PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY PCT)

(51) International Patent Classification 6 : (1) International Publication Number: WO 96/41449
HO04L 9/00, HO4K 1/00, GO6F 9/00, 15/00 Al . L

(43) International Publication Date: 19 December 1996 (19.12.96)
(21) International Application Number: PCT/US96/09916 | (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,
CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL,
- | (22) International Filing Date: 7 June 1996 (07.06.96) 1S, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV,
) MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, TJ, T™M, TR, TT, UA, UG, UZ, VN,
(30) Priority Data: ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent
08/488,195 7 June 1995 (07.06.95) Us (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent

D

(71) Applicant: DIGITAL RIVER, INC. [US/US]; 5198 West 76th
Street, Edina, MN 55439 (US).

(72) Inventor: RONNING, Joel, A.; 4212 Alden Drive, Edina, MN
55416 (US).

(74) Agent: BRUESS, Steven, C.; Merchant, Gould, Smith, Edell,
Welter & Schmidt, 3100 Norwest Center, 90 South Seventh
Street, Minneapolis, MN 55402 (US).

(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: TRY-BEFORE-YOU-BUY SOFTWARE DISTRIBUTION AND MARKETING SYSTEM

(87) Abstract

A computer-based system is provided for demonstrating software programs to a potential purchaser and for gathering marketing
information related to the demonstration of the programs. The system enables the software programs for execution upon selection by a user,
and allows the user to subsequently operate or sample the selected software program. The system maintains the selected software program
in a locked state to prevent unauthorized duplication of the selected software program, and selectively disables the sampling, such as when
the user completes the sampling or if the system detects that the user is attempting to copy the sampled application. A code is generated
that identifies one or more particular software programs and contains information relating to sampling of the particular software programs
by the user, such as which applications were sampled and how many times they were sampled.

applications under the PCT.

AM
AT

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbdte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya
Kyrgystan

Democratic People’s Republic

of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

TRY BEFORE YOU BUY SOFTWARE
DISTRIBUTION AND MARKETING SYSTEM

FIELD OF THE INVENTION
The present invention relates to a system and
method for gathering data related to usage of software
programs sampled by a potential purchaser or other user
of the programs.

BACKGROUND OF THE INVENTION

Customers or potential purchasers of software
programs often desire to test the programs before
determining whether or not to purchase them. This may
occur because written literature does not adequately
provide the customer with a feel for the functionality
of the software program when in operation. The written
literature simply describes the program, and customers
often want to actually work with the software program in
order to determine if they want to buy the program.

Some software vendors provide demonstration
programs of their software programs for sale. These
demonstration programs typically are not the fully
operating version of the software program. The
demonstration program usually contains only some of the
functionality of the full software program in order to
provide the customer with a feel for the functionality
of the program. However, since the demonstration
version normally is not a fully operating version of the
program, it does not provide a customer with a complete
picture of the program's functionality. Therefore,
demonstration versions are limited in how they may
assist a customer in deciding whether to purchase a
particular software program.

Recently, some software vendors are providing
fully operating versions of software programs which a
customer may sample. These software programs are
intended to be securely stored on a particular storage

medium. Therefore, when a customer samples a fully

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

2

operating version of a program, the program being
sampled is securely maintained by another program which
seeks to prevent the customer from obtaining a free copy
of the sampled program.

These software vendors typically distribute
the programs to be sampled on some type of transportable
storage medium. For example, a software vendor may
provide a floppy diskette on which is contained the
program to be sampled. The diskette may be locked
through changes to the physical storage medium such that
the customer may not obtain a free copy of the program.
Other software vendors provide a CD-ROM which stores a
large number of programs which may be sampled. Such a
CD-ROM typically contains a program which manages and in
effect supervises the sampling of the programs such that
a customer may not obtain copies of the programs without
first purchasing them and obtaining particular unlocking
codes.

These distribution systems for sampling fully
operating versions of programs, however, are generally
limited in that they do not provide for on-line
distribution. These systems typically distribute the
programs on some type of transportable storage medium,
such as a CD-ROM or hard disk drive sold with a
computer. This type of distribution can be more
burdensome to the computer user, because an on-line
distribution channel is more easily accessible, since
the computer users need simply "dial up" a network or
bulletin board.

These systems for providing the sampling of
fully operating versions of programs are also limited in
the security provided to the programs being sampled.

For example, they typically prevent unauthorized copying
of programs by dividing the program or removing portions
of the program such that a secure "key" is required to
reassemble the program and thus operate it. These
methods, however, require that one tamper with the

program, which can make the program unstable. 1In

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

addition, these methods typically do not work with all
applications. For example, some applications use a
checksum program to prevent damage from computer
viruses. These distribution methods change the format
of the program, which can result in the checksum virus
check incorrectly returning an error or message that the

program is corrupted.

SUMMARY OF THE INVENTION

One aspect of the is a system and method for
demonstrating software programs to a potential purchaser
of the programs and for gathering marketing information
related to the demonstration of the programs. The
system receives a plurality of software programs to be
demonstrated and maintains each of the software programs
in a locked state in order to prevent unauthorized
duplication of the software programs.

Any of the software programs are enabled for
execution upon selection by a user, and the user is
allowed to subsequently operate or sample the selected
software program. The system maintains the selected
software program in the locked state during the sampling
in order to prevent unauthorized duplication of the
selected software program. The sampling of the selected
software program is selectively disabled, such as when
the user completes the sampling or if the system detects
that the user is attempting to copy the sampled
application.

In addition, a code is generated that
identifies a particular software program in the
plurality of software programs and contains information
relating to sampling of the particular software program
by the user, such as which applications were sampled and
how many times they were sampled.

Another aspect of the invention is an on-line
system and method for demonstrating software programs to

a potential purchaser of the programs. The system

‘receives from an on-line system a software program to be

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

4

demonstrated, and maintains the software program in a
locked state in order to prevent unauthorized
duplication of the software program.

The software program is enabled for execution
upon selection by a user, and the user is allowed to
subsequently operate or sample the software program.
The system maintains the software program in the locked
state during the sampling in order to prevent
unauthorized duplication of the software program. The
sampling of the software program is selectively
disabled, such as when the user completes the sampling
or if the system detects that the user is attempting to
copy the sampled application. |

A further aspect of the invention is a self-
launching system associated with a software program, and
method for implementing a self-launching system, for
demonstrating the software program to a potential
purchaser of the program. The self-launching system is
attached to a software program. The system maintains
the software program in a locked state in order to
prevent unauthorized duplication of the software
program.

The self-launching system also includes the
ability to launch itself when a user selects the
software program. Upon launching itself, the system
enables the software program for execution upon
selection by the user, and allows the user to
subsequently sample the software program. The system
maintains the software program in the locked state
during the sampling in order to prevent unauthorized
duplication of the software program. The sampling of
the software program is selectively disabled, such as
when the user completes the sampling or if the system
detects that the user is attempting to copy the sampled
application.

An additional aspect of the invention is a
self-launching system associated with a software program
or other digital information, and method for

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

implementing such a system, for distributing the
software program or other digital information to a
potential purchaser of the program. The self-launching
system is attached to a software program or other
digital information. The system maintains the software
program or other digital information in a locked state
in order to prevent unauthorized copying of the software
program or other digital information.

The self-launching system also includes the
ability to launch itself when a user selects the
software program or other digital information. Upon
launching itself, the system unlocks the software
program or other digital information in response to a
request to purchase the software program or other
digital information.

Still another aspect of the invention is a
system and method for storing a code within an operating
system of a computer in order to identify whether the
computer has executed a particular software program.

The system receives an indication that the computer has
executed the software program, and searches a non-
volatile memory in which the operating system for the
computer is stored in order to locate spare memory
locations. The system writes a code to at least one of
the spare memory locations. The code provides an
indication that the computer has executed the software
program. The system associates the code with the
software program in order to provide the indication that
the computer has previously executed the program.

An even further aspect of the invention is a
system and method for preventing unauthorized
duplication of a particular software program among a
plurality of active software programs executed on a
computer. The system receives an indication that the
computer is executing the particular software program,
and then monitors operation of the computer to determine
which of the plurality of the active software programs

is being currently executed. When the system determines

WO 96/41449 _ PCT/US96/09916

10

15

20

25

30

35

6

through the monitoring that the particular software
program is not the currently executed software progfam,
it disables execution of the particular software
program.

An additional aspect of the invention is a
computer-based system for automatic sales of software
programs. The system accesses a software program within
a computer database and maintains the software program
in a locked state in order to prevent unauthorized
duplication of the software program. In response to a
request to purchase the software program, the system
unlocks a copy of the software program and distributes
the unlocked copy. The system records how many copies
of the software program have been distributed in

response to the purchase requests.

BRIE F _THE DRAW

FIG. 1 is a diagram of the conceptual
operation of a software or digital information
distribution system.

FIG. 2 is a block diagram of hardware
components for implementing a software or digital
information distribution éystem.

FIG. 3 is a user interface for a software or
digital information distribution system illustrating
examples of programs available to be sampled and/or
purchased.

FIG. 4A is a diagram of software program files
used by a software or digital information distribution
system.

FIGS. 4B and 4C are diagrams of a package file
system for use in maintaining software programs or
digital information in a locked state.

FIG. 5 is a diagram of background processes
used by a software or digital information distribution
system.

FIG. 6 is a flow chart of a preferred active
process detection routine.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

7

FIG. 7 is a flow chart of a preferred
background processing setup routine.

FIG. 8 is a flow chart of a preferred check
status of sample count files routine.

FIG. 9 is a flow chart of a preferred "do
open" routine.

FIG. 10 is a flow chart of a preferred "do
prime" routine.

‘ FIG. 11 is a flow chart of a preferred image
driver routine.

FIG. 12 is a flow chart of a preferred install
active process detection code routine.

FIG. 13 is a flow chart of a preferred install
image driver routine.

FIG. 14 is a flow chart of a preferred open
driver routine.

FIG. 15 is a flow chart of a preferred sample
count manager routine.

FIG. 16A is a flow chart of a preferred sector
encryption/decryption routine. A

FIG. 16B is a flow chart of a preferred
varying positional key encryption/decryption routine
used with the routine of FIG. 16A.

FIG. 17 is a flow chart of a preferred setup
sample counter routine.

FIG. 18 is a flow chart of a preferred
watchdog task routine.

FIG. 19 is a flow chart of a preferred
purchase routine for allowing users to purchase sampled
software programs.

FIG. 20 is a flow chart of a preferred process
for a self-launching and on-line self-launching software
or digital information distribution system.

FIG. 21 is a flow chart of a preferred process
for generating a serial number which contains
identification of marketing information for sampled

software programs.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

FIG. 22 is a flow chart of a preferred process
for automatic sale of software programs.

DETAILED DESCRIPTION

FIG. 1 is a conceptual diagram of the
operation of a software or digital information
distribution system. A user or customer 10 may sample a
software program 12, which typically involves working
with a fully operating version of the software program
12. The system preferably maintains a secure interface
Or protective envelope 14 around the software program 12
such that the user 10 may not obtain a copy of the
software program without first purchasing it. The
system preferably maintains the sampled program in a
locked state during the sampling of the program in order
to prevent unauthorized duplication of the program, for
example, during the sampling. The system selectively
disables the sampling of the selected software program,
such as when the user completes the sampling or tampers
with the program during the sampling. The use of a
secure interface or protective envelope 14 provides the
advantage of not tampering with the program for security
purposes. This type of scheme for maintaining a program
in a locked state is described below. Other methods for
maintaining software programs in a locked state to
prevent unauthorized copying of the program are
possible, such as is disclosed in U.S. Patent Nos.
4,658,093; 4,740,890; 4,999,806; and 5,341,429.

If the user 10 purchases the software program
12, then the system copies an unlocked copy of the
software program 16 to a storage medium where the user
may access and continue to use the program. "Software
program, " "program," and "application," are used
interchangeably herein.

The present invention can also distribute
digital information (12), as indicated in FIG. 1. The
present invention views the distributed entity as
"bits, " whether it is a software program which includes

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

functionality for controlling the operation of a
computer, or simply other types of information in
digital form. Therefore, the principles of the present
invention used for distribution of information apply to
digital information generally, software programs being a
type of digital information. Digital information
includes information capable of being represented in
digital form. Digital information thus includes
software programs and also includes intellectual
property such as data representing creative or artist
expression. Other examples of digital information
include: textual works such as books and articles;
music; video; music video; fonts; graphics; and clip
art.

