PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/00471
GOGF A2 i .

(43) International Publication Date: 3 January 1997 (03.01.97)
(21) International Application Number: PCT/IL96/00017 | (74) Agent: A, TALLY EITAN-ZEEV PEARL & CO.; Lumir

House, 22 Maskit Street, 46733 Herzlia (IL).

(22) International Filing Date: 16 June 1996 (16.06.96)

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,
(30) Priority Data: CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL,
114182 15 June 1995 (15.06.95) IL IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, TJ, T™M, TR, TT, UA, UG, US, UZ,
(60) Parent Application or Grant VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian
(63) Related by Continuation patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
us 08/168,041 (CIP) patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
Filed on 15 December 1993 (15.12.93) LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,

CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): CHECK
POINT SOFTWARE TECHNOLOGIES LTD. [IL/IL]; Ha- | Published

teomim Building 2, 35 Jabotinsky Street, 52511 Ramat Gan Without international search report and to be republished
(IL). upon receipt of that report.
(72) Inventors; and

(75) Inventors/Applicants (for US only): SHWED, Gil [IL/IL]; 21
Harechesh Street, 69699 Tel Aviv (IL). KRAMER, Shlomo
[IL/IL]; 36 Harav Kuk Street, 63302 Tel Aviv (IL). ZUK,
Nir [IL/IL]; 2 Zvi Street, 52504 Ramat Gan (IL). DOGON,
Gil [IL/IL]; 78 Hakidma Street, 46743 Hertzlia (IL). BEN-
REUVEN, Ehud [IL/IL}; 11 Arba Aratzot Street, 62486 Tel
Aviv (IL).

(54) Title: A SYSTEM FOR SECURING THE FLOW OF AND SELECTIVELY MODIFYING PACKETS IN A COMPUTER

NETWORK
1604\ 1606 1608\
/1600 1510\
FIREWALL 1 NEMORK FIREWALL 2
HOST 1 HOST 2

CA 2

CA 1
\1602 1612/

(57) Abstract

The present invention discloses a novel system for controlling the inbound and outbound data packet flow in a computer network. By
controlling the packet flow in a computer network, private networks can be secured from outside attacks in addition to controlling the fiow
of packets from within the private network to the outside world. A user generates a rule base which is then converted into a set of filter
language instruction. Each rule in the rule base includes a source, destination, service, whether to accept or reject the packet and whether to
log the event. The set of filter language instructions are installed and executed on inspection engines which are placed on computers acting
as firewalls. The firewalls are positioned in the computer network such that all traffic to and from the network to be protected is forced to
pass through the firewall. Thus, packets are filtered as they flow into and out of the network in accordance with the rules comprising the
rule base. The inspection engine acts as a virtual packet filtering machine which determines on a packet by packet basis whether to reject
or accept a packet. If a packet is rejected, it is dropped. If it is accepted, the packet may then be modified. Modification may include
encryption, decryption, signature generation, signature verification or address translation. All modifications are performed in accordance
with the contents of the rule base. The present invention provides additional security to a computer network by encrypting communications
between two firewalls between a client and a firewall. This permits the use of insecure public networks in constructing a WAN that includes
both private and public network segments, thus forming a virtual private network.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armmenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

A SYSTEM FOR SECURING THE FLOW OF AND SELECTIVELY
MODIFYING PACKETS IN A COMPUTER NETWORK

BACKGROUND OF THE INVENTION

This application relates, in general, to a method for controlling computer
network security. More specifically it relates to an easily alterable or expandable
method for computer network security which controls information flow on the
network from/to external and internal destinations. '

Connectivity and security are two conflicting objectives in the computing
environment of most organizations. The typical modern computing system is built
around network communications, supplying transparent access to a multitude of
services. The global availability of these services is perhaps the single most
important feature of modern computing solutions. Demand for connectivity comes
both from within organizations and from outside them.

Protecting network services from unauthorized usage is of paramount
importance to any organization. UNIX workstations, for example, once connected
to the Internet, will offer all the services which it offers another station on the next
table to the entire world. Using current technology, an organization must give up
much of its connectivity in order to prevent vulnerability, even to the extent of
eliminating all connections to the outside world or other sites.

As the need for increased security grows, the means of controlling access
to network resources has become an administrative priority. In order to save cost
and maintain productivity, access control must be simple to configure and
transparent to users and applications. The minimization of setup costs and down
time are also important factors.

Packet filtering is a method which allows connectivity yet provides security
by controlling the traffic being passed, thus preventing illegal communication
attempts, both within single networks and between connected networks.

Current implementation of packet filtering allows specification of access list

tables according to a fixed format. This method is limited in its flexibility to express

1

10

15

20

25

30

WO 97/00471 PCT/1IL96/00017

a given organization's security policy. It is also limited to the set of protocols and
services defined in that particular table. This method does not allow the
introduction of different protocols or services which are not specified in the original
table.

Another method of implementing packet filtering is tailoring the computer
operating system code manually in every strategic point in the organization. This
method is limited by its flexibility to future changes in network topology, new
protocols, enhanced services and to future security threats. It requires a large
amount of work by experts modifying proprietary computer programs, making it
insufficient and expensive to setup and maintain.

In addition, the need for secure long distance communications between
enterprises, branch offices and business partners is becoming an essential
requirement in modern day business practice. Historically, dedicated point-to-point
connections between networks were employed for fully private inter-enterprise
commerce and long distance transactions. However, their inflexibility and
prohibitive cost have prevented their widespread use. Public networks such as the
Internet provide a flexible and inexpensive solution for long distance inter-
networking. Instead of establishing dedicated lines, enterprises can communicate
using the Internet as a mediator. Once connected to a local internet provider,
private networks can quickly connect to any destination around the world.

A private network that uses some public segments is called a virtual private
network (VPN). A VPN is significantly less expensive and more flexible than a
dedicated private network. Each of the private networks need only be connected
to a local Internet provider. Adding new connections is simple and inexpensive.
However, a major disadvantage of a VPN is that it is insecure because of its
insecure segfnents. The Internet connection exposes the enterprise to the
following two dangers: (1) unauthorized Intenet access into internal enterprise
networks (break-ins) and (2) eavesdropping on and tampering with enterprise
communication as they pass through the Internet.

The security risks involved in communicating over the Internet have

deterred enterprises from taking full advantage of VPNs. Doing business over the

WO 97/00471 - PCT/IL96/00017

Internet (e.g., transferring funds, obtaining and verifying credit information, selling

and delivering products) requires a reliable and effective security solution.

10

15

20

25

30

WO 97/00471 - PCT/1L96/00017

SUMMARY OF THE INVENTION

Accordingly, the present invention seeks to provide an improved flexible,
easily-alterable security method which controls information flow on a computer
network to that described in copending coassigned U.S. Patent Application
08/168,041. ’

Another object of the invention is to control information flow on the network
from/to internal as well as external destinations where the control includes at least
one of the encrypting the information and modify the source and/or destination
address. ‘

Yet another object of the invention is to control information flow by means
of a packet filter capable of examining every packet of information flowing past a
node in the system, the packet being encrypted.

A further object of the invention is to control information flow by the packet
filter wherein the packet filter is capable of passing the packet only if it is
preauthorized, preferably after a nondestructive connection validity check.

Another object of the invention is to provide a generic packet filter module
which is controlled by a set of instructions to implement a given security policy at a
node to accept (pass) or reject (drop) the packet wherein the packet is passed
only if it passage is preauthorized.

Yet another object of the invention is to provide a security method for a
computer network which is easily alterable by the system administrator without the
need to change the nature of the packet filter itself or to write extensive code.

Another object of the invention is to provide an improved connection validity
check.

Yet another object of the invention is to provide the ability to modify the
packet by any of encrypting it, modifying a destination address, accepting external
inputs as criteria for accepting, rejecting or modifying the network communication.

Another object of the present invention is to provide an encryption scheme
for securing the flow of data over insecure public networks, such as the Internet,
thus forming a VPN.

According to an aspect of the present invention, there is provided a
computer system to secure transactions over networks by encrypting them, inter-

4

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

connect various networks with different addressing échemes and provides ways to
pass packets of information only when the source of the communication is
authorized and detecting the validity of traffic through the network while minimizing
the information required to achieve it, preferably in a fail-safe architecture.

There is provided in accordance with a preferred embodiment of the
present invention a method of inspecting and selectively modifying inbound and
outbound data packets in a computer network, the inspection and selective
modification of the data packets occurring in accordance with a security rule, the
method including the steps of generating a definition of each aspect of the
computer network inspected by the security rule, generating the security rule in
terms of the aspect definitions, the security rule controlling at least one of the
aspects, converting the security rule into a set of packet filter language
instructions for controlling an operation of a packet filtering module which inspects
and selectively modifies the data packets in accordance with the security rule,
coupling the packet filter module to the computer network for inspecting and
selectively modifying the data packets in accordance with the security rule, the
packet filter module implementing a virtual packet filtering machine, and the
packet filter module executing the packet filter language instructions for operating
the virtual packet filtering machine to either accept or reject the passage of the
data packets into and out of the network computer and selectively modify the data
packets so accepted.

Further, the aspects can include network objects, network services or
network services. In addition, the object definitions include the address of the
object and the filter language instructions of the step of converting are in the form
of script and further comprise a compiler to compile the script into the instructions
executed in the step of executing.

Still further, both the steps of generating the aspects of the network and of
the security rule are defined graphically and the selective modification is chosen
from the group consisting of encryption, decryption, signature generation and
signature verification.

There is also provided in accordance with a preferred embodiment of the
present invention, in a security system for inspecting and selectively modifying

5

10

15

20

25

30

WO 97/00471 PCT/1L96/00017

inbound and outbound data packets in a computér network, the security system
inspecting and selectively modifying the data packets in the computer network in
accordance with a security rule, where each aspect of the computer network
inspected by the security rule has been previously defined, the security rule being
previously defined in terms of the aspects and converted into packet filter
language instructions, a method for operating the security system including the
steps of providing a packet filter module coupled to the computer network in at
least one entity of the computer network to be inspected by the security rule, the
packet filter module implementing a virtual packet filtering machine inspecting and
selectively modifying the data packets passing into and out of the computer
network, and the packet filter module executing the packet filter language
instructions for operating the virtual packet filtering machine to either accept or
reject the passage of the data packets into and out of the computer network and
to selectively modify the data packets so accepted.

