Method and Apparatus for Removing a Cable Core from a Cable Sheath

Apparatus and method for extracting the core and surrounding insulator from an outer sheath of a length of data transmission cable is disclosed. The apparatus comprises a pump operable to generate hydraulic pressure against one end of the core and insulator, and a drawing mechanism operable to simultaneously exert a pulling force on an opposite end of the core and insulator. The arrangement being such that hydraulic pressure applied to one end, and pulling force applied to the opposite end, together displace the core and insulator relative to its outer sheath.
Method and Apparatus for Removing a Cable Core from a Cable Sheath

The present invention relates to a method and apparatus for removing a cable core from a cable sheath.

Data, digital or coaxial transmission cables for transmitting data and digital signals into homes have been used for many years and are usually buried underground, often beneath pavements and the front gardens of the homes to which data is being supplied. There are various different cables commonly in use, but a typical cable is shown in Figure 1 and generally comprises a core 2 formed from a single conductor. The core 2 is received in an outer sheath 6 to provide overall mechanical, weather, chemical and electrical protection. The sheath 6 can be formed from PVC and can be lined with a metallic, e.g. copper, inner jacket 7. An insulator 8 extends between the inner jacket and the core 2 and surrounds the core 2. Although in some cable types the insulator 8 is formed from a soft polymeric material, the type of cable from which the present invention is directed is those in which the insulator 8 is formed from a relatively hard polymer. The insulator 8 serves to provide protection and support for the core 2 and to insulate it from the metal jacket 8.

Developments in technology, together with demand for better and faster data transfer, have recently necessitated the use of optical fibres for data transmission purposes, as optical fibre is capable of transmitting much larger quantities of data at high speed relative to traditional copper cored cables. Where optical fibre is required, the standard approach is to disconnect the existing cable and to lay an entirely new cable containing the optical fibre, with the old disconnected copper cored cable either being removed altogether or left in the ground. It will be appreciated that this approach necessitates the digging of a trench in order to lay the new cable, which is disruptive, time consuming and expensive.

US7,814,654B2 discloses a method for removing a cable core from an outer cable sheath so that the optical fibre can be fed through the vacated outer cable sheath without having to dig a trench. In the method described in this document, a flowable medium is introduced under pressure into an annular space between the core and the sheath, so as to reduce friction between the core and the sheath to the extent necessary.
to allow the core to be drawn out of the sheath for subsequent insertion of the new optical fibre. However, this method is troublesome as it requires a supply of pressurised medium and a pump capable of pumping the pressurised medium along a length of cable. Furthermore, it is necessary to minimise leakage and to provide means for collecting the pressurised medium after the core has been released to prevent contamination of the surrounding ground.

In their co-pending UK application No. 1317800.9, the present applicant has described an apparatus and method for removing a cable core from a cable sheath of a particular cable type in which the core is surrounded by an insulator formed by a relatively soft polymer filler material. The Applicant determined that, by supplying voltage along the core, sufficient heat can be generated to reduce the viscosity of the soft polymer material to a point at which the friction between the core and the sheath is low enough to enable the core to be extracted from its sheath by pulling it from one end, thereby avoiding the need to pump fluid along the cable. However, whilst this technique has proven to be effective in the removal of the core from cable types having a soft polymer insulator whose viscosity readily reduces on the application of a relatively small increase in temperature, it cannot be used when the cable has an insulator formed from a hard polymer, as the temperature cannot be increased to a point at which the hard plastic is softened sufficiently to enable the core to be extracted without also causing irreversible damage to the sheath.

The present invention seeks to provide a method and apparatus which substantially overcomes or alleviates problems associated with the removal of a cable core from a sheath for use with a cable of a type in which the core is surrounded by a relatively hard plastic insulator.

