
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
11 December 2008 (11.12.2008) PCT WO 2008/149337 A2

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 21/24 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
(21) International Application Number: CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,

PCT/IL2008/000729 EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,

(22) International Filing Date: 29 May 2008 (29.05.2008) LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,

(25) Filing Language: English PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,

(26) Publication Language: English ZA, ZM, ZW

(30) Priority Data:
(84) Designated States (unless otherwise indicated, for every

60/933,101 5 June 2007 (05.06.2007) US
kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): DCF GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

TECHNOLOGIES LTD. [IL/TL]; 35 HaLivyatan St., ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

75437 Rishon Lezion (IL). European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL,

(72) Inventor; and NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

(75) Inventor/Applicant (for US only): VEXLER, Vladimir CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[IL/IL]; 35 HaLivyatan St., 75437 Rishon Lezion (IL).
Published:

(74) Agent: FRIEDMAN, Mark; 7 Jabotinsky St., 52520 Ra- — without international search report and to be republished
mat Gan (IL). upon receipt of that report

(54) Title: DEVICES FOR PROVIDING DISTRIBUTABLE MIDDLEWARE DATA PROXY BETWEEN APPLICATION
SERVERS AND DATABASE SERVERS

Figure 1

(57) Abstract: Devices including: a transparent client-connection manager for exchanging client data between at least one applica
tion server and the device; a request analyzer for analyzing query requests from at least one application server; a data-retrieval/com
mand-execution module for executing query requests; a database-connection manager for exchanging database data between at least
one database server and the device; a cache-memory pool for storing data items from at least one database server; a cache-policy
module for determining cache criteria for storing the data items in the cache-memory pool; and a data-consistency invalidation mod
ule for determining invalidated data items based on invalidation criteria for removing from the cache-memory pool. Preferably, the
cache-memory pool is configured to utilize respective memory modules residing in a plurality of operationally-connected data-proxy
devices, and a distributed-cache management utility for managing memory capacity in the modules enabling the memory capacity
to be utilized as a cluster in order to balance workloads.



DEVICES FOR PROVIDING DISTRIBUTABLE MIDDLEWARE DATA

PROXY BETWEEN APPLICATION SERVERS AND DATABASE SERVERS

FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to devices for providing distributable

middleware data proxy between application servers and database servers.

The enormous and growing Internet population with unpredictable usage

patterns, combined with today's communication technologies introduce severe

challenges in scalability, especially for database servers. Internet applications have an

enormous number of users, report very fast growth, and suffer from unpredictable

traffic peaks. Traditional businesses are increasingly using online transaction

processing (OLTP) applications or portals that require high availability and real-time

performance. Additionally, e-commerce businesses need "24/7" availability.

Existing relational-database management systems (RDBMS)5 such as MS SQL

Server, Oracle, MySqI, Sybase, and DB2, suffer from scalability constraints due to the

number of transactions that are required to be executed. RDBMS 's prime function has

shifted today from managing information (or data) to delivering the data. Recently, it

was shown that the only way to really scale any system is by "scaling out", or

distributing the workload on an expandable number of machines. However, scaling

out databases is still a "near to impossible" task. Such tasks are either very

complicated, risky, or even do not exist for certain database vendors.

Retrieval of data from databases by various clients creates a burden on the

database server to retrieve and deliver the data. Current networked databases are

responsible both for the handling of the data (e.g. insert/update/delete), and for the

delivery of data.

In the prior art, systems and methods for cache capable of connecting multiple

JAVA databases are known in which data is served from cache (see Korean Patent

Publication No. 200300541 10). US Patent No. 6154749 teaches a distributed caching

scheme for database systems. US Patent No. 6167438 teaches a method and system



for distributed caching, prefetching, and replication. WO Patent Publication No.

03081464 teaches a database system comprising database access object with cache.

However, such approaches require application redesign and manual cache

configuration. Furthermore, such approaches are limited to specific databases, do not

validate data for consistency, and are not amenable to scaling out database servers.

Such approaches still require application servers to perform many of the tasks

routinely performed in a "non-cached data" environment, such as determining data

validity.

It would be desirable to have devices for providing distributable middleware

data proxy between application servers and database servers, which can continuously

scale existing or new databases and information systems, without the need to redesign

the application, make any changes in the database, and make significant upgrades to

the database servers to scale-up and/or upgrade the data-center storage system.

