(54) Title: METHOD FOR THE EARLY DIAGNOSIS OF CARCINOMAS OF THE ANOGENITAL TRACT

AA DNA-Methylierung in Zervixabstrichen

Figur 2

(57) Abrégé/Abstract:
A method is described for the early diagnosis of carcinomas of the anogenital tract, preferably of cervical carcinoma, and also the early stages thereof. The method is based on the determination of the methylation status of ASTN1 (astrotactin 1) and ZNF671 (zinc finger protein 671). A DNA methylation in the promoter region or of the 5'-region of this gene is indicative of the presence of a carcinoma of the anogenital tract or severe early stages thereof. In addition, kits are described, which allow the diagnosis method according to the invention to be carried out.
Abstract

A method is described for the early diagnosis of carcinomas of the anogenital tract, preferably of cervical carcinoma, and also the early stages thereof. The method is based on the determination of the methylation status of ASTN1 (astrotactin 1) and ZNF671 (zinc finger protein 671). A DNA methylation in the promoter region or of the 5'-region of this gene is indicative of the presence of a carcinoma of the anogenital tract or severe early stages thereof. In addition, kits are described, which allow the diagnosis method according to the invention to be carried out.
Method for the early diagnosis of carcinomas of the anogenital tract

The present invention relates to a method for the early diagnosis of carcinomas of the anogenital tract, preferably of the cervical carcinoma, and the preliminary stages thereof. The method is based on the determination of the methylation status of segments of the gene regions of ASTN1 (astrotactin 1) and ZNF671 (zinc finger protein 671, transcription factor). A DNA methylation in regions rich in guanine/cytosine, the so-called CpG islands, in the promoter region and/or the 5'-region of at least one of these genes or of both genes is characteristic of carcinomas or preliminary stages of carcinomas of the anogenital tract. The detection of correspondingly modified DNA is utilized diagnostically. The present invention also relates to kits which permit the conduction of the diagnostic method according to the invention.

Cancer of the cervix uteri (cervical carcinoma) is the second most frequent malignant cancerous disease in women world-wide. It develops in the course of an infection with so-called high-risk human papilloma viruses (hr-HPV) via preliminary stages which are referred to as cervical intraepithelial neoplasias (CIN). CIN1: (light dysplasia) ranges from basal to at most one third of the height of the epithelium; CIN2: (moderate dysplasia) up to two thirds of the epithelium; CIN3: (high-grade dysplasia) penetrates almost the entire epithelium. CIN2 and CIN3 are referred to as severe dysplasias. In connection with the latter
dysplasias there is a high risk that they change into a
cervical carcinoma. In the present application, CIN2, CIN3
and cervical carcinoma are subsumed under the name of CIN2+.
Along with an hr-HPV infection further factors are also
involved in the cervical carcinogenesis.

The existing preventive test for the detection of a cervical
carcinoma and its preliminary stages (CIN) is based on a
cytomorphological method (Pap test). The Pap test is highly
error-prone since some few cells suspected of cancer or CIN
must be recognized in a background of thousands of normal
cells by means of microscopy. In addition, the evaluation of
the cell morphology is extremely subjective. As a result of
these weaknesses, the sensitivity of the Pap test is 53 %
for the detection of CIN2+ and the specificity is 96.3 %
(Cuzick et al., 2006; Int J Cancer, 119:1095-1101).

The cancer check-up could be considerably improved by
molecular test methods. Since apart from a few exceptions
all cervical carcinomas and their preliminary stages contain
hr-HPV DNA, HPV-DNA appears to be a model marker for cancer
check-up. It was possible to show in various published
studies that the HPV-DNA test (a FCR method) has a
sensitivity of 96.1 % and a specificity of 90.7 % for the
detection of CIN2+. However, the positive predictive value
of an HPV-DNA test for CIN2+ which is only 20.3 % is poor as
expected since many women are only infected with HPV but
have no preliminary stages of cancer (Cuzick et al., 2006;
Int J Cancer, 119:1095-1101). Thus, there is a need for an
improved diagnosis of carcinomas of the anogenital tract, in
particular of the cervical carcinoma.

It is thus the object of the present invention to provide a
method serving the early and reliable diagnosis of
carcinomas of the anogenital tract, such as the cervical carcinoma and above all the preliminary stages thereof.