In distributing digital information, a user
may have the option to sample the information. For
example, when distributing locked movies in digital
form, a user may be allowed to view the first few
minutes of the movie. For distributing music, a user
may be allowed to sample a representative portion of the
music. If the digital information is a software
program, the user may be allowed to sample the program,
as mentioned above.

The digital information may also be
distributed without sample capability. For example, a
publisher may distribute a CD-ROM having several locked
"white papers" or technical works. The system can, for
example, only display titles or abstracts to a user for
purposes of allowing the user to decide which if any
textual works to purchase. When a user requests to
purchase one or more of the papers, the system unlocks
the paper and distributes it to the user. This
distribution scheme thus provides the advantage of
allowing one to purchase individual textual works in a
collection without having purchase the entire
compilation.

The system, therefore, maintains the digital

information in a locked state by using the secure

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

10

interface or protective envelope 14. When a user
requests to purchase the information and provides any
required information such as a credit card number, the
system distributes an unlocked copy (16) of the digital
information to the user.

FIG. 2 is a diagram of typical hardware
components for implementing a software or digital
information distribution system. The system includes a
computer 18 which is a typical digital computer such as
a personal computer. The computer 18 includes a
microprocessor 20 for executing software programs. The
microprocessor 20 is interfaced with a read only memory
22 and random access memory 24. The computer 18 is
interfaced with an input device 26 for entering commands
or information into the computer 18. The input device
26 may be implemented with, for example, a keyboard,
touch screen, light pen, "mouse" or other cursor control
device such as a trackball, or other device for entering
information or commands into the computer 18. The
computer 18 is typically interfaced with a printer 28,
which may be implemented with a typical computer printer
for generating a hard copy of the information stored
within the computer 18. The computer 18 is also
typically interfaced with a display device 30, which may
be implemented with a typical color or monochrome
computer monitor. A preferred hardware platform for
implementing the present invention is a Macintosh
computer, developed and sold by Apple Computer, Inc.

The computer 18 is also preferably interfaced
to devices from which it may receive software programs
to be sampled optionally along with a software program
for managing the sampling of additional software
programs. These external devices may include a digital
audiotape drive 32, disk drive 34, hard disk drive 36,
CD-ROM drive 38, or an on-line system 42 interfaced
through a modem 40. The on-line system 42 may be
interfaced to existing networks or on-line services such

) ., ®
as, for example, the Internet, America OnLine , and

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

11

Prodigy®. Computer users may download information from
networks such as the Internet.

FIG. 3 is a user interface of a software or
digital information distribution system operating within
the computer 18 by the microprocessor 20. User
interface 50 displays in window 44 a plurality of
programs which a user may sample and/or purchase.
Alternatively, window 44 can display an identification
of digital information available for purchase. In order
to sample a particular program, a user would select one
of the plurality of programs in window 44 and then
select icon 46. In addition, the system allows a user
to select other information identified in window 52, and
that information is displayed in window 51, such as:
program information; system requirements; information
about "getting started" with a particular application;
publisher information; licensing agreement; and
packaging photos.

If the user desires to purchase one of the
programs, a user would select the purchase icon 48 and
optionally the install icon 47 in order to have the
program automatically installed. When a user samples a
particular program, the system preferably displays the
number of samples remaining at location 49 and
optionally additional information such as the version of
the sampled program. As explained below, the system can
thus control how many samples are availlable to the user.
FIG. 3 is one example of user interfaces for a software
or digital information distribution system. Other user
interfaces or ways of allowing a user to interact with
the system are possible for such a system.

FIG. 4A is a diagram of files used by a
software or digital information distribution system. An
example of a software or digital information
distribution system is also referred to as a
"distribution application" in the present specification.
The system typically uses an image driver 56 and
invisible files 60. FIG. 4A also illustrates how a

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

12

software or digital information distribution system may
be implemented in a separate "stand-alone" version and a
self-launching version. 1In one embodiment, the system
58 is a separate software program which interfaces an
encrypted package 62 containing a usage file 64 and a
program or digital information 66 to be distributed
and/or sampled. The usage file 64 typically contains a
separate redundant copy of how the program or digital
information is to be used; for example, how many samples
are available. This is in addition to the invisible
files, which store encrypted copies of how many samples
are available, as explained below. Accordingly, the
usage file 64 provides another level of protection in
the event that a user tampers with or otherwise alters
the sample count information in the invisible files.

The software program or digital information is
preferably encrypted, as explained below, in order to
prevent a user from obtaining a "free" copy of the
information.

In another embodiment, a self-launching system
implementing a software or digital information
distribution system 72 is attached to a usage file 70
and program or digital information 74 to be distributed
and/or sampled. In this embodiment, distribution
application is attached to each program or information
to be distributed and/or sampled and its operation is
thus essentially invisible to the user. Therefore,
instead of requiring a user to install a software or
digital information distribution system and then sample
other software programs, a user may simply download each
program to be sampled and/or purchased. Each of those
packages contains a distribution application for
controlling the sampling or distribution of software
programs or digital information along with such programs
or information.

The distribution application 72 is typically
attached to the encrypted package by joining the

distribution application stored in a resource fork and

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

13

the encrypted package stored in the data fork into one
file 71. The operation of the resource fork for storing
structured data and the data fork for storing random
access data in a Macintosh computer system is well
known. Therefore, the file 71 includes the distribution
application 72 "wrapped around" the encrypted package 68
which includes an encrypted application or digital
information 74 along with the encrypted usage file 70.
The distribution application 72 also contains the
invisible files. The package 68 is typically encrypted
in the same manner as package 62.

As mentioned above, applications used by a
software or digital information distribution system are
maintained in a locked state. This locked state is used
to prevent unauthorized copying of the program both
while it is stored and when a user samples it. The
applications to be sampled are typically in a form only
usable by a software or digital information distribution
system in order to ensure security. Encryption as part
of a locked state is typically accomplished by
exclusive-ORing ("XORing") each byte of the application
with a positional variant, as is explained with
reference to FIGS. 16A and 16B. In addition, a package
file system is also typically used as a part of a locked
state to ensure security of the applications in a locked
state.

This package file system is illustrated in
FIGS. 4B and 4C. As shown in FIG. 4B, a package file in
a Macintosh computer system works much like a random
access memory (RAM) disk except that it is in non-
volatile memory. An image file 77 which is the desired
size of a "virtual volume" created by a software or
digital information distribution system is allocated on
a hard drive 75 or other non-volatile storage medium.
Locked applications or digital information are stored
within this partition. 1In a self-launching distribution

application, the distribution application and image file

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

14

appear as one file 67. A distribution application file
73 is also stored on the storage medium 75.

As shown in FIG. 4C, the image file 77, or in
the self-launching case the distribution
application/image file 67, is internally given the same
structure as a floppy disk. A distribution application
69 then informs the operating system of the
corresponding computer that a "floppy disk" 79 is
actually mounted. The operating system of a computer
system 81 sends read/write requests 85 to the virtual
volume 79. Instead of writing to a physical media, the
driver of the computer's operating system writes to the
virtual volume 79. The image driver 83 of the
distribution application 69 performs reading and writing
to the image files 77 and 67. This technique is also
known as a "soft partition," because the hard drive on
which the image file is located has been effectively
partitioned via software. Accordingly, a distribution
application 69 can reserve this virtual volume in order
to control reading and writing to this partition (the
physical media) and thus prevent unauthorized copying of
applications or digital information in this partition.

FIG. 5 is a diagram of background processes
used by a software or digital information distribution
system implemented within the computer 18 and executed
by the microprocessor 20. The background processes
preferably include an active process detection 76, image
driver 78, sample count manager 80, sector
encryption/decryption 82, and watchdog task 84, all of
which are described below.

FIG. 6 is a flow chart of an active process
detection routine. On an exemplary embodiment on a
Macintosh computer, this routine is implemented by a
patch to the system trap called SystemTask. This trap
is called consistently by all applications many times a
second. What makes this work is that the Finder
intercepts calls to SystemTask, and only passes on the
call of the application that is the "active" or current

WO 96/41449 PCT/US96/69916

10

15

20

25

30

35

15

"front-most" process. Therefore, when a patch to
SystemTask is called, the system assumes that the front
application called it. The system then checks the low
level variable AppName to retrieve the name of the
current front-most application.

In a windows or multi-tasking environment,
several applications can be represented by windows which
may overlap. A currently-active application is
typically represented in a window which appears in front
of the other windows, or is otherwise highlighted or
altered to indicate that it is the currently-active
program if, for example, the displayed windows are not
overlapping.

The routine begins when the system task was
called (86). The system retrieves the front-most
application name (88) and determines if the sample
program is in front (90). The sample program is the
software program being sampled by the user. The system
determines if this is the top-most or front-most program
displayed on a user's monitor. If it is the application
in front, the system determines if sample time limit has
expired (92); otherwise, the system determines if a
distribution application is in front (94). A time limit
provides for additional security by limiting how long a
user may sample a particular application. If the time
limit has expired, the system sets a flag to enable the
image driver (100) and calls the original system task
(108) . Otherwise, if the sample time limit has not
expired, the system terminates the sample application
(98) .

If as determined at step 94 the sample
application is in front, the system sets a flag to
enable the image driver (96); otherwise, a flag is set
to disable the image driver (102). ©Next, the system
determines if the sample application file is still open
(104). If it is not, the system closes and unmounts the
virtual volume (106) and calls the original SystemTask
(108).

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

16

The routine of monitoring which application is
"in front" thus provides a security measure by
preventing the unauthorized copying of an application
while it is being sampled. This system for preventing
unauthorized duplication of a particular software
program among a plurality of active software programs
executed on a computer typically includes the following
features. It receives an indication that the computer
is executing the particular software program, and
monitors operation of the computer to determine which of
the plurality of the active software programs is being
currently executed. Execution of the particular
software program is disabled when the monitoring
determines that the particular software program is not
the currently-active or top-most software program.

FIG. 7 is a flow chart of a background
processing setup routine. 1In this routine, the system
decrypts and installs a background processing code
(110) ; initializes the global variables (112); installs
a watchdog task (114) (see FIG. 18); installs active
process detection code (116) (see FIG. 12); sets up a
sample counter (118) (see FIG. 17); sets up interprocess
communication vectors (120); and installs an image
driver (122) (see FIG. 13).

FIG. 8 is a flow chart of a check status of
sample count files routine. The system preferably uses
sample count files stored within the computer 18 as
invisible files. These sample count files are
preferably each identical and maintain the sample count.
Each file typically contains an identification of each
application and the number of allowed samples for each
of the applications. If the user attempts to tamper
with a particular sample count file in order to obtain
more samples, the system detects that tampering by
comparing the tampered file with the other sample count
files. In addition, the invisible files are preferably

encrypted for additional security, such as using an XOR

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

17

operation with a key and a bit shift of the sample
counts.

In this routine, the system determines at
steps 124, 128, and 132 if the sample count files one,
two, and three, respectively, have been created. If the
sample count files have not been created, the system
creates the corresponding sample count files at steps
126, 130 and 134. While the system uses three sample
count files, more or fewer files may be used.

FIG. 9 is a flow chart of a "do open" routine.
The system first retrieves the address of "OK to Read"
flag from a background code via interprocess
communication (136). Next, the system retrieves the
address of a sector decryption routine from the
background code via interprocess communication (138) and
sets standard open flags (140).

FIG. 10 is a flow chart of a "do prime"
routine. The system first determines if this is read
call (142). This test makes the driver read only. If
this is not a read call, the system returns an error
(154) . Otherwise, the system proceeds with the routine
and retrieves a value of a flag in the background
process (144). It is next determined if the flag value
has been updated within the last two seconds (146), for
example. A flag is stored in the background process
that is constantly updated by the watchdog task. If the
flag has not been updated in the last two seconds, for
example, it means that either a valid application is not
"in front" (the sample application or distribution
application) as explained above, or that a user is using
a debugger to examine the code which implements the
system. If the flag value has been updated in the lastv
two seconds, the system reads requested sectors from
"virtual" volume (150) and returns no error (152).

