w0 2017/011671 A1 [N I 0000 OO O OO0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/011671 A1l

19 January 2017 (19.01.2017) WIPOIPCT
(51) International Patent Classification: (74) Agents: HSIEH, Wei L. et al.; Fish & Richardson P. C., P.
GO6F 3/06 (2006.01) GO6F 12/02 (2006.01) O. Box 1022, Minneapolis, Minnesota 554401022 (US).
GOGE 9/45 (2006.01) G11B 20/10 (2006.01) (81) Designated States (uniess otherwise indicated, for every
(21) International Application Number: kind of national protection available): AE, AG, AL, AM,
PCT/US2016/042303 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
. . BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(22) International Filing Date: DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
14 July 2016 (14.07.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
14/800,654 15 July 2015 (15.07.2015) Us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
62/209,215 24 August 2015 (24.08.2015) US (84) Designated States (unless otherwise indicated, for every
14/975,585 18 December 2015 (18.12.2015) us kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: INNOVIUM, INC. [US/US]; 6001 America GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Center Drive, San Jose, California 95002 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventors: MATTHEWS, William Brad; 3514 Casabella DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Court, San Jose, California 95148 (US). KWAN, Bruce LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
H.; 1348 Bobwhite Avenue, Sunnyvale, California 94087 SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
(US). ISSA, Mohammad K.; 644 Benvenue Avenue, Los GW, KM, ML, MR, NE, SN, TD, TG).
Altos, California 94024 (US). BARRETT, Neil;, 1336 Published:

Tasso Street, Palo Alto, California 94301 (US). MANI,
Avinash Gyanendra; 2797 Clara Smith Place, San Jose,
California 95135 (US).

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR ENABLING HIGH READ RATES TO DATA ELEMENT LISTS

- - h
i
i

| 14 18 |
i /} |
12 4 f) |
1t Distributed-Lirked List !
| Main Memory 1
o - !
hing ’J\ Link Memary |
DI I
1-‘—>| i
0 |
H Processor(sy 24\ Free Entry :
: Controtler(s) Manager |
i !
i {
i 1{ 24 Context :

| E
i N Manager |
i !
i i
e e e e ot i e e A G i . — - =

Figure 1

(57) Abstract: A memory system for a network device is described. The memory system includes a main memory configured to store
one or more data elements. Further, the memory system includes a parent distributed-linked list configured to store linked-list
metadata. And, the memory system includes a child distributed-linked list configured to maintain list metadata to interconnect the
one or more data elements stored in the main memory to generate at least a first snapshot, said linked-list metadata references the
snapshot.

WO 2017/011671 PCT/US2016/042303

SYSTEM AND METHOD FOR ENABLING HIGH READ
RATES TO DATA ELEMENT LISTS

FIELD
[0001] Embodiments of the invention relate to network devices. In particular, embodiments of

the invention relate to memory systems for network devices.

BACKGROUND

[0002] Network devices are used to transfer data between nodes in a network. As the networks
grow and the data rates of communication channels increase, the need to increase the amount of
data a network device can handle within a period of time arises. To meet the demands of these
networks, devices need memory systems designed to read data into and write data out of memory
to accommodate the demands of the network and to minimize any collisions between read
requests and write requests. Current systems meet the high capacity and high data rate demands
of networks by increasing the number of access ports of a memory and/or increasing the clock
speed of the memory, which requires state of the art semiconductor technologies. However,
increasing the number of access ports on the memory and/or using state of the art semiconductor
technologies to increase the operating frequency of memory significantly adds to the cost of the

memory and/or to the power budget required to operate these memories.

SUMMARY

[0003] A memory system for a network device is described. The memory system includes a
main memory configured to store one or more data elements. Further, the memory system
includes a link memory that is configured to maintain one or more pointers to interconnect the
one or more data elements stored in the main memory. The memory system also includes a free-
entry manager that is configured to generate an available bank set including one or more
locations in the link memory. In addition, the memory system includes a context manager that is
configured to maintain metadata for multiple lists, where each list contains one or more data
elements.

[0004] Other features and advantages of embodiments of the present invention will be apparent

from the accompanying drawings and from the detailed description that follows.

