(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 December 2008 (11.12.2008)

ﬂﬂ%wwmmmmwwmmmmwmwwmmmmm

(10) International Publication Number

WO 2008/149337 A2

(51) International Patent Classification:
GO6F 21/24 (2006.01)

(21) International Application Number:
PCT/IL2008/000729

(22) International Filing Date: 29 May 2008 (29.05.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/933,101 5 June 2007 (05.06.2007) US
(71) Applicant (for all designated Sates except US): DCF

TECHNOLOGIES LTD. [IL/TL]; 35 HalLivyatan St.,

(81) Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW,BY,BZ, CA,
CH, CN, CO, CR, CU, Cz, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT,LU,LY,MA, MD, ME, MG, MK, MN,
MW, MX, MY,MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY,TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW

(84) Designated States (unless otherwise indicated, for every

kind d regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT,BE, BG, CH, CY,CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HR, HU, IE, IS, IT,LT,LU, LV,MC, MT, NL,
NO, PL, PT, RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG,
Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

75437 Rishon Lezion (IL).

(72)
(79)

Inventor; and

Inventor/Applicant (for US only): VEXLER, Vladimir

[IL/IL]; 35 HaLivyatan St., 75437 Rishon Lezion (IL).
Published:

without international search report and to be republished

upon receipt d that report

(74) Agent: FRIEDMAN, Mark; 7 Jabotinsky St., 52520 Ra-
mat Gan (IL).

(54) Titlee DEVICES FOR PROVIDING DISTRIBUTABLE MIDDLEWARE DATA PROXY BETWEEN APPLICATION
SERVERS AND DATABASE SERVERS

Data-Proxy Device 10

Data-Streaming o Data-Prepaiation Module 44 Database Load-
Module 46 \ Balancer 42
Chient- Request Data- i Database
Connection 1 Retrieval/Command- Database- |y Serverd
r Manager 12 Anabyzer 16 Exceution Module 18 Connection '
Application’ Manager 20 S

Server 2

I

Cache Memory Pool 22

Dustubuted-Cache Data-Conststency
Management Utility 30 Invalidation Module 26

Figure 1

S
Statisties-Audit

~—
Cache Policy
J Module 24
8

Monitorng
Utihty 36
Fausafe

Utility 38
Securtty Analyzer

Utility 40 | | Utility 34

Module 32

A2 | O 00O A

I~ (57) Abstract: Devices including: atransparent client-connection manager for exchanging client data between at least one applica-
tion server and the device; arequest analyzer for analyzing query requests from at least one application server; adata-retrieval/com-
mand-execution module for executing query requests; a database-connection manager for exchanging database data between at least
one database server and the device; a cache-memory pool for storing data items from at least one database server; a cache-policy
w={ Module for determining cache criteria for storing the data items in the cache-memory pool; and adata-consistency invalidation mod-
= ule for determining invalidated data items based on invaidation criteria for removing from the cache-memory pool. Preferably, the
= cache-memory pool isconfigured to utilize respective memory modules residing in aplurality of operationally-connected data-proxy
&= devices, and a distributed-cache management utility for managing memory capacity in the modules enabling the memory capacity
& to be utilized as a cluster in order to balance workloads.

O
=

4933

8

10

15

20

25

30

WO 2008/149337 PCT/1L2008/000729

DEVICES FOR PROVIDING DISTRIBUTABLE MIDDLEWARE DATA
PROXY BETWEEN APPLICATION SERVERS AND DATABASE SERVERS

FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to devices for providing distributable
middleware data proxy between application servers and database servers.

The enormous and growing Internet population with unpredictable usage
patterns, combined with today's communication technologies introduce severe
challenges in scalability, especially for database servers. Internet applications have an
enormous number of users, report very fast growth, and suffer from unpredictable

" traffic peaks. Traditional businesses are increasingly using online transaction

processing (OLTP) applications or portals that require high availability and real-time
performance. Additionally, e-commerce businesses need "24/7" availability.

Existing relational -database management systems (RDBMS);such asM S SQL
Server, Oracle, MySql, Sybase, and DB2, suffer from scalability constraints due to the
number of transactions that are required to be executed. RDBMS's prime function has
shifted today from managing information (or data) to delivering the data. Recently, it
was shown that the only way to redly scale any system is by "scaling out”, or
distributing the workload on an expandable number of machines. However, scaling
out databases is still a "near to impossible® task. Such tasks are either very
complicated, risky, or even do not exist for certain database vendors.

Retrieval of data from databases by various clients creates a burden on the
database server to retrieve and deliver the data Current networked databases are
responsible both for the handling of the data (e.g. insert/update/delete), and for the
delivery of data.

In the prior art, systems and methods for cache capable of connecting multiple
JAVA databases are known in which data is served from cache (see Korean Patent
Publication No. 200300541 10). US Patent No. 6154749 teaches a distributed caching
scheme for database systems. US Patent No. 6167438 teaches a method and system

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

for distributed caching, prefetching, and replication. WO Patent Publication No.
03081464 teaches a database system comprising database access object with cache.
However, such approaches require application redesign and manual cache
configuration. Furthermore, such approaches are limited to specific databases, do not
validate data for consistency, and are not amenable to scaling out database servers.
Such approaches still require application servers to perform many of the tasks
routinely performed in a "non-cached data’ environment, such as determining data
validity.

