(11) Numéro du brevet d’invention : 92471

(12) BREVET D’INVENTION

(45) Date de délivrance du brevet d’invention : 07.12.2015

(51) Int. Cl.:
- F27B1/20
- F27B3/18
- F27D1/00
- F27D1/12

(22) Date de dépôt : 06.06.2014

(54) CHARGING INSTALLATION OF A METALLURGICAL REACTOR

(30) Priorité :

(73) Titulaire : PAUL WURTH S.A.
- 32, RUE D’ALSACE
- 1122 LUXEMBOURG (LU)

(72) Inventeur :
- HIENTGEN RENE
- 11, AM WOHIWEE
- 9382 MOESTROFF (LU)

- PELLEGRINO ERNESTO
- 15, RUE JEAN ORIGER
- L-3540 DUDELANGE (LU)

- TOCKERT PAUL
- 1, DUERFSTROOSS
- 6830 BERBOURG (LU)

(74) Mandataire : OFFICE FREYLINGER S.A.
- 234, ROUTE D’ARLON
- 8001 STRASSEN (LU)
Demande de brevet d’invention

- Loi du 20 juillet 1992 portant modification du régime des brevets d’invention
- Règlements grand-ducaux du 17 novembre 1997 - concernant la procédure et les formalités administratives en matière de brevets d’invention et de certificats complémentaires de protection - portant fixation des taxes et rémunérations à percevoir en matière de brevets et de certificats complémentaires de protection

Demande N°: 92471 Date de dépôt: 06.06.2014

Référence du déposant ou mandataire: P-PWU-720/LU

A. REQUETE

Le demandeur requiert (Les demandeurs requièrent) la délivrance d’un brevet d’invention.

1. Titre de l’invention:
CHARGING INSTALLATION OF A METALLURGICAL REACTOR

2. Demandeur
Nom, prénom ou dénomination sociale: PAUL WURTH S.A.
Adresse: 32, rue d’Alsace
L-1122 LUXEMBOURG

Etat dans lequel est situé le domicile ou siège du demandeur: 1. Luxembourg

Téléphone: Telefax: E-mail:

☐ Un (Des) demandeur(s) supplémentaire(s) est (sont) mentionné(s) sur une feuille en annexe

3. Mandataire(s)
Nom(s), prénom(s):
KIHN Pierre / BEISSEL Jean / LAMBERT Romain / OCVIRK Philippe /
KIHN Henri / LAIDEBEUR Olivier
Adresse: OFFICE FREYLINGER S.A.
234, route d’Arlon / B.P. 48 / L-8001 Strassen
Téléphone: 31 38 30-1 Telefax: 31 38 33 E-mail: office@freylinger.com
☐ Le(s) demandeur(s) déclare(nt) écrire domicile auprès du (des) mandataire(s)
☐ Un pouvoir général est déposé au Service de la Propriété Intellectuelle

FD14091619.doc
4. Adresse postale au Grand-Duché de Luxembourg:
Les communications du Service sont à envoyer à:
☐ l'adresse du demandeur mentionnée au point 2.
☒ l'adresse des mandataire(s) mentionné(s) au point 3.
☐ l'adresse suivante:

5. Désignation d'inventeur(s)

Nom, prénom(s):
- TOCKERT, Paul
- PELLEGRINO, Ernesto
- HIENTGEN, René

Adresse:
- 1, Duerfstrooss L-6830 Berbourg
- 15, Rue Jean Origer L-3540 DUDELANGE
- 11 am Wohwee L-9382 MOESTROFF

☐ Un (Des) inventeur(s) supplémentaires est (sont) mentionné(s) sur une feuille en annexe
☐ Une désignation d'inventeur(s) séparée est jointe en annexe

6. Déclaration de priorité

Demande No: Date de dépôt: Pays: Déposant:

☐ D'autre(s) déclaration(s) de priorité sont mentionnées sur une feuille en annexe

7. Déclaration lorsqu'il s'agit d'une demande divisionnaire

☐ La présente demande est une demande divisionnaire de la demande de brevet:

No: Date de dépôt:

8. Déclaration lorsqu'il s'agit d'une demande fondée sur une demande internationale

☐ La présente demande est fondée sur la demande internationale identifiée ci-dessous:
Date de dépôt: No de dépôt: No de Publ.:

9. Demande d'établissement d'un rapport de recherche d'antériorités

Il est demandé l'établissement d'un rapport de recherche d'antériorités relatif à la présente demande:
☒ oui ☐ non