WO 2017/011671 PCT/US2016/042303

BRIEF DESCRIPTION OF THE DRAWINGS

[000S5] Embodiments of the present invention are illustrated by way of example and not
limitation in the figures of the accompanying drawings, in which like references indicate similar
elements and in which:

[0006] Figure 1 illustrates a block diagram of a network device including a memory system
implementing distributed-linked lists according to an embodiment;

[0007] Figure 2 illustrates a block diagram of a portion of a memory system according to an
embodiment;

[0008] Figure 3 illustrates a block diagram of a portion of a memory system including
multiple banks of link memory according to an embodiment;

[0009] Figure 4 illustrates a flow diagram for a method for implementing a distributed-linked
list according to an embodiment;

[0010] Figure 5 illustrates a flow diagram for a method for storing a data element using a
distributed-linked list according to an embodiment;

[0011] Figure 6 illustrates a flow diagram for reading a data element using a distributed-linked
list according to an embodiment;

[0012] Figure 7 illustrates a block diagram of a network device including a memory system
implementing hierarchical distributed-linked list according to an embodiment;

[0013] Figure 8 illustrates a block diagram of a portion of a parent distributed-linked list
including multiple banks of parent link memory according to an embodiment according to an
embodiment;

[0014] Figure 9 illustrates a flow diagram for a method for implementing a hierarchical
distributed-linked list according to an embodiment;

[0015] Figure 10 illustrates a block diagram of an exemplary data element list using skip lists
generated by a system according to an embodiment;

[0016] Figure 11 illustrates an exemplary timeline for read accesses using skip lists according
to an embodiment;

[0017] Figure 12 illustrates a block diagram of a link memory and a context manager
configured to store the data element list illustrated in Figure 10 according to an embodiment;
[0018] Figure 13 illustrates a flow diagram for a method for implementing the method of
generating a data element list including one or more skip lists and the associated metadata

according to an embodiment;

WO 2017/011671 PCT/US2016/042303

[0019] Figure 14a-f illustrate block diagrams representing the method of generating a data
element list including one or more skip lists and the associated metadata according to an
embodiment;

[0020] Figure 15 illustrates a flow diagram for generating an available bank list in a link
memory according to an embodiment;

[0021] Figures 16 illustrates an interconnected snapshot list generated by a memory system
according to an embodiment;

[0022] Figure 17 illustrates a flow diagram for a method of generating an interconnected
snapshot list including one or more data element set lists including one or more skip lists and the
associated snapshot list metadata according to an embodiment;

[0023] Figure 18a-d illustrate block diagrams representing the method of generating an
interconnected snapshot list including one or more data element set lists including one or more
skip lists and the associated snapshot list metadata according to an embodiment;

[0024] Figure 19 illustrates a flow diagram for generating an available bank list in a link
memory, including child-link memory and parent link memory according to an embodiment; and
[0025] Figure 20 illustrates a block diagram of an exemplary method for read accesses using

one or more snapshot skip lists according to an embodiment.

DETAILED DESCRIPTION

[0026] Embodiments of a system and method for implementing a distributed-linked list for
network devices are described. In particular, a memory system is described that is configured to
manage data by implementing a distributed-linked list. The memory system includes a main
memory for storing data received by a network device. Further, the memory system includes a
distributed-linked list. The distributed-linked list includes a link memory, a free entry manager,
and a context manager. The distributed-linked list is configured to track the locations of data
stored in a main memory and bind the locations to a list to maintain a sequential relationship
between the data. Further, the distributed-linked list uses banked memory structures to maintain
a sequential relationship between the data stored in a main memory without the need for a direct
relationship between the main memory and the distributed-linked list. Such an architecture
provides the ability to use single port memory and lower operating frequencies which lowers the
cost and complexity of the memory system while still meeting the performance demands of a
high capacity network.

[0027] Figure 1 illustrates a block diagram of a network device including a memory system
implementing distributed-linked lists according to an embodiment. Specifically, Figure 1

3

WO 2017/011671 PCT/US2016/042303

illustrates a network device 10 including a plurality of input/output ports 12. Data packets are
received and transmitted through the ports 12 using techniques including those known in the art.
The ports 12 are coupled with a main memory 14. A main memory may include memory
technologies including, but not limited to, dynamic random-access memory (“DRAM”), static
random-access memory (“SRAM?”), flash memory, and other technologies used to store data
including those known in the art.