Also provided in accordance with a preferred embodiment of the present
invention, in a security system for inspecting and selectively modifying inbound
and outbound data packets in a computer network, the security system inspecting
and selectively modifying the data packets in the computer network in accordance
with a security rule, where each aspect of the computer network inspected by the
security rule has been previously defined, the security rule being previously
defined in terms of the aspects and converted into packet filter language
instructions, a method for operating the security system including the steps of
providing a packet filter module coupled to the computer network in at least one
entity of the computer network to be controlled by the security rule, the packet
filter module emulating a virtual packet filtering machine inspecting and selectively
modifying the data packets passing into and out of the computer network, the
packet filter module reading and executing the packet filter language instructions
for performing packet filtering operations, storing the results obtained in the step of
reading and executing the packet filter language instructions in a storage device,
and the packet filter module utilizing the stored results, from previous inspections,

for operating the packet filter module to accept or reject the passage of the data

10

15

WO 97/00471 PCT/IL96/00017

packets into and out of the computer network and to selectively modify the data
packets so accepted.

In addition, there is also provided in accordance with a preferred
embodiment of the present invention, in a security system for inspecting and
selectively modifying inbound and outbound data packets in a computer network,
the security system inspecting and selectively modifying the data packets passing
through the computer network in accordance with a security rule, where each
aspect of the computer network controlled by the security rule has been previously
defined, the security rule being previously defined in terms of the aspects and
converted into packet filter language instructions, the security system including a
packet filter module coupled to the computer network, the packet filter module
operating in accordance with the security rule, the packet fiter module
implementing a virtual packet filtering machine inspecting and selectively
modifying the data packets passing into and out of the computer network, and
processing means for reading and executing the packet filter language instruction
integral with the packet filter module, the processing means operating the packet
filtering module to either accept or reject the passage of the packets into and out

of the computer network and to selectively modify the data packets so accepted.

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an example of a network topology;

Fig. 2 shows a security system of the present invention applied to the
network topology of Figure 1;

Fig. 3 shows the computer screen of the network administrator of Figure 2
in greater detail; _

Fig. 4 is a flow diagram of the subsystem for converting graphical
information to filter script;

Fig. 5 is a flow diagram of an information flow on a computer network
employing the present invention;

Fig. 6 is a flow diagram of the operation of the packet filter shown in Figure

5;

Fig. 7 is a flow diagram showing the virtual machine operations shown in
Figure 6;

Fig. 8 is a flow diagram of the data extraction method of Figure 7;

Fig. 9 is a flow diagram of the logical operation method of Figure 7;

Fig. 10 is a flow diagram of the comparison operation method of Figure 7;

Fig. 11 is a flow diagram of the method of entering a literal value to
memory;

Fig. 12 is a flow diagram of a conditional branch operation;

Fig. 13 is a flow diagram of an arithmetic and bitwise operation;

Fig. 14 is a flow diagram of a lookup operation;

Fig. 15 is a flow diagram of a record operation;

Fig. 16 is a high level block diagram illustrating an example configuration
employing firewalls constructed in accordance with the present invention;

Fig. 17 is a high level block diagram illustrating the data transferred
between two firewalls during a session key exchange;

Fig. 18 is a high level logic flow diagram illustrating the process performed
by a firewall in transmitting a packet using encryption to another firewall during a

session data exchange;

10

WO 97/00471 PCT/IL96/00017

Fig. 19 is a high level logic flow diagram illuétrating the process performed
by a firewall in receiving an encrypted packet from another firewall during a
session data exchange;

Fig. 20 is a high level block diagram illustrating the data transferred
between two firewalls during a basic key exchange;

Fig. 21 is a high level block diagram illustrating an example configuration
employing a client personal computer and a firewall constructed in accordance
with the presenf invention;

Fig. 22 is a high level block diagram Iillustrating the data transferred

between a client personal computer and a firewall during a session key exchange;

., and

Fig. 23 is a high level block diagram illustrating the data transferred

between a client personal computer and a firewall during a basic key exchange.

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

DETAILED DESCRIPTION

Securing Inbound and Outbound Data Packet Flow

Referring now to Figure 1, an example network topology is shown. In this
example, the main site 100 contains a system administrator function embodied in
workstation 102. This workstation is coupled to the network which includes
workstations 104, router 110 and gateway 106. Router 110 is coupled via satellite
112 to a remote site via gateway 122. Gateway 106 is coupled via router 108 to
the Internet. The remote site 120 comprises workstations 124 which are coupled
to the network and via gateway 122 to the Internet. The particular configuration

shown herein is chosen as an example only and is not meant to limit the type of

network on which the present invention can work. The number configurations that

networks can take are virtually limitless and techniques for setting up these
configurations are well known to those skilled in the art. The present invention can
operate on any of these possible configurations.

Figure 2 shows the network of Figure 1 in which the present invention has
been installed. In Figure 2, elements also shown in Figure 1 have the same
reference numerals. As shown, the system administrator 102 includes a control
module 210, a packet filter generator 208, a display 206 and a storage medium
212. Packet filters 204 have been installed on the system administrator,
workstations 104 and gateway 106. Gateway 106 has two such filters, one on its
connection to the network and one on its connection to the router 108. Routers
108 and 110 each have a programming script table which is generated by the
security system, but which forms no part of the present invention, and will not be
described in detail. These tables correspond to the tables that are currently
utilized to program routers, as is well known to those skilled in the art.

Packet filters 204 are also installed on the gateway 122 of the remote site
120. One packet filter is installed on the connection between the satellite 112 and
the gateway 122, a second packet filter is installed on the connection between the
Internet and gateway 122 and a third packet filter is installed on the connection

between the gateway and the network.

10

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

Information flows on the network in the forrh of packets, as is well known to
those skilled in the art. The location of the packet filters in Figure 2 is chosen so
that data flow to or from a particular object of the network, such as a workstation,
router or gateway can be controlled. Thus, workstations 104 each have a packet
fiter so that the information flow to/from these workstations is separately
controlled. At the remote site 120, however, the packet filter is placed on the
connection between the gateway 122 and the network, thus there is no individual
control over the data flow to/from the workstations 124. If such individualized
control were required, packet filters could be placed on each of the workstations
124, as well. Each of the packet filters is installed at the time that the network is

set up or the security system is installed, although additional packet filters can be
installed at a later date. The packet filters are installed on the host device such as
the workstation or gateway at which protection is desired.

Each of the packet filters operates on a set of instructions which has been
generated by the packet filter generator 208 in the system administrator 102.
These instructions enable complex operations to be performed on the packet,
rather than merely checking the content of the packet against a table containing
the parameters for acceptance or rejection of the packet. Thus, each packet filter
can handle changes in security rules with great flexibility as well as handle
multiple security rules without changing the structure of the packet filter itself.

The system administrator enters the security rules via a graphical user
interface (GUI) which is displayed upon the monitor 206 and explained in more
detail with respect to Figure 3. This information is processed by the packet filter
generator 208 and the resulting code is transmitted to the appropriate packet filter
or filters in the network to perform the function that is desired. Control module 210
enables the system administrator to keep track of the operations of the network
and storage 212 can be utilized to keep logs of operations on the network and
attempts of illegal entry into the network. The system operator can thereby be
provided with full reports as to the operation of the network and the success or
failure of the security rules. This enables the security administrator to make those
changes that are appropriate in order to maintain the security of the network
without limiting its connectivity.

11

10

15

20

25

30

WO 97/00471 _ PCT/IL96/00017

Figure 3 shows the computer screen 206 ih Figure 2 in more detail. The
screen is broken into four windows, two smaller windows at the left side and two
larger windows at the right side. Network objects and services are two aspects of
the network which must be defined in the security method of the present invention.
Window 304 is used to define network objects such as the workstations, gateways
and other computer hardware connected to the system. It is also possible to group
various devices together such as, for example, the finance department, the
research and development department, the directors of the company. It is thus
possible to control data flow not only to individual computers on the network, but
also to groups of computers on the network by the appropriate placement of
packet filters. This allows the system operator have a great deal of flexibility in the
managing of communications on the network. It is possible for example to have
the chief financial officer as well as other higher ranking officials of the company
such as the CEO and the directors able to communicate directly with the finance
group, but filter out communications from other groups. It is also possible to allow
electronic mail from all groups but to limit other requests for information to a
specified set of computers. This allows the system operator to provide internal as
well as external security for the network. The object definition would include the
address of the object on the network, as well as a name or group whether the
object is internal or external to the network, whether or not a packet filter has been
installed on this object and a graphical symbol. The graphical symbol is used in
connection with the rule base manager 302.

Similarly, network services are defined in block 306 on the screen. These
network services can include login, route, syslog and telnet, for example. Each
service is defined by generic and specific properties. The generic properties
include the code string that identifies the service, for example ‘dport’ (destination
port) which is equal to 23 for telnet. The code string that identifies the incoming
and outgoing packets are identified. Specific properties include the name of the
service, the port used to provide the service, the timeout in seconds of how long a
connectionless session may stay ihactive, that is, having no packet transmitted in
either direction before assuming that the session is completed. Other elements of
a service definition might include the program number for RPC services and the

12

10

15

20

25

30

WO 97/00471 . PCT/IL96/00017

outbound connections for accepted services that use connectionless protocols
such UDP. The graphic symbol and its color are specified.

Block 302 is the rule base manager which allows the new security rule to
be entered into the system in a graphical manner, thus freeing the system
administrator from having to write code to implement a partidular security rule or to
change a security rule. Only four elements are required to enter the new security
rule into the system. The first element is the source of the data packet and the
third element is the destination of the packet. The second element is the type of
service that is involved and the fourth element is the action that should be taken.
The action that can be taken includes accept the packet in which case the packet
is passed from the source to the destination or reject the packet in which case the
source is not passed from the source to the destination. If the packet is rejected,
no action can be taken or a negative acknowledgment can be sent indicating that
the packet was not passed to the destination. In addition, a further element which
can be specified is the installation location for the rule which specifies on which
objects the rule will be enforced (see Figure 2). If an installation location is not
specified, the system places the packet filter module on the communication
destination by default. These objects are not necessarily the destination. For
example, a communication from the Internet and destined for a local host must
necessarily pass through a gateway. Therefore, it is possible to enforce the rule
on the gateway, even though the gateway is neither the source nor the
destination. By entering the data with acronyms or graphic symbols, each rule can
quickly be entered and verified without the need for writing, compiling and
checking new code for this purpose. Thus, the system administrator need not be
an expert in programming a computer for security purposes. As long as the
service is one of the services already entered into the system, the computer
serving as the host for the system administrator function will process the
information into a set of instructions for the appropriate packet filter, as described
in greater detail below.