The system decrypts the sectors while reading
them. The encryption/decryption of sector is explained
with reference to FIGS. 16A and 16B. If the sectors of
the application are compressed, the system also

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

18

decompresses the sectors while reading them. An example

of an asymmetrical compression/decompression algorithm,
which produces a relatively short decompression time in
comparison to compression time, is Apple Computer,
Inc.'s Cinepak compression scheme at a lossless level.
If the flag value has not been updated, the system
determines if this is a directory or volume information
block (148). 1If it is, the system executes step 150 and
returns no error (152). Otherwise, the system returns
an error (154).

FIG. 11 is a flow chart of an image driver
routine. The image driver preferably includes the
following functions: open call (156); prime call (160);
control call (164); status call (168); and close call
(172) . If any of these functions have been called, then
the system performs the corresponding routine: do open
(158) ; do prime (162); do control (166); do status
(170) ; do close (174). The do prime call (162) is
illustrated in FIG. 10. The other calls (158, 166, 170,
174) are well known in a Macintosh computer system.

FIG. 12 is a flow chart of an install active
process detection code routine. This routine involves
performing a patch system task trap (176), which is
illustrated in FIG. 6.

FIG. 13 is a flow chart of an install image
driver routine. 1In this routine, the system decrypts a
driver code from a disk into memory within the computer
18 (178). The image driver is encrypted for security
purposes so that a user cannot view the driver. The
encryption/decryption of the driver is typically
accomplished using the technique explained with
reference to FIGS. 16A and 16B. The system locks the

" driver code into memory (180). The system then opens

the driver (182).

FIG. 14 is a flow chart of an open driver
routine. In this routine, the system sets up an
interprocess communication vectors (184), which

instructs the system where to locate global data.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

19

FIG. 15 is a flow chart of a sample count
manager routine. This routine is executed when the user
requests a sample (186). The system checks to determine
if samples are available (188) by checking the sample
count files within the database. If samples are
available, the system mounts the virtual volume (192).
If the use is on-line, then the system downloads the
software packages containing encrypted programs to be
sampled and usage file and mounts the virtual volume
(190). The packages are typically compressed for
transmission using, for example, Apple Computer, Inc.'s
Cinepak compression scheme at a lossless level, and are
transmitted using TC/IP protocol.

The system then determines if the loaded image
matches the database image (196) for security purposes.
If the image does not match, the database data is
rectified to that of the image (198) and the virtual
volume is closed and unmounted (194) in order to
maintain the application in a locked state. Otherwise,
the system checks the redundant sample count on the
virtual volume to determine if samples are available and
in particular if a sample count files have been tampered
with (200). 1If no samples are available, the virtual
volume is closed and unmounted (220). Otherwise, the
system decrements the sample count and launches the
application (204) so that the user may operate the
application to be sampled.

FIG. 16A is a flow chart of a sector
encryption/decryption routine. This routine performs
encryption of the distributed digital information for
security purposes in order to prevent unauthorized
duplication of the information. In this routine, the
system determines if encryption or decryption is
required (206). The system then performs the
appropriate decryption (208) or encryption (210)
function. FIG. 16B is a flow chart of a preferred
varying positional key encryption/decryption routine
used with the routine of FIG. 16A. The routine in FIG.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

20

16B performs the actual encryption/decryption of data
and is an example of how to encrypt/decrypt the
encrypted packages 62 and 68 (see FIG. 4A) which contain
the distributed software programs or digital information
and usage files. Other encryption schemes are possible.
The significance of the encryption scheme is in
providing protection of the distributed information so
that one may not obtain an unauthorized copy of the
information without considerable time, effort, and
processing capability.

The encryption/decryption routine of FIG. 16B
uses a varying key based on byte position, also referred
to as a positional variant. The system determines if
sector encryption/decryption is required (201). If it
is, the system decrypts the first 512 byte block (203)
and then executes loops, as determined by steps 205,
207, 213, and 215, in order to encrypt/decrypt each byte
in a series a 512 byte blocks. The encryption/
decryption of each byte involves first at step 209 a
permutation to determine a key with the key =
log(position MODULO 512) X $23FEC392, and then at step
211 applying the key to the byte with an XOR operation.

FIG. 17 is a flow chart of a setup sample
counter routine. The system checks the boot block flags
(212) and checks status of sample count files (214).
This involves writing predetermined codes to spare boot
blocks of the computer in order to mark the database to
identify the execution of a software or digital
information distribution system. Accordingly, these
codes written to the boot blocks provide an indication
that a distribution application has been run before on
this particular computer.

This system for storing a code within an
operating system of a computer in order to identify
whether the computer has executed a particular software
program typically includes the following features. It
receives an indication that the computer has executed

the software program, and searches a non-volatile memory

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

21

in which the operating system for the computer is stored
in order to locate spare memory locations within the
non-volatile memory. A code is written to at least one
of the spare memory locations, and the code provides an
indication that the computer has executed the software
program. The code is associates with the software
program to provide the indication.

In the routine shown in FIG. 17, the system
determines if the sample counter system has been set up
before on this particular computer (216). If it has
been set up before, the system determines if all three
sample count files are new (218) and if they are, it
executes the following steps: £ill new files with the
value "one" at each location (200); write file creation
dates to boot blocks (224); and write file check sums to
boot blocks (226). When the sample count files are
initialized the first time the system is executed, the
value "one" is written to the files in order to signal
that the files are secure and the system can, therefore,
write sample count values to the files. Otherwise, the
system fills new files with the value "minus one" at
each location within the boot blocks (222). The "minus
one" value indicates to the system that the
corresponding sample count file has been tampered with
or is otherwise corrupted or not secure. Accordingly,
the system checks the other sample count files in order
to verify there security. If all sample count £files
have a value of "minus one," this condition indicates
that all sample count files have been corrupted and the
user is not allowed no more samples. If less than all
sample count files have a value of "minus one," then the
system can reconstruct the corrupted files using a value
in the secure or non-corrupted sample count file. The
system also preferably verifies the sample count
information in the invisible files against the
information in the usage file.

FIG. 18 is a flow chart of a watchdog task
routine. This is a VBL task, meaning it runs every time

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

22

there is a.vertical blanking interrupt. For most
monitors, that is approximately 72 times per second.

The routine has three functions. It performs a check to
determine if the sample application has timed out, and
sets a flag accordingly. It tests to determine if it
may allow the driver read, and updates a flag with the
current time to be checked by the driver. It also
encrypts and decrypts sample counts that are being
written/to and read/from the sample count files. It
performs this encryption in multiple phases, simulating
an asynchronous process. What this does is make it very
difficult for a user to determine where the
encryption/decryption is being performed.

In the routine, the system checks for an
application time out (228). It then determines if it is
"OK" for the driver to read (230). If it is, it sets a
flag to a current time (234). Otherwise, it sets a flag
to zero (232). The system then determines if a sample
count requires encryption (236). If it requires
encryption, the system performs a phase of sample count
encryption (238). Otherwise, the system determines if a
sample count reads decryption (240), and if so, the
system performs a phase of sample count decryption
(242) .

This phase encryption/decryption scheme is a
subset of the sample count manage routine and works as
follows. At various times, the distribution application
needs to determine how many samples of a particular
application remain. At these times, the distribution
application reads an encrypted string from the invisible
files. It then takes this information, transfers the
information into global memory, signals to the watchdog
task that a count needs decryption, and then places
itself into a seemingly endless loop. The watchdog
task, having been signaled to begin, decrypts the count
in three phases to ensure that the full algorithm is
never directly viewed by a user. On each pass, the

watchdog task performs an XOR and bit rotation and then

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

23

increments the phase count. The next time the watchdog
task executes, i1f there is still more work to be done,
it executes another encryption phase. If not, it
signals the application that encryption is now finished.
The distribution application then exits the infinite

"loop and memory contains the correct sample count.

FIG. 19 is a flow chart of a purchase routine
for allowing users to purchase sampled software
programs. This routine is executed when a user requests
to purchase a program or digital information (243). The
system can unlock software programs or digital
information in response to a request to purchase the
software program or digital information. The system can
optionally verify purchase information, such as a credit
card number, before executing an unlocking process.

The system typically checks if the application
has previously been purchased (244). If it has been
purchased previously, the system checks to determine if
this purchase request is an archive install (248). If
it is an archive install, the system installs the
application (254). For a regular purchase, the system
generates or retrieves a serial number or key code (246)
used for calculating a password to unlock the program.
This serial number or key code is typically provided in
a purchase dialog or window when the user selects the
purchase key 48 (see FIG. 3). The purchase window also
includes an area for a user to enter the password. The
key code and corresponding password, as explained below,
are preferably dynamically generated when the user opens
the purchase window such that a new key code and
password are generated each time the user opens the
purchase window. In addition, the password preferably
only exists in memory, and only as long as the user has
a purchase dialog or window open. These features
provide additional security by dynamically changing the
key code and password.

If the use is on-line, the system preferably

automatically registers the application with a vendor

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

24

and then unlocks the application or digital information
(250) through the on-line connection with the
distribution center. »

Otherwise, the system can manually register
the application with the vendor and provide a user with
the password for unlocking the application or digital
information (252). The manual registration typically
occurs with the user calling up a distribution center
and providing them with the serial number or key code as
provided in a purchase dialog and possibly other
information such as a credit card number. The
distribution center in response provides the user with a
password used for unlocking the application, and the
user may then manually enter the password in the
purchase window. Accordingly, steps 250 and 252 also
involve generating the password from the serial number
or key code. The serial number or key code provided by
the user is processed using an identical decoding
function, explained below, as on the user's machine,
generating the same password that is stored in memory on
the user's machine. The entered password is compared
with the one stored in memory. If they match, the
purchase is completed.

Accordingly, if the correct password is
entered, either manually or automatically, the system
proceeds to install the application or digital
information (254). 1If the wrong password was entered,
such as in the manual unlocking, then the system
"returns" and does not unlock the application or digital
information.

The installation typically occurs by
decrypting a copy of the application or digital
information and copying the unlocked application or
digital information to a hard drive or other storage
medium on the user's computer. The decryption is
typically accomplished by copying the application or
digital information via a pipeline from its current

location in memory to a new (non-reserved) portion of

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

25

the user's hard disk drive or other storage medium which
is outside of the partition reserved by a software or
digital information distribution system. While the
application or digital information is copied to the non-
reserved portion, it is typically decrypted by using the
technique explained with reference to FIGS. 16A and 16B.
Accordingly, after this unlocking routine is complete, a
locked copy of the application or digital information
remains within the reserved partition and an unlocked
copy of the application or digital information resides
on the user's hard disk drive or some other storage
medium. The unlocking and installation may occur
simultaneously. In addition, while software programs
typically require installation to run, other types of
digital information may require only unlocking.

After the application is purchased, a user
preferably has full use of the program or digital
information. A vendor or distribution center may mail
manuals or any other documentation for the purchased
program to the user who purchased the program.
Alternatively, the manuals and documentation may be
distributed with the program and maintained in a locked
state with the program. When a user purchases the
program, the manuals and documentation may then also be
unlocked so that the user can view them electronically
or produce a hard copy using a computer printer.

FIG. 20 is a flow chart of a process for a
self-launching and on-line self-launching software or
digital information distribution system. A self-
launching system has the advantage of not requiring a
separate browser for distribution and/or sampling of
applications or digital information. The operation of
the system is thus essentially invisible to the user,
since the system preferably "appears" to the user as an
application or digital information and launches itself
when a user selects the application or digital

information.

WO 96/41449 ' PCT/US96/09916

10

15

20

25

30

35

26

According, a self-launching system for
demonstrating applications typically includes the
following features. The system is attached to a
software program such as in one file as described above.
The system maintains the software program in a locked
state in order to prevent unauthorized duplication of
the software program, such as with encryption and a
package file system described above. When a user
selects the software program, the system launches itself
and can enable the software program for execution by the
user and allow the user to subsequently sample the
software program. The system maintains the software
program in the locked state during the sampling of the
software program in order to prevent unauthorized
duplication of the software program, and selectively
disables the sampling of the software program. .

A self-launching system for distributing
applications or digital information typically includes
the following features. The system is attached to an
application or digital information such as in one file
as described above. The system maintains the
application or digital information in a locked state in
order to prevent unauthorized duplication, such as with
encryption and a package file system described above.
When a user selects the application or digital
information, the system launches itself and can unlock
the application or digital information in response to a
purchase request.