[0028] The main memory 14 is coupled with one or more processors 16. A processor 16 may
include, without limitation, a central processing unit (“CPU”), a controller, an application-
specific integrated circuit (“ASIC”), field-programmable gate arrays (“FPGA”), or other types of
control units. The one or more processors 16 are configured to manage access to the main
memory 14 using techniques including those known in the art. For example, the one or more
processors 16 are configured to determine a location to store data received on one or more ports
12. The one or more processors 16 are also configured to read data stored in the main memory
14 when the data is to be transmitted on one or more ports 12. Further, the one or more
processors 16 are configured to overwrite, update, and invalidate memory locations using
techniques including those known in the art.

[0029] Further, the embodiment illustrated in Figure 1 includes a distributed-linked list 18.
The distributed-linked list 18 is coupled with one or more processors 16. Further, the
distributed-linked list 18 includes a link memory 20, a free entry manager 22, and a context
manager 24. The link memory 20 is configured to maintain metadata to interconnect data
elements stored in the main memory 14. For an embodiment, maintaining metadata includes
generating, storing, and updating metadata using techniques including those described herein. In
addition, the link memory 20 is configured to store metadata including one or more pointers to
reference data elements stored in the main memory 14. The link memory 20 may include one or
more of the memory technologies as described herein. The link memory 20 includes a plurality
of locations for storing information. Each of the plurality of locations has an address used to
access data stored in the location. For an embodiment, link memory 20 includes a plurality of
memory banks with each of the memory banks including a plurality of locations and each
location having an address used to access data.

[0030] A distributed-linked list 18, according to the embodiment illustrated in Figure 1, also
includes a free entry manager 22. The free entry manager 22 is configured to generate an
available bank set of locations in the link memory 20. The available bank set is a group of one

or more addresses in the link memory 20 that are not in use or allocated. For an embodiment, the

WO 2017/011671 PCT/US2016/042303

one or more addresses reside in different memory banks of the link memory. For example, the
free entry manager 22 is configured to maintain a list of one or more addresses of the locations in
memory that are not used or allocated for storing metadata for a data element currently stored in
the main memory 14 as an available bank set. For an embodiment, a free entry manager 22 uses
one or more memory technologies including those known in the art for storing an available bank
set. For an embodiment, the one or more processors 16 are configured to remove a link memory
address from the free entry manager 22 when a link memory address is used or allocated to
interconnect data elements stored in a main memory 14. Further, the one or more processors 16
are configured to add a link memory address to the free entry manager 22 after the link memory
address is no longer in use. For example, once a data element is read from main memory 14, the
one or more processors 16 are configured to deallocate or invalidate a location of link memory
20 associated with the data element, which includes writing the address of the location in the free
entry manager 22.

[0031] According to the embodiment illustrated in Figure 1, the distributed linked list includes
a context manager 24. The context manager 24 is configured to maintain metadata including
pointers that interconnect one or more data elements stored in the main memory 14. For an
embodiment, the context manager 24 maintains metadata including a head address, or the
address in the link memory 20 for the first entry in a list, and a tail address, the address in the
link memory 20 for the last entry in the list stored in the link memory 20. For an embodiment,
the memory system implements a distributed-linked list as described herein provides the benefit
of delinking the main memory from the link memory. The delinking provides the use of more
efficient memory technologies and architecture including, but not limited to, using single port
memory and using memory with lower clock rates. This provides the use of lower cost memory
technologies and lower power consumption while meeting the needs of a high-speed, high-
capacity network device.

[0032] Figure 2 illustrates a block diagram of a portion of a memory system according to an
embodiment. The portion of a memory system includes a main memory 200, a link memory
204, and a context manager 210. The main memory 200 includes one or more locations 202a-d
for storing data elements. A data element includes, but is not limited to, a data packet or a cell of
a data packet. As is known in the art, a data packet may be split up into a plurality of cells.
These locations 202a-d are accessed using addresses associated with each of the one or more
locations 202a-d using techniques including those known in the art. The link memory 204 also

includes locations 206a-d for storing metadata to generate one or more lists. For example, the

WO 2017/011671 PCT/US2016/042303

processor 16 is configured to write metadata into the locations 206a-d that interconnect the
locations 202a-d to form entries in the list. The list maintains an order of the sequence that the
data elements stored in the main memory 200 should be read from the main memory 200. The
order may be based on one or more of first-in, first out (FIFO), priority, or other criteria
including those known in the art for network devices.