Block 308 is a system snapshot which summarizes the setup and
operations of the security system. It is not required to practice the present
invention. The system snapshot displays a summary of the system using graphical

13

10

15

20

25

30

WO 97/00471 .. PCT/IL96/00017

symbols. The summary can include, for example, the host icon, host name, rule
base name, which is the name of the file containing the rule base, and the date
the rule base was installed on the host. It can also show the status of the host
indicating whether or not there have been communications with the host as well as
the number of packets inspected by, dropped and logged by the host.

Figure 4 shows a flow chart of the subsystem for converting the information
on the GUI to a filter script which contains the rules utilized for the packet filter. In
the preferred embodiment, the output of the filter script generator is compiled into
object code which is then implemented by the packet filter module, as described
below.

The subsystem 400 starts at 402, proceeds to block 404 which is obtains
the first rule from the GUI. The first rule is the first line on the screen in which a
new security rule has been identified, as shown in Figure 3. Control then proceeds
to block 406 in which code is gene'rated to match the rule source network objects.
That is, the source of the packet is entered into the source code block as
representing one of objects of the system from which the data packet will
emanate. Control then passes to block 408 in which code is generated in the
destination code block to indicate which object of the network the data packet is
destined for. Control then passes to block 410 in which code is generated to
match the rule services that were chosen. The rule services have been defined
previously and are stored within the system or, if not defined, will be defined at the
time the security rule regulating the service is entered into the system. Control
then passes to block 412 in which code is generated to accept or reject the packet
if the data blocks 406, 408 and 410 were matched, that is, the results of the
checks were true. The action to accept or reject is based upon the action chosen
in the security rule. Control then passes to the decision block 414 which
determines whether or not more rules are to be entered into the system. If no
more rules are to be entered into the system, the subsystem terminates at biock
418. If more rules are to be entered into the system, control passes to block 416
which obtains the next rule and passes control back to block 406 at which time the
process repeats and the next security rule, found on the next line the GUI is

processed.
14

10

15

20

WO 97/00471 PCT/IL96/00017

Communication protocols are layered, which is also referred as a protocol

stack. The ISO (International Standardization Organization) has defined a general

- model which provides a framework for design of communication protocol layers.

This model serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL
Layer Functionality Example
7 Application Telnet, NFS, Novell NCP
6 Presentation XDR
5 Session RPC
4 Transport TCP, Novel SPX
3 Network IP, Novell IPX
2 Data Link (Hardware Interface)
1 Physical (Hardware Connection)

Different communication protocols employ different levels of the ISO model.
A protocol in a certain layer may not be aware to protocols employed at other
layers. This is an important factor when making security actions. For example, an
application (Level 7) may not be able to identify the source computer for a
communication attempt (Levels 2-3), and therefore, may not be able to provide
sufficient security.

Figure 5 shows how a filter packet module of the present invention is
utilized within the ISO model. The communication layers of the ISO model are
shown at 502 at the left hand portion of Figure 5. Level 1, block 504, is the
hardware connection of the network which may be the wire used to connect the
various objects of the network. The second level, block 506 in Figure 5 is the
network interface hardware which is located in each computer on the network. The
packet filter module of the present invention intercedes between this level and
level 3 which is the network software. Briefly, for the sake of completeness, the
other levels of the ISO model are level 4, block 510 which relates to the delivery of
data from one segment to the next, level 5, block 512, synchronizes the opening

and closing of a "session" on the network. Level 6, block 514 relates to the

15

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

changing of data between various computers on the network, and level 7, block
516 is the application program.

A packet entering the computer on which the packet filter module resides
passes through layers 1 and 2 and then is diverted to the packet filter 520, shown
on the right hand portion of Figure 5. The packet is received in block 522. in block
524, the packet is compared with the security rule and a determination is made as
to whether or not the packet matches the rule. If the packet matches the rule, it
may be logged on the system administrator's log and, if an illegal attempt has
been made to enter the system, an alert may be issued. Control then passes to
block 534 in which a decision is made whether or not to pass the packet based
upon the requirements of the security rule. If the decision is to pass the packet,
the packet is then passed to level 3, block 508. If a decision is not to pass the
packet, a negative acknowledgment (NACK) is sent at block 528, if this option has
been chosen, and control passes to block 530 where the packet is dropped, that
is, it is not passed to its destination. Similarly, if an application generates a packet
which is to be sent to anther destination, the packet leaves the ISO model at level
3, block 508 and enters block 522 and proceeds by an identical process except
that if the packet is to be passed it is passed to level 2, block 506 and not level 3,
block 508. On level 2, the packet is then sent onto the network at block 504, level
1. If the packet does not match the rule, the next rule will be retrieved and the
packet examined to see if it matches this rule. A default rule is provided which
matches any packet regardless of the source destination or service specified. This
"empty rule" only has an action, which is to drop the packet. If no other rule is
matched, this rule will be retrieved and will be effective to drop the packet.
Dropping the packet is the safest step to take under these circumstances. The
"empty rule" could, of course, be written to pass the packet.

Referring to Figure 6, 600 is a detailed description of the block 520 of
Figure 5. The generalized description in Figure 6 and the more detailed
descriptions shown in Figures 7-10 comprise a definition of the term "packet filter
module" as the term is utilized herein. The capabilities shown in those figures are

the minimal capabilities for the packet filter module to operate. Figures 11-15

16

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

show addition features which may also be included ‘in the packet filter module, but
are not required in the minimal definition of the term.

The packet filter module is embodied in a "virtual machine”, which, for the
purposes of this application, may be defined as an emulation of the machine
shown in Figures 6-10 residing in the host computer, which is a computer on the
network.

The virtual machine starts at block 602 in which the packet is received,
which corresponds to block 522 of Figure 5. Control passes to block 604 in which
the filter operations are obtained from the instruction a memory (not shown).
These filter operations are the filter operations that have been generated by the
packet filter generator 208 shown in Figure 2. Control then passes to block 604 in
which the filter operations are obtained and then to block 606 in which the memory
618 is initialized. In block 608, the first virtual machine operation is obtained and
performed in block 610. The virtual machine contains a memory mechanism such
as a stack or register 618 which may be utilized to store intermediate values. The
utilization of this stack or register is shown in greater detail in connection with the
table shown below. Control then passes to decision block 614 in which it is
determined whether or not the stop state has been reached. If the stop state has
been reached, the decision will have been made to accept or reject the packet,
which decision is implemented at block 616. If the packet has been passed, the
packet will proceed as shown in Figure 5. If the packet is rejected, it will be
dropped and a negative acknowledgment may be sent as shown in blocks 528
and 530. If the stop state has not been reached in block 614, the next operation is
obtained in block 616 and the process repeats starting with block 610.

The type of operations that can be performed in step 5, block 610 are
shown more clearly in Figure 7. In Figure 7, block 610 and block 614 are identical
to the blocks shown in Figure 6. Connection 613 is interrupted by three operations
which are shown in parallel. For the operation that is to be performed in block 610,
control will pass to the appropriate block 702, 704 or 706 in which that task will be
performed. In block 702 data extraction will be performed, in block 704 logical
operations will be performed and in block 706 a comparison operation will be
performed. As shown at the right hand portion of Figure 7, other blocks can be

17

10

15

20

25

30

WO 97/00471 , PCT/1L96/00017

added in parallel to the operations capable of being performed by the virtual
machine. The subset shown as blocks 702, 704 and 706 are the essential
elements of the virtual machine of the present invention. These elements are
shown in greater detail in Figures 8, 9 and 10, respectively. Additional elements
which may optionally be included in the operations capable of being performed by
the virtual machine are shown in Figures 11-15, respectively.

The data extraction block 702 is shown in greater detail in Figure 8. The
process starts at block 802 and control passes to block 804 in which data is
extracted from a specific address within the packet 806. This address is taken
from the stack memory 618 or from the instruction code. The amount of data
extracted is also determined by the stack memory or the instruction code. The
extracted data is put into the memory stack 810 at block 808. The process
terminates at block 812. In these figures, control flow is shown by arrows having a
single line whereas data flow is shown by arrows having double lines.

Figure 9 shows logical operation 704 in greater detail. The logical operation
starts at block 902 and control passes to block 904 in which the first value is
obtained from the memory 906. In block 908 a second value is obtained from the
memory and the logical operation is performed in block 910. If the logical
operation is true, a one is placed in the memory 906 at block 912 and if the logical
operation is false, a zero is placed in the memory 906 at block 914. The process
terminates at block 916.

The third and last required operation for the virtual machine is shown in
greater detail in Figure 10. The comparison operation, block 7086, starts at block
1002 and control passes to block 1004 in which the first value is obtained from
memory 1006. Control passes to block 1008 in which a second value is obtained
from memory 1006. A comparison operation between the first and second values
takes place at block 1010. If the comparison operation is true, a one is placed in
memory 1006 at block 1012 and if the comparison operation is false a zero is
placed in memory 1006 at block 1014. The process terminates in block 1016.

The following operations are not shown in Figure 7 but may be added at the
right side of the figure at the broken lines and are connected in the same manner
as blocks 702, 704 and 706, that is, in parallel. Figure 11 shows the entering of a

18

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

literal value into the memory. The process starts at block 1102 and control passes
to block 1106 in which the literal value is obtained from the instruction code. The
value is placed into the memory at block 1108 and the process ends at block
1110.