According to the invention this is achieved by the subject matters in the claims.

The present invention is based on Applicant’s findings which are described in more detail below as to the correlation between the methylation status of certain genes and the development of carcinomas of the anogenital tract. The CpG islands rich in cytosine/guanine are frequently methylated in the upstream, promoter and promoter-near exon regions of genes in carcinomas and the preliminary stages thereof compared to the corresponding normal tissue. This methylation of genes is not arbitrary but depends on the respective tumor entity (Esteller, 2007, Hum. Mol. Genet., 16: R50-R59). Based on the invention, analyses for methylation were thus carried out with the objective of identifying genes which were particularly often methylated in DNA from smears of female patients having a histopathologically confirmed CIN3 and of female patients having a cervical carcinoma. In addition, the genes in DNA from cervical smears of cytologically inconspicuous but hr-HPV-positive women should only be methylated very rarely or not at all. The analysis listed herein shows for the first time that the methylation of certain regions of genes ASTN1 and/or ZNF671 is a valuable marker for the detection of carcinomas of the anogenital tract (preferably: CIN2+) in a sample (see figure 2). The present invention thus provides improved methods for analyzing a cervical carcinoma and its severe preliminary stages (CIN2+) in a sample (e.g. cell smear of the cervix, cervical flush). Although, as shown by the inventors, the determination of the methylation status of the two above-mentioned genes is already highly
significant, it may be helpful for the safeguarding of the
diagnosis in medical exceptional cases to also determine the
methylation status of one or more further genes, such as
DLX1 (distal-less homeobox 1, transcription factor), EDIL3
(EGF-like repeats and discoidin I-like domains 3), ITGA4
(α4-integrin) and/or RXFP3 (relaxin/insulin-like family
peptide receptor 3).

The present invention is based on the (direct or indirect)
detection of the methylation status of ASTN1 and ZNF671. It
is preferably detected whether the promoter regions of the
genes ASTN1 and ZNF671 are hypermethylated. Since
methylation usually takes place at promoter regions of
genes, methods for the detection of the methylation of the
relevant genes usually focus on these regions. However,
genes can also be methylated in regions other than the
promoter region since the CpG islands rich in GC are not
only found there. The detection of a methylation in such
further regions can also be of diagnostic use and is thus
also a subject matter of the present invention.

In the present invention, the methylation status of genes
ASTN1 and ZNF671 is preferably detected in the promoter
regions. In this connection, it is examined whether or not
certain cytosines are modified, i.e. are methylated, to give
5-methylcytosine. In a DNA from a sample originating from a
woman having an hr-HPV infection without detectable clinical
changes, the methylation is hardly detectable or not
detectable at all in the corresponding positions of the DNA.
In women having CIN2+, the probability for a methylation at
the selected cytosine residues is, however, high.

The specific detection of the methylation of genes, which
occurs during the carcinogenesis compared to normal tissue,
can thus supplement the HPV-DNA detection so as to replace the Pap test. The specificity of the HPV test for the detection of CIN2+ can be considerably improved by methylation analyses carried out in parallel (see figures 1 and 2). The same smear material from the persons to be tested as formerly used for the Pap test and the HPV detection serves as a starting material for the detection of the DNA methylation.

Brief description of the figures

Figure 1: DNA methylation in various smears
Diagram of the methylation frequency of genes ASTN1, DLX1, EDIL3, ITGA4, RXFP3 and ZNF671 as well as the frequency of the methylation of at least one of the genes each in DNA from smears of HPV-negative, inconspicuous (n=77), HPV-positive, histopathologically inconspicuous women (n=90), female patients having histopathologically confirmed CIN3 (n=48) and female patients having a cervical carcinoma (n=65).

Figure 2: DNA methylation in various smears
Diagram of the methylation frequency of the genes ASTN1 and ZNF671 as well as the frequency of the methylation of at least one of the genes each in DNA from smears of HPV-negative inconspicuous women (n=77), HPV-positive, histopathologically inconspicuous women (n=90), female patients with histopathologically confirmed CIN3 (n=48) and female patients having a cervical carcinoma (n=65).