[0033] For an embodiment, the link memory 204 is configured to store metadata, such as one
or more pointers, used to interconnect entries to form one or more lists of the data elements
stored in main memory. For an embodiment, metadata such as a pointer is stored in the link
memory 204 specifies the address of a location within the link memory 204 of the next entry in
the list. In addition to a pointer, a location 206a-d in the link memory 204 includes, according to
an embodiment, other metadata including, but not limited to, a sequence identifier (e.g., a data-
element sequence identifier) and an address of a location in the main memory for a data element.
A sequence identifier denotes the order or sequence that data elements and snapshots are to be
read from memory. For an embodiment, a data-element sequence identifier is based on the order
the data elements were received at a network device. Moreover, the link memory 204 is
configured to store the address in a location 206a-d of the link memory 204 for the location
202a-d in main memory 200 which a data element was stored.

[0034] The embodiment illustrated in Figure 2 also includes a context manager 210. The
context manager 210 is configured to maintain metadata for one or more lists, where each list
includes one or more data elements. Specifically, the context manager 210 includes a head entry
212 and a tail entry 214 configured to store metadata for the head or first entry of a list and the
tail or the last entry of the list. The metadata for the head and the tail, for an embodiment, is
stored in one or more registers. However, one skilled in the art would understand that other
memory technologies could be used including those described herein. The metadata stored in the
head entry 212 includes the address of the location 202a-d in the main memory 200 where the
first entry of a list is stored. The metadata stored in the head entry 212 also includes a pointer to
the location 206a-d of the next entry in a list. For example, the pointer is an address to a location
206a-d in the link memory 204 that is the next entry in the list. In addition, the head entry 212
may include a data-element sequence identifier of the data element. The tail entry 214 includes
one or more of the type of metadata described above, but for the last entry in a list. In the case,
that a list includes only one data element, the head entry 212 and the tail entry 214 would include

the same metadata. For an embodiment, one or more processors are used to update, overwrite,

WO 2017/011671 PCT/US2016/042303

and invalidate the metadata in the head entry 212 and the tail entry 214 as data elements are
stored in or read from the main memory 200.

[0035] Figure 3 illustrates a block diagram of a portion of a memory system including multiple
banks of distributed-linked list memory according to an embodiment. The portion of a memory
system includes a main memory 300, a link memory 303, and a context manager 314. The main
memory 300 may be implemented using techniques described herein. The link memory is
formed from an array of memory elements, such as memory banks 304a-d. For an embodiment,
each memory bank 304a-d is a single port memory that provides a single access per clock cycle.
As illustrated in Figure 3, the embodiment includes a first memory bank 304a including locations
306a-d, a second memory bank 304b including locations 308a-d, a third memory bank 304c
including locations 310a-d, and a fourth memory bank 304d including locations 312a-d.

[0036] As described above, the link memory is configured to store metadata including pointers
to reference to the address of the location of data elements stored in the main memory. Asa
pointer to a location of main memory can be used, a direct relationship between the location of
the main memory and the location of the link memory is not required. This provides the
flexibility to use a separate and different architecture for the main memory and the link memory,
such as the link memory having multiple banks of memory for every bank of main memory. The
use of multiple banks of link memory provides the ability to use memory having a single access
ports and/or memory with lower clock speeds. As described above, the link memory is
configured to store pointers used to interconnect entries to form a list of data elements stored in
main memory using techniques including those described above. Further, the use of multiple
banks of link memory provides an architecture that can scale to support higher capacity systems.
For example, a memory system using multiple banks of link memory can be designed to handle
at least K+1 memory accesses per clock cycle, where K is the number of data elements per clock
cycle that can be stored in a main memory and 1 is the number of reads from main memory.
Other examples of a memory system are configured to support more than 1 read from main
memory per clock cycle using the techniques including those described herein.