Self-launching and on-line self-launching
software or digital information distribution systems
preferably use the processing described above in
addition to the steps shown in FIG. 20. In order to
sample an application, a user in a self-launching system
typically selects an application (256). This may occur
by, for example, "double clicking" on an icon displayed
on a display device and corresponding to the
application. In the self-launching system, therefore,

the applications typically appear to the user as

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

27

executable programs even though they are locked and may
only be sampled by the user or purchased upon providing
the required information. After the user selects the
application to sample, the code for the distribution
application executes (258). If the use is on-line, the
software package described above is first downloaded
(257) before executing. The software package is
typically one file (see FIG. 4A) which includes a
distribution application and an encrypted package and is
thus transmitted for on-line use as one file. The
encryption is typically accomplished using the technique
described with reference to FIGS. 16A and 16B. The
encryption protects the software programs or digital
information during transmission. This file is typically
compression for transmission using, for example, Apple
Computer, Inc.'s Cinepak compression scheme at a
lossless level, and is transmitted using TC/IP protocol.

The system then, as described above, checks to
determine if all samples have been used (260). If
samples are remaining, the system code mounts a data
fork of file as the virtual volume (262) and decrements
the usage count and the files in the virtual volume
(264). The system then proceeds with the processing
described in the other flow charts provided in the
present specification.

If the self-launching system involves
distribution of digital information without allowing
sampling, then the system typically checks to determine
if the information has been purchased (259). If is has
been purchased, then the system executes step 262 and
bypasses step 264, since samples are not available. If
the information has not been purchased, then the system
typically checks to determine if the user wants to
purchase the information (261). If the system receives
a purchase request, then it executes a purchase routine
263 (see FIG. 19).

FIG. 21 is a flow chart of a process for

generating a serial number which contains identification

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

28

of marketing information for software programs. The
system retrieves the raw data from a sample count files
(266), which includes an identification of how many
times a user sampled each application. The system then
calculates marketing statistics and formats such
information into a series of bytes (268). This step may
involve, for example, the following: determining the
total number of samples used (270); determining how many
times each application was sampled (272); determining a
most frequently sampled application (274); determining a
category of a most frequently sampled program (276);
determining which version of particular applications a
user has sampled (277); or other statistics to be
determined, for example, by a distributor (278). Other
statistics may include, for example, statistics related
to time duration of the samples, such as an average time
duration of sampling, which may be obtained using a
computer's internal clock and timing each sample.
Examples of categories of software programs include, but
are not limited to: business software, games, financial
management programs, and educational programs. A vendor
or distributor may also create their own categories and
electronically associate programs with those categories.
Gathering these statistics provides for many
advantages and value in distributing programs to be
sampled. For example, it allows vendors to identify
programs which are not popular and replace them with
programs which have a higher sales rate. It also allows.
vendors to identify the most popular programs and
include more programs for sale in the same categories.
Identifying a category of a user's most frequently
sampled program also allows vendors to market additional
similar products to that particular user and thus
increase the likelihood that the user will purchase more
software from the vendor. For example, when the user
calls the vendor to purchase a program, the vendor can
quickly identify the most frequently sampled program
category by decoding the code (serial number) of the

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

29

purchased program. The vendor could then immediately
offer any additional programs for sale which are in the
same category and perhaps "on sale" or subject to a
discount.

Given the information provided by the sample
count files, the information for the marketing
statistics can be determined with simple calculations.
The sample count files contain an identification of each
application and the number of samples remaining for the
corresponding application. Therefore, by knowing how
many samples were originally available, the system can
determine the number of samples used for each
application by samples remaining from the original
number of allowed samples. The system can add up the
number of samples used to determine a total number of
samples used. Other statistics can be calculated in a
similar manner using the information in the sample count
files and possibly other information such as categories
of sampled applications.

A distributor may determine that other
statistics are desired and the system would then execute
additional steps as part of step 268, as mentioned
above. The system determines if more statistics are
required (279). The system continues to execute steps
for determining statistics until such processing is
complete. As the system gathers and calculates the
marketing statistics, it typically concatenates the
resulting bytes, resulting in a series of bytes with
byte representing a statistic. The system
electronically associates each byte position with a
statistic so that, by knowing a particular byte
position, the system can decode the byte and produce the
resulting statistic. The system then converts the
series of bytes determine that step 268 into an ASCII
serial number (280). Table 1 provides an example of a

file for associating byte positions with statistics.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

30

Table 1
byte
position statistic
1 total number of samples
2 number of application #1 samples
3 number of application #2 samples
4 most frequently sampled category

N other statistic

Appendix A provides an example of a source
code listing in C programming language for converting
the series of bytes determined in the processing shown
in FIG. 21, and optionally other information, into a key
code and password for use in unlocking the application
or digital information. The code shown in Appendix A
generates both a key code and password using the
marketing information (series of bytes described above)
and the current date and time. The code shown in
Appendix A can thus also be used to decode the key code
and extract the series of bytes containing the marketing
information. The key code is displayed to the user and
in the purchase window and is what the user provides to
a distribution center to obtain the password. This
password is then used to unlock the application or
digital information, as described above.

FIG. 22 is a flow chart of a process for
automatic sale of software programs. One or more
software programs, each in a locked state such as with
the techniques described above, are stored in a computer
database or available on-line. When one wants to
purchase one or more of the programs, the system in
response to the purchase request unlocks a copy of the
program and maintains a record of how many copies were
sold. An example of a use for this system is where a

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

31

company routinely purchases additional copies of
software programs such as when new employees are hired.

Accordingly, this system for automatic sales
of software programs typically includes the following
features. It accesses a software program within a
computer database and maintains the software program in
a locked state in order to prevent unauthorized
duplication of the software program. In response to a
request to purchase the software program, the system
unlocks a copy of the software program and distributes
the unlocked copy. The system also records how many
copies of the software program have been distributed in
response to the requests to purchase the software
program.

As shown in FIG. 22, the system typically
displays an indication of locked applications available
for purchase by a user (292). If the use is on-1line,
the system downloads encrypted software packages
containing programs and usage file (293). The
encryption is typically accomplished using the technique
described with reference to FIGS. 16A and 16B. The
packages are typically compressed for transmission
using, for example, Apple Computer, Inc.'s Cinepak
compression scheme at a lossless level, and are
transmitted using TC/IP protocol. If a user requests to
sample a particular application (294), the system
executes sample routines (296). The sample routines may
be, for example, the routines described in the present
specification. If the system receives a request to
purchase an application (298), it preferably performs
the following steps. The application is registered with
a vendor and unlocked (300). A serial number is then
optionally assigned to the purchased application (302).
The application is distributed and installed (304).

Then the system updates a sales record and issues an
invoice (306) in order to record the application

purchased and how many copies have been purchased. The

WO 96/41449 PCT/US96/09916

10

32

step 300 may be implemented as described in the other
routines in the present specification.

While the present invention has been described
in connection with a preferred embodiment thereof, it
will be understood that many modifications will be
readily apparent to those skilled in the art, and this
application is intended to cover any adaptations or
variations thereof. It is manifestly intended that this
invention be limited only by the claims and equivalents
thereof.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

40

45

50

55

33

APPENDIX A

void CDolphinApp: :DoPurchase ()

{

CSampleApp *theApp;
const short okitem = 1;
const short cancelltem = 2;

unsigned long templ = gd.randSeed;
unsigned long temp3;

GetDateTime (&temp3) ;
temp3 temp3 & 0x00000065;
temp3 temp3 >> 2;

LI}

unsigned long temp0 = *{(long*)0x0146) ;
temp3 = temp3 & Ox2F;

// ROL.L temp3, temp0

long a = temp0 << temp3;

long b = temp0 >> (32 - temp3);
temp0 = a I b;

GetDateTime (&temp3) ;
templ = temp3 “ templ;

a = temp3 << 7;

b = temp3 >> (32 - 7);
temp0 = a | b;

temp3 = temp0 * temp3;

gd.randSeed = tempO;
temp3 = temp3 & 0x0000000E;

long keyCode = 0;
for (short r = 0; r < temp3; r++)
keyCode = Random() ;

CStr255 usageCode;

{
unsigned long installedDate = gUsageInfo.GetInstalledDate
("Dolphin Prefere
installedDate -= 0xA81B3480;
installedDate = installedDate / 0x00093A80;

CStr255 instWkStr;
CodeNumber (installedDate, 2, instWkstr) ;

long numOfProgsSampled = gUsageIlnfo.GetTotalAppsSampled ();
CStr255 numProgsSampledStr;
CodeNumber (numOfProgsSampled, 2, numProgsSampledStr) ;

TopSampleA top5;
gUsageInfo.GetTopSSampledApps (top5);

WO 96/41449

10

15

20

25

30

35

PCT/US96/09916

34

CStr255 numlAppStr;
CStr255 num2AppStr;
CodeNumber (top5 (0] , 2, numlAppStr) ;
CodeNumber (top5 [1], 2, num2AppStr) ;

long totalSamples = gUsageInfo.GetTotalNumOfSamples () ;
CStr255 totalSamplesStr;
CodeNumber (totalSamples, 2, totalSamplesStr) ;

usageCode = instWkStr +
numProgsSampledStr +
numlAppStr +
num2AppStr +
totalSamplesStr;

}

CStr255 programNumStr;

CodeNumber (fSelectedAppID, 3, programNumStr);
CStr255 keyCodeStr;

CodeNumber (keyCode, 4, keyCodeStr) ;

CStr255 targetPassword = deecode (keyCodeStr);
keyCodeStr = programNumStr + CStr255("-") 4+ keyCodeStr;

if ((itemHit == okItem) &&
(IUEqualString(passwoxd,purchaseBackDoor) == 0))
theApp->SetToPurchased () ;
CRect upperLeftRect(0,0,150,60);
InvalRect (upperLeftRect) ;
Installapp ();
}
if ((itemHit ==okItem) &&
(TUEqualString (password, unPurchaseBackDoor) == 0
theApp->SetToUnPurchased () ;
CRect upperLeftRect (0,0,150,60);
InvalRect (upperLeftRect) ;

}

40 } else {

}
45

SysBeep (1) ;
SysBeep (1) ;

void CodeNumber (long number, short digits, CStr255& theString)

{

long temp2;

50 thestring[0] = digits;

for (short index = digits; index > 0; index--) {

55

temp2 = number;
temp2 = temp2 & 0x0000001F;
temp2 += 65;
if (temp2 >= 'Z')
temp2 -= 41;

WO 96/41449
35
theString[index] = temp2;
number = number >> 5;
}
if (number > 0)
5 theString[1l] = 42;
}
CStr255 deecode(const CStr255& input)
}
10 char output[7];
char stgl2];
int msg_number;
int bl, Bl, xx, len, retcode;
long code, bin;
15
len = input.Length ();
code = 0;
20 for (xx = 1; xxX < 5; XX++)
{
Bl = 0;
sprintf (stg, "%d", input [xx]
bl=atoi(stg);
25 if (bl > 64 && bl < 91)
Bl = bl - 65;
if (b1 > 49 && bl < 56)
Bl = bl - 24;
30 switch (xx)
{
case 1:
code+= Bl
break;
35 case 2:
code+= Bl
break;
case 3:
code+= Bl
40 break;
case 4:
code+= B1l;
break;
default:
45 break;
}
}
code = (code “ 43605) * 1523;
50
for (xx = 0; XX < 6; XX++)
{
switch (xx)
{
55 case 0:

PCT/US96/09916

)i

* 32768;

* 1024;

* 32;

bin = 33554432;

break;

WO 96/41449 PCT/US96/09916
36
case 1:
bin = 1048576;
break;
case 2:
5 bin = 32768;
break;
case 3:
bin - 1024;
break;
10 case 4:
bin = 32;
break;
case 5:
bin = 1;
15 . break;
default:
break;
{
20 if (code >= bin)
{
Bl = code / bin;
code-=Bl * bin;
if (B1 + 65 <= 90)
25 {
bl = Bl + 65;
}
else
{
30 bl = Bl + 24;
}
}
else
{
35 bl = 65;
}
sprintf (&output [xx], "%c", bl);
output [6] = '\0';
40 }

45

50

55

}

return (CStr255 (output)) ;

#pragma segment Main

long intcode(const CStr255& input)

{

char stgl2];
int msg_number;

long bl, Bl, xx, len, retcode, code;

len = input.Length();
code = 0;

for (xx =
Bl = 0;

0; xx < 4; xx++) {

WO 96/41449

10

15

20

25

}

PCT/US96/09916
37

sprintf (stg, "%d", inputixx]);
bl=atoi(stg);
if(bl > 64 && bl < 91)
Bl = bl - 65;
if (bl > 49 && bl < 56)
Bl = bl - 24;

switch (xx)

{

case 0:
code+= Bl * 32768;
break;

case 1:
code+= Bl * 1024;
break;

case 2:
code+= Bl * 32;
break;

case 3:
code += Bl;
break;

default:
break;

}

return{code)) ;

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

38

WHAT IS CLAIMED IS:
1. A system for demonstrating software programs to a
potential purchaser of the programs and for gathering
marketing information related to the demonstration of
the programs, comprising:

receive means for receiving a plurality of software
programs to be demonstrated;

means for maintaining each of the software programs
in a locked state in order to prevent unauthorized
duplication of the software programs;

sample means for enabling any of the software
programs for execution upon selection by a user, for
allowing the user to subsequently sample the selected
software program, for maintaining the selected software
program in the locked state during the sampling of the
selected software program in order to prevent
unauthorized duplication of the selected software
program, and for selectively disabling the sampling of
the selected software program; and

monitoring means for generating a code that
identifies a particular software program in the
plurality of software programs and contains information
relating to sampling of the particular software program
by the user.