Nous vous serions reconnaissants de bien vouloir nous faire parvenir le rapport de recherche pour le 6 février 2015
10. Annexes

☐ Description + revendication(s) Nbre de pages: 15
☐ Nbre de revendic.: 19
☐ Figures Nbre de planches: 2
☐ Abrégé 1
☐ Figure à publier avec l'abrégé Figure N°: 1
☐ Traduction des revendications Nbre de pages:

☐ Feuille avec demandeur(s) supplémentaire(s)
☐ Feuille avec mandataire(s) supplémentaire(s)
☐ Feuille avec déclaration(s) de priorité supplémentaire(s)
☐ Feuille avec inventeur(s) supplémentaire(s)
☐ Désignation séparée d'inventeur(s)

☐ Document(s) de priorité
☐ Traduction document(s) de priorité
☐ Document(s) de cession du droit de priorité

☐ Pouvoir
☐ Copie d'un pouvoir général

☐ Autres:

B. PROCÈS-VERBAL DE DÉPÔT

La présente demande de brevet d'invention a été déposée au Ministère de l'Economie et du Commerce Extérieur, Office de la Propriété Intellectuelle, Luxembourg,

en date du 06.06.2014.

Le(s) déposant(s) / mandataire(s):

Nom du signataire : Romain LAMBERT

Pour le Ministre de l'Economie et du Commerce Extérieur
Pour Lex KAUFHOLD
Chargé de la direction
Office de la propriété intellectuelle

Marc BESENIUS
Lex KAUFHOLD
Attaché de Gouvernement 1er en rang
Office de la Propriété Intellectuelle
Abstract

The invention relates to a charging installation (1) of a metallurgical reactor, with a cooling assembly (4) disposed for cooling a reactor side of the charging installation (1). In order to facilitate the installation and maintenance of a heat protection shield in a charging installation of a metallurgical reactor, the cooling assembly (4) comprises a plurality of cooling panels (10), each cooling panel (10) comprising at least one coolant channel (12).

(Fig. 1)
REVENDICATION DE LA PRIORITE

de la demande de brevet

En

Du

No.

No 92471

Mémoire Descriptif
déposé à l’appui d’une demande de

BREVET D’INVENTION

au

Luxembourg

au nom de : PAUL WURTH S.A.
32, rue d'Alsace
L-1122 LUXEMBOURG

pour : «CHARGING INSTALLATION OF A METALLURGICAL REACTOR».
CHARGING INSTALLATION OF A METALLURGICAL REACTOR

Technical Field

[0001] The invention relates to a charging installation of a metallurgical reactor. It further relates to a cooling assembly of such a charging installation and a cooling panel for such a cooling assembly.

Background Art

[0002] Metallurgical reactors are well known in the art. These reactors are typically gravity-fed from above by a charging installation, which in turn may be fed with bulk material from intermediate hoppers. One type of charging installation is disclosed in international application WO 2012/016902 A1. Here, the material is fed through a feeder spout, which is positioned above the inlet of a distribution chute. The chute is mounted on a rotatable tubular support, in which the feeder spout is disposed. To provide for a two-dimensional mobility of the chute, it is also tiltable relative to the support by shafts connected to a gear assembly. The gear assembly is positioned inside a gearbox formed by the support and a stationary casing on which the support is rotationally mounted. For protection of the gear assembly, the bottom portion of the casing has a heat protection shield with a cooling circuit. The shield defines a central opening in which a lower portion of the support is disposed. Since the heat protection shield may be subjected to relatively high temperatures and considerable temperature changes, while there may be also high temperature gradients, there may be a need for inspection, maintenance and/or replacement of the shield or at least of parts thereof. This in particular refers to the cooling circuit, but also to a heat protection layer of refractory material, which is disposed on the underside of the cooling circuit. While a charging installation of the abovementioned application generally works well, maintenance of the heat protection shield is often complicated and time-consuming.

Technical Problem

[0003] It is therefore the object of the present invention to facilitate the installation and maintenance of a heat protection shield in a charging installation of a metallurgical reactor. The object is solved by a charging installation according to
claim 1, a cooling assembly according to claim 17 and a cooling panel according to claim 18.