SUMMARY OF THE INVENTION

It is the purpose of the present invention to devices for providing distributable

middleware data proxy between application servers and database servers. The present

invention allows information systems, in general, to be scaled, and particularly

databases, without database or application redesign or reconfiguration. Furthermore,

auto-learning mechanisms reduce the management time of such systems to almost

zero.

For the purpose of clarity, the terms which follow are used as set forth herein.

The term "transparent client-connection manager" is used to refer to a client-

connection manager that exchanges data with an application server without requiring

the application server to reconfigure the data format, and without requiring the

application to be reconfigured. A transparent client-connection manager uses

necessary APIs for interfacing with an application server. The expression

"transparently exchanging client data" is used to refer to the process of exchanging

data with an application server without requiring the application server to reconfigure

the data format, and without requiring the application to be reconfigured.



Preferred embodiments of the present invention teach data-proxy devices for

bringing database access closer to the application server, saving traffic bottlenecks,

time, and server resources. Using smart-caching algorithms, the data-proxy devices

save the results of queries in cache memory. By providing data from cache memory,

"round-trip overhead" is minimized, and workload pressure of the database is

significantly reduced.

The data-proxy device is configured to handle large-scale read-write

databases. The data-proxy device automatically analyzes usage traffic and

connections between objects. The data-proxy device has auto-learning mechanisms

for:

(1) building optimal caching patterns; and

(2) 100% data-consistency validation at all times (including during

read/write database transactions).

Preferred embodiments of the present invention enable the processes of data

delivery and data handling to be separated in which data delivery is handled by the

data-proxy device (either a single device or multiple, connected devices). By

separating data delivery from the database:

(1) a large portion of database resources are freed; and

(2) scalability is automatically upgraded because it is always possible to

expand this layer without changing the database center itself.

The data-proxy device is a distributable middleware data proxy between

application servers and database servers or data centers. A function of the device is to

intercept data requests from application servers (i.e. the clients) and the data responses

from database servers. The data-proxy device caches the data between the servers.

Upon receiving a previously-issued request, the data-proxy device returns the data

from cache memory, eliminating the need to go to the database server.

The data-proxy device is configured for both for read-write databases as well

as read-only databases. The data-proxy device includes the following internal

functions as well.

• Cache-policy creation based on: (a) the frequency of query requests for

specific data, (b) the frequency of data changes (e.g. insert, update, or



delete), and (c) the amount of available memory in the device. Cache

policies determine what data can be cached, and designate the optimal

time for caching the data.

• Data-consistency validation provides a guarantee that the cached data

is always correct. When data changes occur, cached data is either

dropped or refreshed.

• Logging & monitoring.

• Failsafe & redundancy mechanisms.

• Distributed cache capabilities enables multiple data-proxy devices that

are interconnected to use the collective cache memory of all the

devices like a single memory resource, allowing scalability by

increasing the number of connected data-proxy devices.

Therefore, according to the present invention, there is provided for the first

time a device for providing distributable middleware data proxy, the device including:

(a) a client-connection manager for exchanging client data between at least one

application server and the device; (b) a request analyzer for analyzing query requests

from at least one application server; (c) a data-retrieval/command-execution module

for executing the query requests; (d) a database-connection manager for exchanging

database data between at least one database server and the device; (e) a cache-memory

pool for storing data items from at least one database server; (f) a cache-policy

module for determining cache criteria for storing the data items in the cache-memory

pool; and (g) a data-consistency invalidation module for determining invalidated data

items based on invalidation criteria for removing from the cache-memory pool.

Preferably, the request analyzer is configured for: (i) creating hashed query-

specific keys of the query requests; and (ii) identifying a query type of the query

requests.

Preferably, the cache-memory pool is configured to utilize respective memory

modules residing in a plurality of operationally-connected data-proxy devices.

More preferably, the device further includes: (h) a distributed-cache

management utility for managing memory capacity in the memory modules.



Most preferably, the distributed-cache management utility enables the memory

capacity to be utilized as a memory cluster in order to balance workloads of the

memory capacity.

Preferably, the device further includes: (h) a logger for logging details of the

query requests.

Most preferably, the details includes at least one detail selected from the group

consisting of: each query request, a hashed query-specific key, a request type, a query

date/time, client information, database-server details, data-retrieval source, cache

type, data checksum, a data-retrieval date/time, a timestamp, client IP information,

and query information.

