. The line cards 517 are in communication with one another via a switch
fabric 511 and communicate with other nodes over attached networks 521 using

Ethemet, fiber optic or similar communication links and media.

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

12

Figure 6A illustrates connectivity between network devices (NDs) within an
exemplary network, as well as three exemplary implementations of the NDs, according
to some embodiments of the invention. Figure 6A shows NDs 600A-H, and their
connectivity by way of lines between A-B, B-C, C-D, D-E, E-F, F-G, and A-G, as well
as between H and each of A, C, D, and G. These NDs are physical devices, and the
connectivity between these NDs can be wireless or wired (often referred to as a link).
An additional line extending from NDs 600A, E, and F illustrates that these NDs act as
ingress and egress points for the network (and thus, these NDs are sometimes referred
to as edge NDs; while the other NDs may be called core NDs).

Two of the exemplary ND implementations in Figure 6A are: 1) a special-
purpose network device 602 that uses custom application—specific integrated—circuits
(ASICs) and a proprietary operating system (OS) 671A; and 2) a general purpose
network device 604 that uses common off-the-shelf (COTS) processors and a standard
OS 671B. The OS 671A.B in each system can implement the affinity override 673A, B
as disclosed herein above.

The special-purpose network device 602 includes networking hardware 610
comprising compute resource(s) 612 (which typically include a set of one or more
multi-core or symmetric processors), forwarding resource(s) 614 (which typically
include one or more ASICs and/or network processors), and physical network
interfaces (NIs) 616 (sometimes called physical ports), as well as non-transitory
machine readable storage media 618 having stored therein networking software 620. A
physical NI is hardware in a ND through which a network connection (e.g., wirelessly
through a wireless network interface controller (WNIC) or through plugging in a cable
to a physical port connected to a network interface controller (NIC)) is made, such as
those shown by the connectivity between NDs 600A-H. During operation, the
networking software 620 may be executed by the networking hardware 610 to
instantiate a set of one or more networking software instance(s) 622. Each of the
networking software instance(s) 622, and that part of the networking hardware 610 that
executes that network software instance (be it hardware dedicated to that networking
software instance and/or time slices of hardware temporally shared by that networking
software instance with others of the networking software instance(s) 622), form a
separate virtual network element 630A-R. Each of the virtual network element(s)

(VNESs) 630A-R includes a control communication and configuration module 632A-R

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

13

(sometimes referred to as a local control module or control communication module)
and forwarding table(s) 634A-R, such that a given virtual network element (e.g., 630A)
includes the control communication and configuration module (¢.g., 632A), a set of one
or more forwarding table(s) (¢.g., 634A), and that portion of the networking hardware
610 that executes the virtual network element (e.g., 630A).

The special-purpose network device 602 is often physically and/or logically
considered to include: 1) a ND control plane 624 (sometimes referred to as a control
plane) comprising the compute resource(s) 612 that execute the control communication
and configuration module(s) 632A-R; and 2) a ND forwarding plane 626 (sometimes
referred to as a forwarding plane, a data plane, or a media plane) comprising the
forwarding resource(s) 614 that utilize the forwarding table(s) 634A-R and the physical
NIs 616. By way of example, where the ND is a router (or is implementing routing
functionality), the ND control plane 624 (the compute resource(s) 612 executing the
control communication and configuration module(s) 632A-R) is typically responsible
for participating in controlling how data (e.g., packets) is to be routed (¢.g., the next
hop for the data and the outgoing physical NI for that data) and storing that routing
information in the forwarding table(s) 634A-R, and the ND forwarding plane 626 is
responsible for receiving that data on the physical Nls 616 and forwarding that data out
the appropriate ones of the physical NIs 616 based on the forwarding table(s) 634A-R.

In one embodiment, the special network device 602 can implement affinity
override 673A or a set of such modules to improve the efficiency in the execution of a
high demand or time sensitive process such as processes that implement calculation of
paths across the network as part of network convergence. The affinity override 673A
can be implemented as part of the operating system 671A.