General Description of the Invention

[0004] The invention provides a charging installation of a metallurgical reactor, with a cooling assembly disposed for cooling a reactor side of the charging installation. The metallurgical reactor may in particular be of the blast furnace type. A charging installation will usually be of the type where the bulk material is gravity-fed to the reactor. Therefore, in these cases, the charging installation is - at least for the larger part - intended to be installed above the reactor. Thus, the reactor side, i.e. the side which faces the reactor, is the bottom side or underside. However, it is conceivable that the charging installation is on a different side of the reactor. The cooling assembly is disposed for cooling the reactor side, which usually means that it is disposed along the reactor side.

[0005] According to the invention, the cooling assembly comprises a plurality of cooling panels, each cooling panel comprising at least one coolant channel. I.e., the cooling assembly is designed in a modular way, wherein the cooling panels can be regarded as modules. Normally, the panels are disposed next to each other along a surface of the charging installation that faces the reactor. In any case, the panels can be pre-manufactured outside the charging installation and then be installed one after another. As mentioned before, the cooling assembly usually operates under severe conditions and still has to function perfectly to protect other parts of the charging installation. Therefore, the panels may need to be inspected, maintained and possibly replaced. It is understood that these operations are greatly facilitated by the use of modular panels, which can be removed individually for inspection, maintenance and/or replacement. In a preferred embodiment, all cooling panels are identical, so that a replacement panel can be used in any position. It should also be noted that such inspection, maintenance and/or replacement may be carried out from inside the charging installation.

[0006] To further facilitate mounting and dismounting of the panels, it is preferred that the cooling panels are mounted by a detachable connection. They
may be mounted detachably to each other and/or to the rest of the charging installation. Usually, the detachable connection will be a bolted connection.

[0007] The coolant channels may be formed by normal tube-like pipes as known in the art. For easy manufacturing, however, it is preferred that each panel comprises a base plate in which at least one coolant channel is formed. Usually, the shape of the base plate will more or less correspond to the overall shape of the panel itself. The channel may be formed along with the base plate in a primary forming process like casting or it may be machined into the pre-manufactured base plate. The latter may provide increased cooling efficiency.

[0008] The base plate may be formed of various kinds of material. Of course, these materials need to have sufficient mechanical stability and need to withstand elevated temperatures and possibly temperature differences. Since good thermal conductivity also facilitates the cooling process, the base plate is preferably made of metal, e.g. steel.

[0009] In a preferred embodiment, the channel is formed as a groove in the base plate, which groove is covered by a cover plate mounted on the base plate. I.e., if the base plate has a top surface and a bottom surface, the channel could be formed as a groove in the top surface, while the bottom surface is completely plane. Obviously, in this embodiment, there are practically no limits to the shape of the channel, i.e. it may be straight or curved and can have various kinds of cross-sections. Such a channel may be produced easily by milling. Of course, the top side of the channel needs to be closed for safe containment of the coolant. Therefore, the cover plate is mounted on the base plate, e.g. by welding.

[0010] As mentioned before, the coolant channel can have various shapes. It is of course desirable that the whole area of the panel is near a coolant channel. While this can be achieved by a plurality of coolant channels or a branching coolant channel, respectively, it is preferred that the coolant channel has a meandering structure. Thus, the single, unbranching coolant channel may cover a large area.

[0011] Preferably, the cover plate has a meandering structure following the meandering structure of the coolant channel. If there is a deformation of the base plate, there is a movement in the coolant channel. With a cover plate closely
replicating the shape of the coolant channel, it is possible to reduce the risk of the
weld between the cover plate and the base plate breaking, as the cover plate will
follow the movement of the coolant channel.

[0012] Of course, the coolant channels need to be connected to a coolant
supply. On the one hand, it is conceivable to connect the coolant channels of
different panels directly with each other. It is preferred, though, that each panel
comprises at least one coolant pipe, which is connected to the coolant channel.
Especially when the coolant channel is a groove within the base plate, connecting
and disconnecting of the coolant channel and the coolant supply can be greatly
facilitated if a coolant pipe is available, which protrudes from the surface of the
base plate and may have a standard connector.

[0013] Even when the above-mentioned coolant pipes are employed, the
coolant channels of different panels may be connected in series. For instance,
there could be a single inlet and a single outlet for the whole cooling assembly. In
such a case, the added-up length of the channels may lead to a considerable
pressure drop, which in turn necessitates the use of booster pumps. Furthermore,
the panels which are closer to the outlet will receive coolant that has already been
warmed by flowing through several other panels. For these reasons, it is preferred
that coolant channels of different panels are connected in parallel to a coolant
supply. This includes the possibility that small groups of panels, e.g. two or three,
could be connected in series. Preferably, the coolant channels of any two different
panels are connected in parallel, which means that each cooling channel is directly
connected to coolant supply. This configuration results in a relatively low pressure
drop and makes it possible to use e.g. the coolant supply of a cooling circuit
belonging to the metallurgical reactor also as cooling supply for the cooling
assembly.