[0037] Asillustrated in Figure 3, the embodiment also includes a context manager 314.
Context manager 314 includes multiple tail and head entries. Specifically, the context manager
314 includes a first head entry 316 and a first tail entry 318 for the first bank of link memory
304a, a second head entry 320 and a second tail entry 322 for the second bank of link memory
304b, a third head entry 324 and a second tail entry 326 for the third bank of link memory 304c,
and a fourth head entry 328 and a fourth tail entry 330 for the fourth bank of link memory 304d.

WO 2017/011671 PCT/US2016/042303

Each set of tail and head entries maintains metadata for the first and last entry of a list,
respectively, for each bank. That is, the first head entry 316 maintains metadata for the first
entry stored in the first bank 304a and the first tail entry 318 maintains metadata for the last entry
stored in the first bank 304a. The second head entry 320 maintains metadata for the first entry
stored in the second bank 304b and the second tail entry 322 maintains metadata for the last
entry of a list stored in the second bank 304b. The third head entry 324 maintains metadata for
the first entry of a list stored in the third bank 304c and the third tail entry 326 maintains
metadata for the last entry of the list stored in the third bank 304c. The fourth head entry 328
maintains metadata for the first entry of a list stored in the fourth bank 304d and the fourth tail
entry 330 maintains metadata for the last entry of the list stored in the fourth bank 304d. Each
head and tail entry is configured to store metadata including metadata described herein.
Together the lists of each bank 304a-d are used to generate a complete list that interconnects the
data elements stored in the main memory 300.

[0038] For an embodiment, a processor is configured to assign a data-element sequence
identifier to each data element received on a port. The data-element sequence identifier is
assigned to each data element to indicate the order in which each data element was received.
The data-element sequence identifier is stored as metadata in the location of the link memory as
described herein. In addition, the data-element sequence identifier is stored in a head entry and
tail entry if the corresponding data element stored in the main memory is the head of a listin a
bank or a tail of a list in a bank.

[0039] For an embodiment including multiple banks of link memory, such as the embodiment
illustrated in Figure 3, the memory system is configured to determine the next element in a list
by comparing data-element sequence identifiers assigned to data packets. A memory system
configured to determine the next element includes a processor configured to read the head entries
316, 320, 324, and 328 stored for each bank 304a-d in the link memory 303. The processor
compares the data-element sequence identifiers stored in all of the head entries 316, 320, 324,
and 328 to determine which of the data elements is next in a list. For an embodiment, the lowest
data-element sequence identifier is a numerical value assigned such that the lowest numerical
value can be used to determine the next data element in a list; however, the system is not limited
to using the lowest data-element sequence identifier as an indicator. A data-element sequence
identifier, according to an embodiment, is assigned to a data element upon arrival to the network
device. Once the processor determines the next data element in the list, the processor is

configured to retrieve the address of the main memory location 302a-d where the data element is

WO 2017/011671 PCT/US2016/042303

stored. For an embodiment, a processor is configured to retrieve the address from the head entry
316, 320, 324, and 328 having the lowest data-element sequence identifier. A processor is
further configured to use the retrieved address to read the data element out of main memory.
[0040] For an embodiment, a processor is configured to update the metadata of a data element
read out of the main memory that is stored in the head entry. The processor is configured to use
the address of the location in the link memory 303 that stores the next entry in the list for the
bank 304a-d. A processor is also configured to update a tail entry 318, 322, 326, and 330 for a
bank 304a-d when a new entry is added to the list for the bank 304a-d in response to a new data
element being stored in the main memory 300.

[0041] As described above, a free entry manager is used to generate an available bank set for
storing entries in the link memory. For an embodiment including multiple banks of memory, for
example the embodiment illustrated in Figure 3, the free entry manager is configured to generate
an available bank set that includes one or more locations in each of the banks such that an access
conflict will not occur. An access conflict would occur if a read or write access to a bank is
required beyond the capabilities of a bank of the link memory. For example, a link memory
including banks having a single access port would be limited to either one read or write per clock
cycle. Thus, in an embodiment using banks with a single access port, a free entry manager
would be configured to exclude locations of a bank scheduled for a read or write in a clock cycle
from the available bank set.