It would be desirable to have devices for providing distributable middleware
data proxy between application servers and database servers, which can continuously
scale existing or new databases and information systems, without the need to redesign
the application, make any changes in the database, and make significant upgrades to

the database serversto scale-up and/or upgrade the data-center storage system.

SUMMARY OF THE INVENTION

It isthe purpose of the present invention to devices for providing distributable
middleware data proxy between application servers and database servers. The present
invention alows information systems, in general, to be scaled, and particularly
databases, without database or application redesign or reconfiguration. Furthermore,
auto-learning mechanisms reduce the management time of such systems to almost
zero.

For the purpose of clarity, the terms which follow are used as set forth herein.
The term "transparent client-connection manager” is used to refer to a client-
connection manager that exchanges data with an application server without requiring
the application server to reconfigure the data format, and without requiring the
application to be reconfigured. A transparent client-connection manager uses
necessary APIs for interfacing with an application server. The expression
"transparently exchanging client data" is used to refer to the process of exchanging
data with an application server without requiring the application server to reconfigure

the data format, and without requiring the application to be reconfigured.

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

Preferred embodiments of the present invention teach data-proxy devices for
bringing database access closer to the application server, saving traffic bottlenecks,
time, and server resources. Using smart-caching algorithms, the data-proxy devices
save the results of queries in cache memory. By providing data from cache memory,
"round-trip overhead" is minimized, and workload pressure of the database is
significantly reduced.

The data-proxy device is configured to handle large-scale read-write
databases. The data-proxy device automatically analyzes usage traffic and
connections between objects. The data-proxy device has auto-learning mechanisms
for:

Q) building optimal caching patterns; and

2 100% data-consistency validation a al times (including during

read/write database transactions).

Preferred embodiments of the present invention enable the processes of data
delivery and data handling to be separated in which data delivery is handled by the
data-proxy device (either a single device or multiple, connected devices). By
separating data delivery from the database:

(@) alarge portion of database resources are freed; and

2 scalability is automatically upgraded because it is aways possible to

expand this layer without changing the database center itself.

The data-proxy device is a distributable middieware data proxy between
application servers and database servers or data centers. A function of the deviceisto
intercept data requests from application servers (i.e. the clients) and the data responses
from database servers. The data-proxy device caches the data between the servers.
Upon receiving a previously-issued request, the data-proxy device returns the data
from cache memory, eliminating the need to go to the database server.

The data-proxy device is configured for both for read-write databases as well
as read-only databases. The data-proxy device includes the following interna
functions as well.

» Cache-policy creation based on: (a) the frequency of query requests for
specific data, (b) the frequency of data changes (e.g. insert, update, or

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

delete), and (c) the amount of available memory in the device. Cache
policies determine what data can be cached, and designate the optimal
time for caching the data.

. Dat&consistehcy validation provides a guarantee that the cached data
is always correct. When data changes occur, cached data is either
dropped or refreshed.

* Logging & monitoring.

» Fallsafe & redundancy mechanisms.

» Distributed cache capabilities enables multiple data-proxy devices that
are interconnected to use the collective cache memory of al the
devices like a single memory resource, alowing scaability by
increasing the number of connected data-proxy devices.

Therefore, according to the present invention, there is provided for the first
time a device for providing distributable middleware data proxy, the device including:
(& a client-connection manager for exchanging client data between a least one
application server and the device; (b) arequest analyzer for analyzing query requests
from a least one application server; (c) a data-retrieval/command-execution module
for executing the query requests; (d) a database-connection manager for exchanging
database data between & least one database server and the device; (€) a cache-memory
pool for storing data items from a least one database server; (f) a cache-policy
module for determining cache criteriafor storing the data items in the cache-memory
pool; and (g) a data-consistency invalidation module for determining invalidated data
items based on invalidation criteriafor removing from the cache-memory pool.

Preferably, the request analyzer is configured for: (i) creating hashed query-
specific keys of the query requests; and (ii) identifying a query type of the query
requests.

Preferably, the cache-memory pool is configured to utilize respective memory
modules residing in aplurality of operationally-connected data-proxy devices.

More preferably, the device further includes: (h) a distributed-cache

management utility for managing memory capacity in the memory modules.

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

Most preferably, the distributed-cache management utility enables the memory
capacity to be utilized as a memory cluster in order to balance workloads of the
memory capacity.

Preferably, the device further includes: (h) a logger for logging details of the
query requests.

Most preferably, the details includes at |east one detail selected from the group
consisting of: each query request, ahashed query-specific key, arequest type, a query
date/time, client information, database-server details, data-retrieval source, cache
type, data checksum, a data-retrieval date/time, a timestamp, client IP information,
and query information.

Preferably, the device further includes. (h) a database agent for: (i) monitoring
data changes in at least one database server; and (ii) reporting the data changesto the
data-consistency invalidation module.

Preferably, the device further includes. (h) a failsafe utility for enabling an
alternate data-proxy device, operationally connected to the device, to provide device
functionality upon an occurrence of a device failure.