According to the invention, there is provided an apparatus for extracting the core and surrounding insulator from an outer sheath of a length of data transmission cable, comprising a pump operable to generate hydraulic pressure against one end of the core and insulator, and a drawing mechanism operable to simultaneously exert a pulling force on an opposite end of the core and insulator, the arrangement being such that hydraulic pressure applied to one end and pulling force applied to the opposite end together displace the core and insulator relative to its outer sheath.
In a preferred embodiment, a coupling sleeve is fixedly mountable to the outer sheath adjacent to one end of the cable. The pump may comprising a pressurised fluid supply pipe having a coupling releasably attachable to the coupling sleeve so that pressurised fluid pumped along said pipe acts directly against one end of the core and insulator at said end of the cable.

The coupling sleeve and coupling may comprise complementary screw threads for releasable engagement with each other. A sealing element maybe provided to form a liquid tight seal between the coupling sleeve and the coupling to prevent loss of pressurised fluid.

Preferably, the pump is a constant pressure pump or a pneumatic pump. The pump may be configured to pump pressurised fluid at a fluid pressure of up to 70 bar and, preferably, at a pressure in the region of 45 bar.

In a preferred embodiment, the apparatus comprises a clamping member to clamp an end portion of the core and insulator exposed at an opposite end of the cable, the clamping member having a cooperating element for attachment to a drawing mechanism.

The drawing mechanism may comprise a winch having a wire rope. The rope may have a hook at its free end for attachment to the cooperating member that forms part of the clamping member.

In a preferred embodiment, the winch is configured to apply a pulling force of up to 170 kg to the insulator and core via the clamping member. The winch may include a load meter to provide a measurement of the load being applied to the insulator and core.

The apparatus may comprise a controller to reduce the pulling force applied to the insulator and core via the clamping member after movement of the insulator and the core has been initiated. The controller maybe automatic or user-operated.

In some embodiments, a control unit may be provided to activate the pump and the drawing mechanism and also to control the pulling force generated by the drawing mechanism under a constant pressure generated by the pump once it has been
activated. The control unit may be in the same location or controls for the pump and drawing mechanism may be in separate locations. For example, each of the pump and the drawing mechanism may be provided with its own control unit.

According to the present invention, there is also provided a method for extracting the core and surrounding insulator from an outer sheath of a length of data transmission cable, comprising the act of generating hydraulic pressure against one end of the core and insulator, and simultaneously exerting a pulling force on an opposite end of the core and insulator to displace the core and insulator relative to its outer sheath.

The method preferably includes the act of fixedly mounting a coupling sleeve to the outer sheath adjacent to one end of the cable and releasably attaching a coupling of a pressurised fluid supply pipe to the coupling sleeve prior to pumping pressurised fluid along said pipe so that it acts directly against the core and insulator at said end.

The method may also include the step of sealing the core and insulator at said end prior to releasably attaching said coupling to the coupling sleeve prevent pressurised fluid from flowing around the core and/or insulator along the outer sheath.

In some embodiments, the method includes the act of fixedly mounting the coupling sleeve to the outer sheath using adhesive.

If the coupling sleeve and coupling comprise complementary screw threads, the act of releasably attaching the coupling to the coupling sleeve can comprise engaging the screw threads by rotating the coupling relative to the coupling sleeve.

In some embodiments, the method includes the step of pumping pressurised fluid along the fluid pipe at a fluid pressure of up to 70 bar and preferably, at a pressure of around 45 bar.

Preferably, the method includes the act of stripping a section of outer sheath so that an end portion of the insulator is exposed at said opposite end of the cable, clamping said exposed end portion in a clamping member having a cooperating element and attaching the cooperating element to a drawing mechanism prior to activating the fluid pump and the drawing mechanism to simultaneously push the
insulator and core at one end of the cable under hydraulic fluid pressure and pull the
insulator and core from the other end of the cable under a pulling force.

The act of controlling the drawing mechanism may include controlling it so as to
apply a pulling force of up to 170kg to the insulator and cable via the clamping member.