Preferably, the device further includes: (h) a database agent for: (i) monitoring

data changes in at least one database server; and (ii) reporting the data changes to the

data-consistency invalidation module.

Preferably, the device further includes: (h) a failsafe utility for enabling an

alternate data-proxy device, operationally connected to the device, to provide device

functionality upon an occurrence of a device failure.

Preferably, the device further includes: (h) a database load-balancer for load-

balancing in at least one database server.

Preferably, the device further includes: (h) a special-procedures analyzer

utility for parsing and analyzing executable code in the query requests.

Preferably, the cache criteria include at least one criterion selected from the

group consisting of: a query-request frequency, a data-change frequency, and an

available cache-memory capacity.

Preferably, the data-retrieval/command-execution module is operative to

activate triggers for detecting the invalidated data items.

Preferably, the invalidation criteria include at least one criterion selected from

the group consisting of: an update in the database data, a deletion in the database data,

an insertion in the database data, an update in secondary database data referenced in

the database data, a deletion in the secondary database data referenced in the database

data, and an insertion in the secondary database data referenced in the database data.

Preferably, the request analyzer is configured for parsing the query requests.



Most preferably, the parsing assists in identifying the invalidated data items.

According to the present invention, there is provided for the first time a

method for providing distributable middleware data proxy, the method including the

steps of: (a) exchanging client data between at least one application server and a data-

proxy device; (b) analyzing query requests from at least one application server; (c)

executing the query requests; (d) exchanging database data between at least one

database server and the data-proxy device; (e) determining criteria for storing data

items from at least one database server in data-proxy device; (f) storing the data items

from at least one database server in the data-proxy device; and (g) determining

invalidated data items for removing from the data-proxy device.

Preferably, the method further includes the step of: (h) managing memory

capacity in respective memory modules residing in a plurality of operationally-

connected data-proxy devices.

Most preferably, the step of managing includes utilizing the memory capacity

as a memory cluster in order to balance workloads of the memory capacity.

Preferably, the method further includes the steps of: (h) monitoring data

changes in at least one database server; and (i) reporting the data changes to the data-

proxy device.

These and further embodiments will be apparent from the detailed description

and examples that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is herein described, by way of example only, with

reference to the accompanying drawings, wherein:

Figure 1 is a simplified schematic block diagram of a data-proxy device

implemented between an application server and a database server, according to

preferred embodiments of the present invention;

Figure 2 is a simplified flowchart of the operational procedures of the request

analyzer of Figure 1, according to preferred embodiments of the present

invention;



Figure 3 is a simplified flowchart of the operational procedures of the data-

consistency invalidation module of Figure 1, according to preferred

embodiments of the present invention;

Figure 4 is a simplified flowchart of the operational procedures of the data

retrieval/command execution module of Figure I5 according to preferred

embodiments of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to devices for providing distributable

middleware data proxy between application servers and database servers. The

principles and operation for providing such middleware data proxy, according to the

present invention, may be better understood with reference to the accompanying

description and the drawings.

Referring now to the drawings, Figure 1 is a simplified schematic block

diagram of a data-proxy device implemented between an application server and a

database server, according to preferred embodiments of the present invention. An

application server 2 (i.e. the client) and a database server 4 are shown connected via a

data-proxy device 10. Data-proxy device 10 is operationally connected to a LAN

network using a standard network switch like other servers (including application

server 2 and database server 4). This enables data-proxy device 10:

(1) to be detected by standard network-monitoring utilities; and

(2) to detect all other servers on the network, including application server

2 and database server 4.

Data-proxy device 10 includes: a transparent client-connection manager 12, a

logger 14, a request analyzer 16, a data-retrieval/command-execution module 18, a

database-connection manager 20, a cache-memory pool 22, a cache-policy module 24,

a data-consistency invalidation module 26, a database agent 28, a distributed-cache

management utility 30, a statistics-audit module 32, an analyzer utility 34, a

monitoring utility 36, a failsafe utility 38, a security utility 40, a database load-

balancer 42, a data-preparation module 44, and a data-streaming module 46.



Client-connection manager 12 is responsible for the connecting application

server 2, which requests data via query requests, and data-proxy device 10. Client-

connection manager 12 is also responsible for returning application server 2 with data

responses to.

By imitating standard, database, network protocols, data-proxy device 10

appears to application server 2 as a standard database server (i.e. database server 4).