Thus, the present invention relates to a method for detecting anogenital cancer or preliminary stages thereof in a sample, comprising the determination of the methylation status of ASTN1 (astrotactin 1) and ZNF671 (zinc finger
protein 671), wherein a detectable methylation of one or both genes is indicative of anogenital cancer or a preliminary stage thereof.

In the case of inconclusive findings, it is optionally possible to additionally also determine the methylation status of one or more of the genes DLX1 (distal-less homeobox 1, transcription factor), EDIL3 (EGF-like repeats and discoidin I-like domains 3), ITGA4 (α4-integrin) or RXFP3 (relaxin/insulin-like family peptide receptor 3).

ASTN1 (astrotactin 1; accession number NM_004319.1, NM_207108 contained in NC_000001.9) is an adhesion protein which plays an important part in the migration of neuronal cells. ZNF671 (accession number NM_024883, contained in NC_000019.9) is a transcription factor having a typical zinc finger motif. DLX1 (distal-less homeobox1; accession numbers NM_178120, NM_001038493, contained in NC_000002.11) is a transcription factor and influences the cell differentiation. EDIL3 (EGF-like repeats and discoidin I-like domains 3; accession number NM_005711, contained in NC_000005.8) is an integrin ligand and plays an important part in angiogenesis. It might be important for the restructuring and development of vessel walls. In addition, EDIL3 promotes the adhesion of endothelial cells. ITGA4 (α-4 integrin; accession number NM_000885, contained in NC_000002.10) belongs to the family of α-integrins which together with one β-integrin each occur as integral membrane proteins. They serve as receptors for fibronectin and thus play an important part in cell adhesion. RXFP3 (relaxin/insulin-like family peptide receptor 3; accession number NM_016568, contained in NC_000005.8) serves as a G-protein-linked receptor for relaxin 3.
The expression "anogenital cancer" used herein comprises all cancer types of the anogenital tracts, i.e. in the genital, perineal, anal and perianal regions. These types are preferably cervical carcinoma, vulvar cancer, ovarian carcinoma and endometrial carcinoma.

The expression "preliminary stages" used therein refers to severe preliminary stages and comprises CIN2 and CIN3.

The term "sample" used herein comprises any body samples where DNA methylation can be detected. Examples of such body samples are blood, smears, sputum, urine, stool, liquor, bile, gastrointestinal secretions, lymph fluid, bone marrow, organ aspirates and biopsies. In particular, smears and biopsies are useful when the detection of anogenital carcinomas, e.g. cervical carcinomas, is concerned. A person skilled in the art knows suitable methods and auxiliary agents for sampling. The person skilled in the art also knows methods and reagents for the DNA isolation from the sample, e.g. extraction with phenol/chloroform or by means of commercial kits.

The expression "methylation status" used herein refers to the hypermethylation of the genomic DNA in the region of the primer binding sites of the corresponding genes, preferably in CpG islands rich in GC in the 5′- and promoter regions.

In a preferred embodiment, the diagnostic method according to the invention is used for the diagnosis of cancer of the cervix uteri (cervix carcinoma) and its preliminary stages (together CIN2+).
The method according to the invention determines the methylation of the genes ASTN1 and ZNF671. The term "methylation" used herein is synonymous with the term "hypermethylation" common in molecular biology. It refers to the methylation differing from the normal state within a DNA segment rich in generally guanine and cytosine and in particular CG-dinucleotides, a so-called CpG island.

The sample used for the method according to the invention is preferably a cervical smear which provides very reliable results.

The methylation status of the promoter region and of the 5'-and promoter-near exon regions of a gene are determined in another preferred embodiment of the method according to the invention. These regions are particularly informative.

The methylation of DNA is preferably detected after a preceding modification of non-methylated cytosines by the bisulfite method by means of what is called a methylation-specific PCR (MSP) using suitable primer pairs. In the bisulfite method, unmethylated cytosines are converted into uracil, methylated cytosines (5-methylcytosine) are protected against this conversion. Uracil usually has pairing properties differing from cytosine, i.e. it behaves like thymine. MSP is an established technique for the detection of DNA methylation. MSP is based on primers and possibly probes which permit a distinction between methylated and unmethylated DNA, i.e. the formation of an amplification product shows a methylation, thus corresponding to a positive finding.