In some embodiments, the method may include the act of controlling the
drawing mechanism to reduce the pulling force applied to the insulator and cable after
displacement of the insulator and cable has initiated.

Embodiments of the invention will now be described, by way of example only,
with reference to Figures 2 and 3 of the accompanying drawings, in which:
FIGURE 1 is a perspective view of an end portion of one type of traditional copper
cored cable with the various layers shown stripped back to illustrate its construction;
FIGURE 2 is a side elevation showing an exposed cable end with a coupling sleeve
attached thereto and a coupling at the end of a fluid supply pipe about to be attached to
the coupling sleeve for the supply of pressurised fluid to the cable to apply hydraulic
pressure directly to the core and insulator; and
FIGURE 3 is a side elevation of an opposite end of the cable showing a clamping
member and winch having a hook attached to the clamping member.

As described above, a perspective view of an end of one type of conventional
cable 1 is shown in Figure 1 and comprises a single filament copper core 2 covered by an
outer sheath 6 formed from a polymer material such as PVC which is lined with a
metallic jacket 7 (not shown in Figures 2 and 3). The core 2 is received in a flexible but
hard plastic insulator or isolator 8 to keep the core 2 together and to provide overall
mechanical, weather, chemical and electrical protection. Cables 1 of this type are
commonly used for local area networks and may be buried underground.

To extract the core 2 and insulator 8 from its sheath 6 so that the sheath 6
remains in-situ and can be re-used, access to each end of the cable 1 is provided, such
as by digging a trench and cutting the cable 1. It is envisaged that the core 2 and
insulator 8 may be extracted using the method and apparatus of the present invention
for cable runs of 100 metres or more.
Once a decision has been made as to which end of the exposed cable the core 2 and insulator 6 is to be extracted from, an hydraulic constant pressure pump 9 capable of generating an hydraulic pressure in excess of 40 bar to 45 bar, is positioned adjacent to the opposite end. The pump 9 maybe electric with a rating of 230V, 12.7A having an accumulator recharge on 30 bar with nitrogen to provide constant pressure during pumping without fluid loss. Alternatively, a pneumatic pump having an air compressor, power generator and accumulator with 7 litre capacity with recharge on 30 bar with nitrogen may be employed. The pump 9 may be provided with a digital control unit 10a to allow fluid flow, and therefore pressure, to be controlled.

The pressure pump 9 has a fluid pipe or hose 10 (only part of which is shown in Figure 2), which is connected to the outer sheath 6 adjacent the end of the exposed cable 1. This is achieved by immovably attaching a coupling sleeve 11 to the outer sheath 6 close to the cable end. The coupling sleeve 11 maybe permanently attached to the outer sleeve 6 using adhesives or in some other way. A remote end of the fluid pipe 10 is provided with a coupling element 12. The coupling sleeve 11 and the coupling element 12 together include cooperating elements 13 to enable the coupling element to be releasably attached to the coupling sleeve. For example, and as shown in Figure 2, the coupling sleeve 11 and coupling element 12 may both be provided with complementary screw threads that engage to couple the coupling element and coupling sleeve together, when the coupling element 12 is moved towards the coupling sleeve 13 (in the direction of arrow "A" in Figure 2) and then rotated relative to the coupling sleeve 13. O-rings or other sealing elements (not shown) may be provided to prevent fluid leakage through the join between the coupling sleeve 13 and the coupling element 12 during pumping.

A drawing mechanism 14, such as a winch, is set up adjacent to the opposite end of the exposed cable 1. The drawing mechanism 14 may comprise a braided steel cable 15 having a hook 16 at one end. A short length of the core 2 and insulator 8 are exposed at the end of the cable 1 by removing a portion of the sheath 6 and metallic jacket 7. A clamping member 17 is then attached to the exposed length of the core 2 and insulator 8. The clamping member 17 may comprise a pair of plates 18 between which the exposed core 2 and insulator 8 is placed. Bolts 19, only three of which are shown in Figure 3, are then used to sandwich the core 2 and insulator 8 between the plates 18. The clamping member 17 is provided with an integral cooperating element 20, such as a loop, onto which the hook 16 of the winch 14 may be attached so that, when the winch
1 is operated, a pulling force will be transferred to the core 2 and insulator 8 via the clamping member 17.