Preferably, the device further includes: (h) a database |oad-balancer for load-
balancing in at least one database server. '

Preferably, the device further includes:. (h) a special-procedures analyzer
utility for parsing and analyzing executable code in the query requests.

Preferably, the cache criteria include at least one criterion selected from the
group consisting of: a query-request frequency, a data-change frequency, and an
available cache-memory capacity.

Preferably, the data-retrieval/command-execution module is operative to
activate triggers for detecting the invalidated data items.

Preferably, the invalidation criteria include at least one criterion selected from
the group consisting of: an update in the database data, a deletion in the database data,
an insertion in the database data, an update in secondary database data referenced in
the database data, a deletion in the secondary database data referenced in the database
data, and an insertion in the secondary database datareferenced in the database data.

Preferably, the request analyzer is configured for parsing the query requests.

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

Most preferably, the parsing assists in identifying the invalidated data items.

According to the present invention, there is provided for the first time a
method for providing distributable middieware data proxy, the method including the
steps of: (a) exchanging client data between at least one application server and a data-
proxy device; (b) analyzing query requests from at least one application server; (c)
executing the query requests; (d) exchanging database data between at least one
database server and the data-proxy device; (e) determining criteria for storing data
items from a least one database server in data-proxy device; (f) storing the data items
from a least one database server in the data-proxy device; and (g) determining
invalidated dataitems for removing from the data-proxy device.

Preferably, the method further includes the step of: (h) managing memory
capacity in respective memory modules residing in a plurality of operationaly-
connected data-proxy devices.

Most preferably, the step of managing includes utilizing the memory capacity
asamemory cluster in order to balance workloads of the memory capacity.

Preferably, the method further includes the steps of: (h) monitoring data
changes in a least one database server; and (i) reporting the data changes to the data-
proxy device.

These and further embodiments will be apparent from the detailed description

and examples that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is herein described, by way of example only, with
reference to the accompanying drawings, wherein:

Figure 1 is a simplified schematic block diagram of a data-proxy device

implemented between an application server and a database server, according to

preferred embodiments of the present invention;

Figure 2 is a simplified flowchart of the operational procedures of the request

analyzer of Figure 1, according to preferred embodiments of the present

invention;

10

15

20

25

30

WO 2008/149337 PCT/1L2008/000729

Figure 3 is a simplified flowchart of the operational procedures of the data-
consistency invalidation module of Figure 1, according to preferred
embodiments of the present invention;

Figure 4 is a smplified flowchart of the operational procedures of the data
retrieval/command execution module of Figure |y according to preferred

embodiments of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to devices for providing distributable
middieware data proxy between application servers and database servers. The
principles and operation for providing such middleware data proxy, according to the
present invention, may be better understood with reference to the accompanying
description and the drawings.

Referring now to the drawings, Figure 1 is a simplified schematic block
diagram of a data-proxy device implemented between an application server and a
database server, according to preferred embodiments of the present invention. An
application server 2 (i.e. the client) and a database server 4 are shown connected viaa
data-proxy device 10. Data-proxy device 10 is operationally connected to a LAN
network using a standard network switch like other servers (including application
server 2 and database server 4). This enables data-proxy device 10:

(1) to be detected by standard network-monitoring utilities, and

2 to detect al other servers on the network, including application server

2 and database server 4.

Data-proxy device 10 includes. a transparent client-connection manager 12, a
logger 14, a request analyzer 16, a data-retrieval/command-execution module 18, a
database-connection manager 20, a cache-memory pool 22, a cache-policy module 24,
a data-consistency invalidation module 26, a database agent 28, a distributed-cache
management utility 30, a statistics-audit module 32, an analyzer utility 34, a
monitoring utility 36, a failsafe utility 38, a security utility 40, a database load-
balancer 42, a data-preparation module 44, and a data-streaming modul e 46.

10

15

20

25

30

WO 2008/149337 PCT/1L2008/000729

Client-connection manager 12 is responsible for the connecting application

server 2, which requests data via query requests, and data-proxy device 10. Client-

connection manager 12 is also responsible for returning application server 2 with data

responses to.

By imitating standard, database, network protocols, data-proxy device 10

appears to application server 2 as a standard database server (i.e. database server 4).

Examples of such network protocols include: TDS 7.x+ for Microsoft SQL Server,
TDS for Sybase, MySqgl Protocol for MySqgl, DRDA/DB2 Connect for DB2, and
Sgl*Net for Oracle.

Logger 14 logs al requests into an internal database (e.g. Mysql, Berkley, or

other types of standard RDBMYS). The datathat islogged includes:

query request;

hashed key of the query request;

request type;

guery date/time;

client information;

details of target database server 4;

whether dataisfrom cache-memory pool 22 or from database server 4;

type of cache selected;

checksum of the data which is a hashed key of the data (used for analysis to

detect data changes);

data-retrieval date/time when data was taken from database server 4; and

timestamp;

The logs generated by logger 14 serves severa purposes including:

(@) a basis for cache-policy creation and statistical analysis via cache-
policy module 24 and statistics-audit module 32;

(2 a source for monitoring data-flow statistics via statistics-audit module
32 and monitoring utility 36; and

(3) aresource for auditing security via security utility 40.