Figure 6B illustrates an exemplary way to implement the special-purpose
network device 602 according to some embodiments of the invention. Figure 6B
shows a special-purpose network device including cards 638 (typically hot pluggable).
While in some embodiments the cards 638 are of two types (one or more that operate as
the ND forwarding plane 626 (sometimes called line cards), and one or more that
operate to implement the ND control plane 624 (sometimes called control cards)),
alternative embodiments may combine functionality onto a single card and/or include
additional card types (e.g., one additional type of card is called a service card, resource

card, or multi-application card). A service card can provide specialized processing

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

14

(e.g., Layer 4 to Layer 7 services (e.g., firewall, Internet Protocol Security (IPsec) (RFC
4301 and 4309), Secure Sockets Layer (SSL) / Transport Layer Security (TLS),
Intrusion Detection System (IDS), peer-to-peer (P2P), Voice over IP (VoIP) Session
Border Controller, Mobile Wireless Gateways (Gateway General Packet Radio Service
(GPRS) Support Node (GGSN), Evolved Packet Core (EPC) Gateway)). By way of
example, a service card may be used to terminate [Psec tunnels and execute the
attendant authentication and encryption algorithms. These cards are coupled together
through one or more interconnect mechanisms illustrated as backplane 636 (¢.g., a first
full mesh coupling the line cards and a second full mesh coupling all of the cards).

Returning to Figure 6A, the general purpose network device 604 includes
hardware 640 comprising a set of one or more processor(s) 642 (which are often COTS
processors) and network interface controller(s) 644 (NICs; also known as network
interface cards) (which include physical Nls 646), as well as non-transitory machine
readable storage media 648 having stored therein software 650. During operation, the
processor(s) 6442 execute the software 650 to instantiate a hypervisor 654 (sometimes
referred to as a virtual machine monitor (VMM)) and one or more virtual machines
662A-R that are run by the hypervisor 654, which are collectively referred to as
software instance(s) 652. A virtual machine is a software implementation of a physical
machine that runs programs as if they were executing on a physical, non-virtualized
machine; and applications generally do not know they are running on a virtual machine
as opposed to running on a “bare metal™ host electronic device, though some systems
provide para-virtualization which allows an operating system or application to be aware
of the presence of virtualization for optimization purposes. Each of the virtual
machines 662A-R, and that part of the hardware 640 that executes that virtual machine
(be 1t hardware dedicated to that virtual machine and/or time slices of hardware
temporally shared by that virtual machine with others of the virtual machine(s) 662A-
R), forms a separate virtual network element(s) 660A-R.

The virtual network element(s) 660A-R perform similar functionality to the
virtual network element(s) 630A-R. For instance, the hypervisor 654 may present a
virtual operating platform that appears like networking hardware 610 to virtual machine
662A, and the virtual machine 662A may be used to implement functionality similar to
the control communication and configuration module(s) 632A and forwarding table(s)

634A (this virtualization of the hardware 640 is sometimes referred to as network

WO 2016/051335 PCT/IB2015/057432

10

15

20

25

30

15

function virtualization (NFV)). Thus, NFV may be used to consolidate many network
equipment types onto industry standard high volume server hardware, physical
switches, and physical storage, which could be located in Data centers, NDs, and
customer premise equipment (CPE). However, different embodiments of the invention
may implement one or more of the virtual machine(s) 662A-R differently. For
example, while embodiments of the invention are illustrated with each virtual machine
662A-R corresponding to one VNE 660A-R, alternative embodiments may implement
this correspondence at a finer level granularity (e.g., line card virtual machines
virtualize line cards, control card virtual machine virtualize control cards, etc.); it
should be understood that the techniques described herein with reference to a
correspondence of virtual machines to VNEs also apply to embodiments where such a
finer level of granularity is used.

In one embodiment, the general purpose network device 604 can implement an
OS 671B 463 or a set of such OS to manage the resources of each of the respective
virtual machines 662A across the network. Similarly each of the OS 671B can include
an affinity override 673Ble 463A can be executed by a virtual machine 462A or
similarly implemented as a networking software instance 652. In other embodiments,
any number of separate instances can be executed by different virtual machines 662A-R
and the OS or affinity override can be moved between the varying instances.