[0014] A serious problem with charging installations known in the art is the
maintenance of a refractory layer, which is usually necessary additionally to be
cooling system. Such a refractory layer normally is placed between the cooling
circuit and the reactor. Usually, the refractory layer material deteriorates over time
and has to be replaced at least partially. According to prior art, a refractory
material, for example concrete, is gunited or shotscreened from the reactor side,
which is difficult, time-consuming and possibly dangerous. These problems are
overcome in a preferred embodiment of the present invention, where at least one heat protection element is mounted to each cooling panel. The heat protection element of course should be flame-resistant, i.e. refractory. Low heat conductivity is also desirable for the heat protection element. In particular when each panel is mounted by a detachable connection, the replacement and/or maintenance of the heat protection element can be done easily by dismounting the panel and removing it from the charging installation. Even if the heat protection element is replaced or repaired by guniting, this may be done in an appropriate place with better working conditions. The heat protection element could be a layer of refractory material that is cast or gunited onto the panel. Alternatively it could be a kind of plate or tile, which is connected to the panel.

[0015] According to an aspect of the present invention, a plurality of heat protection tiles are disposed adjacent to each other along a surface. The surface along which the tiles are disposed may be plane, bent or other. The term "surface" herein is to be understood in a geometrical way, i.e. it does not necessarily have to be the physical surface of a device. Each tile is heat-protective in that it is heat-resistant, in particular fire-resistant, and has by its geometry some shielding capacity. Heat resistance may be desired up to about 1200°C as such temperatures may be reached in case of an incident. Each tile normally comprises a refractory material. A gap may be provided between adjacent tiles. The gap allows for a thermal expansion of the individual tiles. The thermal stress within an individual tile is therefore relatively small compared to the stress in a monolithic refractory layer. The size of the gap may be chosen according to the expected thermal expansion of the tiles under the operating conditions of the charging installation. The tiles may be allowed to touch each other when the top temperatures of the installation are reached, since the thermal stress in such a case is still less than with a monolithic structure. On the other hand, the size of the gap at room temperature can be chosen so that it will not close even at top temperatures. However, the size of the gap should not be too great, since this could negatively affect the shielding properties of the heat protection assembly. It is possible that the tiles overlap, e.g. like a tongue and groove, so that an expansion of the tiles is possible while heat convection through the gap is hindered. It is also within the scope of the invention that some material is placed
within the gap as long as this material does not hinder the thermal expansion of the individual tiles too much. The material may e.g. be highly compressible.

[0016] According to a preferred embodiment, the tiles comprise a support structure on which a refractory material is disposed. Such as support structure forms a kind of "backbone" of the tile. Normally, the support structure will be made of material that is highly resistant to thermal expansion and contraction processes, i.e. the material is very unlikely to form cracks under these processes. It goes without saying that the material should have a melting point that is considerably higher than the expected temperatures during operation of the charging installation. Possible materials are ceramic or metals, for example steel. The refractory material, which is disposed of the support structure, of course has to be highly heat resistant and flame resistant. Preferably, it is a poor heat conductor. The latter property is not so crucial for the support structure. On the other hand, the refractory material does not have to be as resistant to thermal deformation processes, because even if small cracks form in the refractory material, it may still be held in place by the connection to the support structure.

[0017] It is preferred that the refractory material can be cast onto or around the support structure. I.e., the refractory material should be applicable in a liquid or semi-liquid form, which solidifies after application to the support structure. One such material which is preferred is refractory concrete.