Examples of such network protocols include: TDS 7.x+ for Microsoft SQL Server,

TDS for Sybase, MySqI Protocol for MySqI, DRDA/DB2 Connect for DB2, and

Sql*Net for Oracle.

Logger 14 logs all requests into an internal database (e.g. Mysql, Berkley, or

other types of standard RDBMS). The data that is logged includes:

• query request;

• hashed key of the query request;

• request type;

• query date/time;

• client information;

• details of target database server 4;

• whether data is from cache-memory pool 22 or from database server 4;

• type of cache selected;

• checksum of the data which is a hashed key of the data (used for analysis to

detect data changes);

• data-retrieval date/time when data was taken from database server 4; and

• timestamp;

The logs generated by logger 14 serves several purposes including:

(1) a basis for cache-policy creation and statistical analysis via cache-

policy module 24 and statistics-audit module 32;

(2) a source for monitoring data-flow statistics via statistics-audit module

32 and monitoring utility 36; and

(3) a resource for auditing security via security utility 40.

The process of logging is performed asynchronously with virtually no impact

on the performance of data-proxy device 10.



Among other things, request analyzer 16 is responsible for:

(1) creating query-specific keys using hash algorithms (e.g. Tiger-Hash,

MD5, or SHAl);

(2) identifying query type for deterrnining whether the relevant data

can/should be cached or served from cache-memory pool 22; and

(3) transmitting the query-specific key and query type to data-

retrieval/command-execution module 18.

Data-retrieval/command-execution module 18 is usually launched by request

analyzer 16 in the process of retrieving parameters the query request, the query-

specific key and the query type. Data-retrieval/command-execution module 18 is

responsible for several tasks including:

(1) returning data from cache-memory pool 24 to client-connection

manager 12 (if the data is already in cache-memory pool 22);

(2) executing query in database server 4 (if the data is not already in

cache-memory pool 24), and returning the data response to client-

connection manager 12; and

(3) asynchronously:

(a) for a "cacheable" data type, storing the data in cache-memory

pool 22 (via forking a new process); and

(b) checking in a pre-defined list if execution of the query should

launch one or more triggers;

(c) launching any triggers for invalidating (i.e. "dropping") cached

data from cache-memory pool 22.

Execution of queries in database server 4 is performed via database-

connection manager 20. Triggers are defined for handling data consistency and

integrity. Data-proxy device 10 is configured to interface read-write databases,

meaning data-proxy device 10:

(1) handles insert/update/delete query requests, and executes such queries

in database server 4;

(2) handles changes to data which may occur from external processes (e.g.

scheduled data transformation services (DTS) and/or other back-end



application processes that make changes without going through data-

proxy device 10); and

(3) provides the most current and accurate data at all times.

In order to provide such capabilities, data-proxy device 10 caches as much

data as possible according to assessment, via analyzer utility 34, of cache policies

defined in cache-policy module 24. When data changes occur, data-proxy device 10

can:

(1) identify the cached items, including the data rows/columns that were

changed; and

(2) invalidate and remove the changed items from cache-memory pool 22.

Upon a query request for the same data which was affected by the change, the

query will be executed in database server 4 and cached again in cache-memory pool

22. The identification of what is affected by a data change is performed by internal

mechanisms including pre-defined triggers which are commands that are executed in

cases of execution-specific queries. An example of a trigger is:

<trigger_command smart = "true">

<example>EXECUTE UpdateUserNewsIetters @user_id = 722191, @IsAdds = 1

</example>

<prefix>EXECUTE UpdateUserNewsletters</prefix>

<suffix>@user_id = </suff ϊx>

<suffix_params>— 1.6~-</suffixjparams>

</trigger_command>

<query>EXECUTE GetUserNewslettersAIerts @UserID = ~~l~~</query>

Such a trigger means that when a command starts with "EXECUTE

UpdateUserNewsIetters" with a specific @user_id, the trigger drops the read query-

request: "EXECUTE GetUserNewslettersAIerts @UserID = " from cache-

memory pool 22. Trigger policies are based on:

(1) dependencies between database objects, tables, triggers, stored

procedures, foreign keys, and database metadata in database server 4;

(2) the parsing and analysis of query-string context (e.g. finding relations

between queries); and



(3) data received by data-consistency invalidation module 26 from

database agent 28.

The creation of such cache-dropping triggers is performed by two units: data-

consistency invalidation module 26 and database agent 28 (installed in database server

4). These units are described below.