In certain embodiments, the hypervisor 654 includes a virtual switch that
provides similar forwarding services as a physical Ethernet switch. Specifically, this
virtual switch forwards traffic between virtual machines and the NIC(s) 644, as well as
optionally between the virtual machines 662A-R; in addition, this virtual switch may
enforce network isolation between the VNEs 660A-R that by policy are not permitted
to communicate with each other (e.g., by honoring virtual local area networks
(VLANS)).

The third exemplary ND implementation in Figure 6A is a hybrid network
device 606, which includes both custom ASICs/proprictary OS and COTS
processors/standard OS (each with an affinity override) in a single ND or a single card
within an ND. In certain embodiments of such a hybrid network device, a platform
VM (i.e., a VM that that implements the functionality of the special-purpose network
device 602) could provide for para-virtualization to the networking hardware present in

the hybrid network device 606.

WO 2016/051335 PCT/IB2015/057432

10

15

20

16

Regardless of the above exemplary implementations of an ND, when a single
one of multiple VNEs implemented by an ND is being considered (e.g., only one of the
VNE:s is part of a given virtual network) or where only a single VNE is currently being
implemented by an ND, the shortened term network element (NE) is sometimes used to
refer to that VNE. Also in all of the above exemplary implementations, each of the
VNEs (e.g., VNE(s) 630A-R, VNEs 660A-R, and those in the hybrid network device
606) receives data on the physical NIs (e.g., 616, 646) and forwards that data out the
appropriate ones of the physical Nls (e.g., 616, 646). For example, a VNE
implementing IP router functionality forwards IP packets on the basis of some of the I[P
header information in the IP packet; where IP header information includes source IP
address, destination IP address, source port, destination port (where “source port” and
“destination port” refer herein to protocol ports, as opposed to physical ports of a ND),
transport protocol (¢.g., user datagram protocol (UDP) (RFC 768, 2460, 2675, 4113,
and 5405), Transmission Control Protocol (TCP) (RFC 793 and 1180), and
differentiated services (DSCP) values (RFC 2474, 2475, 2597, 2983, 3086, 3140, 3246,
3247, 3260, 4594, 5865, 3289, 3290, and 3317).

While the invention has been described in terms of several embodiments, those
skilled in the art will recognize that the invention is not limited to the embodiments
described, can be practiced with modification and alteration within the spirit and scope
of the appended claims. The description is thus to be regarded as illustrative instead of

limiting.

WO 2016/051335 PCT/IB2015/057432

17

CLAIMS

1. A method implemented by a network device having a symmetric multi-
processing (SMP) architecture, the method to improve response time for
5 processes implementing routing algorithms in a network, the method to manage
core assignments for the processes during a network convergence process, the
method comprising the steps of:
determining (201) a number of interrupts or system events processed by
a subset of cores of a set of cores of a central processing unit;
10 identifying (203) a core within the subset of cores with a lowest number
of interrupts or system events processed; and
changing (209) an affinity mask of at least one process implementing the
routing algorithms during the network convergence to target the
core within the subset of cores with a lowest number of

15 interrupts or system events processed.

2. The method of claim 1, further comprising the step of:
storing (207) the affinity mask prior to the changing of the affinity mask.

20 3. The method of claim 2, further comprising the steps of’
checking (213) whether the network convergence process has
completed; and
restoring (215) the affinity mask to the stored affinity mask, after

completion of the network convergence process.

25
4. The method of claim 1, wherein the network device having the SMP
architecture is a site integration unit (SIU).
5. The method of claim 1, wherein the processes implementing routing algorithms
30 in the network include at least one of hardware specific layer process (HSL), an

open shortest path first process and a network service module process.