[0018] This also opens the possibility of forming the gap by placing a kind of "spacer" material in the position of the intended gap before casting the refractory material. The spacer material may be removed after the casting process before the tile is installed to the charging installation. Alternatively, the gap may be filled with a material which is volatile under the operating temperatures of the metallurgical reactor. I.e. the spacer material is volatile and can be left in place during installation of the tile. "Volatile" in this context refers to materials that will melt and/or evaporate as well as materials which disappear due to a chemical reaction at high temperatures, usually due to combustion. Of course, since the only function of the material is to provide a kind of "die" for the casting process of the refractory material and the spacer material is lost during operation of the reactor, cheap materials are preferred for this purpose. For example, wood-based or paper materials can be used. A particularly preferred material is cardboard.
[0019] Preferably, the support structure comprises a mesh on which the refractory material is disposed. The mesh structure, which may be essentially two-dimensional or three-dimensional, helps to cover a large space with relatively little material. Depending on the material used for the support structure, this may help to keep the weight and/or the cost of the tile low. Also, since the heat conductivity of the support structure is often higher than that of the refractory material, it is desirable to use as little support structure as possible.

[0020] There are a multitude of different mesh configurations which may be used according to the invention. Some may be essentially two-dimensional, like wire mesh. Especially when the thickness of the tile is greater, three-dimensional structures will be preferred. According to one preferred embodiment, the mesh is hexagonal. The hexagonal structure is preferably disposed along the plane of the tile, so that the support structure resembles a honeycomb.

[0021] The present invention may in particular be used for a charging installation which comprises a casing for a gear assembly. Here, the cooling assembly is configured to protect an annular bottom surface of the casing. In this case of course, the bottom surface of the casing is facing the reactor. Such a configuration is also disclosed in WO 2012/016902 A1, which is hereby included by reference. Here, a conventional cooling circuit is employed, though. The gear assembly is part of a tilting mechanism for a distribution chute of the charging installation. The casing may also be considered as a gearbox, since it forms a housing for the gear assembly. However, the gear assembly is able to rotate within the housing.

[0022] It is highly preferred that the cooling panels are mountable and dismountable from inside the casing. Since the casing usually has an access door for maintenance of the gear assembly or the like, the inside is easily accessible. If connection means like bolts are accessible from the inside, mounting or dismounting of the panels can be performed easily and safely.

[0023] In many applications, the panels are too heavy to be handled manually. Therefore, some kind of hoist needs to be applied. While it is possible to introduce such a device into the casing for each maintenance operation and take it out again afterwards, it is preferred that a hoist device for handling the panels is
disposed (or mounted) inside the casing. One example for such a hoist device is a gantry crane. In an annular casing as the one shown in WO 2012/016902 A1, the gantry crane may comprise an annular beam disposed near the top of the casing. It may thus be placed above any section of the casing to lift any panel located on the bottom.

[0024] The invention further provides a cooling assembly for a charging installation of a metallurgical reactor. The cooling assembly is disposable for cooling a reactor side of the charging installation and comprises a plurality of cooling panels, each cooling panel comprising at least one coolant channel. "Disposable for cooling" herein means that the assembly is adapted for cooling the above-mentioned reactor side. I.e., the dimensions and the shape of the parts of the cooling assembly must be adapted for this purpose. In particular, the parts of the cooling assembly can be adapted to be mounted on are within the charging installation. In the above-mentioned case, where the reactor side is an annular bottom surface, the parts need to be dimensioned to approximately cover this surface.

[0025] Preferred embodiments of the cooling assembly correspond to the preferred embodiments of the charging installation as described above.

[0026] Finally, the invention provides a cooling panel for a cooling assembly as described above. Preferred embodiments of the cooling panel have also been described above in context with the inventive charging installation.

Brief Description of the Drawings

[0027] Details of the invention will now be described with reference to the drawings, wherein

Fig. 1 is a perspective view of a cooling panel according to the present invention;

Fig. 2 is a perspective cutaway view of the cooling panel of fig. 1; and

Fig. 3 is a perspective cutaway view of a charging installation according to the invention in which the cooling panel of fig. 1 is used.
Description of Preferred Embodiments