[0042] According to an embodiment, A free entry manager is configured to generate an
available bank set based on one or more of the following criteria including, but not limited to: 1)
a location is not used by another data element; 2) a bank containing an entry to a list is not being
accessed by a read operation; and 3) a bank containing a link entry is not accessed for linking
operations. Linking operations include, but are not limited to write access to update metadata,
read access to update a head or tail entry, write access to include metadata for a new entry to a
list, access to invalidate an entry in a list, or other access to location in link memory. A free
entry manager may also be configured to determine read/write access availability for banks
including more than a single access port. A free entry manager is configured to determine the
availability of a bank based on techniques known in the art including, but not limited to, a
request bit/flag set, a request bus line activated, a scheduling protocol, or other indicator that
access to a bank is scheduled or otherwise reserved.

[0043] Figure 4 illustrates a flow diagram for a method for implementing a distributed-linked

list according to an embodiment. The method includes storing one or more data elements 402.

WO 2017/011671 PCT/US2016/042303

For example, storing one or more data elements in a main memory using techniques including
those described herein. Further, the method includes maintaining one or more pointers to
interconnect the one or more data elements 404. For example, maintaining one or more pointers
to interconnect the one or more data elements includes storing and updating pointers and other
metadata using techniques as described herein. The method also includes allocating one or more
entries in a link memory 406. For example, allocating one or more entries in a link memory
includes selecting a location from an available bank set of locations and setting a pointer to
reference the address of that location using techniques including those describe herein.
Moreover, the method includes maintaining metadata to form a list of the one or more data
elements 408. For example, maintaining metadata to form a list of the one or more data elements
includes storing and updating head and tail entries using techniques including those described
herein.

[0044] Figure 5 illustrates a flow diagram for a method for storing a data element using a
distributed-linked list according to an embodiment. The method includes receiving a data
element 502. The method also includes storing a data element 504. Storing a data element
includes using techniques including those describe herein. Further, the method includes
generating an available bank set of locations in memory for storing pointers 506. Generating an
available bank set of locations for storing pointers includes using techniques including those
described herein. The method also includes allocating a free location in memory 508. For
example, allocating a free location in memory includes selecting a location from an available
bank set of locations and setting a pointer to reference the address of that location. In addition,
the method includes writing metadata in the free location in memory 510. Writing metadata in
the free location in memory includes using techniques including those described herein. The
method also includes updating a tail entry and optionally a head entry 512. For example, the
method updates a head entry when a new list is created (enqueuing/linking) or the first entry in a
list is read from memory (dequeuing/unlinking). The method updates a tail entry, for example,
when a new entry is added to the list (enqueuing/linking), or the last entry is read from memory
(dequeuing/unlinking). Updating a head entry and/or a tail entry includes using techniques
including those described herein.

[0045] Figure 6 illustrates a flow diagram for reading a data element using a distributed-linked
list according to an embodiment. The method includes receiving a read request for a data
element 602. Further, the method includes determining the next data element of a list 604. For

example, determining the next data element of a list includes using one or more head entries

10

WO 2017/011671 PCT/US2016/042303

using techniques including those described herein. The method also includes retrieving the
location for the next data element of the list 606. For example, retrieving the location for the
next data element of the list includes reading the address of the location in memory of the next
element from the head entry using techniques including those described herein. Moreover, the
method includes reading the next data element from the memory based on the retrieved location
608. Reading the next data element from the memory based on the retrieved location includes
using techniques such as those described herein. The method also includes updating a head
entry and optionally updating a tail entry 610. For example, the method updates a head entry
when a new list is created or the first entry in a list is read from memory. The method updates a
tail entry, for example, when a new entry is added to the list, or the last entry is read from
memory. Updating a head entry and/or a tail entry includes using techniques including those
described herein.

[0046] Figure 7 illustrates a block diagram of a network device including a memory system
implementing a hierarchical distributed-linked list according to an embodiment. The memory
system is configured to interconnect data elements by generating lists using techniques including
those described herein. Further, the memory system implementing a hierarchical distributed-
linked list is configured to generate one or more snapshots based on list metadata to maintain the
lists of data elements. Maintaining list metadata includes generating, storing, and updating list
metadata using techniques including those described herein. The memory system is configured
to maintain linked-list metadata to interconnect a plurality of snapshots. For an embodiment,
maintaining linked-list metadata includes generating, storing, and updating link-list metadata
using techniques including those described herein.