Once the coupling sleeve 11 and the coupling element 12 have been coupled to each other at one end of the cable 1 and, the clamping member 17 has been clamped to the opposite end of the cable 1 and the clamping member 17 attached to the winch 14, the pump 9 and the winch 14 are both switched on so that pressurised fluid, which may be vegetable oil or some other kind of fluid that is not harmful to the environment, flows along the fluid pipe 10 so as to apply direct hydraulic pressure to the exposed end of the core 2 and insulator 8. At the same time, the winch 14 applies a pulling force to the opposite end of the core 2 and insulator 8.

As it is important that pressure is applied to the end of the core 2 and insulator 8, pressurised fluid is prevented from flowing within the core 2 by sealing it with a fluid impermeable plastic tape or covering (not shown) prior to attachment of the coupling element 12 to the coupling sleeve 11.

The winch 14 should be capable of applying a pulling force of at least 170Kg. However, once displacement of the core 2 and insulator 8 has begun, the force can be reduced gradually. Depending on the length of the cable 1 and the amount of core 2 and insulator 8 extracted, a final part of the core 2 and insulator 8 may be extracted by pulling by hand.

The apparatus may include a control unit (not shown) associated with each of the pump 9 and the winch 14.

Many modification and variations of the invention falling within the terms of the following claims will be apparent to those skilled in the art and the foregoing description should be regarded as a description of the preferred embodiments of the invention only.
Claims

1. Apparatus for extracting the core and surrounding insulator from an outer sheath of a length of data transmission cable, comprising a pump operable to generate hydraulic pressure against one end of the core and insulator, and a drawing mechanism operable to simultaneously exert a pulling force on an opposite end of the core and insulator, the arrangement being such that hydraulic pressure applied to one end and pulling force applied to the opposite end together displace the core and insulator relative to its outer sheath.

2. Apparatus according to claim 1, comprising a coupling sleeve fixedly mountable to the outer sheath adjacent to one end of the cable, the pump comprising a pressurised fluid supply pipe having a coupling releasably attachable to the coupling sleeve so that pressurised fluid pumped along said pipe acts directly against one end of the core and insulator at said end of the cable.

3. Apparatus according to claim 1, wherein the coupling sleeve and coupling comprise complementary screw threads for releasable engagement.

4. Apparatus according to any preceding claim, wherein the pump is a constant pressure pump or a pneumatic pump.

5. Apparatus according to claim 4, wherein the pump is configured to pump pressurised fluid at a fluid pressure of up to 40 bar.

6. Apparatus according to any preceding claim, comprising a clamping member to clamp an end portion of the core and insulator exposed at an opposite end of the cable, the clamping member having a cooperating element for attachment to a drawing mechanism.

7. Apparatus according to claim 6, wherein the drawing mechanism comprises a winch and a cable, the cable having a hook for attachment to the cooperating member on the clamping member.

8. Apparatus according to claim 7, wherein the winch is configured to apply a pulling force of up to 170kg to the insulator and core via the clamping member.
9. Apparatus according to claim 8, comprising a controller to reduce the pulling force applied to the insulator and core via the clamping member after movement of the insulator and the core has been initiated.

10. Apparatus according to any preceding claim, comprising a central control unit for controlling operation of both the pump and the drawing mechanism.

11. A method for extracting the core and surrounding insulator from an outer sheath of a length of data transmission cable, comprising the act of generating hydraulic pressure against one end of the core and insulator, and simultaneously exerting a pulling force on an opposite end of the core and insulator to displace the core and insulator relative to its outer sheath.