Fig. 1 shows a perspective view of a cooling panel 10 according to the present invention. The cooling panel 10 is part of a cooling assembly 4 which protects the annular bottom surface of the casing 2, which is part of a charging installation 1 for a metallurgical reactor. Due to the annular shape of the surface to be protected, the panel 10 is generally arc-shaped. Its general configuration is relatively flat and it comprises a planar base plate 11, which is made of steel. As can be seen in the cutaway view in Fig. 2, a coolant channel 12 has been machined into the surface of the base plate 11. To provide a fluid-tight seal of the coolant channel 12, it is closed on the upper side by a cover plate 13, which has the same meandering structure as the coolant channel 12 itself. The cover plate, which itself is made of steel, is connected to the base plate 11 by welding. The coolant channel 12 is connected to a supply pipe 14 and a drain pipe 15. These pipes 14, 15 are conventional, tube-shaped pipes which are mounted the surface of the base plate 11. Each of them is connected to the coolant channel 12 by an interface 17, which is adapted to this special type of connection. Each of the pipes 14, 15 comprises at an opposite end a standardised connector 16, by which it can be connected to a coolant supply. During operation of the cooling assembly 4, coolant flows through the connector 16 into inlet pipe 14 and from there via the interface 17 into the coolant channel 12. Due to the meandering structure of the coolant channel 12, the coolant basically flows along the whole surface of the panel 10. Afterwards, it flows via the interface 17 into the drain pipe 15 and from there via the connector 16 back to the coolant supply. On the lower side of the base plate 11, i.e. on the side facing the reactor, a heat protection layer 30 is disposed. This heat protection layer 30 comprises a plurality of refractory tiles 31, the structure of which will be discussed below. For heat insulation, a thermal insulation layer 32 of ceramic fibre material is disposed between the tiles 31 and the base plate 11. On the edges of the arc formed by the panel 10, it comprises two side flanges 18 which extend perpendicular to the plane of the base plate 11. Each side flange 18 features a plurality of through-holes 19. Three eyelets 21 are disposed on the upper side of the base plate 11, which facilitate handling of the panel 10 and by a hoist 41 or the like.
As shown in Fig. 2, the base plate 11 also serves as a common carrier member for a plurality of heat protection tiles 31.1, 31.2, 31.3, 31.4, which form a heat protection layer 30. Each of the heat protection tiles 31 is connected to the base plate 11 via knob-like spacer members 34 is, which are disposed on a mounting strip 33. A hexagonal mesh 35 is connected to the mounting strip 33. The mesh 35 serves as a backbone of the heat protection tiles 31 and provides for structural integrity. The heat protection properties of the tile 31 mainly result from a block of refractory concrete 36 which is cast around the mesh 35. The tiles 31.1, 31.2, 31.3, 31.4 do not touch each other, but are provided with the gap 37 in between. This gap 37 allows for thermal expansion during operation of the heat protection layer 30.

In the production process, the mounting strip 33 with the mesh 35 is mounted to the base plate 11 before the refractory concrete 36 is applied. A strip of cardboard 38 is placed between the individual tiles 31.1, 31.2, 31.3, 31.4 to prevent concrete 36 from entering the gap 37. The refractory concrete 36 is then cast around the mesh 35. The cardboard 38 could be removed prior to installation of the panel 10, but this is not necessary. The cardboard 38 will quickly burn away under the operating conditions of the panel 10 and thus can be left within the gap 37, as shown in Fig. 2. The spacer members 34 provide for a space between the tile and the base plate 11, which space is filled with the heat insulation layer 32 composed of ceramic fibres. The heat protection panel 10 therefore is a module which combines three functional layers: the heat protection layer 30 with tiles 31.1, 31.2, 31.3, 31.4 protects against extreme temperatures and also provides thermal insulation, the insulation layer 32 further enhances the insulation effect, while the coolant channel 12 with the pipes 14, 15 provides for active cooling. The panel 10 is provided with side flanges 18, which extend perpendicular to the plane of the base plate 11. These side flanges 18 are provided with a plurality of through-holes 19 and are used to connect the panel 10 to neighbouring panels and/or the charging installation. Three eyelets 21 are disposed on the upper side of the base plate 11, which facilitate handling of the panel 10 and by a hoist 41 or the like.

Fig. 3 shows a partial cutaway view of a charging installation 1, which features an annular shaped casing 2 for a gear assembly and a cylindrical support 3 for the gear assembly. The gear assembly, which is not shown here, is used for
tilting of a distribution chute of the charging installation 1. The support 3 is rotatably mounted with respect to the casing 2. As can be seen from fig. 3, a plurality of cooling panels 10 are disposed next to each other along the annular bottom of the casing 2. Bolts 20, which are put through the holes 19, are used to connect each side flange 18 to a radially disposed plate-like mounting member 5 of the casing 2. At the same time, the bolts 20 serve to interconnect the individual panels 10.