The process of logging is performed asynchronously with virtually no impact

on the performance of data-proxy device 10.

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

Among other things, request analyzer 16 isresponsible for:

Q) creating query-specific keys using hash algorithms (e.g. Tiger-Hash,
MDS5, or SHAI);

2 identifying query type for deterrnining whether the relevant data
can/should be cached or served from cache-memory pool 22; and

(3) transmitting the query-specific key and query type to data
retrieval/command-execution module 18.

Data-retrieval/command-execution module 18 is usually launched by request
analyzer 16 in the process of retrieving parameters the query request, the query-
specific key and the query type. Data-retrieval/command-execution module 18 is
responsible for several tasks including:

(1) returning data from cache-memory pool 24 to client-connection

manager 12 (if the datais already in cache-memory pool 22);

2 executing query in database server 4 (if the data is not aready in
cache-memory pool 24), and returning the data response to client-
connection manager 12; and

(3) asynchronously:

@ for a "cacheable" datatype, storing the data in cache-memory
pool 22 (viaforking anew process); and

(b) checking in a pre-defined list if execution of the query should
launch one or moretriggers,

(© launching any triggers for invalidating (i.e. "dropping") cached
data from cache-memory pool 22.

Execution of queries in database server 4 is performed via database-
connection manager 20. Triggers are defined for handling data consistency and
integrity. Data-proxy device 10 is configured to interface read-write databases,
meaning data-proxy device 10:

Q) handles insert/update/delete query requests, and executes such queries

in database server 4;

2 handles changes to data which may occur from external processes (e.g.

scheduled data transformation services (DTS) and/or other back-end

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

10

application processes that make changes without going through data-
proxy device 10); and

©)] provides the most current and accurate data a all times.

In order to provide such capabilities, data-proxy device 10 caches as much
data as possible according to assessment, via analyzer utility 34, of cache policies
defined in cache-policy module 24. When data ‘chang&s occur, data-proxy device 10
can:

(@) identify the cached items, including the data rows/columns that were

changed; and

2 invalidate and remove the changed items from cache-memory pool 22.

Upon a query request for the same data which was affected by the change, the
query will be executed in database server 4 and cached again in cache-memory pool
22. The identification of what is affected by a data change is performed by internal
mechanisms including pre-defined triggers which are commands that are executed in
cases of execution-specific queries. An example of atrigger is:

<trigger_command smart =" true" >

<example>EXECUTE UpdateUser Newsletters @user_id = 722191, @IsAdds = 1

</example>

<prefix>EXECUTE UpdateUser Newsl etter s</pr efix>

<suffix>@user_id = </suffix>

<suffix_params>— 1.6~-</suffixjparams>

</trigger_command>

<query>EXECUTE GetUser NewslettersAlerts @UserID = ~~|~~</query>

Such a trigger means that when a command starts with "EXECUTE
UpdateUser Newsletters' with a specific @user_id, the trigger drops the read query-
request: "EXECUTE GetUserNewdlettersAlerts @UserID = __ " from cache-
memory pool 22. Trigger policies are based on:

(1) dependencies between database objects, tables, triggers, stored

procedures, foreign keys, and database metadata in database server 4;

2 the parsing and analysis of query-string context (e.g. finding relations

between queries); and

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

11

3 data received by data-consistency invalidation module 26 from
database agent 28.

The creation of such cache-dropping triggers is performed by two units. data-
consistency invalidation module 26 and database agent 28 (installed in database server
4). These units are described below.

Data-proxy device 10 creates a correlation list between all related read and
write query-requests. Below is an example of a correlated set of read and write query-
requests.

* Read query-request: Get apricelist for al dogsin table "Animals'.
* Write query-request: Update the price in table "Animals' where the type is

"dog".

When the write query-request is processed, the data of the read query-request
has to be removed from cache-memory pool 22. Furthermore, during the process of
executing the query that performs the changes, all related read query-requests need to
be "locked". A locked query-request is transferred directly to database server 4, and
the data response is not cached. A query-request can only be cached again, when a
locked status has been removed (using the related pre-defined cache policy).

If a data change is being processed, al related read query-requests are
forwarded to database server 4 for handling data consistency and locking requests. In
special cases in which database vendors have defined sophisticated logic and
algorithms (which can change from version to version or be manually configured),
locking of requests during the data changes is |eft to database server 4.

Database agent 28 servesto:

Q) monitor what data changes in database server 4 cause which specific

commands; and

2 monitor "back-end" data changes (eg. batch commands, DTS

execution, execution of commands by a client other than data-proxy
device 10, and direct online changes by aDBA).

In implementations, each database vendor has a different version of database

agent 28; even different database versions can have potentially different database

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

12

agents 28. Such database-specific agents serve the same function, but utilize different
technology.

When data-proxy device 10 receives a query request that is identified as a
potential data-changing query, a message is sent to database agent 28 to monitor the
as described with regard to Figure 4. Database agent 28 monitors database server 4
by:

Q) monitoring the mapping of memory objects that are responsible for a

guery-execution plan; and

(2) monitoring the transaction log.