The design of the primers for the detection of the methylation status depends on the localization and sequence
of the methylation regions of ASTN1 and ZNF671 as well as on
the methylation regions of DLX1, EDIL3, ITGA4 and/or RXFP3
if the methylation status of these genes shall also be
determined, where appropriate.

The methylation-specific primers for ASTN1 and ZNF671 usable
in this invention bind during the test method only to the
bisulfite-modified sample DNA if it was methylated to
certain cytosines within the primer binding sites. If these
regions were not methylated before the bisulfite treatment,
the primers do not bind and no reaction product is formed.
For example, the presence of a reaction product refers to
methylation of the DNA region of the particular gene and
thus to the possible presence of e.g. CIN2+ in the case of
DNA from cervical smears.

A real-time PCR method (QMSP) which does not only permit a
qualitative detection of the methylation but also a
quantification of the methylated DNA segments is
particularly preferred. This MSP can be carried out in a
fluorescence-based real-time method where the formation of
the methylation-specific product is pursued by the
incorporation of a fluorescent dye, e.g. SYBR-Green. The
methylation of marker genes can be detected by these two
methods (MS and QMSP) in a high background of non-methylated
DNA (Shames et al., 2007, Cancer Lett. 251:187-98). PCR-
based methods can also be used in high-throughput methods
and are thus also particularly suited for cancer check-up.

Even more preferred is a QMSP based on the "MethyLight"
technique, fluorescent probes being used for the respective
gene segments to be tested for methylation. The probe
carries the fluorescent dye at the 5’-end and a quencher at
the 3’-end. It binds to the PCR reaction product between the
two specific primers. Fluorescent dye is released as soon as the probe is decomposed after binding to the target sequence by the 5’-3’-exonuclease activity of the DNA polymerase. The measured fluorescence reflects the amount of product formed. The number of reactions to be carried out can be correspondingly reduced for samples to be investigated in this method by using several oligonucleotides and probes (Shames et al., 2007, Cancer Lett. 251:187-98). Suitable fluorescent dyes and quenchers are known to the person skilled in the art, e.g. as fluorophore FAM, HEX™, NED™, ROX™, Texas Red™, etc., and as quenchers TAMRA or BHQ.

In a particularly preferred embodiment, the method of the present invention is carried out as a multiplex experiment. Such a multiplex experiment permits the detection of e.g. CIN2+ by the analysis of the methylation status of several genes, which is known to be correlated with the presence of CIN2+, in a single assay per sample. The multiplex method offers several advantages since the methylation status of the gene set to be tested can be determined in one or two reactions per sample. This saves considerable time, sample material and material costs. In the multiplex experiment, the methylation-specific primers are used for up to five genes to be tested. In addition, one further specific oligonucleotide each, what is called a probe, is used for every gene. This probe carries at one end a fluorescent dye and is modified such that the fluorescence does not occur until the probe binds specifically to the reaction products forming during the experiment. The probes carry different fluorescent groups and therefore all can be detected simultaneously. The method according to the invention can also be carried out by means of the “microarray” technology.
The person skilled in the art knows further methods for determining the methylation status, e.g. those based on a direct determination of the amount of specific product by fluorescence. For example, the molecular beacon technology can also be used for the diagnostic method according to the invention. Molecular beacons are oligonucleotides which are linked to both a reporter fluorophore and a quencher. The nucleotides at the 5′-end of the probe are complementary to those at the 3′-end so as to form a secondary structure characteristic of molecular beacons. In this state which is referred to as a hair-needle structure, the reporter shows no fluorescence due to its minor distance to the quencher. The distance between quencher and reporter is increased as a result of the attachment of the loop region to the complementary DNA sequence between the primers during a PCR cycle. The reporter fluorescence can thus be observed.

Another technique suitable for carrying out the method according to the invention is the "scorpion" technology. Scorpion probes are complex oligonucleotides which combine the properties of real-time PCR probes and PCR primers in one (single-scorpion) or two molecules (bi-scorpion). Similar to the molecular beacons, they include a characteristic secondary structure having a self-complementary shaft region whose ends were modified with a reporter fluorophore and a quencher. In addition, these probes carry a PCR primer at the 3′-end. During a PCR cycle, reporter fluorescence can be observed by the attachment of the loop region to a complementary DNA sequence and thus an increased distance between quencher and reporter when the DNA concentration increases. For the detection of the binding of the different probes the latter are coupled with fluorescent dye molecules.
Furthermore, positive and/or negative control genes, e.g. an unmethylated control gene, can be co-amplified when the method according to the invention is carried out.