Data-proxy device 10 creates a correlation list between all related read and

write query-requests. Below is an example of a correlated set of read and write query-

requests.

• Read query-request: Get a pricelist for all dogs in table "Animals".

• Write query-request: Update the price in table "Animals" where the type is

"dog".

When the write query-request is processed, the data of the read query-request

has to be removed from cache-memory pool 22. Furthermore, during the process of

executing the query that performs the changes, all related read query-requests need to

be "locked". A locked query-request is transferred directly to database server 4, and

the data response is not cached. A query-request can only be cached again, when a

locked status has been removed (using the related pre-defined cache policy).

If a data change is being processed, all related read query-requests are

forwarded to database server 4 for handling data consistency and locking requests. In

special cases in which database vendors have defined sophisticated logic and

algorithms (which can change from version to version or be manually configured),

locking of requests during the data changes is left to database server 4.

Database agent 28 serves to:

(1) monitor what data changes in database server 4 cause which specific

commands; and

(2) monitor "back-end" data changes (e.g. batch commands, DTS

execution, execution of commands by a client other than data-proxy

device 10, and direct online changes by a DBA).

In implementations, each database vendor has a different version of database

agent 28; even different database versions can have potentially different database



agents 28. Such database-specific agents serve the same function, but utilize different

technology.

When data-proxy device 10 receives a query request that is identified as a

potential data-changing query, a message is sent to database agent 28 to monitor the

as described with regard to Figure 4. Database agent 28 monitors database server 4

by:

(1) monitoring the mapping of memory objects that are responsible for a

query-execution plan; and

(2) monitoring the transaction log.

Database agent 28 creates a monitoring report that is sent to data-consistency

invalidation module inside data-proxy device 10. The report includes:

(1) the query that performed the data change that initiated the monitoring

process; and

(2) which tables and rows were affected by the query execution.

In order to keep track of data changes that are not being made through data-

proxy device 10, via a back-end process (e.g. DTS) database agent 28 can be

configured to check periodically for data changes written in the transaction log. After

configuration, database agent 28 automatically checks all data changes that were

made in database server 4 and recorded in the transaction log. Database agent 28

creates an external-change report, which is sent to data-consistency invalidation

module 26 inside data-proxy device 10, indicating the data changes (e.g. tables and

rows) that were made to database server 4.

Data-consistency invalidation module 26 is responsible for invalidating and

removing cached data that is no longer valid from cache-memory pool 22 due to data

changes that were made. Data-consistency invalidation module 26 can be executed by

data-retrieval/command-execution module 18, launching a pre-defined list of

invalidation rules. Data-consistency invalidation module 26 also uses the monitoring

and external-change reports from database agent 28. Data-proxy device 10 then finds

the cached data items that are related to the changed database objects in database

server 4 using a key list created and managed by cache-policy module 24 and analyzer



utility 34 (described below), and removes the related data items from cache-memory

pool 22.

If the information-granularity level of the cached data items is known on a

"row level", then specific data items will be dropped from cache-memory pool 22. If

the information-granularity level of some cached data items is only known on a "table

level" (without the detailed information about the rows), then all cached data items

associated with the table are removed cache-memory pool 22. If there is a chance that

some cached data items are related to the data change that was made, then the cached

data items are also removed from cache-memory pool 22. Information on cached data

items that were removed from cache-memory pool 22 is recorded in an internal

database in logger 14.

Data-proxy device 10 includes a large amount of RAM memory. Most of this

memory is used to store cached data in cache-memory pool 22. In order not to

overburden the available memory with data that is irrelevant, algorithms are used as

part of cache-policy module 24 which serves as a cache-memory manager to hold the

most-relevant and most-frequently-used data hi general, the relevance of data is

primarily based on when the data was last requested. This means that the primary

factor for determining cache-data "validity" is time-based. Each data item is cached

by a pre-defined cache policy, and can be cached for variable amounts of time (e.g.

several seconds to several minutes). Examples of cache policies include:

(1) "For query strings that begin with. . ., store for 600 seconds":

<CachePolicy name = "Very.Long.Cache" enable = "true" duration = "600">

<query type = "CommandPrefix" > Board_GetNodeFieldMask</query>

<query type = "CommandPrefix" > Board_GetFieIdsNamesList</query>

<query type= "CommandPrefix" >SELECT node_id, product_id FROM

Te_nodes</query>

</CachePolicy>

(2) "For query strings that contain table names. .., store for 300 seconds":