Database agent 28 creates a monitoring report that is sent to data-consistency
invalidation module inside data-proxy device 10. The report includes:

(1) the query that performed the data change that initiated the monitoring

process; and

(20 which tables and rows were affected by the query execution.

In order to keep track of data changes that are not being made through data-
proxy device 10, via a back-end process (e.g. DTS), database agent 28 can be
configured to check periodically for data changes written in the transaction log. After
configuration, database agent 28 automatically checks all data changes that were
made in database server 4 and recorded in the transaction log. Database agent 28
creates an external-change report, which is sent to data-consistency invalidation
module 26 inside data-proxy device 10, indicating the data changes (e.g. tables and
rows) that were made to database server 4.

Data-consistency invalidation module 26 is responsible for invalidating and
removing cached datathat is no longer valid from cache-memory pool 22 due to data
changes that were made. Data-consistency invalidation module 26 can be executed by
data-retrieval/command-execution module 18, launching a pre-defined list of
invalidation rules. Data-consistency invalidation module 26 also uses the monitoring
and external-change reports from database agent 28. Data-proxy device 10 then finds
the cached data items that are related to the changed database objects in database
server 4 using akey list created and managed by cache-policy module 24 and analyzer

10

15

20

25

30

WO 2008/149337 PCT/1L2008/000729

13

utility 34 (described below), and removes the related data items from cache-memory
pool 22.

If the information-granularity level of the cached data items is known on a
"row level", then specific data items will be dropped from cache-memory pool 22. If
the information-granularity level of some cached dataitems is only known on a"table
level" (without the detailed information about the rows), then all cached data items
associated with the table are removed cache-memory pool 22. If there is a chance that
some cached data items are related to the data change that was made, then the cached
data items are also removed from cache-memory pool 22. Information on cached data
items that were removed from cache-memory pool 22 is recorded in an internal
database in logger 14.

Data-proxy device 10 includes a large amount of RAM memory. Most of this
memory is used to store cached data in cache-memory pool 22. In order not to
overburden the available memory with data that is irrelevant, algorithms are used as
part of cache-policy module 24 which serves as a cache-memory manager to hold the
most-relevant and most-frequently-used data. hi genera, the relevance of data is
primarily based on when the data was last requested. This means that the primary
factor for determining cache-data "validity" istime-based. Each data item is cached
by a pre-defined cache policy, and can be cached for variable amounts of time (e.g.
several seconds to several minutes). Examples of cache policies include:

Q) "For query strings that begin with. .., store for 600 seconds":
<CachePolicy name = "Very.Long.Cache" enable="true" duration="600">
<query type = "CommandPrefix" > Board GetNodeFieldMask</query>
<query type = "CommandPrefix" > Board GetFieldsNamesList</query>
<query type= "CommandPrefix" >SELECT node id, product id FROM
Te_nodes</query>
</CachePolicy>

2 "For query strings that contain table names. .., storefor 300 seconds’:
<CachePolicy name = "xxxx" enable = "true" duration="300">
<guery type = "Contains' > Tablel</query>
<guery type = "Contains' > Te_nodes</query>
<query type = "Contains' > Thl5_tree</query>
</CachePolicy>

10

15

20

25

WO 2008/149337 PCT/IL2008/000729

14

Cache-policy module 24 is also responsible for:

(@) matching the right cache policy to the query request and its resullt;

2 inserting data into and retrieving data from cache-memory pool 22 via

data-retrieval/command-execution module 18; and

(3) managing cached data and garbage collection {i.e. cache-data

invalidation).

The query-specific key of the data item is located in cache-memory pool 22.
Cache-policy module 24 manages a key list with the key mappings to database
objects. Database objects can include: database tables, a list of rows in database
tables, and tables and rows in a different database. The key list is used by data
consistency invalidation module 26 (as described above).

While cache-memory pool 22 is shown in Figure 1 to reside in data-proxy
device 10, as its name implies, cache-memory pool 22 can be a "pooled’ memory
resource of multiple data-proxy devices 10 {i.e. the combined memory of cache-
memory pools 22 in multiple data-proxy devices 10). In implementations in which
multiple data-proxy devices 10 are operationally connected to a common database
server 4, distributed-cache management utility 30 is activated.

Distributed cache means several data-proxy devices 10 use the combined
memory of cache-memory pools 22 to store and extract cached dataitems. Memory of
all connected data-proxy devices 10 is treated as a single cache-memory pool. Once
dataisinserted into cache memory by one data-proxy device 10, the datais accessible
to al other data-proxy devices 10. This is performed using "libevent" open-source-
based algorithms {eg. Memcached) in distributed-cache management utility 30.
Coherence. protocols {eg. MESI or MOESI) can aso be used for management of
coherence of the cached data.

Cachepolicies are created based on the following arguments.

(@) How often is the specific query request received based on the log of

guery requests in logger 14?
2 How often is the specific query request being changed and
subsequently dropped from cache-memory pool 227

WO 2008/149337 PCT/IL2008/000729

10

“®

15

20

25

30

15

©)] How much memory of cache-memory pool 22 is available to data-
proxy device 10?