A conditional branch operation is shown in Figure 12. The process starts at
block 1202 and control passes to block 1204 in which the branch condition, taken
from the instruction code, is checked. If the branch condition is true, the value is
obtained from the memory stack 1206 at block 1208 and checked at block 1210. If
the results of the comparison in block 1210 is true, the next step is set to N and
the process terminates at block 1216. If the comparison in block 1210 is false, the
process terminates at block 1216. If the branch condition is false, at block 1204,
control passes directly to block 1214.

An arithmetic or bitwise operation is shown in Figure 13. The process starts
at block 1302 and control passes to block 1304 in which the first value is obtained
from memory 1306. The second value is obtained from memory 1306 at block
1308 and an arithmetic or bitwise operation is perfformed on the two values
obtained from the memory 1306 in block 1310. The result of the arithmetic or
bitwise operation is placed in the memory in block 1312 and the process
terminates in block 1314.

Figure 14 illustrates a lookup operation which is useful if data needs to
passed from a first set of instructions implementing a security rule to a second set
of instructions for a second security rule. As shown in block 606 of Figure 6, the
memory is initialized whenever a new security rule is processed. Therefore,
information placed in the memory by a first security rule will not be available for
use by a second security rule. In order to overcome this problem, a separate
memory 1410 is supplied which contains Tables 1-3 which can be utilized for this
purpose. The entry of data into the tables is shown in Figure 15 and described
below. The lookup operation starts at 1402 and control passes to 1404 in which
values are obtained from memory 1406. Control passes to block 1408 in which
data is obtained from Tables 1-3 at block 1410 by searching the values in the
referred table. Control passes to block 1412 in which a decision is made as to
whether the block is in the table. If the decision is yes, a one is placed in memory

19

10

15

20

WO 97/00471 PCT/IL96/00017

1406 at block 1416. If the decision is no, a zero is placed in memory 1406 at block
1414. The process terminates at block 1418.

Referring to Figure 15, the process starts at block 1502 and control passes
to block 1504 in which values are obtained from memory 1506. Control then
passes to block 1508 in which values obtained from memory 1506 are placed in
the appropriate locations in Tables 1-3 at block 1510. Control passes to block
1512 in which a decision is made as to whether or not the storage values in the
table has succeeded. If the storage has succeeded a one is placed in memory
1506 at block 1516. If the process has not succeeded, a zero is placed in memory
1506 at block 1514. The process terminates at block 1518.

An example of a security rule is implemented using the packet filtering
method of the present invention will now be described utilizing as an example the
security rule to disallow any Telnet services in the system. Telnet is defined as
being a TCP service and having a specific TCP destination port. It will be identified
by having a TCP protocol value of 6 in byte location 9 of the packet and by having
a destination Telnet protoc.ol number of 23 in byte location 22 of the packet, the
value being a two-byte value. This is found in every Telnet request packet.

The first operation in the table shown below is to extract the IP protocol
from the packet location 9 and place this in memory. As shown in the "Memory
Values" column at the right side of the table, this value, 6, is placed at the top of
the stack.

The second operation, the TCP protocol (port) number, which is stated to
be 6 above, is placed at the second location in memory. In step 3, the values of

the first two layers of the stack are compared, obtaining a positive result.

20

PCT/IL96/00017

WO 97/00471
Drop Telnet Process
Packet Virtual Machine Operation Memory Values
Filter Code (Stack Order)
1 pushbyte Extract Operation: Extract IP protocol 6
[9] number from packet location 9 to
memory
2 push6 Enter Literal Value to Memory: Put TCP 6 6
protocol number in memory
3 eq Comparison Operation: Compare IP 1
protocol to TCP, obtaining a positive
result
4 pushs[22] Extract Operation: Extract 1 23
TCP protocol number from packet
location
22 to memory
5 push23 Enter Literal Value to Memory: Put 1 23 23
TELNET protocol number in memory
6 eq Comparison Operation: Compare TCP 1 1
protocol to TELNET, obtaining a
positive
result
7 and Logical Operation: Check if protocol 1

8 btrue drop

both
TCP and TELNET are matched

Conditional Branch Operation: If
memory value is true, branch to drop

state

21

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

The values of 6 at the top two layers of the stack are deleted and a 1,
indicative of the positive result, is placed at the top of the stack. In step 4, the TCP
protocol number for packet location 23 is extracted and placed in the memory
location at the second layer of the stack. In step 5, the literal value which is the
Telnet protocol number is placed into the memory at the third layer of the stack. In
step 6, the memory layers 2 and 3 containing the TCP protocol for Telnet is
compared with the expected value, obtaining a positive result. The values of the
second and third layers of the stack are deleted and replaced by a 1, indicative of
the positive result. In step 7, a logical operation is performed to see if both the
TCP and Telnet have been matched. This is determined by a AND operation. In
this case the result is positive and the ones in the first two layers of the stack are
deleted and replaced by a 1 indicative of the positive result. In step 8, a
conditional branch operation is performed in which if the memory value is true, the
program branches to the drop state. In this case, the result is true and the
program branches to the drop state in which the Telnet request is not passed.

Thus the rule to drop Telnet has been implemented.

Encrypting Data Flow - An Introduction

As stated earlier, long distance communications between enterprises,
branch offices and business partners have become an essential part of modern
day business practice. Utilizing the present invention, virtual private networks
(VPNs) can be constructed over insecure public networks such as the Internet to
provide secure and flexible communications.

The modification of packets by, e.g., encryption of outbound packets,
decryption of inbound packets, signing of packets or address translation is
performed by the packet filter module. The decision whether to modify a packet is
determined from the rule base. All modifications, i.e., encryption, decryption,
signing and address translation are performed on a selective basis in accordance
with the contents of the rule base. For encryption, for example, to occur, a rule in
the rule base must explicitly call for encryption to occur on packets which have a

particular source, destination and service type. The encryption instructions are

22

10

WO 97/00471 PCT/IL96/00017

translated into the packet filter language that are‘installed and executed on the
virtual packet filter machines in the network.

As described previously, the packet filter module determines whether a
packet is rejected or accepted. If rejected, the packet is dropped. If accepted, the
packet may be modified in a number of ways. Example of types of possible
modifications include, but are not limited to, encryption, decryption and address
translation. The following describes in detail the encryption and decryption of

packets that is selectively performed by the packet filter module.

Notation Used Throughout

The following notation is used throughout this document:

Symbol Description

g common root used for all Diffie-Hellman keys
p common modulus used for all Diffie-Hellman keys
Sovt source private key

Soub source public key

Dpvt destination private key

Dpus destination public key

B basic key

B truncated basic key

A auxiliary key

R session key

E session data encryption key

I session data integrity key

M data portion of a packet

P unencrypted password

ENCy(Y) encrypt Y using X as the key

DCR(Y) decrypt Y using X as the key

SIG(Y) signature of Y

23

WO 97/00471

PCT/IL96/00017

Definitions of Terms Used Throughout

The following definitions are helpful in understanding the operation of the

present invention.

Term
plaintext
cleartext
ciphertext

key

encryption

decryption

certification

digital

signature

network

object

gateway

firewall or
firewalled
network

object

Definition

text that is not encrypted

another term for text that is not encrypted
encrypted text

a piece of information known only to the sender and the

intended recipient

converting the plaintext of a message into ciphertext in order to

make the message unintelligible to those without the key

converting ciphertext into plaintext using the same key used to

encrypt the message

a trusted third party, known as a Certificate Authority (CA), from
which one can reliably obtain a public key, even over an
insecure communication channel, generates a certificate for the

public key which can be verified by the recipient

information generated from the contents of the message itself

-and used by the recipient to verify the data integrity of the

message and/or its origin

a piece of hardware that is connected to a network and which

has some interaction with the network

a network object that is connected to at least two networks and

passes information between them

a network object, usually a gateway or an end host, that
secures the flow of inbound and outbound data packets on a
computer network and also selectively modifies data packets in

accordance with a security rule base

24

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

A high level block diagram illustrating an example configuration employing
firewalls constructed in accordance with the present invention is shown in Figure
16. The example network shown in this figure will be used to explain the
encryption capabilities of the present invention. The network configuration shown
is only for illustrative purposes only. Once skilled in the art can adapt the present
invention to other network configurations as well. Both host1 and host2 are
connected to their respective private LANs. In addition, firewall1 1604 is coupled
to host1 through its LAN and firewall2 is coupled to host2 through its LAN. Both
firewalls are coupled to a public network 1606 such as the Internet. It is also
assumed that the public network is insecure and cannot be trusted. Certificate
Authority1 (CA1) 1602 functions as the certificate authority for host1 and firewall1.
CA2 1612 functions as the certificate authority for host2 and firewall2. In other
embodiments, there may be only a single CA that serves both firewalls. In either
embodiment, the functions of the CA remain the same. The only difference is
which CA the firewall uses to obtain public keys.

It is desired that the communications between host1 and host2 be secured.
The communications from host1 is routed to the Internet (i.e., the public network)
via firewall1 which acts as a firewalled network object. Similarly, communications
from host2 is routed to the Internet via firewall2 which also acts as a firewalled
network object. In communications to host2, firewall1 intercepts and encrypts the
packets it receives from host1 enroute to host2. Firewall2 receives the encrypted
packets destined for host2 and decrypts those packets. In the opposite direction,
firewall2 encrypts the packets from host2 destined for host1. Firewall1 receives
the encrypted packets, decrypts them and passes them to host1. The encryption
and decryption operations performed by firewall1 and firewali2 are transparent to
host1 and host2.

Assuming host1 initiates the session with host2, it sends an Internet
Protocol (IP) packet to host2. Firewall1 will intercept the packet and determine that
communications between host1 and host2 are to be modified in some way, e.g.,
encryption, decryption, address translation, etc. The decision is made separately
for each connection based on information from all the ISO layers and based on
information retained from previous packets. This decision process is termed

25

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

stateful multi-layer inspection (SMLI). Each ﬂreWaII maintains a rule base that
instructs the firewall how to handle both inbound and outbound communications
between network objects, as described in detail earlier. After determining that
communications between host1 and host2 are to be encrypted or digitally signed,
firewall1 temporarily parks the packet and initiates a session key exchange, which
is described in more detail below. Before encrypted communications or signing
can take place, both sides need to agree on a shared key. This key is called the
session key, R, and is generated anew at the start of every session. It is important
to note that only the communications between firewall1 and firewall2 is encrypted
because of the use of the insecure Internet or public network. The
communications between host1 and firewall1 and between host2 and firewall2 are
not encrypted because it takes place over private LANs which can be assumed to

be private and secure.