It is known that the methylation of genes is often connected with a transcription blockade and thus a lacking translation. Thus, the method according to the invention also comprises the indirect determination of the methylation status by determining the concentration of the corresponding RNA and/or protein. The detection thereof can be done by common methods, e.g. (for RNA) via Northern blot analysis, RT-PCR, etc., and (for proteins) via antibody-based methods or methods which are based on the determination of a biological activity of the protein.

The method according to the invention can be based on the following steps, for example:

(a) DNA is isolated according to a standard method from a cell smear of the person to be tested, e.g. QiaAmp DNA-Mini kit, according to the instructions of the manufacturer (QIAGEN, Hilden, Germany);
(b) In a second step, it is preferably investigated whether the sample to be analyzed contains hr-HPV-DNA. This detection is done with an already established method such as the GP5+/6+ PCR EIA method (Jacobs et al., 1995 J Clin Microbiol 33:901-905). All hr-HPV types (HPV16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, 82) should be covered. The detection of a house-keeping gene, e.g. β-globin or β-actin, ensures that a sufficient amount of DNA of sufficient quality, which can also be amplified, is available in the sample;
(c) In an HPV-negative sample, the presence of a CIN2+ is almost 100 % excluded (Cuzick et al., 2006; Int. J. Cancer, 119:1095-1101). Therefore, these samples need not be further
investigated. The differentiation between women having an hr-HPV-positive finding either with or without CIN2+ is then done via the determination of the methylation status of the genes ASTN1 and ZNF671;

(d) For this purpose, the DNA of the hr-HPV-positive samples is chemically converted according to the bisulfite method, e.g. by means of a commercial kit (e.g. Methylation Gold Kit, Zymo Research, Orange, CA, U.S.A.). Here, all non-methylated cytosines of the DNA sample are converted into uracils by treatment with sodium bisulfite and subsequent alkaline hydrolysis;

(e) The relevant DNA is amplified and analyzed by means of specific primers for the methylated form of the respective genome segments by PCR;

(f) For the detection of the methylation of the genes ASTN1 and ZNF671 in a methylation-specific PCR or QMSP, the following methylation-specific primers can be used:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTN1_F</td>
<td>CGTAAGCCTTTTCTAGCCGTTAGC</td>
</tr>
<tr>
<td>ASTN1_R</td>
<td>CGCGAAATCGAAACGAACAGG</td>
</tr>
<tr>
<td>ZNF671_F</td>
<td>CGGAGGACGATCATTATTTATTACG</td>
</tr>
<tr>
<td>ZNF671_R</td>
<td>CTAAGCTCCCAGGATCGAAGC</td>
</tr>
</tbody>
</table>

However, the diagnostic method according to the invention is not limited to the use of these primers for the detection of the methylation of genes ASTN1 and ZNF671. It also comprises primers of other sequences which can serve for detecting the methylation of both genes.

(g) For the detection of the methylation of genes ASTN1 and ZNF671 by MethyLight analysis, fluorescent probes are used in addition to the above described primers:
Depending on the application, the probes are coupled with the corresponding fluorescent dyes. However, the invention is not limited to the use of these probes for the detection of the methylation of genes ASTN1 and ZNF671. It also comprises probes having other sequences which may serve for detecting the methylation of both genes.

A quantification of the methylation of the marker genes is not compulsory. What is decisive is that e.g. by MSP or QMSP at least one cell with methylated marker gene(s) can be detected in a background of 1000 cells without methylated marker gene(s).