4 In the case of distributed cache, how much combined memory of
cache-memory pools 22 of all connected data-proxy devices 10 is
available?

Upon initial connection of data-proxy device 10 to application server 2 and
database server 4, query-request traffic is monitored, via monitoring utility 36, in
order to create cache polices. An auto-learning mechanism can be periodically
activated as well in order to improve and expand the cache policies for optimizing
resource usage 6f data-proxy device 10, and for minimizing traffic to database server
4. Procedures are analyzed, via analyzer utility 34, in order to determine the mapping
of tables and associated queries. Such analysis helps create cache policies and
triggers.

Database-connection manager 20 is responsible for providing an application
interface to execute commands in or retrieve data from database server 4. In order to
connect to and execute operations in database server 4, database-connection manager
20 uses standard C/C++ native libraries (supplied by database vendors), or a native
library of data-proxy device 10, which can be further optimized for improving
performance of data-proxy device 10.

Database load-balancer 42 serves to balance the load (a) of multiple data-
proxy devices 10 acting as a cluster, and (b) of database server 4 via database-
connection manager 20 as a way of scaling out a database. When data responses are
served to application server 2, the data is first prepared for delivery via data-
preparation module 44, and then transferred to application server 2 via data-streaming
module 46.

Failsafe utility 38 serves as a redundancy safeguard for hardware/software
failures. Failsafe utility 38 is enabled by connecting a least two data-proxy devices
10. Upon the occurrence of afailure of one data-proxy device 10, another data-proxy
device 10 will take over the functions of the failed data-proxy device 10. Connection
of multiple data-proxy devices 10 will make the connected devices act as a cluster

using virtual IP technology. The workload is balanced among the connected devices.

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

16

Failure of a single device will result in failsafe utility 38 automatically switching to
alternative devices that are still in the cluster and are still working.

It isnoted that the components of data-proxy device 10 can be implemented as
software modules, embedded hardware modules (eg. RAM and CPU), and/or
updateable firmware modules.

Figure 2 is a simplified flowchart of the operational procedures of the request
analyzer of Figure | according to preferred embodiments of the present invention.
The process starts with a hashed query-specific key being created for a query request
(Step 50). The cache is checked to see if the key is present (Step 52). If the key is
present in cache, then the query type is designated as “cached" (Step 54), and data
retrieval and/or command execution is performed (Step 56).

If the key isnot present in cache in Step 52, then the query request is classified
by command (Step 58). The query type is checked to see if the classification is
designated as "execute non-query” (Step 60). If the query type is "execute non-
query”, then the query type is designated as "execute non-query” (Step 64), and the
process continues to Step 56.

If the classification is not designated as "execute non-query" in Step 60, then
the query type is designated as "execute query” (Step 66), and the query is classified
by string context (Step 68). It is then determined if the query request is a stored
procedure (SP) (Step 70). If the query request is not an SP, then the syntax of the
query request is checked for insert/update/delete (Step 72). The query request is then
checked for data changes (Step 74). If there are no data changes, then the query type
is designated as "retrieve and cache" (Step 76), and the process continues to Step 56.
If there are data changes in Step 74, then the query type is designated as "execute and
no cache" (Step 78), and the process continues to Step 56.

A stored procedure is a type of query request that can be executed by the
client. SP-type requests are different from simple query requests because inside each
SP can be along executable code. For example: execute spl 123, "vladi”, "vexler". in
order to understand what this command line means, data-proxy device 10 needs to
read the body (i.e. metadata) of the SP. The body can include many "executables’, for
example: update table Tablel row number 123 with values "vladi", "Vexler"; get all

10

15

20

25

30

WO 2008/149337 PCT/IL2008/000729

17

transactions from tables "table2" and "tablel2" that belong to Vladi Vexler; or
perform an update/insert and return data.

In order to know what each SP stands for, data-proxy device 10 hasto analyze
the SP.

* Isthe SP performing an insert/update, or only retrieving data?

* Which database objects can be affected by the SP?

* Which data items should be dropped from cache-memory pool 22 as a result
of changes to database objects?

The amount of granularity of which objects can be affected by execution of
current stored procedure (e.g. rows/columns in tables, columns in tables, or whole
tables) depends on the complexity of the SP code. hi the worst-case scenario, if the
analysis of the stored procedure reaches the conclusion that it is not certain which
objects can be affected by execution of the SP, then the SP is marked to invalidate the
maximum number of cached items so the datawill alwayshave 100% consistency.

After the SP isanayzed, it enters apre-defined SP list. The SP list explains to
data-proxy device 10 what the consequences for executing the SP are. The process of
analyzing SPs described above similarly applies to analyzing database metadata,
triggers, and foreign keys for invalidating cached items. This is performed by parsing
update query-requests and database metadata, for example. The result of such an
analysisis apredefined list (or arule-based "tree" of actions) which can beused in the
invalidation decision-making process.