Session Key Exchange - Firewall/Firewall

A high level block diagram illustrating the data transferred between two
firewalls during a session key exchange is shown in Figure 17. The following
scheme is only one example of implementing encryption with SML! and is not
meant to limit the scope of the present invention to other encryption techniques. It
would be obvious to one skilled in the art to adapt other encryption techniques to
the SMLI process to carry out the teachings of the present invention. For example,
in an alternative embodiment the SKIP standard is utilized. To initiate the
encryption of data, firewall1 first sends a request packet to host2. The request
packet is sent to host2 and not firewall2 because firewall1 may not know the IP
address of the firewall that is responsible for host2. Firewall2 intercépts this
request packet and returns a reply packet. The request and reply packets allow
both sides to agree on shared session key R that will be used for all
communications to be encrypted between host1 and host2. As stated previously,
only the communications between firewall1 and firewall2 are actually encrypted.

In general, the session key R is generated by the non-initiator (i.e., firewall2
1608) also called the destination and is sent encrypted to the initiator (i.e.,

firewall1 1604) also called the source. This two packet exchange must occur

26

10

15

20

25

WO 97/00471 PCT/IL96/00017

before encrypted communications can proceed. After the encrypted session is
established, state information is maintained in both firewalls and the original
packet that was parked is now passed encrypted through the firewalls. The same
session key R is used by firewall2 to encrypt packets that are sent from host2 to
host1.

The session key exchange will now be described in more detail. In order to
agree on a common secret session key R, the present invention uses a ‘static’
Diffie-Hellman scheme. Each Diffie-Hellman key comprises a private part and
public part. Each side has its own private and public parts. The private key for the
source (i.e., firewalll) and destination (i.e., firewall2) is Spy and Dpyr,
respectively. The public parts for source and destination are then defined as

follows:

Spup = 9> (mod) p

Dpuws = g™ (mod) p

Both source and destination must know each others public key for the session key
exchange to work. If one side does not know the other's public key or the key it
does have is determined to be out of date, than a basic key exchange is triggered
which is explained in more detail below. Both sides use each other’s public key to

derive at the basic key B. The source performs the following:
B = {g°" (mod) p}*" (mod) p = g°*"*" (mod) p
Similarly, the destination performs the following:
B = {g™" (mod) p}*®" (mod) p = g™ (mod) p

Thus, both sides share the basic key B. For use in encrypting the session key R, a
truncated version of the basic key B is generated, called TB.

In general, each firewall maintains a table of bindings between Diffie-
Hellman keys and firewalled network objects. In addition, a firewall must have a
binding between IP addresses and such an object. In the configuration shown in

Figure 17, a database within firewall1 must be configured so that it knows of

27

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

firewall2’s existence. Firewalll must also know that host2’s encrypting firewall is
firewall2. Firewalll can have a list of potential firewalls that may serve as
encrypting firewalls for firewall2. The bindings and the network object database for
each firewall are managed in static fashion by a separate management unit.

In order to encrypt communications between firewalls, a firewall must have

- knowledge of its own basic private key and the basic public keys of each

firewalled network object it needs to communicate with. The basic public keys
belonging to external firewalled network objects such as a firewall belonging to a
business partner must also be known in order for encrypted sessions to occur.

This static binding of basic keys to firewalled network objects may already be

. established in a database internal to the firewall or it can be obtained on the fly

using the basic key exchange described below.

Once a common shared secret basic key B is agreed upon by the two
firewalls, it is used to encrypt the actual key used for the session, i.e., the session
key R. The same session key R is used by both source and destination to encrypt
the data from host1 to host2 and from host2 to host1.

The elements of the request from the source to the destination is shown
above the right arrow in Figure 17. The cipher method comprises one or more
encryption methods for encrypting the session data that the source is able to
perform (e.g., DES, FWZ1, RC4, RC5, IDEA, Tripple-DES, etc.). The key method
comprises one or more encryption methods for encrypting the session key R that
the source is able to perform (e.g., DES, FWZ1, RC4, RC5, IDEA, Tripple-DES,
etc.). The md method (i.e., message digest method) or the message integrity
method comprises one or more methods or algorithms for performing data
integrity that the source is able to perform (i.e., MD5, SHA, etc.). The data integrity
typically entails calculating a cryptographic hash of a part of or all of the message.

The suggested source public key ID identifies, via an ID number, the basic
public key that the source assumes the destination will use. Likewise, the
suggested destination basic public key ID identifies the basic public key that the
‘source assumes the destination will use. If there are more than one possible
firewalled network object serving host2, the source will include multiple suggested
basic public keys in the request packet since it does not know which of the

28

10

15

20

25

WO 97/00471 PCT/IL96/00017

firewalled network object actually serves host2. Each suggested basic public key
corresponds to a different firewalled network object.

The request also comprises a challenge key C which is a random bit field
chosen by the source (i.e., firewall1) which is used to thwart man in the middle
attacks against the session key exchange or the session data itself.

The destination (i.e., firewall2) receives the request packet and based on its
contents generates a reply packet to be sent back to the source. The elements of
the reply packet are shown above the left arrow in Figure 17. The reply packet has
a similar format as the request packet with the exception of the challenge key C
field replaced by a field holding the encrypted session key R. Each of the cipher
method, key method and md method now have only one element rather than a list
of options as in the request. The elements listed are the elements chosen by the
destination from the options listed in the request. Similarly, the chosen source
basic public key ID and the chosen destination basic public key 1D both comprise
a single key ID representing the key ID chosen by the destination from the option
list sent in the request.

The session key R that is sent in the reply actually comprises two keys: a
session data encryption key E and a session data integrity key I. Thus, the

session key R is defined as
R=E+I

The session key is a random stream of bytes that is generated for both the cipher
method (i.e., encryption method) and the md method or method digest method. Its
length is the sum of the key lengths needed by the cipher method and the md
method. Once generated, a signature of the session key is obtained using the
chosen md method, e.g., MD5, and represented by SIG(R). The combination of
session R and SIG(R) are then encrypted using a key formed by the combination

of the truncated basic key TB and the challenge C, thus forming
ENCrc 4+ ¢)(R + SIG(R))

which is what is sent in the reply to the source.

29

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

The signature or hash checksum computaﬁon provides authentication to
the source that the packet it received is indeed formed by an entity that knows the
basic key B thus providing strong authentication for the reply packet. in addition,

since the source chose the challenge key C, there is no possibility of replay.

Session Data Exchange

A high level logic flow diagram illustrating the process performed by a
firewall in transmitting a packet using encryption to another firewall during a
session data exchange is shown in Figure 18. Although not shown in the Figures,
an alternative embodiment utilizes the IPSEC standard for performing session
data exchange. As mentioned earlier, once the source and the destination agree
on a session key R, encrypted communication between both firewalls can
proceed. Interception of and modifications to the packets occur between level 2
and level 3 of the ISO model. Communications occurring both ways is to be
encrypted and decrypted using the same session key R. The packets that are sent
out closely resemble normal TCP/IP packets. The packets do not include any
information indicating whether the packets are encrypted or not and if so which
key to use. This information only exists in the state maintained by the two
firewalls. The encryption is performed in place without changing the length of the
packet which serves to increase the efficiency and bandwidth of encrypted traffic.
In general, each transmitted packet is divided into two parts, a cleartext part which
is not encrypted and a ciphertext part which is encrypted. The cleartext part
includes the IP header and the TCP/UDP header. The rest of the packet meaning
its data M is encrypted using a combination of the session key R and an auxiliary
key A computed from its cleartext part. The process will now be described in more
detail.

The first step performed by a firewall in transmitting a packet is to generate
an auxiliary key A from the cleartext contents of the packet itself (step 1800). The
portions used depend on the type of packet and protocol (e.g., RPC, UDP, TCP,
ICMP, etc.) and may include the following fields, for example, IP-ID (only a
portion), RPC-XID, RPC-PROGNUM, TCP-SEQ, TCP-ACK, UDP-LEN, ICMP-
TYPE, ICMP-CODE and IP-PROTO. Next, the auxiliary key A, session data

30

10

15

20

25

WO 97/00471 . PCT/IL96/00017

integrity key | and the data portion of the packet M are placed in a buffer (step
1802). A signature is then generated on the contents of the buffer using the md

method (step 1804) and expressed as

SIGA + 1 + M)

The bits of the signature generated are then placed' in the packet header
(step 1806). Adding the signature bits to the packet is important for ensuring data
integrity. Since the length of the packet is not modified some portions of the
packet must be overwritten with the signature bits. Note that the signature bits are
stored in the packet before the packet is encrypted. For TCP packets a 28 bit
signature is stored as follows:

o the 8 LSBits of the signature replace the 8 MSBits of the IP-ID

e the next 16 bits are added to the TCP-CSUM field using 1’s complement
arithmetic

o the next 4 bits are stored in the unused TCP-X2 nibble (this is optional)

For UDP packets a 32 bit signature is stored as follows:

o the first 16 bits of the signature are added to the UDP-CSUM field using
1's complement arithmetic; if the original UDP-CSUM field is zero, the UDP-
SPORT and UDP-DPORT fields are added to the UDP-CSUM also using 1’s
complement arithmetic

« the next 16 bits are stored in the UDP-LEN field

Once the signature bits are stored in the packet, the data portion of the

packet M is encrypted (step 1808), and can be expressed by
ENCe . 4(M)

The encryption is performed using the cipher method with a combination of the
session data encryption key E and the auxiliary key A. Finally, the packet is
transmitted over the public network (step 1810).

A high level logic flow diagram illustrating the process performed by a
firewall in receiving an encrypted packet from another firewall during a session

data exchange is shown in Figure 19. First, in order to verify the signature, the

31

10

15

20

25

WO 97/00471 . PCT/1L96/00017

auxiliary key A must be generated from the contents of the packet (step 1900).
Then, the packet's data portion M is decrypted using the cipher method and a
combination of the session data encryption key E and the auxiliary key A (step

1902), which can be expressed as
DCR(E + A)(ENC(E + A)(M))

Next, the signature bits are extracted from the packet header (step 1904). A
signature on the auxiliary key A, session data integrity key | and the packet data M

is then generated using the md method (step 1906), and expressed as
SIGA +1+ M)

Then the two signatures are compared with each other (step 1908). If they match
the packet is passed after replacing any data in the packet that was overwritten
with signature data (step 1910). ‘If the signatures do not match the packet is
dropped (step 1912).