2. The system of claim 1 wherein the monitoring means
comprises means for including in the code information
identifying which of the software programs'the user
sampled.

3. The system of claim 2 wherein the monitoring means
comprises means for including in the code information
identifying how many times the user sampled each of the
software programs.

4. The system of claim 1 wherein the monitoring means

comprises means for including in the code information

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

39

identifying a category of the software program most
frequently sampled by the user.

5. The system of claim 1 wherein the sample means
further comprises means for preventing the enabling of
the software program when the user has already sampled

the software program a predetermined number of times.

6. The system of claim 1 wherein the sample means
further comprises means for detecting if the software
program is being copied during the sampling of the
software program and for disabling the software program

in response to the detecting.

7. The system of claim 1 wherein the sample means
comprises means for limiting how many times the software
program can be sampled and for displaying an indication
of a number of samples remaining.

8. The system of claim 1 wherein the disable means
comprises means for disabling the software program if
the user has sampled the software program for a

predetermined amount of time.

9. The system of claim 1 wherein: .

the receive means comprises means for receiving the
software program in an encrypted state; and

the sample means comprises means for decrypting the
encrypted software program.

10. The system of claim 1 wherein the sample means
comprises means for displaying an icon which identifies
the software program.

11. The system of claim 1 wherein the receive means
comprises means for receiving the software program from

a non-volatile storage medium.

WO 96/41449 PCT/US96/09916

10

i5

20

25

30

35

40

12. The system of claim 1, further comprising means for
unlocking the software program in response to a request
to purchase the software program.

13. A system for demonstrating software programs to a
potential purchaser of the programs and for gathering
marketing information related to the demonstration of
the programs, comprising:

receive means for receiving a plurality of software
programs to be demonstrated;

means for maintaining each of the software programs
in a locked state in order to prevent unauthorized
duplication of the software programs;

sample means for enabling any of the software
programs for execution upon selection by a user, for
allowing the user to subsequently sample the selected
software program, for maintaining the selected software
program in the locked state during the sampling of the
selected software program in order to prevent
unauthorized duplication of the selected software
program, and for selectively disabling the sampling of
the selected software program; and

monitoring means for generating a code for use in
unlocking the software programs and for including in the
code an identification of which of the software programs
were sampled by the user and how many times each of the

software programs were sampled by the user.

14. A computerized method for demonstrating software
programs to a potential purchaser of the programs and
for gathering marketing information related to the
demonstration of the programs, comprising the steps
executed by a computer of:

receiving a plurality of software programs to be
demonstrated; »

maintaining each of the software programs in a
locked state in order to prevent unauthorized

duplication of the software programs;

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

41

enabling any of the software programs for execution
upon selection by a user, allowing the user to
subsequently sample the selected software program,
maintaining the selected software program in the locked
state during the sampling of the selected software
program in order to prevent unauthorized duplication of
the selected software program, and selectively disabling
the sampling of the selected software program; and

generating a code that identifies a particular
software program in the plurality of software programs
and contains information relating to sampling of the

particular software program by the user.

15. The method of claim 14 wherein the monitoring step
comprises the step of including in the code information
identifying which of the software programs the user
sampled.

16. The method of claim 15 wherein the monitoring step
comprises the step of including in the code information
identifying how many times the user sampled each of the

software programs.

17. The method of claim 14 wherein the monitoring step
comprises the step of including in the code information
identifying a category of the software program most

frequently sampled by the user.

18. The method of claim 14 wherein the enabling step
further comprises the step executed by the computer of
preventing the enabling of the software program when the
user has already sampled the software program a
predetermined number of times.

19. The method of claim 14 wherein the disabling step
further comprises the steps executed by the computer of

detecting if the software program is being copied during

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

42

the sampling of the software program and disabling the
software program in response to the detecting.

20. The method of claim 14 wherein the enabling step
comprises the steps of limiting how many times the
software program can be sampled and displaying an
indication of a number of samples remaining.

21. The method of claim 14 wherein the disabling step
comprises the step of disabling the software program if
the user has sampled the software program for a
predetermined amount of time.

22. The method of claim 14 wherein:

the receiving step comprises the step of receiving
the software program in an encrypted state; and

the enabling step comprises the step of decrypting
the encrypted software program.

23. The method of claim 14 wherein the enabling step
comprises the step of displaying an icon which
identifies the software program.

24. The method of claim 14 wherein the receiving step
comprises the step of receiving the software program
from a non-volatile storage medium.

25. The method of claim 14, further comprising the step
of unlocking the software program in response to a
request to purchase the software program.

26. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to demonstrate software programs to a potential
purchaser of the programs and gather marketing
information related to the demonstration of the

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

43

programs, the computer readable program code means in
the computer program product comprising:

receive means for causing the computer to receive a
plurality of software programs to be demonstrated;

means for causing the computer to maintain each of
the software programs in a locked state in order to
prevent unauthorized duplication of the software
programs;

sample means for causing the computer to enable any
of the software programs for execution upon selection by
a user, allow the user to subsequently sample the
selected software program, maintain the selected
software program in the locked state during the sampling
of the selected software program in order to prevent
unauthorized duplication of the selected software
program, and selectively disable the sampling of the
selected software program; and

monitoring means for causing the computer to
generate a code that identifies a particular software
program in the plurality of software programs and
contains information relating to sampling of the

particular software program by the user.

27. An on-line system for demonstrating software
programs to a potential purchaser of the programs,
comprising:

receive means for receiving from an on-line system
a software program to be demonstrated;

means for maintaining the software program in a
locked state in order to prevent unauthorized
duplication of the software program; and

sample means for enabling the software program for
execution upon selection by a user, for allowing the
user to subsequently sample the software program, for
maintaining the software program in the locked state
during the sampling of the software program in order to

prevent unauthorized duplication of the software

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

44

program, and for selectively disabling the sampling of
the software program.

28. The system of claim 27 wherein the sample means
further comprises means for preventing the enabling of
the software program when the user has already sampled
the software program a predetermined number of times.

29. The system of claim 27 wherein the sample means
further comprises means for detecting if the software
program is being copied during the sampling of the
software program and for disabling the software program

in response to the detecting.

30. The system of claim 27 wherein the sample means
comprises means for limiting how many times the software
program can be sampled and for displaying an indication

of a number of samples remaining.

31. The system of claim 27 wherein the disable means
comprises means for disabling the software program if
the user has sampled the software program for a
predetermined amount of time.

32. The system of claim 27 wherein:

the receive means comprises means for receiving the
software program in an encrypted state; and

the sample means comprises means for decrypting the
encrypted software program.

33. The system of claim 27, further comprising means

for generating a code identifying the software program.

34. The system of claim 27 wherein the sample means
comprises means for displaying an icon which identifies
the software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

45

35. A computerized on-line method for demonstrating
software programs to a potential purchaser of the
programs, comprising the steps executed by a computer
of:

receiving from an on-line system a software program
to be demonstrated;

maintaining the software program in a locked state
in order to prevent unauthorized duplication of the
software program; and

enabling the software program for execution upon
selection by a user, allowing the user to subsequently
sample the software program, maintaining the software
program in the locked state during the sampling of the
software program in order to prevent unauthorized
duplication of the software program, and selectively

disabling the sampling of the software program.

36. The method of claim 35 wherein the enabling step
further comprises the step executed by the computer of
preventing the enabling of the software program when the
user has already sampled the software program a

predetermined number of times.

37. The method of claim 35 wherein the disabling step
further comprises the steps executed by the computer of
detecting if the software program is being copied during
the sampling of the software program and disabling the

software program in response to the detecting.

38. The method of claim 35 wherein the enabling step
comprises the steps of limiting how many times the
software program can be sampled and displaying an
indication of a number of samples remaining.

39. The method of claim 35 wherein the disabling step
comprises the step of disabling the software program if
the user has sampled the software program for a

predetermined amount of time.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

46

40. The method of claim 35 wherein:

the receiving step comprises means the step of
receiving the software program in an encrypted state;
and

the enabling step comprises the step of decrypting
the encrypted software program.

41. The method of claim 35, further comprising the step
executed by the computer of generating a code
identifying software program.

42. The method of claim 35 wherein the enabling step
comprises the step of displaying an icon which
identifies the software program.

43. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to demonstrate on-line software programs to a
potential purchaser of the programs, the computer
readable program code means in the computer program
product comprising:

receive means for causing the computer to receive
from an on-line system a software program to be
demonstrated;

means for causing the computer to maintain the
software program in a locked state in order to prevent
unauthorized duplication of the software program; and

sample means for causing the computer to enable the
software program for execution upon selection by a user,
allow the user to subsequently sample the software
program, maintain the software program in the locked
state during the sampling of the software program in
order to prevent unauthorized duplication of the
software program, and selectively disable the sampling

of the software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

47

44. A self-launching system associated with a software
program for demonstrating the software program to a
potential purchaser of the program, comprising:

means for attaching the self-launching system to a
software program;

means for maintaining the software program in a
locked state in order to prevent unauthorized
duplication of the software program; and

activation means for launching the self-launching
system when a user selects the software program, the
activation means comprising: sample means for enabling
the software program for execution upon selection by the
user, for allowing the user to subsequently sample the
software program, for maintaining the software program
in the locked stafe during the sampling of the software
program in order to prevent unauthorized duplication of
the software program, and for selectively disabling the
sampling of the software program.

45. The system of claim 44 wherein the sample means
further comprises means for preventing the enabling of
the software program when the user has already sampled

the software program a predetermined number of times.

46. The system of claim 44 wherein the sample means
further comprises means for detecting if the software
program is being copied during the sampling of the
software program and for disabling the software program
in response to the detecting.

47. The system of claim 44 wherein the sample means
comprises means for limiting how many times the software
program can be sampled and for displaying an indication

of a number of samples remaining.

48. The system of claim 44 wherein the disable means

comprises means for disabling the software program if

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

48

the user has sampled the software program for a
predetermined amount of time.

49. The system of claim 44, further comprising means
for generating a code identifying the software program.

50. The system of claim 44 wherein the sample means
comprises means for displaying an icon which identifies
the software program.

51. The system of claim 44, further comprising means
for receiving the software program and the attached
self-launching system from an on-line system.

52. A computerized method using a self-launching system
associated with a software program for demonstrating the
software program to a potential purchaser of the
program, comprising the steps executed by a computer of:
attaching the self-launching system to a software
program;
using the self-launching system to maintain the
software program in a locked state in order to prevent
unauthorized duplication of the software program; and
launching the self-launching system when a user
selects the software program, comprising the steps of:
enabling the software program for execution
upon selection by the user;
allowing the user to subsequently sample the
software program;
maintaining the software program in the locked
state during the sampling of the software program
in order to prevent unauthorized duplication of the
software program; and
selectively disabling the sampling of the
software program.

53. The method of claim 52 wherein the enabling step
further comprises the step executed by the computer of

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

49

preventing the enabling of the software program when the
user has already sampled the software program a

predetermined number of times.

54. The method of claim 52 wherein the disabling step
further comprises the steps executed by the computer of
detecting if the software program is being copied during
the sampling of the software program and disabling the

software program in response to the detecting.

55. The method of claim 52 wherein the enabling step
comprises the steps of limiting how many times the
software program can be sampled and displaying an

indication of a number of samples remaining.