[0032] As can be seen in fig. 3, a beam 40 of a gantry crane 41 is connected to the top of the casing 2. The beam 40 is annular-shaped and allows the crane 41 to be moved to virtually any position within the casing 2. Fig. 3 illustrates the removal of a cooling panel 10, which is lifted by a chain 42 of the gantry crane 41. Fig. 3 shows the chain connected to hoist rings 22, which are not shown in figs. 1 and 2. Alternatively, the chain 42 could be connected to the eyelets 21. By moving the gantry crane 41 along the beam 40, the cooling panel 10 may be moved to an access door (not shown) of the casing 2, from where it may be removed for repair or replacement. A replacement panel can be installed by a reverse sequence of operations. It is therefore apparent that a replacement of the cooling panel 10 can be achieved in short time and easily. In particular, there is no need for personnel to work on the underside of the cooling assembly 4, i.e. near or within the reactor itself. The mounting and dismounting can be done from within the casing 2. This makes the work not only easier but also significantly adds to the safety of the working personnel.
Legend of Reference Numbers:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>charging installation</td>
<td>30</td>
<td>heat protection layer</td>
</tr>
<tr>
<td>2</td>
<td>casing</td>
<td>31</td>
<td>refractory tile</td>
</tr>
<tr>
<td>3</td>
<td>support</td>
<td>31.1</td>
<td>heat protection tile</td>
</tr>
<tr>
<td>4</td>
<td>cooling assembly</td>
<td>31.2</td>
<td>heat protection tile</td>
</tr>
<tr>
<td>5</td>
<td>mounting member</td>
<td>31.3</td>
<td>heat protection tile</td>
</tr>
<tr>
<td>10</td>
<td>cooling panel</td>
<td>31.4</td>
<td>heat protection tile</td>
</tr>
<tr>
<td>11</td>
<td>base plate</td>
<td>32</td>
<td>thermal insulation layer</td>
</tr>
<tr>
<td>12</td>
<td>coolant channel</td>
<td>33</td>
<td>mounting strip</td>
</tr>
<tr>
<td>13</td>
<td>cover plate</td>
<td>34</td>
<td>spacer member</td>
</tr>
<tr>
<td>14</td>
<td>supply pipe</td>
<td>35</td>
<td>mesh</td>
</tr>
<tr>
<td>15</td>
<td>drainpipe</td>
<td>36</td>
<td>refractory concrete</td>
</tr>
<tr>
<td>16</td>
<td>connector</td>
<td>37</td>
<td>gap</td>
</tr>
<tr>
<td>17</td>
<td>interface</td>
<td>38</td>
<td>cardboard</td>
</tr>
<tr>
<td>18</td>
<td>side flange</td>
<td>40</td>
<td>beam</td>
</tr>
<tr>
<td>19</td>
<td>through-hole</td>
<td>41</td>
<td>gantry crane</td>
</tr>
<tr>
<td>20</td>
<td>bolt</td>
<td>42</td>
<td>chain</td>
</tr>
<tr>
<td>21</td>
<td>eyelet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>hoist ring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Claims

1. Charging installation (1) of a metallurgical reactor, with a cooling assembly (4) disposed for cooling a reactor side of the charging installation (1), wherein the cooling assembly (4) comprises a plurality of cooling panels (10), each cooling panel (10) comprising at least one coolant channel (12).

2. Charging installation according to claim 1, characterised in that the cooling panels (10) are mounted by a detachable connection.

3. Charging installation according to any of the preceding claims, characterised in that each panel (10) comprises a base plate (11) in which at least one coolant channel (12) is formed.

4. Charging installation according to claim 3, characterised in that the base plate (11) is made of metal.

5. Charging installation according to claim 3 or 4, characterised in that the channel (12) is formed as a groove in the base plate (11), which groove is covered by a cover plate (13) mounted on the base plate (11).

6. Charging installation according to any of the preceding claims, characterised in that the coolant channel (12) has a meandering structure.

7. Charging installation according to claims 5 and 6, characterised in that the cover plate (13) has a meandering structure following the meandering structure of the coolant channel (12).

8. Charging installation according to any of the preceding claims, characterised in that each panel (10) comprises at least one coolant pipe (14, 15), which is connected to the coolant channel (12).
9. Charging installation according to any of the preceding claims, characterised in that coolant channels (12) of different panels (10) are connected in parallel to a coolant supply.

10. Charging installation according to any of the preceding claims, characterised in that at least one heat protection element (30, 31) is mounted to each cooling panel (10).

11. Charging installation according to claim 10, characterised in that the at least one heat protection element (30, 31) comprises a plurality of heat protection tiles (31.1, 31.2, 31.3, 31.4) disposed adjacent to each other along a surface.