Basic Key Exchange

As explained previously, in order to encrypt communications between
firewalled network objects, a firewall must have knowledge of its own private basic
key and the public basic keys of each firewall it needs to communicate with. The
public basic keys belonging to external firewalls such as a firewall belonging to a
business partner must also be known in order for encrypted sessions to occur.
This static binding of basic keys to firewalls can already be established in a
database internal to the firewall or it can be obtained on the fly using the basic key
exchange. In addition, the basic keys may be updated on an infrequent basis to
improve security. The present invention provides for basic public keys to be
obtained on the fly if they are not already in a database within the firewall. In
general, a basic public key must be obtained if the source does not have
knowledge of the destination’s basic public key or the destination determines that
the destination basic pubic key used by the source is out of date.

In either case, the exchange of the basic public key is certified in order to

be sure as to the authenticity of the Diffie-Heliman key being transmitted.

32

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

Certification of messages, in general, serve to thwart man in the middle attacks
against the system.

The process of exchanging the basic keys will now be described in more
detail. A high level block diagram illustrating the data transferred between two
firewalls during a basic key exchange is shown in Figure 20. Whenever any of the
two sides recognizes that either it does not have a valid key for its peer or that it
has an outdated key it requests the other side to send it a certified basic key.

The basic key exchange can be triggered in two ways depending on which
side discovers that the basic public key has to be updated or exchanged.
Typically, it will be the side that discovers it does not have the other sides’ basic
key. For example, referring to Figure 16, a basic key exchange will be triggered if
the initiating side i.e., firewall1, discovers that it does not have the basic public key
for firewall2. In another scenario, firewall2, upon receiving a request from firewall1,
sees that it has an outdated version of the basic public key for firewalll (by
comparing what is in its database to the suggested basic public key sent in the
request). The latter scenario is the one depicted in Figure 20.

The elements of the basic key request are shown above the left arrow in
Figure 20. The basic request comprises the source basic public key ID,
destination basic public key ID, cipher method, key method and md method.
These elements are identical to those discussed above in the section entitled
Session Key Exchange - Firewall/Firewall. When a basic key exchange must
occur, the side that wants the other to send it a certified key update or key sync
will add a CA public key ID field to the request. This new field indicates which key
requires updating and is the ID of the certificate authority key (e.g., RSA key) by
which firewall2 wants to receive the reply from firewall1. Upon receiving this
message, firewall1 will send its basic public key S, to firewall2 after certifying it
with the CA public key against a certification that was made by the CA.
Certification is the process of generating a digital signature of the basic public key.
For firewall1, CA1 1602 generates the CA public keys for verifying firewall1’s basic
public keys (Figure 16). In order for firewall2 to verify the signature, it must obtain

the CA public key from CA1, the certificate authority for firewall1.

33

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

The elements of the response by firewall1 are shown above the right arrow
in Figure 20. The elements comprise the CA public key ID, the source basic public
key S, and the IP address or addresses of the source. In addition, the signature

of the source basic public key is sent, which can be represented by

SIG(S,up)

In a preferred embodiment, the signature is generated by first generating
an intermediate signature from the basic public key to be sent using the md
method of generating digital signatures. Then, this intermediate signature is input
to the RSA decrypting function to generate the signature that is finally transmitted.
The IP address of the source (i.e., firewall1) is included in order to verify the
binding between the firewall, i.e., firewall1, and a basic public key (S,,).

Upon receipt of the certificate from firewall1, firewall2 can verify it using the
CA public key. If it verifies correctly, firewall2 updates its database with the new
basic public key of firewall1. Now, the session key exchange can be completed
and session data can then to be communicated.

Note that the basic public keys are communicated between each firewall
and its CA over secure communication channels. If there is more than a single CA
the public key of one CA is sent in the clear to the other CA. This message is
either signed using a previous value of the CA public key or the newly obtained
CA public key can be verified by some other manual means, such as facsimile or

telephone.

Session Key Exchange - Client/Firewall

As described earlier, there is a growing business need for external access
to corporate networks. More and more employees are working physically outside
the corporate LAN or WAN environment but need to connect to it. The present
invention provides the capability of verifying external users of a system and
providing encrypted communications between the external user or client and the
host system.

A high level block diagram illustrating an example configuration employing

a client personal computer and a firewall constructed in accordance with the

34

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

present invention is shown in Figure 21. A persohal computer (PC) 2100, called
the source for purposes of explanation, is used by the client or external user to
login to the host 2104 shown coupled to a LAN. The PC is coupled to a public
network 1606 and communicates with the host via firewall 2102, called the
destination or server for purposes of explanation. All communications between the
PC and the host is routed through the firewall. The PC is suitably programmed to
perform the functions needed to login to the host and carry out encrypted
communication between itself and the firewall. Similar to the configuration shown
in Figure 16, encrypted communications is only between the PC and the firewall in
the configuration shown in Figure 21. To the host, the firewall is transparent and
thinks data is coming straight from the PC.

The session data exchange processes for client to firewall encryption are
similar to those of firewall to firewall encryption. The differences lie, however, in
the session key exchange and the basic key exchange processes. With firewall to
firewall session key exchange, each session received a different session key. A
session is not only a connection between two particular network objects but may
include different services between the same network object. In contrast, the client
initiates a session with the host and all communications between the client and the
host during that session is encrypted using the same key, no matter what activities
or services the client requests. In addition, in firewall to firewall communications,
both sides have each others certified public key. In client to firewall
communication, this is true only for the client, while the server identifies the client
using a name/password pair sent to it by the client.

A high level block diagram illustrating the data transferred between a client
personal computer and a firewall during a session key exchange is shown in
Figure 22. The elements sent in the request by the client are shown above the
right arrow. The elements include a name, cipher method, key method, md
method, password method, source basic public key S;;, suggested destination
basic public key ID, challenge key C, encrypted password and a signature. The
name is used to identify the user who is currently using the client. The cipher

method, key method and md method are as described earlier. The password

35

10

15

20

25

WO 97/00471 PCT/IL96/00017

method indicates which encryption method to use in encrypting the password. The

encrypted password can be expressed as
ENCqg . ¢)(P)

The source basic public key S, is always sent as the firewall does not maintain a
list of users and their associated basic public keys. The data that is sent is similar
to the data sent by firewall1 to firewall2 (Figure 20) as described in the section
entitled Basic Key Exchange - Firewall/Firewall. The destination basic public key
ID is as was described above in the section entitied Session Key Exchange -
Firewall/Firewall.

The signature functions to ensure to the destination , the receiving side,
that the message was not modified. The signature is generated by taking the
entire contents of the request or message, represented as T in Figure 22, except
for the signature field, and combining T with the unencrypted password and the

truncated basic public key TB, expressed as the following
SIG(T+P +TB)

The signature is added to the request and the request then sent to the firewall.
After receipt of the request, the firewall knows the client's basic public key
Spu- It can now generate the basic key B and the truncated basic key TB. It then
can decrypt the password P. Once P is known, the firewall can verify the signature
in the request. The firewall next generates a random session key R and encrypts
R and the signature of R using the truncated basic key TB and the challenge C

sent in the request from the client, and given by
ENCqg+ (R + SIG(R))

A signature is then generated of the content of the request denoted by U in Figure

22 in combination with the truncated basic public key TB, as given by

SIG(U + TB)

36

10

15

20

25

30

WO 97/00471 PCT/IL96/00017

The firewall then generates a reply whose elements are shown above the left
arrow in Figure 22. The reply comprises the destination basic public key ID, the
cipher method, key method and md method, encrypted session key and the
signature.

Once the session key is known by both the client and the firewall, the
communications session can proceed between the PC and the host via the firewall
and the encrypted communication between the PC and the firewall is transparent
to the host. In order to reduce the number of key exchanges, the session key R is
used for all encrypted connections passing through the same firewall. After a

predetermined time duration, e.g., several minutes, the session key R is dropped.

- Basic Key Exchange - Client/Firewall

In contrast to firewall to firewall communications, a certified key exchange is
only necessary to update the client with the firewall's basic public key. A basic key
exchange may be triggered in either of two ways. The first, if the client does not
have the firewall's basic public key or, second, if the firewall determines that the
basic public key used by the client in the request is outdated.

The process is similar to the basic key exchange as explained previously in
the section entitled Basic Key Exchange - Firewall/Firewall. However, there are
differences as explained below. If the client realizes that it does not have the
firewall's basic public key, it substitutes a CA public key D field for the destination
basic public key ID field in the request. This is shown above the top right arrow in
Figure 23 which is a high level block diagram illustrating the data transferred
between a client personal computer and a firewall during a basic key exchange.
This key ID is the ID of the certificate authority key (e.g., RSA key) by which the
client wants to receive the reply from the firewall.

When the firewall receives the request from the client, it determines from
the request whether the client is requesting the firewall's basic public key or the
key ID in the request does not correspond to the firewall's basic public key. The
elements of firewall’'s reply is shown above the left arrow. The reply comprises the
original suggested destination basic public key ID, CA public key ID, destination

basic public key D,,,, IP address of the destination and a signature. The original

37

10

15

20

25

WO 97/00471 PCT/IL96/00017

destination basic public key is taken as is from the request. The signature of the

destination basic public key is sent, which is represented by

SIG(Dpyb)

In a preferred embodiment, the signature is generated by first generating
an intermediate signature from the basic public key to be sent using the md
method of generating digital signatures. Then, this intermediate signature is input
to the RSA decrypting function to generate the signature that is finally transmitted.
The IP address of the destination (i.e., the firewall) is included in order to verify the
binding between the firewall, and a basic public key (Dpup)-

Upon receipt of the certificate from the firewall, the client can verify it using -

" the CA public key. If it verifies correctly, the client updates its database with the

new basic public key of the firewall.