56. The method of claim 52 wherein the disabling step
comprises the step of disabling the software program if
the user has sampled the software program for a

predetermined amount of time.

57. The method of claim 52, further comprising the step
executed by the computer of generating a code

identifying the software program.

58. The method of claim 52 wherein the enabling step
comprises the step of displaying an icon which
identifies the software program.

59. The method of claim 52, further comprising the step
of receiving the software program and the attached self-

launching system from an on-line system.

60. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to execute a self-launching system associated
with a software program for demonstrating the software

program to a potential purchaser of the program, the

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

50

computer readable program code means in the computer
program product comprising:

means for attaching the self-launching system to a
software program;

means for causing the computer to maintain the
software program in a locked state in order to prevent
unauthorized duplication of the software program; and

activation means for causing the computer to launch
the self-launching system when a user selects the
software program, the activation means comprising:
sample means for causing the computer to enable the
software program for execution upon selection by the
user, allow the user to subsequently sample the software
program, maintain the software program in the locked
state during the sampling of the software program in
order to prevent unauthorized duplication of the
software program, and selectively disable the sampling
of the software program.

61. A self-launching system associated with a software
program for distributing the software program to a

'potential purchaser of the program, comprising:

means for attaching the self-launching system to a
software program;

means for maintaining the software program in a
locked state in order to prevent unauthorized copying of
the software program; and

activation means for launching the self-launching
system when a user selects the software program, the
activation means comprising means for unlocking the
software program in response to a request to purchase

the software program.

62. The system of claim 61, further comprising means
for generating a code identifying the software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

51

63. The system of claim 61, further comprising means
for displaying an icon which identifies the software
program.

64. The system of claim 61, further comprising means
for receiving the software program and the attached

self-launching system from an on-line system.

65. A method for using a self-launching system
associated with a software program for distributing the
software program to a potential purchaser of the
program, comprising the steps executed by a computer of:

attaching the self-launching system to a software
program;

maintaining the software program in a locked state
in order to prevent unauthorized copying of the software
program; and

launching the self-launching system when a user
selects the software program, comprising the step of
unlocking the software program in response to a request

to purchase the software program.

66. The method of claim 65 wherein the launching step
further comprises the step of generating a code

identifying the software program.

67. The method of claim 65 wherein the launching step
further comprises the step of displaying an icon which

identifies the software program.

68. The method of claim 65, further comprising the step
executed by the computer of receiving the software
program and the attached self-launching system from an

on-line system.

69. A computer program product, comprising:
a computer usable medium having computer readable

program code means embodied therein for causing a

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

52

computer to execute a self-launching system associated
with a software program for distributing the software
program to a potential purchaser of the program, the
computer readable program code means in the computer
program product comprising:

means for attaching the self-launching system to a
software program;

means for causing the computer to maintain the
software program in a locked state in order to prevent
unauthorized copying of the software program; and

activation means for causing the computer to launch
the self-launching system when a user selects the
software program, the activation means comprising means
for causing the computer to unlock the software program
in response to a request to purchase the software

program.

70. A self-launching system associated with digital
information for distributing the digital information to
a potential purchaser of the program, comprising:

means for attaching the self-launching system to
digital information;

means for maintaining the digital information in a
locked state in order to prevent unauthorized copying of
the digital information; and

activation means for launching the self-launching
system when a user selects the digital information, the
activation means comprising means for unlocking the
digital information in response to a request to purchase
the digital information.

71. The system of claim 70, further comprising means
for generating a code identifying the digital

information.

72. The system of claim 70, further comprising means
for displaying an icon which identifies the digital
information.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

53

73. The system of claim 70, further comprising means
for receiving the digital information and the attached

self-launching system from an on-line system.

74. A method for using a self-launching system
associated with a digital information for distributing
the digital information to a potential purchaser of the
program, comprising the steps executed by a computer of:

attaching the self-launching system to a digital
information;

maintaining the digital information in a locked
state in order to prevent unauthorized copying of the
digital information; and

launching the self-launching system when a user
selects the digital information, comprising the step of
unlocking the digital information in response to a

request to purchase the digital information.

75. The method of claim 74 wherein the launching step
further comprises the step of generating a code

identifying the digital information.

76. The method of claim 74 wherein the launching step
further comprises the step of displaying an icon which

identifies the digital information.

77. The method of claim 74, further comprising the step
executed by the computer of receiving the digital
information and the attached self-launching system from

an on-line system.

78. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to execute a self-launching system associated
with a digital information for distributing the digital

information to a potential purchaser of the program, the

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

54

computer readable program code means in the computer
program product comprising:

means for attaching the self-launching system to a
digital information;

means for causing the computer to maintain the
digital information in a locked state in order to
prevent unauthorized copying of the digital information;
and

activation means for causing the computer to launch
the self-launching system when a user selects the
digital information, the activation means comprising
means for causing the computer to unlock the digital
information in response to a request to purchase the
digital information.

79. A system for storing a code within an operating
system of a computer in order to identify whether the
computer has executed a particular software program,
comprising: ;

receive means for receiving an indication that the
computer has executed the software program;

search means for searching a non-volatile memory in
which the operating system for the computer is stored in
order to locate spare memory locations within the non-
volatile memory;

write means for writing a code to at least one of
the spare memory locations, the code providing an
indication that the computer has executed the software
program; and

means for electronically associating the code with
the software program.

80. The system of claim 79 wherein:

the search means comprises means for searching the
memory for spare boot block locations; and

the write means comprises means for writing the
code to the spare boot block locations.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

55

81. The system of claim 79, further comprising:

means for searching the memory in order to locate
the code associated with the particular software
program; and

means for providing an indication that the computer
has previously executed the software program, if the
code is found.

82. The system of claim 79 wherein the write means
comprises means for including with the code information

related to use of the software program on the computer.

83. The system of claim 79 wherein the write means
comprises means for writing a predetermined number of

copies of the code to the spare memory locations.

84. The system of claim 79, further comprising:
means for searching the spare memory locations for
the predetermined number of copies of the code; and
means for writing copies of the code to the spare
memory locations in order to recreate the predetermined
number of copies of the code, if the predetermined

number of copies of the code were not found.

85. A computerized method for storing a code within an
operating system of a computer in order to identify
whether the computer has executed a particular software
program, comprising the steps executed by a computer of:

receiving an indication that the computer has
executed the software program;

searching a non-volatile memory in which the
operating system for the computer is stored in order to
locate spare memory locations within the non-volatile
memory;

writing a code to at least one of the spare memory
locations, the code providing an indication that the
computer has executed the software program; and

associating the code with the software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

56

86. The method of claim 85 wherein:

the searching step comprises the step of searching
the memory for spare boot block locations; and

the writing step comprises the step of writing the
code to the spare boot block locations.

87. The method of claim 85, further comprising the
steps executed by the computer of:
searching the memory in order to locate the code
associated with the particular software program; and
providing an indication that the computer has
previously executed the software program, if the code is
found.

88. The method of claim 85 wherein the writing step
comprises the step of including with the code
information related to use of the software program on
the computer.

89. The method of claim 85 wherein the writing step
comprises the step of writing a predetermined number of

copies of the code to the spare memory locations.

90. The method of claim 89, further comprising the
steps executed by the computer of:

searching the spare memory locations for the
predetermined number of copies of the code; and

writing copies of the code to the spare memory
locations in order to recreate the predetermined number
of copies of the code, if the predetermined number of
copies of the code were not found.

91. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to store a code within an operating system of

the computer in order to identify whether the computer

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

57

has executed a particular software program, the computer
readable program code means in the computer program
product comprising:

receive means for causing the computer to receive
an indication that the computer has executed the
software program;

search means for causing the computer to search a
non-volatile memory in which the operating system for
the computer is stored in order to locate spare memory
locations within the non-volatile memory;

write means for causing the computer to write a
code to at least one of the spare memory locations, the
code providing an indication that the computer has
executed the software program; and

means for causing the computer to electronically
associate the code with the software program.

92. A system for preventing unauthorized duplication of
a particular software program among a plurality of
active software programs executed on a computer,
comprising:

receive means for receiving an indication that the
computer is executing the particular software program;

monitoring means for monitoring operation of the
computer to determine which of the plurality of the
active software programs is being currently executed;
and

disable means for disabling execution of the
particular software program when the monitoring means
determines that the particular software program is not

the currently executed software program.

93. The system of claim 92 wherein the monitoring means
comprises means for monitoring the operation of the
computer within a multi-tasking environment which
includes a distinct visual indicator for each of the

active software programs.

WO 96/41449

10

15

20

25

30

35

PCT/US96/09916
58

94. The system of claim 92 wherein the monitoring means
further comprises means for identifying a front-most
indicator among the plurality of active software
programs.

95. The system of claim 92 wherein the disable means
comprises means for disabling an image driver

corresponding to the particular software program.

96. A computerized method for preventing unauthorized
duplication of a particular software program among a
plurality of active software programs executed on a
computer, comprising the steps executed by a computer
of:

receiving an indication that the computer is
executing the particular software program;

monitoring operation of the computer to determine
which of the plurality of the active software programs
is being currently executed; and

disabling execution of the particular software
program when the monitoring means determines that the
particular software program is not the currently

executed software program.

97. The method of claim 96 wherein the monitoring step
comprises the step of monitoring the operation of the
computer within a multi-tasking environment which
includes a distinct visual indicator for each of the

active software programs.

98. The method of claim 97 wherein the monitoring step
further comprises the step executed by the computer of
identifying a front-most indicator among the plurality
of active software programs.

99. The method of claim 96 wherein the disabling step
comprises the step of disabling an image driver

corresponding to the particular software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

59

100. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to prevent unauthorized duplication of a
particular software program among a plurality of active
software programs executed on the computer, the computer
readable program code means in the computer program
product comprising:

receive means for causing the computer to receive
an indication that the computer is executing the
particular software program;

monitoring means for causing the computer to
monitor operation of the computer to determine which of
the plurality of the active software programs is being
currently executed; and

disable means for causing the computer to disable
execution of the particular software program when the
monitoring means determines that the particular software

program is not the currently executed software program.

101. A computer-based system for automatic sales of
software programs, comprising:

means for accessing a software program within a
computer database and for maintaining the software
program in a locked state in order to prevent
unauthorized duplication of the software program;

receive means for receiving a request to purchase
the software program;

unlocking means for unlocking a copy of the
software program in response to the request to purchase
the software program;

means for distributing the unlocked copy; and

recording means for recording how many copies of
the software program have been distributed in response
to the requests to purchase the software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

60

102. The system of claim 101 wherein the unlocking means
comprises means for assigning serial numbers to the
purchased copies of the software program.

103. The system of claim 101 wherein the recording means
comprises means for automatically issuing an invoice for

the purchased copies of the software program.

104. The system of claim 101 wherein the means for
accessing comprises means for receiving the software
program from an on-line system.

105. The system of claim 101, further comprising means
for allowing a potential purchaser to sample the
software program prior to receiving the request to

purchase the software program.

106. The system of claim 105 wherein the means for
allowing a potential purchaser to sample the software
program comprises: sample means for enabling the
software program for execution upon selection by a user,
for allowing the user to subsequently sample the
software program, for maintaining the software program
in the locked state during the sampling of the software
program in order to prevent unauthorized duplication of
the selected software program, and for disabling the
sampling of the selected software program.

107. The system of claim 106 wherein the sample means
further comprises means for preventing the enabling of
the software program when the user has already sampled
the software program a predetermined number of times.

108. The system of claim 106 wherein the sample means
further comprises means for detecting if the software
program is being copied during the sampling of the
software program and for disabling the software program
in response to the detecting..

WO 96/41449

10

15

20

25

30

35

PCT/US96/09916
61

109. The system of claim 106 wherein the sample means
comprises means for limiting how many times the software
program can be sampled and for displaying an indication

of a number of samples remaining.

110. The system of claim 106 wherein the sample means
comprises means for disabling the software program if
the user has sampled the software program for a

predetermined amount of time.

111. The system of claim 106 wherein:

the means for accessing comprises means for
receiving the software program in an encrypted state;
and

the sample means comprises means for decrypting the
encrypted software program.

112. The system of claim 106 wherein the sample means
comprises means for displaying an icon which identifies
the software program.