Returning to Figure 2, if the query request is an SP in Step 70, then the SP
characteristics are checked in a pre-defined SP list (Step 80). The SP is then
determined to be known or unknown (Step 82). If the SP is unknown, then an
asynchronous SP analysisis started (Step 84), and the process continues with Steps 78
and 56. If the SP is known in Step 82, then the SP is checked for data changes (Step
86). If there are no data changes, then the query type is designated as "retrieve and
cache" (Step 88), and the process continues with Step 56. If there are data changes in
Step 86, then the query type is designated as "SP and no cache" (Step 90), and the

process continues with Step 56.

10

15

20

25

WO 2008/149337 PCT/IL2008/000729

18

Figure 3 is a simplified flowchart of the operational procedures of the data-
consistency invalidation module of Figure 1, according to preferred embodiments of
the present invention. The process starts by analyzing a query request and any
reported changes (Step 100). Cached items are found and removed from cache (Step
102). Invalidated items are then removed from cache (Step 104). The data changes
and invalidated items are logged (Step 106), and the process ends (Step 108).

Figure 4 is a simplified flowchart of the operationa procedures of the data
retrieval/command execution module of Figure 1, according to preferred
embodiments of the present invention. The process starts by analyzing a query
request, query-specific key, and query type (Step 110). The query type is then
switched according classification (Step 112). A cached query-type (Step 114) results
in data being retrieved from cache (Step 116), and the data being returned to the client
(Step 118). A retrieve-and-cache (Step 120) query-type results in the query being
executed in the database and the data response being retrieved (Step 122). The datais
then inserted into cache asynchronoudly (Step 124), and the process continues with
Step 118.

An execute-non-query (Step 126), SP-and-no-cache (Step 128), and execute-
and-no-cache (Step 130) query-type result in checking for triggers, dropping triggered
data keys, and changing the status of keys in cache to locked (Step 132). The queries
are then executed in the database (Step 134), the trigger list in memory is unlocked
asynchronously (Step 136), and the process continues with Step 118. Alternatively,
after Step 110, the query is launched in the database with the database agent
monitoring data changes (Step 138).

While the invention has been described with respect to a limited number of
embodiments, it will be appreciated that many variations, modifications, and other

applications of the invention may be made.

WO 2008/149337 PCT/1L2008/000729

19

WHAT ISCLAIMED IS:

1 A device for providing distributable middleware data proxy, the device
comprising:

€) a transparent client-connection manager for exchanging client data
between & |east one application server and the device;

(b) areguest analyzer for analyzing query requests from said at least one
application server;

(© a data-retrieval/command-execution module for executing said query
requests,

(d) a database-connection manager for exchanging database data between
at least one database server and the device;

(e a cache-memory pool for storing data items from said & least one
database server;

) a cache-policy module for determining cache criteria for storing said
dataitems in said cache-memory pool; and

(9) a data-consistency invalidation module for determining invalidated
data items based on invalidation criteria for removing from said cache-

memory paool.

2. The device of claim 1, wherein said request analyzer is configured for:
0] creating hashed query-specific keys of said query requests; and
(i) identifying aquery type of said query requests.

3. The device of clam 1, wherein said cache-memory pool is configured
to utilize respective memory modules residing in a plurality of operationally-

connected data-proxy devices.

4. The device of claim 3, the device further comprising:
Qx) a distributed-cache management utility for managing memory capacity

in said memory modules.

WO 2008/149337 PCT/1L2008/000729

20

5. The device of clam 4, wherein said distributed-cache management
utility enables said memory capacity to be utilized as a memory cluster in order to
balance workloads of said memory capacity.

6. The device of claim 1, the device further comprising:

(h) alogger for logging details of said query requests.

7. The device of claim 6, wherein said details includes & least one detail
selected from the group consisting of: each said query request, a hashed query-
specific key, a request type, a query date/time, client information, database-server
details, data-retrieval source, cache type, data checksum, a data-retrieval date/time, a
timestamp, client IP information, and query information.

8. The device of claim 1, the device further comprising:
(h) a database agent for:
0] monitoring data changes in said at least one database server;
and
(i) reporting said data changes to said data-consistency

invalidation module.

9. The device of claim 1, the device further comprising:
(h) a fallsafe utility for enabling an alternate data-proxy device,
operationally connected to the device, to provide device functionality

upon an occurrence of adevice falure.
10. Thedeviceof claim 1, the device further comprising:
(h) a database load-balancer for load-balancing in said at least one

database server.

11. Thedeviceof claim 1, the device further comprising:

WO 2008/149337 PCT/1L2008/000729

21

(h) a gpecia-procedures analyzer utility for parsing and analyzing

executable code in said query requests.

12. The device of claim 1, wherein said cache criteria include at least one
criterion selected from the group consisting of: a query-request frequency, a data-

change frequency, and an available cache-memory capacity.

13. The device of clam 1, wherein said data-retrieval/command-execution

module is operative to activate triggers for detecting said invalidated data items.

14. The device of clam 1, wherein said invalidation criteria include a
least one criterion selected from the group consisting of: an update in said database
data, a deletion in said database data, an insertion in said database data, an update in
secondary database data referenced in said database data, a deletion in said secondary
database data referenced in said database data, and an insertion in said secondary
database data referenced in said database data.

15. The device of claim 1, wherein said request analyzer is configured for

parsing said query requests.