<CachePolicy name = "xxxx" enable = "true" duration = "300">

<query type = "Contains" > Tablel</query>

<query type = "Contains" > Te_nodes</query>

<query type = "Contains" > Tbl5_tree</query>

</CachePolicy>



Cache-policy module 24 is also responsible for:

(1) matching the right cache policy to the query request and its result;

(2) inserting data into and retrieving data from cache-memory pool 22 via

data-retrieval/command-execution module 18; and

(3) managing cached data and garbage collection {i.e. cache-data

invalidation).

The query-specific key of the data item is located in cache-memory pool 22.

Cache-policy module 24 manages a key list with the key mappings to database

objects. Database objects can include: database tables, a list of rows in database

tables, and tables and rows in a different database. The key list is used by data-

consistency invalidation module 26 (as described above).

While cache-memory pool 22 is shown in Figure 1 to reside in data-proxy

device 10, as its name implies, cache-memory pool 22 can be a "pooled" memory

resource of multiple data-proxy devices 10 {i.e. the combined memory of cache-

memory pools 22 in multiple data-proxy devices 10). In implementations in which

multiple data-proxy devices 10 are operationally connected to a common database

server 4, distributed-cache management utility 30 is activated.

Distributed cache means several data-proxy devices 10 use the combined

memory of cache-memory pools 22 to store and extract cached data items. Memory of

all connected data-proxy devices 10 is treated as a single cache-memory pool. Once

data is inserted into cache memory by one data-proxy device 10, the data is accessible

to all other data-proxy devices 10. This is performed using "libevent" open-source-

based algorithms {e.g. Memcached) in distributed-cache management utility 30.

Coherence protocols {e.g. MESI or MOESI) can also be used for management of

coherence of the cached data.

Cache policies are created based on the following arguments.

(1) How often is the specific query request received based on the log of

query requests in logger 14?

(2) How often is the specific query request being changed and

subsequently dropped from cache-memory pool 22?



(3) How much memory of cache-memory pool 22 is available to data-

proxy device 10?

(4) In the case of distributed cache, how much combined memory of

cache-memory pools 22 of all connected data-proxy devices 10 is

available?

Upon initial connection of data-proxy device 10 to application server 2 and

database server 4, query-request traffic is monitored, via monitoring utility 36, in

order to create cache polices. An auto-learning mechanism can be periodically

activated as well in order to improve and expand the cache policies for optimizing

resource usage of data-proxy device 10, and for minimizing traffic to database server

« 4. Procedures are analyzed, via analyzer utility 34, in order to determine the mapping

of tables and associated queries. Such analysis helps create cache policies and

triggers.

Database-connection manager 20 is responsible for providing an application

interface to execute commands in or retrieve data from database server 4. In order to

connect to and execute operations in database server 4, database-connection manager

20 uses standard C/C++ native libraries (supplied by database vendors), or a native

library of data-proxy device 10, which can be further optimized for improving

performance of data-proxy device 10.

Database load-balancer 42 serves to balance the load (a) of multiple data-

proxy devices 10 acting as a cluster, and (b) of database server 4 via database-

connection manager 20 as a way of scaling out a database. When data responses are

served to application server 2, the data is first prepared for delivery via data-

preparation module 44, and then transferred to application server 2 via data-streaming

module 46.

Failsafe utility 38 serves as a redundancy safeguard for hardware/software

failures. Failsafe utility 38 is enabled by connecting at least two data-proxy devices

10. Upon the occurrence of a failure of one data-proxy device 10, another data-proxy

device 10 will take over the functions of the failed data-proxy device 10. Connection

of multiple data-proxy devices 10 will make the connected devices act as a cluster

using virtual IP technology. The workload is balanced among the connected devices.



Failure of a single device will result in failsafe utility 38 automatically switching to

alternative devices that are still in the cluster and are still working.

It is noted that the components of data-proxy device 10 can be implemented as

software modules, embedded hardware modules (e.g. RAM and CPU), and/or

updateable firmware modules.

Figure 2 is a simplified flowchart of the operational procedures of the request

analyzer of Figure I 5 according to preferred embodiments of the present invention.