113. A computerized method for automatic sales of
software programs, comprising the steps executed by a
computer of: _

accessing a software program within a computer
database and maintaining the software program in a
locked state in order to prevent unauthorized
duplication of the software program;

receiving a request to purchase the software
program;

unlocking a copy of the software program in
response to the request to purchase the software
program;

distributing the unlocked copy; and

recording how many copies of the software program
have been distributed in response to the requests to

purchase the software program.

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

62

114. The method of claim 113 wherein the unlocking step
comprises the step of assigning serial numbers to the

purchased copies of the software program.

115. The method of claim 113 wherein the recording step
comprises the step of automatically issuing an invoice

for the purchased copies of the software program.

116. The method of claim 113 wherein the means for
accessing comprises means for receiving the software
program from an on-line system.

117. The method of claim 113, further comprising the
step executed by the computer of allowing a potential
purchaser to sample the software program prior to

receiving the request to purchase the software program.

118. The method of claim 117 wherein the step of
allowing a potential purchaser to sample the software
program comprises the steps of:

enabling the software program for execution upon
selection by a user;

allowing the user to subsequently sample the
software program;

maintaining the software program in the locked
state during the sampling of the software program in
order to prevent unauthorized duplication of the
selected software program; and

disabling the sampling of the selected software
program.

119. The method of claim 118 wherein the enabling step
further comprises the step of preventing the enabling of
the software program when the user has already sampled

the software program a predetermined number of times.

120. The method of claim 118 wherein the disabling step
further comprises the steps executed by the computer of

WO 96/41449 PCT/US96/09916

10

15

20

25

30

35

63

detecting if the software program is being copied during
the sampling of the software program and disabling the

software program in response to the detecting.

121. The method of claim 118 wherein the enabling step
comprises the steps of limiting how many times the
software program can be sampled and displaying an
indication of a number of samples remaining.

122. The method of claim 118 wherein the disabling step
comprises the step of disabling the software program if
the user has sampled the software program for a

predetermined amount of time.

123. The method of claim 118 wherein:

the accessing step comprises the step of receiving
the software program in an encrypted state; and

the enabling step comprises the step of decrypting
the encrypted software program.

124. The method of claim 118 wherein the enabling step
comprises the step of displaying an icon which

identifies the software program.

125. A computer program product, comprising:

a computer usable medium having computer readable
program code means embodied therein for causing a
computer to execute a system for automatic sales of
software programs, the computer readable program code
means in the computer program product comprising:

means for accessing a software program within a
computer database and for maintaining the software
program in a locked state in order to prevent
unauthorized duplication of the software program;

receive means for causing the computer to receive a

request to purchase the software program;

WO 96/41449 PCT/US96/09916
64

unlocking means for causing the computer to unlock
a copy of the software program in response to the
request to purchase the software program;

means for causing the computer to distribute the

5 unlocked copy; and

recording means for causing the computer to record
how many copies of the software program have been
distributed in response to the requests to purchase the

software program.

WO 96/41449 PCT/US96/09916

1722

14
,.J

PROTECTIVE ENVELOPE

12
,J

10 SOFTWARE

SAMPLE PROGRAM
USER |- momeee "™ ORDIGITAL
INFORMATION

PURCHASE
16

\ ~

UNLOCKED COPY OF

> SOFTWARE PROGRAM

OR DIGITAL INFORMATION -

Fig. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US96/09916

WO 96/41449

2/22

7

INIISKS

INIT-NO W3AOW
e e
v oV

8¢ 9¢ ve z¢
p, o) o
INIG TAa Y] SN0 3dVL
EOM an 3SIa GAVH V_wH_o olany LSIa
e EM&L L NOY_hz I5IA30
- ———— 3
H AVIgSI
’
> [H0SI00H408N_] Ot
0z > d3INRI
\L
J3LNNOD -
\
81 ‘
‘
3OIAIA INdNI

\.\
9c

SUBSTITUTE SHEET (RULE 26)

PCT/US96/09916

WO 96/41449

3/22

ol

bujssad0)d PIOM A
Podsonay
sSSRIIN
w 9DIO869]
SOWD) A

op|dwoy u, QvIAe
w 90498891 | 1> ' ;BMQB a

sojoyd Buibojond O

popnys bumes O
Jsweaiby buisuson O sjuouuinbey waysAs O

uonousoyuj Joysignd O uonouwoju) woibosd @©

MOIA:

I

6V

v Sob
bujuiowey ssjdwog 6
| uol8Is,

— oo.&—oEcoao» .

| (Ciosu_) (Cesouding) (sidwos)
; -

¢ "Old

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

4/22

PCT/US96/09916

71—

SUBSTITUTE SHEET (RULE 26)

62
: =
ENCRYPTED PACKAGE
[GsAGEmE V™ [
APPLICATION - I
ORDIGITAL |66
INFORMATION | mace |6
FILE DRIVER
$ 58
DISTRIBUTION
72 68 APPLICATION
))
DISTRIBUTION | | ENCRYPTED Y
APPLCATION | | PACKAGE NVEBE |0
FILES
w \
., DISTRIBUTION
2 APPUCATON 68
ENCRYPTED PACKAGE
APPLICATION
ORDIGTAL |74 | |
INFORMATION
FILE
[CUsAcErLE ¥ 7°
Fig. 44

WO 96/41449

DISTRIBUTION |
APPLICATION
FILE

77
IMAGE
FILE

5722

67

73
N 75

Fig. 4B

67

B

\

o ———————__|

L

IMAGE
DRIVER \
l'J

83

—~

)

DISTRIBUTION
APPLICATION/
IMAGE FILE

(SELF-LAUNCHING)

77

IMAGE
FILE

DISTRIBUTION
APPLICATION/
IMAGE FILE

(SELF-LAUNCHING)

IMAGE 83
DRIVER

2779

VIRTUAL VOLUME

READ/
WRITE

REQUEST
fJ

85

SYSTEM

MACINTOSH
COMPUTER

81

\

\

DISTRIBUTION
APPLICATION

Fig. 4C

SUBSTITUTE SHEET (RULE 26)

PCT/US96/09916

PCT/US96/09916

WO 96/41449

6/22

NSV L \ZO_E>~_OmO :
NOILJAUON3
O0QHOLVYM AO1O3S
~ 7
ve [A®]

sy
YIOVNYN NOILO313a
INNOD Mw@w@ $53002d
TIdAVS IALOV
T ot o
08 8l 97

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

PCT/US96/09916

7722

START

(ACTIVE PROCESS DETECTION)

86

SYSTEM TASK WAS CALLED

\

GET FRONT

APPLICATION NAME

88

IS

HAS

"SAMPLE" SAMPLE
APPLICATION TIME LIMIT
IN FRONT EXPIRED vES
NO 58
% TERMINATE
SETFLAG SAMPLED
DISTRIBUTION™\ ¢ 10 APPLICATION 100
APPLICATION | ENABLE y S
IN FRONT IMAGE SETFLAG
DRIVER 0
ENABLE
IMAGE
DRIVER
SETFLAG
TO DISABLE | 102
IMAGE
DRIVER
Y 104
106
SAMPLED CLOSE AND
APPLICATION UNMOUNT |
FILE STILL VIRTUAL
OPEN VOLUME
]
' 108
\]
ST
YES >l CALLORIGINAL =
SYSTEM TASK)

SUBSTITUTE SHEET (RULE 26)

WO 96/41449 PCT/US96/09916

8/22

START
(BACKGROUND
PROCESSING SETUP)

\
DECRYPT AND INSTALL

BACKGROUND
PROCESSING CODE

110

\
INITIALIZE 112
GLOBAL VARIABLES

;

INSTALL 114
WATCHDOG TASK

\
INSTALL 16

ACTIVE PROCESS |

DETECTION CODE

l

SETUP 118
SAMPLE COUNTER

l

SET UP

INTER-PROCESS r 120

COMMUNICATION
VECTORS

w
INSTALL 122
IMAGE DRIVER

Fig. 7

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

9/22

START Fig. 8
(CHECK STATUS OF
SAMPLE COUNT FILES)
HAS \J 24 126
SAMPLE <
COUNT FILE #1 CREATE SAMPLE
BEEN COUNT FILE #1
CREATED
9
HAS\[28 130
SAMPLE =
COUNT FILE #2 CREATE SAMPLE
BEEN COUNT FILE #2
CREATED
2
YES
HAS N\ 32 134
SAMPLE =
COUNT FILE #3 CREATE SAMPLE
BEEN COUNT FILE #3
CREATED

SUBSTITUTE SHEET (RULE 26)

PCT/US96/09916

WO 96/41449

PCT/US96/09916

10/22

START
(DO OPEN)

GET ADDRESS OF "OK TO READ" 136
FLAG FROM BACKGROUND CODEVIA
INTER-PROCESS COMMUNICATION

|

GET ADDRESS OF SECTOR

DECRYPTION ROUTINE FROM - 138
BACKGROUND CODE VIA

INTER-PROCESS COMMUNICATION

\

SET STANDARD OPEN FLAGS r 140

RETURN

Fig. 9

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

Fig. 10

PCT/US96/09916

i1/722

START
(DO PRIME)

142
NO

YES 144
~

GET VALUE OF FLAG IN
BACKGROUND PROCESS

NO

ISTHIS
A DIRECTORY
OR VOLUME

INFO BLOCK
?

NO

HAS FLAG
VALUE BEEN
UPDATED IN
THE LAST 2
SECONDS?

YES 150
~

READ, DECRYPT, AND IF
NECESSARY, DECOMPRESS
REQUESTED SECTORS
FROM "VIRTUAL" VOLUME

152
~

\
QQETURN NO ERRO@

154
~

ve

RETURN ERROR)«—

T\

SUBSTITUTE SHEET (RULE 26)

WO 96/41449 PCT/US96/09916

12722
[ENTER] ﬁ;q. 11
(IMAGE DRIVER)
158
=]
DO OPEN
162
~

DO PRIME |—>

166
~

CONTROL CALL? DO CONTROL

Y

170
)

DO STATUS

Y

174
o

> DOCLOSE |—

RETURN

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

START
(INSTALL ACTIVE
PROCESS
DETECTION CODE)

176
~

PATCH SYSTEM
TASK TRAP

END

Fig. 12

START
(OPEN DRIVER)

184
~

Y

SET UP INTER-PROCESS
COMMUNICATION
VECTORS

END

Fig. 14

PCT/US96/09916

13/22

START
(INSTALL
IMAGE DRIVER)

l 178
~

DECRYPT DRIVER
CODE FROM DISK
INTO MEMORY

y &0

LOCK DRIVER CODE
INTO MEMORY

l 182
-~

OPEN DRIVER

END

Fig. 13

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

PCT/US96/09916

14/22

START
(SAMPLE COUNT MANAGER)

Y
USER REQUESTS A SAMPLE

- 186

188

ASK
DATABAGSE IF

NO SAMPLES ARE o4
AVAILABLE 7
190 CLOSE AND
= O'Z‘J'ééNE UNMOUNT
DOWNLOAD |<--USE... ... 192 VIRTUAL
APPLICATION = VOLUME
AND MOUNT MOUNT VIRTUAL VOLUME .
VIRTUAL
VOLUME feveeennenns 108
~
RECTIFY
DATABASE
DATAMATCH DATA TO
DATABASE THAT OF
IMAGE
202 CHECKN 20
REDUNDANT
%ﬁjéﬁﬁ? SAMPLE COUNT ON
VIRTUAL VOLUME.
VIRTUAL
vaa ARE SAMPLES
AVAILABLE
9
204
fJ
DECREMENT SAMPLE COUNT
AND LAUNCH APPLICATION
\ .
‘ = RETURN Fig. 15

SUBSTITUTE SHEET (RULE 26)

WO 96/41449 ' PCT/US96/09916

15722

START
(SECTOR ENCRYPTION/
DECRYPTION)

ENCRYPTION?

208
P
DECRYPT BUFFER ENCRYPT BUFFER
| >
\
RETURN
Fig. 162

SUBSTITUTE SHEET (RULE 26)

WO 96/41449 PCT/US96/09916

l6/22

Q/ START
ARYING POSITIONAL KE

DOES
BUFFER REQUIRE
ENCRYPTION/

DECRYPTION
?

201

"ENCRYPT/DECRYPT - 203
FIRST 512 BYTE BLOCK
Y
ENCRYPT/DECRYPT 205
FIRST BYTE IN BLOCK <
Y
DETERMINE BYTE POSTION ¥ 207
IN 512 BYTE BLOCK <
Y
PERMIUTATION TO DETERMINE
KEY: KEY = LOG (POSITION
MODULO 512) X $23FEC392
Y

APPLY KEYTO BYTEBY XOR 1 21!