12. A method according to claim 11, comprising the act of fixedly mounting a coupling sleeve to the outer sheath adjacent to one end of the cable and releasably attaching a coupling of a pressurised fluid supply pipe to the coupling sleeve prior to pumping pressurised fluid along said pipe so that it acts directly against the core and insulator at said end.

13. A method according to claim 12, wherein the method includes the step of sealing the core and insulator at said end prior to releasably attaching said coupling to the coupling sleeve prevent pressurised fluid from flowing around the core and/or insulator along the outer sheath.

14. A method according to claim 12 or 13, including the act of fixedly mounting the coupling sleeve to the outer sheath using adhesive.

15. A method according to any of claims 12 to 14, wherein the coupling sleeve and coupling comprise complementary screw threads and the act of releasably attaching the coupling to the coupling sleeve comprises engaging the screw threads.

16. A method according to any of claims 12 to 15, comprising the act of pumping pressurised fluid along the fluid pipe at a fluid pressure of up to 40 bar.
17. A method according to any of claims 12 to 16, comprising the act of stripping a section of outer sheath so that an end portion of the insulator is exposed at said opposite end of the cable, clamping said exposed end portion in a clamping member having a cooperating element and attaching the cooperating element to a drawing mechanism prior to activating the fluid pump and the drawing mechanism to simultaneously push the insulator and core at one end of the cable under hydraulic fluid pressure and pull the insulator and core from the other end of the cable under a pulling force.

18. A method according to any of claims 12 to 17, comprising the act of controlling the drawing mechanism to apply a pulling force of up to 170kg to the insulator and core via the clamping member.

19. A method according to claim 18, comprising the act of controlling the drawing mechanism to reduce the pulling force applied to the insulator and core after displacement of the insulator and core has initiated.

20. Apparatus substantially as hereinbefore described, with reference to the accompanying drawings.
INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2015/05Q075

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H02G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>gb 2 479 788 A (ROOK SERVICES LTD [GB]) 26 October 2011 (2011-10-26) figures 1-4</td>
<td>1,6, 11</td>
</tr>
<tr>
<td>X</td>
<td>us 4 197 628 A (CONTI ALLEN C [US] ET AL) 15 April I 1980 (1980-04-15) figures 1,2</td>
<td>1-4,6,7</td>
</tr>
<tr>
<td>A</td>
<td>Wo 2010/025489 AI (PICHLER ALOIS [AT]) 11 March 2010 (2010-03-11) page 10, last paragraph - page 13, last paragraph ; claims 1,2, 6-10, 12, 14, 15; figures 3-7</td>
<td>1,2,4,6, 11, 12, 16, 17</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance.
"E" earlier application or patent but published on or after the international filing date.
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
"O" document referring to an oral disclosure, use, exhibition or other means.
"P" document published prior to the international filing date but later than the priority date claimed.

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
10 April 2015

Date of mailing of the international search report
16/04/2015

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel.: (+31-70) 340-2040.
Fax: (+31-70) 340-3016

Authorized officer
Schafer, Arnold
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP Q 038 789 A1 (SANDERED BROR [SE] ; CARLSSON RUNE [SE] ; ANDERSSON BENGT [SE]) 28 October 1981 (1981-10-28) page 2, last paragraph - page 3, paragraph 3; claims 1, 6, 10; figures 1-4</td>
<td>1, 4, 6-8, 11, 16, 17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GB 2479788</td>
<td>26-10-2011</td>
<td>AU 2011244831 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2796808 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2561517 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2479788 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013526246 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012149867 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013209174 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 20111131991 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4197628 A</td>
</tr>
<tr>
<td>Wo 2010025489</td>
<td>11-03-2010</td>
<td>AT 507239 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2735468 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102150336 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012502603 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110056311 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011168959 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2010025489 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3175326 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0038789 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 450184 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4447013 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 8103089 AI</td>
</tr>
<tr>
<td>US 7814659</td>
<td>19-10-2010</td>
<td>B2</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)