The process starts with a hashed query-specific key being created for a query request

(Step 50). The cache is checked to see if the key is present (Step 52). If the key is

present in cache, then the query type is designated as "cached" (Step 54), and data

retrieval and/or command execution is performed (Step 56).

If the key is not present in cache in Step 52, then the query request is classified

by command (Step 58). The query type is checked to see if the classification is

designated as "execute non-query" (Step 60). If the query type is "execute non-

query", then the query type is designated as "execute non-query" (Step 64), and the

process continues to Step 56.

If the classification is not designated as "execute non-query" in Step 60, then

the query type is designated as "execute query" (Step 66), and the query is classified

by string context (Step 68). It is then determined if the query request is a stored

procedure (SP) (Step 70). If the query request is not an SP, then the syntax of the

query request is checked for insert/update/delete (Step 72). The query request is then

checked for data changes (Step 74). If there are no data changes, then the query type

is designated as "retrieve and cache" (Step 76), and the process continues to Step 56.

If there are data changes in Step 74, then the query type is designated as "execute and

no cache" (Step 78), and the process continues to Step 56.

A stored procedure is a type of query request that can be executed by the

client. SP-type requests are different from simple query requests because inside each

SP can be a long executable code. For example: execute spl 123, "vladi", "vexler". i n

order to understand what this command line means, data-proxy device 10 needs to

read the body (i.e. metadata) of the SP. The body can include many "executables", for

example: update table Tablel row number 123 with values "vladi", "Vexler"; get all



transactions from tables "table2" and "tablel2" that belong to Vladi Vexler; or

perform an update/insert and return data.

In order to know what each SP stands for, data-proxy device 10 has to analyze

the SP.

• Is the SP performing an insert/update, or only retrieving data?

• Which database objects can be affected by the SP?

• Which data items should be dropped from cache-memory pool 22 as a result

of changes to database objects?

The amount of granularity of which objects can be affected by execution of

current stored procedure (e.g. rows/columns in tables, columns in tables, or whole

tables) depends on the complexity of the SP code hi the worst-case scenario, if the

analysis of the stored procedure reaches the conclusion that it is not certain which

objects can be affected by execution of the SP, then the SP is marked to invalidate the

maximum number of cached items so the data will always have 100% consistency.

After the SP is analyzed, it enters a pre-defined SP list. The SP list explains to

data-proxy device 10 what the consequences for executing the SP are. The process of

analyzing SPs described above similarly applies to analyzing database metadata,

triggers, and foreign keys for invalidating cached items. This is performed by parsing

update query-requests and database metadata, for example. The result of such an

analysis is a predefined list (or a rule-based "tree" of actions) which can be used in the

invalidation decision-making process.

Returning to Figure 2, if the query request is an SP in Step 70, then the SP

characteristics are checked in a pre-defined SP list (Step 80). The SP is then

determined to be known or unknown (Step 82). If the SP is unknown, then an

asynchronous SP analysis is started (Step 84), and the process continues with Steps 78

and 56. If the SP is known in Step 82, then the SP is checked for data changes (Step

86). If there are no data changes, then the query type is designated as "retrieve and

cache" (Step 88), and the process continues with Step 56. If there are data changes in

Step 86, then the query type is designated as "SP and no cache" (Step 90), and the

process continues with Step 56.



Figure 3 is a simplified flowchart of the operational procedures of the data-

consistency invalidation module of Figure 1, according to preferred embodiments of

the present invention. The process starts by analyzing a query request and any

reported changes (Step 100). Cached items are found and removed from cache (Step

102). Invalidated items are then removed from cache (Step 104). The data changes

and invalidated items are logged (Step 106), and the process ends (Step 108).

Figure 4 is a simplified flowchart of the operational procedures of the data

retrieval/command execution module of Figure 1, according to preferred

embodiments of the present invention. The process starts by analyzing a query

request, query-specific key, and query type (Step 110). The query type is then

switched according classification (Step 112). A cached query-type (Step 114) results

in data being retrieved from cache (Step 116), and the data being returned to the client

(Step 118). A retrieve-and-cache (Step 120) query-type results in the query being

executed in the database and the data response being retrieved (Step 122). The data is

then inserted into cache asynchronously (Step 124), and the process continues with

Step 118.

An execute-non-query (Step 126), SP-and-no-cache (Step 128), and execute-

and-no-cache (Step 130) query-type result in checking for triggers, dropping triggered

data keys, and changing the status of keys in cache to locked (Step 132). The queries

are then executed in the database (Step 134), the trigger list in memory is unlocked

asynchronously (Step 136), and the process continues with Step 118. Alternatively,

after Step 110, the query is launched in the database with the database agent

monitoring data changes (Step 138).