In a further particularly preferred embodiment of the method according to the invention the HPV-DNA is additionally quantified in the sample. This enables an assessment of the number of HPV-positive cells in the DNA modified by bisulfite treatment by PCR with hr-HPV-specific oligonucleotide primers adapted correspondingly to the bisulfite modification. The primers preferably permit the amplification in the conserved L1 region of the HPV genome and can comprise the following sequences, for example:

```
ASTN1     GTAAATT CGTTGTTTCCG AAGTTGTTCG
ZNF671    CCGGGCGGCCGACAGTTGTCGGGAGCG

HPV-F     GGGTTATAATAATGGTTATTGTTG
HPV_R     TAAAAAATAAACTATAAACTAACTCC
```

In a further preferred embodiment, the methylation of one or more of the genes DLX1, EDIL3, ITGA4 and/or RXFP3 is checked. Primers usable for this purpose are:
In order to detect the methylation of genes DLX1, EDIL3, ITGA4 and RXFP3 by MethyLight analysis, fluorescent probes are used in addition to the above described primers:

Depending on the application, the probes are coupled to corresponding fluorescent dyes.

A further subject matter of the present invention is a kit for carrying out a method according to the invention. Such a kit comprises gene-specific primers or primer pairs for determining the methylation status of ASTN1 (astrotactin 1) and ZNF671 (zinc finger protein, transcription factor), preferably the primers and/or primer pairs defined in more detail above. In a further embodiment, the kit can additionally contain gene-specific primers or primer pairs to determine the methylation status of DLX1 (distal-less homeobox 1), EDIL3 (EGF-like repeats and discoidin I-like
domains 3), ITGA4 (α4-integrin) and/or RXFP3 (relaxin/insulin-like family peptide receptor 3), preferably the primers and/or primer pairs which are defined in more detail above.

The kit can additionally also contain a probe as described in more detail above and/or a primer pair for the detection of an HPV infection.

Finally, the kit can additionally contain at least one of the following constituents in separate containers:

(a) reagents for the isolation of DNA;
(b) enzyme for DNA amplification;
(c) sodium bisulfite;
(d) one or more buffers.

One or more representatives of the individual components of the kit can be available.

It is thus possible with the present invention to diagnose carcinomas of the anogenital tract, in particular cervical carcinomas, at an early stage. In particular, preliminary stages of these carcinomas can be detected early. It must be pointed out that a distinction can be made between hr-HPV-positive women with or without clinically relevant tissue modification, e.g. CIN2+. Another characterizing factor is that the results obtained by a method according to the invention are not subject to a subjective assessment and therefore the false-negative or false-positive results of a Pap test can be avoided, for example. In addition the present diagnostic method according to the invention distinguishes itself by a rapid and simple handling and therefore it is suited for large screening measures, in
particular also in third world countries. Thus, the present invention makes an important contribution to the modern diagnosis of anogenital cancer, in particular cervical carcinoma, or preliminary stages thereof.

In this respect, it should be noted that as a result of the inventive combination of determining the methylation status of ASTN1 and ZNF671 a superior diagnostic confirmation with respect to the detection of CIN2+ lesions can be achieved, which exceeds the individual determination of other genes. For example RXFP3 (Huang et al.) is a marker which is more than 10% worse than ASTN1 and ZNF671 (see figure 1). The above mentioned additional determination of the methylation status of the further marker genes is thus only necessary in exceptional cases and is only used according to the invention to confirm the diagnosis.

The invention is explained by the following example.

Example 1
DNA methylation in smears

(1) Smears of 77 HPV-negative women, (2) smears of 90 hr-HPV-positive women where there was no indication (histopathologically) of a tissue change; (3) smears of 48 hr-HPV-positive women having a histopathologically confirmed CIN3, and (4) smears of 65 hr-HPV-positive women having a histopathologically confirmed cervical carcinoma were investigated.

The results are shown in figure 2. Figure 2 shows the methylation frequency of the genes ASTN1 and ZNF671 in the individual groups. A methylation of at least one of the genes occurred in 87% of the CIN3 samples and 90% of the
cervical carcinoma samples but only in 3% of the hr-HPV-negative and 5% of the hr-HPV-positive women without tissue changes. As a result of the combination of the two genes, it is thus possible to obtain an almost 100% diagnostic confirmation. This shows the reliability of the method according to the invention.

The PCR for the detection of both an HPV infection and for the detection of the methylated genes is very sensitive. The present example is based on the respective qualitative determination of the HPV status and the methylation status of the marker genes. By a quantitative determination of the HPV DNA, a limiting value can be defined which corresponds to a minimum number of HPV-positive cells in the sample. As a result, the specificity of the methylation-specific PCR can be further increased for the detection of CIN2+.