WO 2016/051335

10

15

20

25

30

PCT/IB2015/057432

18

6. The method of claim 1, further comprising:

checking (205) whether the affinity mask of the at least one process
implementing the routing algorithm is set to target the core
within the subset of cores with a lowest number of interrupts or
system events processed; and

exiting the method without changing the affinity mask of the at least one
process in response to affinity mask being set to target the core
within the subset of cores with a lowest number of interrupts or

system events processed.

A network device having a symmetric multi-processing (SMP) architecture
configured to execute a method to improve response time for processes
implementing routing algorithms in a network, the method to manage core
assignments for the processes during a network convergence process, the
network device comprising:

a non-transitory machine-readable storage medium (618) configured to
store an operating system for the network device and an affinity
override module; and

a processor (612) communicatively coupled to the non-transitory
machine-readable storage medium, the processor having a set of
cores for executing processes, the processor configured to
execute the operating system and the affinity override module,
the affinity override module configured to determine a number of
interrupts or system events processed by a subset of cores of the
set of cores, to identify a core within the subset of cores with a
lowest number of interrupts or system events processed, and to
change an affinity mask of at least one process implementing the
routing algorithms during the network convergence to target the
core within the subset of cores with a lowest number of

interrupts or system events processed.

WO 2016/051335 PCT/IB2015/057432

19

8. The network device of claim 7, wherein the network processor is further
configured to execute the affinity override module, which is further configured

to storing the affinity mask prior to the changing of the affinity mask.

5 9. The network device of claim 7, wherein the network processor is further
configured to execute the affinity override module, which is further configured
to check whether the network convergence process has completed, and restore
the affinity mask to the stored affinity mask, after completion of the network
CONVErgence process.

10
10. The network device of claim 7, wherein the network device having the SMP

architecture is a site integration unit (SIU).

11. The network device of claim 7, wherein the processes implementing routing
15 algorithms in the network include at least one of hardware specific layer process
(HSL), an open shortest path first process and a network service module

proccess.

12. The network device of claim 7, wherein the network processor is further
20 configured to execute the affinity override module, which is further configured
to check whether the affinity mask of the at least one process implementing the
routing algorithm is set to target the core within the subset of cores with a
lowest number of interrupts or system events processed, and to exit the method
without changing the affinity mask of the at least one process in response to
25 affinity mask being set to target the core within the subset of cores with a lowest

number of interrupts or system events processed.

13. A computing device having a symmetric multi-processing (SMP) architecture
implementing a plurality of virtual machines for implementing network function
30 virtualization (NFV), wherein a virtual machine from the plurality of virtual
machines is configured to execute a method to improve response time for

processes implementing routing algorithms in a network, the method to manage

WO 2016/051335

10

15

20

25

30

PCT/IB2015/057432

20

core assignments for the processes during a network convergence process, the
computing device comprising:

a non-transitory machine-readable storage medium (648) configured to
store an operating system for the network device and an affinity
override module; and

a computer processor (642) communicatively coupled to the non-
transitory machine-readable storage medium, the computer
processor to execute a virtual machine from the plurality of
virtual machines, the computer processor having a set of cores
for executing processes, the computer processor configured to
execute the virtual machine that implements the operating
system and the affinity override module, the affinity override
module configured to determine a number of interrupts or system
events processed by a subset of cores of the set of cores, to
identify a core within the subset of cores with a lowest number
of interrupts or system events processed, and to change an
affinity mask of at least one process implementing the routing
algorithms during the network convergence to target the core
within the subset of cores with a lowest number of interrupts or

system events processed.

14. The computing device of claim 13, wherein the computer processor is further

15.

configured to execute the virtual machine that implements the affinity override
module, which is further configured to storing the affinity mask prior to the

changing of the affinity mask.

The computing device of claim 13, wherein the computer processor is further
configured to execute the virtual machine that implements the affinity override
module, which is further configured to check whether the network convergence
process has completed, and restore the affinity mask to the stored affinity mask,

after completion of the network convergence process.

WO 2016/051335 PCT/IB2015/057432

21

16. The computing device of claim 13, wherein the computing device having the

SMP architecture is a site integration unit (SIU).