While the invention has been described with respect to a limited number of

embodiments, it will be appreciated that many variations, modifications, and other

applications of the invention may be made.



WHAT IS CLAIMED IS:

1. A device for providing distributable middleware data proxy, the device

comprising:

(a) a transparent client-connection manager for exchanging client data

between at least one application server and the device;

(b) a request analyzer for analyzing query requests from said at least one

application server;

(c) a data-retrieval/command-execution module for executing said query

requests;

(d) a database-connection manager for exchanging database data between

at least one database server and the device;

(e) a cache-memory pool for storing data items from said at least one

database server;

(f) a cache-policy module for determining cache criteria for storing said

data items in said cache-memory pool; and

(g) a data-consistency invalidation module for determining invalidated

data items based on invalidation criteria for removing from said cache-

memory pool.

2. The device of claim 1, wherein said request analyzer is configured for:

(i) creating hashed query-specific keys of said query requests; and

(ii) identifying a query type of said query requests.

3. The device of claim 1, wherein said cache-memory pool is configured

to utilize respective memory modules residing in a plurality of operationally-

connected data-proxy devices.

4. The device of claim 3 the device further comprising:

Qx) a distributed-cache management utility for managing memory capacity

in said memory modules.



5. The device of claim 4, wherein said distributed-cache management

utility enables said memory capacity to be utilized as a memory cluster in order to

balance workloads of said memory capacity.

6. The device of claim 1, the device further comprising:

(h) a logger for logging details of said query requests.

7. The device of claim 6, wherein said details includes at least one detail

selected from the group consisting of: each said query request, a hashed query-

specific key, a request type, a query date/time, client information, database-server

details, data-retrieval source, cache type, data checksum, a data-retrieval date/time, a

timestamp, client IP information, and query information.

8. The device of claim 1, the device further comprising:

(h) a database agent for:

(i) monitoring data changes in said at least one database server;

and

(ii) reporting said data changes to said data-consistency

invalidation module.

9. The device of claim 1, the device further comprising:

(h) a failsafe utility for enabling an alternate data-proxy device,

operationally connected to the device, to provide device functionality

upon an occurrence of a device failure.

10. The device of claim 1, the device further comprising:

(h) a database load-balancer for load-balancing in said at least one

database server.

11. The device of claim 1, the device further comprising:



(h) a special-procedures analyzer utility for parsing and analyzing

executable code in said query requests.

12. The device of claim 1, wherein said cache criteria include at least one

criterion selected from the group consisting of: a query-request frequency, a data-

change frequency, and an available cache-memory capacity.

13. The device of claim 1, wherein said data-retrieval/command-execution

module is operative to activate triggers for detecting said invalidated data items.

14. The device of claim 1, wherein said invalidation criteria include at

least one criterion selected from the group consisting of: an update in said database

data, a deletion in said database data, an insertion in said database data, an update in

secondary database data referenced in said database data, a deletion in said secondary

database data referenced in said database data, and an insertion in said secondary

database data referenced in said database data.

15. The device of claim 1, wherein said request analyzer is configured for

parsing said query requests.

16. The device of claim 15, wherein said parsing assists in identifying said

invalidated data items.

17. A method for providing distributable middleware data proxy, the

method comprising the steps of:

(a) transparently exchanging client data between at least one application

server and a data-proxy device;

(b) analyzing query requests from said at least one application server;

(c) executing said query requests;

(d) exchanging database data between at least one database server and said

data-proxy device;



(e) determining criteria for storing data items from said at least one

database server in data-proxy device;

(f) storing said data items from said at least one database server in said

data-proxy device; and

(g) determining invalidated data items for removing from said data-proxy

device.

18. The method of claim 17, the method further comprising the step of:

(h) managing memory capacity in respective memory modules residing in

a plurality of operationally-connected data-proxy devices.

19. The method of claim 18, wherein said step of managing includes

utilizing said memory capacity as a memory cluster in order to balance workloads of

said memory capacity.

20. The method of claim 17, the method further comprising the steps of:

(h) monitoring data changes in said at least one database server; and

(i) reporting said data changes to said data-proxy device.










	front-page
	description
	claims
	drawings