After receiving the firewall's reply, the client sends back a message to
complete the authentication. The elements of the message are shown above the
bottom right arrow in Figure 23. The message comprises the password encrypted
and a signature. Once the reply is received, the client can generate the basic key
B and the truncated basic key TB. The client then encrypts the password P,

expressed as
ENCgrg.+¢)(P)

The signature is generated using the md method on the combination of the
contents of the original request sent to the firewall as shown above the right arrow
in Figure 22, represented as T, the cleartext password P and the truncated basic

public key TB, as expressed as
SIG(T + P + TB)

The encrypted password and the signature are then sent to the firewall. The
session key exchange then completes and session data communications can

begin.

38

WO 97/00471 PCT/IL96/00017
While the invention has been described with respect to a limited number of

embodiments, it will be appreciated that many variations, modifications and other

applications of the invention may be made.

39

10

15

20

25

WO 97/00471 PCT/IL96/00017

What is claimed is:

1. A method of inspecting and selectively modifying inbound and outbound
data packets in a computer network, the inspection and selective modification of
said data packets occurring in accordance with a security rule, the method
comprising the steps of:
generating a definition of each aspect of the computer network inspected
by said security rule;
generating said security rule in terms of said aspect definitions, said
security rule controlling at least one of said aspects;
converting said security rule into a set of packet filter language instructions
for controlling an operation of a packet filtering module which
inspects and selectively modifies said data packets in accordance
with said security rule;
coupling said packet filter module to said computer network for inspecting
and selectively modifying said data packets in accordance with said
security rule, said packet filter module implementing a virtual packet
filtering machine; and
said packet filter module executing said packet filter language instructions
for operating said virtual packet filtering machine to either accept or
reject the passage of said data packets into and out of said network

computer and selectively modify said data packets so accepted.

2. The method according to claim 1, wherein said aspects include network

objects.

3. The method according to claim 1, wherein said aspecfs include network

services.

4, The method according to claim 2, wherein said aspects include network

services.

40

10

15

20

25

WO 97/00471 . PCT/IL96/00017

5. The method according to claim 4, wherein said object definitions include

the address of said object.

6. The method according to claim 1, wherein the filter language instructions of
said step of converting are in the form of script and further comprising a compiler

to compile said script into said instructions executed in said étep of executing.

7. The method according to claim 1, wherein in both said steps of generating

said aspects of said network and of said security rule are defined graphically.

8. The method according to claim 1, wherein said selective modification is
chosen from the group consisting of encryption, decryption, signature generation

and signature verification.

9. In a security system for inspecting and selectively modifying inbound and
outbound data packets in a corﬁputer network, said security system inspecting
and selectively modifying said data packets in said computer network in
accordance with a security rule, where each aspect of said computer network
inspected by said security rule has been previously defined, said security rule
being previously defined in terms of said aspects and converted into packet filter
language instructions, a method for operating said security system comprising the
steps of:
providing a packet filter module coupled to said computer network in at
least one entity of said computer network to be inspected by said
security rule, said packet filter module implementing a virtual packet
filtering machine inspecting and selectively modifying said data
packets passing into and out of said computer network; and
said packet filter module executing said packet filter language instructions
for operating said virtual packet filtering machine to either accept or
reject the passage of said data packets into and out of said
computer network and to selectively modify said data packets so

accepted.

41

10

15

20

25

WO 97/00471 . PCT/IL96/00017

10. The method according to claim 9 wherein said aspects include network

objects.

11. The method according to claim 9 wherein said aspects include network

services.

12. The method according to claim 10 wherein said aspects include network

services.

13. The method according to claim 12 wherein said object definitions include

the address of said object.

14. The method according to claim 9 wherein said virtual machine performs a

data extraction operation.

15. The method according to claim 14 wherein said virtual machine performs a

logical operation.

16. The method according to claim 15 wherein said virtual machine performs a

comparison operation.

17. The method according to claim 9, wherein said selective modification is
chosen from the group consisting of encryption, decryption, signature generation

and signature verification.

18. In a security system for inspecting and selectively modifying inbound and
outbound data packets in a computer network, said security system inspecting
and selectively modifying said data packets in said computer network in
accordance with a security rule, where each aspect of said computer network
inspected by said security rule has been previously defined, said security rule
being previously defined in terms of said aspects and converted into packet filter
language instructions, a method for operating said security system comprising the
steps of:

providing a packet filter module coupled to said computer network in at

least one entity of said computer network to be controlled by said

42

10

15

20

25

WO 97/00471 PCT/IL96/00017

security rule, said packet filter module emulating a virtual packet
filtering machine inspecting and selectively modifying said data
packets passing into and out of said computer network:

said packet filter module reading and executing said packet filter language
instructions for performing packet filtering operations;

storing the results obtained in said step of reading and executing said
packet filter language instructions in a storage device; and

said packet filter module utilizing said stored results, from previous
inspections, for operating said packet filter module to accept or reject
the passage of said data packets into and out of said computer

network and to selectively modify said data packets so accepted.

19. The method according to claim 18 wherein said aspects include network

objects.

20. The method according to claim 18 wherein said aspects include network

services.

21. The method according to claim 19 wherein said aspects include network

services.

22. The method according to claim 21 wherein said object definitions include

the address of said object.

23. The method according to claim 18, wherein said selective modification is
chosen from the group consisting of encryption, decryption, signature generation

and signature verification.

24. In a security system for inspecting and selectively modifying inbound and
outbound data packets in a computer network, said security system inspecting
and selectively modifying said data packets passing through said computer
network in accordance with a security rule, where each aspect of said computer

network controlled by said security rule has been previously defined, said security

43

WO 97/00471 PCT/IL96/00017

rule being previously defined in terms of said aspects and converted into packet

filter language instructions, said security system comprising:
a packet filter module coupled to said computer network, said packet filter
module operating in accordance with said security rule, said packet
5 filter module implementing a virtual packet filtering machine
inspecting and selectively modifying said data packets passing into

and out of said computer network; and

processing means for reading and executing said packet filter language
instruction integral with said packet filter module, said processing
10 means operating said packet filtering module to either accept or
reject the passage of said packets into and out of said computer

network and to selectively modify said data packets so accepted.

25. The method according to claim 24, wherein said selective modification is
chosen from the group consisting of encryption, decryption, signature generation
15 and signature verification.
‘2,6’1‘& A method substantially as claimed hereinabove and substantially as

illustrated in any of the drawings.

44

RO

PCT/IL96/00017

WO 97/00471

1/23

NOILVLISHYOM

NOILVLSHIOM

AVM3ILVO

1°OId

Zzl
001
/ ¥0L oLl
A TIT 17 Z \ \
|
|| NOWVISXHOM NOILVISHYOM ¥3LN0Y
“
|
|
|
|
|
_ NOILV.SHYOM
! NOLLVYLSININGY WILSAS AVMILVO
|
|

431N0y

LINYILNI

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017
2/23

WO 97/60471

LS ILON3Y J__l(\\oﬁ AN

NOILVISHIOM NOILVLISHIOM AVMILVO

oo_/ . o
.I]Ilwnﬂ—wIZI—<§I|\I]IIIIyIIlllllllllll/ lllllll

SUBSTITUTE SHEET (RULE 26)

| |
| |
|| NOLLYISHYOM NOILYLSHOM ¥31N0Y |
_ [
T A “
vl 1 201 "
m"ﬁ /_H Hz_o_zﬁm_z_zmz NILSAS |e—" m
i
i n oz |
I SEIRIE J1NAON i |
1| 13x0vd TOALNOD | N ! AVM3LVO ¥31N0Y LINYILNI
1 oz | |
1 — | \ \ |
_ 3OVHOLS 74!
“m AV1dSIa 2z | 801 m
|
L [

WO 97/00471 PCT/IL96/00017

3/23

302
308

FIG.3/1

304
306

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

4/23

PCT/TL96/00017

NETWORK OBJECT MANAGER

304~

VIEW BY TYPES: INTERNAL EXTERNAL

&4 HOST &4 NET &4 ROUTER
4 GATEWAY &4 DOMAIN &4 GROUP

BRM.CO.IL

CEO

CFO

FINANCE
INTERNAL
MAILSERVERS
TRUSTEDPARTIES
DYLAN

CREATE NEW OBJECTS ~ MAILSERVERS

A
V

FI1G.3/2

SUBSTITUTE SHEET (RULE 26)

WO 97/00471 PCT/IL96/00017

5/23

SERVICES MANAGER

VIEW BY TYPES:

& TCP & RPC &4 GROUP
& UDP &4 OTHER

X11
306

& AUTH_TELNET
BLFF

DAYTIME
DISCARD
ECHO
EXEC
FINGER
FTP

DELETE SELECTED OBJECTS

F1G.3/3

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

6/23

48] \j

v/ g DId

M ILVHOLYH0D/SNIUVYIN/SYASN/MA/. OL Q3IAVS 3Sva 31Ny

<
= Gos3 G 3ONVNI G
15@ VA 153r3Y ANV WNYILNI B ANV S
MO W \ € € a2
SAVM3LV9 143V 1d300V ANV ANV IVNYILNI 14
o W Cha D
1Sd 14300V L3NT3L LVISY MVl TYNY3INI | SIILNVLAILSNYL | €
MO W) 9 G = 040 [
SAVMILYD 143V Joya ANV 3ONVNI o030 0O Z
8] W € G
SAVM3LY9 14300V dlNS SYIAYISTIVA ANV l
NO TIVISNI MOVYL NOILOV S30IAY3S | NOILYNILS3A 304N0S |"ON
YIMIA 90103 M3IIA W3LSAS (A SIOAYIS A SLOIrE0 MIYOMIIN[A SMOANIM
[viyoLNL | S31143d0¥d [S3LAILN [431n0Y [831714 [3Ny [3714

31v404y09 - ¥0LId3 3Sva 31Ny

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

7/23

80¢
/

$/€ D4

€G 1 0Z ° 91 £6 23Q Ol

G¢

¥4
0

e
-

cL—-808L A~
11Nv430

¢0 - €1 €6 2340 Ol

9l
A%

'SNOILO3T3IS dv31D

©9C * 9L ° MON
D1z ot 9Lt 31vadn 1SV

TV 103713S bl

| -

TIVISNI

:(D3S) IWNYILINI 31vadn

. MOHS

M3IA SNLVLS W3LSAS

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

400

PCT/IL96/00017

8/23

402
(START ;

\

GET FIRST 404
RULE _/
!
GENERATE CODE TO 406
MATCH RULE SOURCE
NETWORK OBJECT ~—

!