17. The computing device of claim 13, wherein the processes implementing routing
5 algorithms in the network include at least one of hardware specific layer process
(HSL), an open shortest path first process and a network service module

proccess.

18. The computing device of claim 13, wherein the computer processor is further
10 configured to execute the virtual machine that implements the affinity override
module, which is further configured to check whether the affinity mask of the at
least one process implementing the routing algorithm is set to target the core
within the subset of cores with a lowest number of interrupts or system events
processed, and to exit the method without changing the affinity mask of the at
15 least one process in response to affinity mask being set to target the core within
the subset of cores with a lowest number of interrupts or system events

processed.

WO 2016/051335 PCT/IB2015/057432
1/5
COMPUTING DEVICE
101
STORAGE DEVICE
(MEMORY)
103
PROCESS PROCESS PROCESS
(OSPF) (NSM) (HSL) | ees| PROCESS
105A 1058 108C
08
107
HEDULER 1 INTERRUPT
SeHE — HANDLER 113
AFFINITY MASK 111 ﬂ AFFINITY
OVERRIDE
CPU 117
CACHE 121a] [CACHE 1218 [cACHE 121¢] [cACHE 121D] |cAcHE 121E
CORE CORE CORE CORE CORE
1197 1198 118C 119D 119E

WO 2016/051335 PCT/IB2015/057432
2/5

Determine a number of interrupts or system events A_:jm
processed by a subset of cores of a central processing
unit
v 203
tdentify a core within the subset of cores with alowest I~/
number of interrupts or system events processed

-7 R 205
\<;\/

/f/Checkwhether Mao Ves
.-~ the affinity mask of the "~

Sso process is set el
v, tothetarget .-~

\\
S~ Core 7

-
-

E"”No
FroT T vo207
i Store the affinity mask S
R i
v

Change affinity mask of process implementing routing | 209

algorithms to {arget the core within a subset of the set

of cores with a lowest number of interrupts or system
events processed

T T o 2 211
! /
—3i Process the event related to network convergence 1/
e o !
SN 213
,.,“’M . %x{:\/
No _.-7 Isprocessingof ">~__

~._ network convergence _.>
Te.. _complete? .-

Ed
-

g -

WO 2016/051335

3/5

PCT/IB2015/057432

HSL

O8PF

NSM

NETWORK FAELUREb

LINK BOWN

APPLY ALGORITHM

A

——

ADD NEW ROUTES

ADD NEW RCUTES

k.4

&

DELETE FAILED ROUTES

DELETE FAILED ROUTES

¥

PHYSICAL

SOURCE

LINK

>

401

PRIMARY ROUTE

X

:) ALTERNATE ROUTE DESTINATION

405

PCT/IB2015/057432

WO 2016/051335

4/5

MYHOMLIN)

1d0d 353403
0 SSEUONI

F-N

A 2

L SMHOMLEN

x4

dOyVOIANIT Nguvoan
. 75 619 T
OlyEvA)
| [[ONIGHYAROd | 4058300ud
HOSS$I00Hd 2 <
gy | 908 mmw £V
JOIEA0
Waywoani ALINIdy | | SO mm\m& baUvOaNIT
/ @HooInw) (/
: G
cse 1 1o HOSSA00Nd 8504 e