- 209

DOES
ANOTHER
BYTE NEED
ENCRYPTION/
DECRYPTION

215

DOES
ANOTHER 512

END BLOCK REQUIRE YES
ENCRYPTION/
DECRYPTION
2
Fiy. 168

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

START
(SET UP SAMPLE COUNTER)

PCT/US96/09916

17722

Fig. 17

CHECK BOOT BLOCK FLAGS

212

\

CHECK STATUS OF
SAMPLE COUNT FILES

HAS
SAMPLE COUNIER
SYSTEM BEEN SET
UP ON THIS MACHINE
BEFORE?

ARE ALL
3 SAMPLE

214

NO

NO

COUNT FILES
NEW?

YES 290
~

r

FILL NEW FILES WITH THE
VALUE 1 AT EACH LOCATION

FILL NEW FILES WITH THE
VALUE -1 AT EACH LOCATION

\

WRITE FILE CREATION
DATES TO BOOT BLOCKS

226
) ~

WRITE FILE CHECKSUMS

- 224

TO BOOT BLOCKS

Y

END

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

START
(WATCHDOG TASK)

CHECK FOR APPLICATION
' TIME-OUT

230

OK
FOR DRIVER

TO READ
?

SETHLAGTO |r 234
CURRENT TIME

PCT/US96/09916

18722

Fig. 18

232
~

SETHAGTOO

DOES A
SAMPLE COUNT
NEED ENCRYP-
TION?

238
-~

DO A PHASE OF
SAMPLE COUNT
ENCRYPTION

DOES A
SAMPLE COUNT
NEED DECRYP-
TION?

242
o)

DO A PHASE OF
SAMPLE COUNT
DECRYPTION

SUBSTITUTE SHEET (RULE 26)

WO 96/41449 PCT/US96/09916

19722

Q START) jfz"g, 19
(PURCHASE ROUTINE)

- 243

USER REQUESTS PURCHASE

HAS

APPLICATION
OR DIGITAL INFORMATION YES
BEEN PURCHASED
BEFORE
? 248
1S THIS
NO NO AN ARCHIVAD
\ INSTALL
GENERATE SERIAL NUMBER 7 249 ?
250
ON-LINE USE = YES
252 Voo SRR L AUTOMATICALLY
= REGISTER WITH
MANUALLY REGISTER VENDOR AND
WITH VENDOR AND UNLOCK
UNLOCK APPLICATION APPLICATION
OR DIGITAL OR DIGITAL
INFORMATION INFORMATION
254 e - s e e .
2 \
INSTALL APPLICATION OR
DIGITAL INFORMATION [

\
| RETURN)

SUBSTITUTE SHEET (RULE 26)

WO 96/41449 PCT/US96/09916

20/22
Fig. 20 A START
(SELF-LAUNCHING DEMO)
256
_~
257 USER DOUBLE-CLICKS DEMO
2 |
DOWNLOAD | ONANEUSE
SOFIWARE <~
PACKAGE
DISTRBUTON | _e4
APPLICATION
CODE EXECUTES
INFORMATION
DISTRIBUTION
WITHOUT DEMO
260
259 HAVE
HAS ALL SAMPLES \\YES
INFORMATION BEEN USED
BEEN vES :
PURCHASED o
2 2602
DISTRIBUTION
APPLICATION CODE
MOUNTS DATA FORK OF
FILE AS VIRTUAL VOLUME
RECEIVE ! 2%4
nggggf DISTRIBUTION APPLICATION
> DECREMENTS
: USAGE COUNT
YES |
= END
GO TO PURCHASE
ROUTINE

SUBSTITUTE SHEET (RULE 26)

WO 96/41449

21/22

START
(GENERATE SERIAL NUMBER
WITH MARKETING INFORMATION)

]

RETRIEVE INFORMATION FROM
SAMPLE COUNT FILES

- 266

Y

CALCULATE MARKETING STATISTICS

AND FORMAT INTO BYTES

- 268

DETERMINE TOTAL NUMBER
OF SAMPLES USED

r 270

DETERMINE HOW MANY TIMES

> EACH APPLICATION WAS SAMPLED

272

DETERMINE MOST FREQUENTLY
SAMPLED APPLICATION

274

DETERMINE CATEGORY OF

Y

MOST FREQUENTLY
SAMPLED APPLICATION

r 276

DETERMINE VERSION OF

SAMPLED APPLICATIONS

r 277

Y

> DETERMINE OTHER STATISTICS

r 278

Y

CALCULATE

YES MORE STATISTICS

?

ASCIHI SERIAL NUMBER

RETURN

Fig. 21

SUBSTITUTE SHEET (RULE 26)

CONVERT BYTES INTO | 280

PCT/US96/09916

WO 96/41449

Fig. 22

ON-AINEUSE, ... 2

22/22

START
(AUTOMATIC
SOFTWARE SALES)

DOWNLOAD
SOFTWARE
PACKAGE

ACCESS AND
DISPLAY INDICATION
OF LOCKED

292

APPLICATIONS

296
-

EXECUTE
SAMPLE
ROUTINES

294

RECEIVE
REQUEST

TO SAMPLE

APPLICATION

YES

END

RECEIVE
REQUEST

TO PURCHASE
APPLICATION

REGISTER WITH VENDOR AND
UNLOCK APPLICATION

Y

ASSIGN SERIAL NUMBER
TO UNLOCKED APPLICATION

Y

DISTRIBUTE AND
INSTALL APPLICATION

Y

UPDATE SALES RECORD
AND ISSUE INVOICE

- 300

302

r 304

306

SUBSTITUTE SHEET (RULE 26)

PCT/US96/09916

INTERNATIONAL SEARCH REPORT

Inteinational application No.
PCT/US96/09916

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO4L 9/00; HO4K 1/00; GOGF 9/00, 15/00
US CL : 380/4, 25; 395/186, 218, 226, 227, 700; 364/400; 340/825.31

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : Please See Extra Sheet.

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms: SELF, LAUNCH, PROGRAM, SOFTWARE, KIOSK, VENDING

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Please See Continuation of Second Sheet.

Further documents are listed in the continuation of Box C.

D Sec patent family annex.

* Special categories of cited d

"A" documentdefining the general state of the art which is not considered
to be of particular relevance

"E* earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of h ion or other
special reason (as apecnf' ed)

0 document referring to an oral disclosure, use, exhibition or other
means

P blished prior to the i ifiling date but later than

the prmnty date claimed

‘T Inter document published after the international filing date or pnonty
date and not in conflict with the ”" ion but cited to und

principle or theory underlying the invention

x*

document of particular rel s the claimed i cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

Yy d of particul ! ; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d such
being obvious to a person skilled in the art

&" document member of the same patent family

Date of the actual completion of the international search

20 SEPTEMBER 1996

Date of mailing of the international search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. _ (703) 305-3230

150CT71996
Autporized ofticer £./1q 405 (W

PINCHUS M. LAUFER

Telephone No. (703) 306-4177

Form PCT/ISA/210 (second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/09916

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US, A, 5,341,429 (STRINGER ET AL.) 23 August 1994, see
-—-- entire document.
Y

X US, A, 4,658,093 (HELLMAN) 14 April 1987, see entire
— document.

X US, A, 4,446,519 (THOMAS) 01 May 1984, see entire document.

X US, A, 4,465,901 (BEST) 14 August 1984, see entire document.

1-3, 5, 7-12, 14-
16, 18, 20-25,
27, 28, 30-36,
38-42,

44-45, 47-50,
52-53, 55-58, 60,
61-67, 69, 70-76,
78,

79, 81-83, 85,
87-89, 91,101-
103, 105-107,
109-115, 117-
119,

and 121-125

6, 19, 29, 37,
46-47, 51, 54-55,
59, 69, 77,
101-103,
105-108,
110-115,
117-120,
122-125

1, 5,7, 11-14,
18, 20, 24-28,
30, 35, 36, 38,
43

79, 81-83, 85,
87-89, 91

6, 19, 29, 37

1,2, 11, 14, 15,
24, 27, 33, 39,
41

6, 19, 29, 37

1,2,5, 79, 14,
15, 18, 20-22,
217, 28, 30-33,
35, 36, 38-41

Form PCT/ISA/210 (continuation of second sheet)July 1992)x

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/09916

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US, A, 4,654,799 (OGAKI ET AL) 31 March 1987, see entire
document. .

US, A, 5,327,563 (SINGH) 05 July 1994, see entire document.

US, A, 5,109,413 (COMERFORD ET AL.) 28 April 1992, see
entire document.

US, A, 5,388,211 (HORNBUCKLE) 07 February 1995, see entire

_ document.

US, A, 5,530,865 (OWENS ET AL.) 25 June 1996, see entire
document.

US, A, 5,495,411 (ANANDA) 27 February 1996, see entire
document.

US, A, 4,787,050 (SUZUKI) 22 November 1988, see entire
document.

1, 2, 4, 10-12,
14, 15, 17, 23-
25, 27, 33-35,
40-41, 44, 49-50,
52, 57-58, 61-67,
70-76,

101-106, 112-
118, and 124

4, 6,17, 19, 29,
37, 46, 47, 51,
54, 55, 59, 68,
77, 101-103,
105-108, 110-
115, 117-120,
122-125

1-3, 5,9, 12, 14-
16, 18, 22, 25,
217, 28, 32, 33,
35, 36, 40, 41

6, 19, 29, 37

1-3, 5, 89, 11,
14-16, 18, 21-22,
24, 27-28, 31-33,
35-36, 39-41

6, 19, 29, 37
13,5, 9, 11-12,
14-16, 18, 22,
24-25, 27-28, 32-
33, 35-36, 40-41

92-100

92-100

4, 17

Form PCT/ISA/210 (continuation of second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT

International application No.
' PCT/US96/09916

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US, A, 4,740,890 (WILLIAM) 26 April 1988, sec entire 61-62, 64-66,
- document. 68-71, 73-75, 77-
Y 78
6, 19, 29, 37,
46, 54, 108, 120
X US, A, 4,796,220 (WOLFE) 03 January 1989, see entire 79, 81-83, 85,
- document. 87-89, --—---
Y 102, 114
X US, A, 3,990,710 (HUGHES) 09 November 1976, see entire 61-63, 65-67, 70-
document. 72, 74-76
X US,A, 5,355,302 (MARTIN ET AL) 11 October 1994, see entire | 61-78
--- document. 79, 81-83, 85,
Y 87-89, 91
51, 59
68, 77
X US, A, 5,166,886 (MOLNAR ET AL) 24 November 1992, see 44-60,
entire document. 61-78
X US, A, 4,827,508 (SHEAR) 02 May 1989, see entire document. 79, 81-83, 85,
- 87-89
Y —
47, 55
X US, A, 5,014,234 (EDWARDS JR.) 07 May 1991, see entire 79, 81-83, 85,
document. 87-89, 91
A US, A, 5,010,571 (KATZNELSON) 23 April 1991.
A US, A, 4,490,810 (HON) 25 December 1984
AP US, A, 5509070 (SCHULL) 16 April 1996
A US, A, 5,237,157 (KAPLAN) 17 August 1993

Form PCT/ISA/210 (continuation of second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT Tnte...ational application No.
) PCT/US96/09916

B. FIELDS SEARCHED

Minimum documentation searched

Classification System: U.S.

380/4, 25

364/949.81, 969, 969.4, 286.6, 400, 401R, 726, 856
395/186, 187.01, 188.01, 490, 491, 650, 700
340/825.31, 825.34

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

Group . Claims 1-43: Systems and Methods for demonstrating software and obtaining marketing information.
Group II. Claims 44-60: Self launching system and method for demonstrating software.
Group IIl. Claims 61-78: Self launching systems and methods for distributing software and digital information.
Group IV. Claims 79-91: System and method for storing a code within an operating system .

Group V. Claims 92-100: System and method for preventing unauthorized duplication of an executing software
program.

Group VI. Claims 101-126: Computer based system and method for automatic sales of software.

There is no common special technical feature relating the groups.
Groups 1, 2, 3, 4, and 6 are related as subcombinations usable togethér.

Group 5 is related to groups 1, 2, and 6 as a subcombination not essential to the combination.Groups 5, 3, and 4 are
related to each other as subcombinations usable together.

Form PCT/ISA/210 (extra sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