GENERATE CODE TO

408

MATCH RULE DESTINATION |

NETWORK OBJECTS

\

GENERATE CODE TO

410

MATCH RULE SERVICES [>—"

V

GENERATE CODE TO

412

ACCEPT OR REJECT
THE PACKET IF __,//

406, 408, 410 WERE
"~ MATCHED

YES

414

416
\[=
NEXT
RULE
A
F1G.4

MORE RULES ?

418

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

9/23

| e it

d3A303yd
13Novd

g

4314 13NMOvd _ e .
13NOVd _ _ SYIAVT NOILVIINNWNOD OSI _
ocg—] 3HL d0¥a “ | |
|
! i m NOILYIANOD MH | —__—+0S |
|
[_
azc |MOVN ON3S | | (3 MH) N VIVE 2 f~ 908 m
_ [| _
¢ 13v0vd | | |
JH1 SSvd mu>w _7 _
2 | i _ i
|
i
976 1¥3V/901 m “ 1¥OdSNVYL ¥ p~——01G “
|
2N ﬂ C | i NOISS3S § |— 21§ m
&
|
SIHOLVN e 5G| ! NOILVINISIYd 9 |~ —¥1G |
13INOVd " n i
¥2S) | i NOILVONddY / 916G |
|
| L o o 1
_
|
|

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

10/23

PCT/IL96/00017

602

600 (PACKET RECEIVED)‘/

\ ‘

MACHINE OPERATION

GET FIRST VIRTUAL |

604
GET FILTER OPERATIONS —"
| 606
INITIALIZE MEMORY |- —————m—
608

‘—————-—————-——-——-———-——-——-—-———j

612 | PerFoRM VRTUAL | ___

\\ MACHINE OPERATION B

|
GET NEXT
OPERATION

NO
616
i YES « accepr 2 >N
PASS THE
PACKET
FI1G.6

SUBSTITUTE SHEET (RULE 26)

\

DROP THE
PACKET

WO 97/00471 . PCT/IL96/00017

11/23

. 610
PERFORM VIRTUAL
MACHINE OPERATION —

704 —613 706

702 \ /

NN I
DATA LOGICAL
EXTRACTION | | OPERATIONS | | COMPARISON
613
614~
REACHED

STOP STATE ? FIG.7

702 802 / 806
\ (START)
PACKET

l

4 EXTRACT DATA
804~_1 FROM PACKET

!

808 PUT DATA 810
1 INTO MEMORY \ /
! MEMORY
STACK
END

812
F1G.8

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

12/23

01°OId

Ni

AHJOW3IN

| 1nd

¢l0l

ADVIS
AHONIN

)

9001

Nyl

010l

9101

aN3

SAN’IvA
JIVdANOD

AJOW3N
NI O 1INd

\

7101

3Sv4

AMONIN WOYA

INIVA ANOJ3S 139

~——8001

AHOW3IN NWOY4

JNIVA 1Sy14 139

¢oo_l\\

¢001

90L

6 DId
916
AMOWIN e AMOWIN
NI L Ind NI 0 INd
16
216 ShwT zo:ammmmmwmgooJ
0l6
AYOWIN WNOY4
! INWVA ONOD3S 139 806
MOVIS
AHOWIN
AMOWIW WOM 4
INTVA 1SHI4 139
906 \
¢oml\\ 0L

06

SUBSTITUTE SHEET (RULE 26)

WO 97/00471 PCT/IL96/00017

18/23

1102 START
///'1104

1106 — GET LITERAL VALUE MEMORY
FROM CODE STACK

l

1108 — PUT VALUE
INTO MEMORY

FIG.11

1110 END

1202 START

1206
N

BRANCH TRUE MEMORY
CONDITION STACK
1204
GET VALUE
FROM MEMORY | 1208
STACK

1214
I

SET NEXT STEP |
o TO N

END 1216 FIG.12

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

1302

1304

14/23

N

GET FIRST VALUE
FROM MEMORY

PCT/IL96/00017

(//1306

|

1308—~\\\

GET SECOND VALUE
FROM MEMORY

MEMORY
STACK

|

1310

PERFORM ARITHMETIC
OR BITWISE OPERATION

|

1312

PUT RESULT
IN MEMORY

A

!

1514 START

FIG.13

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

1410\\

TABLE 1
TABLE 2
TABLE 3

1416
\\\

1404

PUT "1" IN
MEMORY

YES

PCT/IL96/00017

15/23

1402 |
; START)

~

1406-\\\

GET VALUES
FROM MEMORY

/ MEMORY

SEARCH THE
VALUES IN THE
REFERRED TABLE

1408
_/

IS THE
VALUE IN THE
TABLE ?

1412

1414~\\

PUT "0 IN
MEMORY

NO

END

1418

|

FI1G.14

SUBSTITUTE SHEET (RULE 26)

WO 97/00471 PCT/IL96/00017

16/23
1502
START
///1510 1506-\\\

TABLE 1 1504
TABLE 2 5\\\ MEMORY

GET VALUES
TABLE 3 FROM VEMGRY

SEARCH THE 1508

VALUES IN THE |~
REFERRED TABLE

A

1516\\\ 1512 1514~\\
PUT "1" IN | _YES NO | PUT "0" IN
MEMORY o
END

1518
FIG.15

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

\@OPN

v

1SOH -

///vOFN

17/23

\\\N_©F

¢ VO

¢ 1SOH

¢ Ol

(NOILYNILS3Q)

TIVM3yl14

arngnd

//No_w

/o_m_

¢ TIVM3yld

//mom_

91 Old

AJOMLIN

(304N0S)
od

9091 /oo_m

¢09 _I/

SUBSTITUTE SHEET (RULE 26)

AHOMLIN
argnd

l VO

I TIVM3YId

9091

/#om—

| 1SOH

_/

0091

PCT/IL96/00017

WO 97/00471

18/23

(NOILYNILS3Q)
Z TIYM3YI4

/wom_

L1 OId

((@)o1s+y) O+8LoN7.
Al A3x 21Ngnd 2ISv8 NOILYNILSId NISOHO e
al A3M 21gnd 2ISvg 308¥NO0S NASOHO e
JOHL3IW AN-e
QOHILIAN A3M-
QOHLIW ¥3IHAD -

O ‘AIM JONITWHI-

dl A3X 2Mand 2JISv8 NOILVNILSIA d3LS309NS-e
ar A3x ongnd 2JI1SvE 304N0S d31S399NS-
JOHL3IN dW-

QOHLANW A3A-

QOHL3IW ¥3IHJAD -

(304N0S)
L VM3

Y091

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

PCT/IL96/00017

19/23

TRANSMIT A
PACKET

1

GENERATE AUXILIARY KEY A
FROM THE CONTENTS OF THE
PACKET ITSELF

1800

.

PLACE THE FOLLOWING IN A BUFFER
° A

° M

1802

.

GENERATE SIGNATURE USING MD METHOD
SIG (A + 1 + M)

!

PLACE SIGNATURE BITS IN THE PACKET
HEADER

l

ENCRYPT PACKET DATA USING CYPHER METHOD
ENC(E+A)(M)

V

TRANSMIT PACKET

db
END
FI1G.18

SUBSTITUTE SHEET (RULE 26)

WO 97/00471

20/23

RECEIVE A
PACKET

GENERATE AUXILIARY KEY A FROM THE
CONTENTS OF THE PACKET ITSELF

!

DECRYPT PACKET DATA USING
CYPHER METHOD

DCR(E +AYENC(E+AYM))

|

EXTRACT SIGNATURE BITS
FROM PACKET HEADER

|

GENERATE SIGNATURE USING
MD METHOD
SIG (A + 1+ M)

PCT/1L96/00017

1900

1902

1904

1906

1912

YES DROP THE
PACKET

%

1910 PASS THE
~~—1 PACKET

END

FIG.19

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

21/23

(NOILYNILS3Q)
Z TIVM3YIA

//wom_

0c OId

AmDn_mv 9IS o

304N0S JHL 40 (S)SS3¥AAQV di»
8Nds A3y 2Ngnd 2ISvE 304N0S -
al A3 2Nand v o

QOHLIW AWNe

QOHLIW A3Me

QOHL3IN ¥3IHJAD -

dl A3X JIN8Nnd JISv8 NOILVYNILS3Q -
di A3X 2118nd v

al A3X 21nN8nd 2ISvE 30dN0S -

(304N0S)
AR ENE

091

SUBSTITUTE SHEET (RULE 26)

PCT/IL96/00017

WO 97/00471

22/23

(NOILYNILS3Q)
TIVMINIS

/NOPN

o Dld

(aL + n) 9IS

(9)o1s +) (0+8L) N7«
QOHL3IW QW

QOHLIW A3

JOHL3IWN ¥IHdAD -
dl A3X 2Iand 2JISvE NOILVYNILS3d e

(gL + 4 + 1) 91S

(d) (O+8L) N3)

O ‘AIX FONITIWVHI o
al A3 21gnd 2JiSva NOILYNILS3A »
8NdS ‘A3x 2gand 2ISva 304N0S-e

QOHLIN AMSd »
QOHIIN QWe
QOHLIN Ao

QOHLIW ¥3HdAD°
JINVN o

~ 1

(304N0S)
Jd

SUBSTITUTE SHEET (RULE 26)

oo_N.\

PCT/IL96/00017

WO 97/00471

23/23

AN K|

TIVM3diA

(NOILYNILS3Q) 8Ndg ‘A3x 2118Nd 2ISvE NOILYNILSIQ o

—

(8L + 4 + 1) 9IS »
AQVAoer_Cozn._ 0

@04 o

NOILVYNILS3IA 3HL 40 (S)SS3yAQV di »

ar A3Ix onand vo e
QI A3X 2118nd JISvE NOILVNILSIA §31S399NS TYNIOIYO o

‘

]
o
°

alr A3 orgnd vo -

(-]
(-]

(304N08S)
2d

/No_m oo_w\

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