Literature

Cuzick et al., 2006; Int J Cancer 119:1095-1101
Jacobs et al., 1995, J Clin Microbiol 33:901-905
Shames et al., 2007, Cancer Lett. 251:187-98
Yu et al., 2007, Clin Cancer Res 13: 7296 - 7304
Wenztensen et al., 2009; Gynecologic Oncology 112, 293-299
Huang et al., Abstract #50, 99th AACR Annual Meeting, April 12-15, 2008, San Diego
Amended Claims (Art. 34 PCT)

1. A method for detecting anogenital cancer or preliminary stages thereof in a sample, comprising determining the methylation status of ASTN1 (astrotactin 1) and ZNF671 (zinc finger protein, transcription factor), wherein ASTN1 and/or ZNF671 are methylated in a positive sample.

2. The method according to claim 1, wherein the anogenital cancer is cancer of the cervix uteri.

3. The method according to claim 2, wherein the sample is a cervical smear.

4. The method according to any of claims 1 to 3, wherein the methylation status of the promoter region is determined.

5. The method according to any of claims 1 to 4, wherein the methylation status of the genes is determined by means of methylation-specific PCR (MSP).

6. The method according to claim 5, wherein the MSP is a quantitative MSP (QMSP).

7. The method according to claim 6, wherein the quantitative MSP is based on the MethyLight technique.

8. The method according to any of claims 1 to 7, wherein the method is a multiplex method.

9. The method according to claim 5, 6, 7 or 8, wherein primer pairs are used which comprise the following sequence:
(a) CGTAAGCCTTTGATTAGGCTAGC (ASTN1_F); and
CGCGAAATCGAAACGAACGAAACG (ASTN1_R);
(b) CGGGGACGTAGTATTTATTGC (ZNF671_F) and
CTACGTCCCCGGATCGAAACG (ZNF671_R).

10. The method according to claim 7 or 8, wherein a primer pair or several primer pairs as defined in claim 9 are used and additionally at least one probe which comprises one of the following sequences:
(a) GTAATTCTGGTTTGCAGTATGTTCCG (ASTN1);
(b) CGTGGGGCGGGCGACAGTTGTCGGGAGCG (ZNF671).

11. The method according to any of claims 1 to 10, additionally comprising the detection of an HPV infection.

12. The method according to claim 11, wherein the HPV detection is done via PCR.

13. The method according to claim 12, wherein in the PCR a primer pair is used which comprises the following sequences:
(a) GTTTTATAATAATGTTTTGTTGGG (HPV_F); and
(b) TAAAAAATAACTATAAAATCATATTTCC (HPV_R).

14. Kit for use of detecting anogenital cancer or preliminary stages thereof in a sample, comprising:
gene-specific primers or primer pairs for determining the methylation status of ASTN1 (astrotactin 1) and ZNF671 (zinc finger protein, transcription factor).

15. Kit according to claim 14, containing the primers/primer pairs as defined in claim 10.

16. Kit according to claim 14 or 15, additionally containing a probe as defined in claim 10.
17. Kit according to any of claims 14 to 16, additionally containing a primer pair for the detection of an HPV infection.

18. Kit according to claim 17, wherein the primer pair is the primer pair defined in claim 13.

19. Kit according to any of claims 14 to 18, containing in separate containers additionally at least one of the following constituents: (a) reagents for isolating DNA; (b) enzyme for DNA amplification; (c) sodium bisulfite; (d) one or more buffers.
Unscannable items received with this application
(Request original documents in File Prep. Section on the 10th floor)

Documents reçu avec cette demande ne pouvant être balayés
(Commander les documents originaux dans la section de la préparation des dossiers au 10ième étage)
DNA-Methylierung in Zervixabstrichen

Figur 2

CC □ HPV-negative (n=77)
DD □ HPV-positive, histolog. unauffällig (n=90)
EE □ CIN3, histolog. bestätigt (n=48)
■ CxCa (n=65)

AA DNA methylation in cervical smears
BB methylated smear samples
CC HPV negatives (n=77)
DD HPV positives histologically normal (n=90)
EE histologically confirmed CIN3 (n=48)
FF ASTN1 or ZNF671