16. The device of clam 15, wherein said parsing assists in identifying said
invalidated data items.

17. A method for providing distributable middleware data proxy, the
method comprising the steps of:
@ transparently exchanging client data between at least one application
server and a data-proxy device;
(b) analyzing query requests from said at least one application server;
(© executing said query requests;
(d) exchanging database data between at least one database server and said

data-proxy device;

WO 2008/149337

(€)

(f)

(9)

18
(h)

19.

PCT/IL2008/000729

22

determining criteria for storing data items from said a least one
database server in data-proxy device;

storing said data items from said at least one database server in said
data-proxy device; and

determining invalidated data items for removing from said data-proxy

device.
The method of claim 17, the method further comprising the step of:
managing memory capacity in respective memory modules residing in

aplurality of operationally-connected data-proxy devices.

The method of claim 18, wherein said step of managing includes

utilizing said memory capacity as a memory cluster in order to balance workloads of

said memory capacity.

20.
(h)
(i)

The method of claim 17, the method further comprising the steps of:
monitoring data changes in said at |east one database server; and

reporting said data changes to said data-proxy device.

PCT/IL2008/000729

WO 2008/149337

1/4

T 9an3r g

9T SINPOJA UoTEpITeAl] 0€ Ammnn JwswsSeusyy pe AN | | or &mmn
\4 Kous)s1sUOD)-B1B(T oYoBD~PaINGLISIT IozATeuy A1Inoag
A ¢
\\ 8¢ Amnn
P . oJes[req
a5eqEIE(] TT 1004 A10TRN-6Y0E)) PT SIMPON CE 9MPON
Aotjog-eyoe) | | ypny-sonsperg || 9€ ANTAN
3urIoIruoA
w || 0z Io3eusy 4
p IOATS MH.V UORORTOY) | 8T S[NPOJAl UOTINOSXH o1 ozkTeTy 7T Te3eury
5 -aseqeie(] "PHBIO/[eASLIRY 1sonba Y T 19830 Honoston
sseqeie(-B1R(] g 4 1 -JURI)
P Ieoueleq 9% SMPOA
-pBO 9seqele(pb oInpoIA voneredoig-eieq |7 Surmreeng-eie

7 JOATOG
uoreorddy

0T 991A8(J AX0Ig-BIR(]

PCT/IL2008/000729

WO 2008/149337

2/4

PuUBTIIOD 9IN0aXe

7 9In31g

JO/pUE BIED 9ASINSY 9

ayorD
\ om0 °1080 puw pue M\wogﬁ
ou pue 4§ QASTIIIAX i :
N =odAT 06 = odK1 g8 oYoBd Ou =9dAL 9,
X PUE 9]n00X9
¢, So8ueyo =2odL1, 8L

BB 9pnyoul
dS s°0 98

sIsATeue JS
SNOUOIYOUASE 11818 $8

iaIpaooxd
PaI03S ST 0/

9107ep/e1Bpdn /sresur
JIOJ XeJUAS ooy 7/

A1onb
-TIOU 9]NDAXD

=odA1, ¥9

¢ Arenb-uou
oInosxs = od£L71, (9

poyord
=0odA], pS

IXo1U00 wﬁbm. Aq
UONEBOISSLo A1en) {9
N

Axonb onosxo
=9d4T 99

_ PUBTITIO) AQ UOBIISSE]d A1ony) |6 _

D

£2YoeD

UI SISTX2 Ao 7S

_ Ko ogroads-Krenb paysey syeary cmq

PCT/IL2008/000729

WO 2008/149337

3/4

€ 2an3ry

SpUa 8592001 80T

SUIS) PoJepI[BAUT
pue seBueyo
e1ep 30T 901

SYoBO WIOJJ SWIRJ
PSIEPI[RAUT SAOWSY (T

OUOBO WOI} SAOWIAX
01 SWS)T PAYOEd PULT 70T

y10der sa3uetpd pus
jsenber L1901 00T

PCT/IL2008/000729

WO 2008/149337

4/4

7 913

\ JUSI[D 03 B8P WISy QYT

\

(snouoryouAse) ayoro
OJuT BYEp JSU] pTT

N

oyoBO Eo.ﬂ BlED
oASIY 9T

payoen
1481

1[NSSI BIBp 2ASLISX
pue oseqejep Ur
Kronb emnosxyg 771

2yoro pue
QALY
071

(snouoxyoudse) Lrowewr
U1 38 198311 Jo0Tup) 9¢

1

oseqeIEp Ul
Aronb smosxyg peY

N

Pax[00] 01 870BD
Ul snje)s A3 oFueyo 29
‘sAoy eyep poreSSin doip

‘SI58311) 10T ooy ZET

Arenb-uou
omMosxyg 971

ayoEo ou
pue dS 8TI

9UJBd OU PUE
oMoaxXyg O€T

od£y L1onb
PIMS TTT

onj10ads-Arenb 9senbar L1end) 011

9d£y Axanb pue ‘Ao

$oFULYD 0TI
JueZe aseqelep oALYy
pue Arenb youneT Q¢1

	front-page
	description
	claims
	drawings