12. Charging installation according to claim 11, characterised in that the heat protection tiles (31.1, 31.2, 31.3, 31.4) comprise a support structure (33, 34) on which a refractory material (36), preferably refractory concrete (36), is disposed.

13. Charging installation according to claim 11 or 12, characterised in that a gap is arranged between neighbouring heat protection tiles (31.1, 31.2, 31.3, 31.4) and in that the gap (37) is filled with a material (38), preferably cardboard (38), which is volatile under the operating temperatures of the metallurgical reactor.

14. Charging installation according to any of claims 11 to 13, characterised in that the support structure (33, 34) comprises a mesh (35), preferably a hexagonal mesh (35), on which the refractory material (38) is disposed.

15. Charging installation according to any of the preceding claims, characterised in that it comprises a casing (2) for a gear assembly and the cooling assembly (4) is configured to protect an annular bottom surface of the casing (2).

16. Charging installation according to claim 11, characterised in that the cooling panels (10) are mountable and dismountable from inside the casing (2).
17. Charging installation according to claim 11 or 12, characterised in that a hoist device (40, 41) for handling the panels (10) is disposed inside the casing (2).

18. Cooling assembly (4) for a charging installation (1) of a metallurgical reactor, said cooling assembly (4) disposable for cooling a reactor side of the charging installation (1) and comprising a plurality of cooling panels (10), each cooling panel (10) comprising at least one coolant channel (12).

19. Cooling panel (10) for a cooling assembly (4) according to claim 18.
SEARCH REPORT

in accordance with Article 35.1 a)
of the Luxembourg law on patents
dated 20 July 1992

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2006/089868 A1 (DANIELI OFF MECC [IT]; SELLAN ROMANO [IT]; TERLICHER STEFANO [IT]) 31 August 2006 (2006-08-31) * claims 1-10; figures 1-5 *</td>
<td>1-19</td>
<td>INV. F27B1/20
 F27B3/18
 F27D1/12
 F27D1/00</td>
</tr>
<tr>
<td>X</td>
<td>DE 32 19 020 A1 (WURTH PAUL SA [LU]) 16 December 1982 (1982-12-16) * claims 1,2; figure 1 *</td>
<td>1,18,19</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2012/016902 A1 (WURTH PAUL SA [LU]; LONARDI EMILE [LU]; THILLEN GUY [LU]; ROCCHI DOMIN) 9 February 2012 (2012-02-09) * the whole document *</td>
<td>1-19</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 February 2015</td>
<td>Gavriliu, Alexandru</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- A: member of the same patent family, corresponding document
- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- O: non-writtten disclosure
- P: intermediate document

TECHNICAL FIELDS SEARCHED (IPC)

- F27B
- F27D
- C21B
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 13-02-2015. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 2006089868 A1</td>
<td>31-08-2006</td>
</tr>
<tr>
<td>DE 3219020 A1</td>
<td>16-12-1982</td>
<td>DE 3219020 A1</td>
<td>16-12-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 83402 A1</td>
<td>06-04-1983</td>
</tr>
<tr>
<td>JP 55521577 A</td>
<td>15-02-1980</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2012016902 A1</td>
<td>09-02-2012</td>
<td>CN 103069241 A</td>
<td>24-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2601468 A1</td>
<td>12-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013534274 A</td>
<td>02-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130137148 A</td>
<td>16-12-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 91717 A1</td>
<td>07-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2013109734 A</td>
<td>20-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201209173 A</td>
<td>01-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012016902 A1</td>
<td>09-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6467899 A</td>
<td>26-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1250148 A</td>
<td>12-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69901728 D1</td>
<td>11-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69901728 T2</td>
<td>21-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1129220 A1</td>
<td>05-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 90294 A1</td>
<td>07-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2224799 C2</td>
<td>27-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 68399 C2</td>
<td>17-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6481946 B1</td>
<td>19-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0020646 A1</td>
<td>13-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006328837 A1</td>
<td>26-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 10620295 A2</td>
<td>17-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2632439 A1</td>
<td>28-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101346477 A</td>
<td>14-01-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1971692 A1</td>
<td>24-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2343205 T3</td>
<td>26-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 50949294 B2</td>
<td>17-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080078914 A</td>
<td>28-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1378147 B</td>
<td>01-12-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 91257 C2</td>
<td>12-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008290567 A1</td>
<td>27-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007071469 A1</td>
<td>28-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200805352 A</td>
<td>28-10-2009</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82