HAOMIIN

Wi JOIAGQA MHOMIEN HO §31N04

160d SSIHON]
HO 853403

A2

WO 2016/051335 PCT/IB2015/057432
5/5
ND
/ £00C \ ND PHYSICAL DEVICES AND
ND PHYSICAL CONNECTMITY
6008 600D \\ PNl LAV SR
ND | D
GOOH 6QQE A
et D / 4 -
BO0A = [NETWORK SERVICE DEVICE
| ND L1 BOOF | yerwoRK FUNCTION DEVICE
600G |
/’{ ‘1:::"‘-
4 \N:-&,% -
SPECIALPURPOSE 7 Sl NETWORK FUNCTION
HARDWARE ¢ e T VIRTUALIZATION (NFY)
’/ \\%\ %""«,_._%
B N ~ s
SPECIAL NETWORK DEVICE GENERAL PURPOSE (COTS) NETWORK || yegp
602 D%‘vc ‘;E NETWORK
VIRTUAL NETWORK ELEMENTIS) D b DEVICE
‘“’@'G‘i”“\'mwm “Li'fc‘“f‘s’ coNTROLL AFENTY VIRTUAL NETWORK ELEMENTISH| 65
4 see o A QVERRIDE) YT R
P o | ey PLAE VeE%D B60A 850
CONTROL COMMINCATION | o771} 624 A e
AND CONFG MODULE |1 8328+ VRIUAL | 1 VIRTOAL ™
NETWORKING 632A | i \ MACHINE |} MACHINE |
@9%?5‘,5%, FORWADNG HBLES |1 ! N
527 6344] SOFTWARE | N 05— Bt~ | 6738
671 —4| 0 [AFFINTY OVERRIDE || 1-= ity | ||NSTANCES)) 1 Lo
" i"':::::;!i 652 : !
¥ 1 H
s | COMPUTE RESOURCE(S) A CEEEEE
812 HYPERVISOR 654
FORWARDING RESOURCE(S)
§14 u PROCESSOR(S) 642
NETWORKING PHYSICAL NIS NICIS) 644
HARDWARE 618
540 ND PHYSICAL NIS 646
NON-TRANSITORY MACHINE JFORWARDINGY HARDWARE
READABLE STORAGE MEDIA PLANE 640 1] NON-TRANSITCRY MACHINE
618 626 READABLE STORAGE MEDIA
NETWORKING SOFTWARE 520 648
SOFTWARE

D CARDS €38 ﬂ

Al
BACKPLANE i

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2015/057432

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50 HO4L12/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 11 July 2013 (2013-07-11)
paragraphs [0003], [0019],
[0029], [0030], [0044],
[0049],
US 20117087814 Al (LIU QIANG
14 April 2011 (2011-04-14)
abstract
paragraphs [0002],
figures 1,2,5,6

[0003],

abstract
paragraphs [0018],
[0028], [0041],

[0022],

US 2013/176850 Al (MISHRA RAMESH [US] ET

[0048],
[0056]; figures 1,2,9

US 2012/134320 Al (KHAWER MOHAMMAD R [US]
ET AL) 31 May 2012 (2012-05-31)

[0061]; figures 2,3,4

1-18
[0022],

[US] ET AL) 1-18
[0017];
1-18

[0025] ,

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 January 2016

Date of mailing of the international search report

15/01/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kingma, Ype

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2015/057432

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

EP 2 207 312 Al (ABB RESEARCH LTD [CH])
14 July 2010 (2010-07-14)

abstract
paragraphs [0011], [0015]

1-18

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2015/057432
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2013176850 Al 11-07-2013 CN 104025522 A 03-09-2014
EP 2803173 Al 19-11-2014
KR 20140116476 A 02-10-2014
US 2013176850 Al 11-07-2013
WO 2013105009 Al 18-07-2013

US 2011087814 Al 14-04-2011 US 2011087814 Al 14-04-2011
US 2014082244 Al 20-03-2014

US 2012134320 Al 31-05-2012 CN 103348641 A 09-10-2013
EP 2647163 Al 09-10-2013
EP 2814214 Al 17-12-2014
JP 5726320 B2 27-05-2015
JP 2014506346 A 13-03-2014
KR 20130099185 A 05-09-2013
TW 201238295 A 16-09-2012
US 2012134320 Al 31-05-2012
WO 2012074632 Al 07-06-2012

EP 2207312 Al 14-07-2010 AT 554571 T 15-05-2012
CN 102273148 A 07-12-2011
EP 2207312 Al 14-07-2010
ES 2385632 T3 27-07-2012
RU 2011133066 A 10-05-2013
US 2011257806 Al 20-10-2011
WO 2010079090 Al 15-07-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report