[0047] For an embodiment, the memory system implementing a hierarchical distributed-linked
list is configured to store multiple data packets split up into a plurality of cells, where each cell is
then transmitted and received at a network device 710. The memory system is configured to
receive cells of a data packet and to interconnect the cells of a data packet as the cells are
received using a child distributed-linked list 726. The child distributed-linked list 726 is
configured to generate a list of cells of a data packet using techniques describe herein with regard
to implementing a distributed-linked list and generating lists of data elements. The list of cells
generated by the child distributed-linked list 726 maintains the order of the cells of the data
packet in the order the cells are received at a network device using a child link memory 730, a
child free entry manager 722, and a child context manager 734. The child link memory 730 is

configured to maintain metadata to interconnect data elements stored in the main memory 714

11

WO 2017/011671 PCT/US2016/042303

using techniques described herein with regard to implementing a link memory. The child free
entry manager 732 is configured to generate a child available bank set of locations in the child
link memory 730 using techniques including those described herein with regard to implementing
a free entry manager. The child context manager 734 is configured to maintain list metadata
including pointers that interconnect one or more data elements stored in the main memory 714
using techniques including those described herein with regard to implementing a free entry
manager.

[0048] Further, a memory system implementing a hierarchical distributed-linked list, according
to an embodiment, includes a parent distributed-linked list 718. The parent distributed-linked list
718 is configured to generate a snapshot based on a list of data elements generated by a child
distributed-linked list 726. The parent distributed-linked list 718 is also configured to maintain
linked-list metadata to interconnect multiple snapshots. By interconnecting snapshots, a parent
distributed-linked list 718, for example, is configured to maintain the order of data packets in the
order that the data packet is received at a network device, such as based on the order of the last
cell received for a data packet. In addition, a parent distributed-linked list 718 is configured to
form a queue of data packets by interconnecting snapshots. A queue may be formed based on
destination address, network policies, traffic shaping, and/or other techniques including those
known in the art for ordering data packets. Using a child distributed-linked list 726 to generate a
list of cells for every data packet received and a parent distributed-liked list 718 to maintain
linked-list metadata to generate snapshots to interconnect one or more lists of cells of a data
packet, the memory system implementing a hierarchical distributed-linked list is configured to
maintain the cells for each data packet received and to maintain the order of each data packet
received such that each data packet can be retrieved from the memory system for egress based on
the order received and/or the order the packet is placed in a queue.

[0049] Specifically, Figure 7 illustrates a network device 710 including a plurality of
input/output ports 712. Data packets are received and transmitted through the ports 712 using
techniques including those known in the art. The ports 712 are coupled with a main memory
714. A main memory may include memory technologies including, but not limited to, dynamic
random-access memory (“DRAM?”), static random-access memory (“SRAM”), flash memory,
and other technologies used to store data including those known in the art.

[0050] The main memory 714 is coupled with one or more processors 716. A processor 716
includes, but is not limited to, a central processing unit (“CPU”), a controller, an application-

specific integrated circuit (“ASIC”), field-programmable gate arrays (“FPGA”), or other types of

12

WO 2017/011671 PCT/US2016/042303

control units. The one or more processors 716 are configured to manage access to the main
memory 714 using techniques including those known in the art. For example, the one or more
processors 716 are configured to determine a location to store data received on one or more ports
712. The one or more processors 716 are also configured to read data stored in the main memory
714 when the data is to be transmitted on one or more ports 712. Further, the one or more
processors 716 are configured to overwrite, update, and invalidate memory locations using
techniques including those known in the art.

[0051] Further, the embodiment illustrated in Figure 7 includes a parent distributed-linked list
718. The parent distributed-linked list 718 is coupled with one or more processors 716. Further,
the parent distributed-linked list 718 includes a parent link memory 720, a parent free entry
manager 722, a parent context manager 724, and parent snapshot memory 725. The parent link
memory 720 is configured to maintain linked-list metadata to interconnect a plurality of
snapshots generated based on list metadata used to interconnect data elements stored in the main
memory 714. For example, the parent link memory 720 is configured to store linked-list
metadata including one or more pointers that reference at least one snapshot stored in a parent
snapshot memory 725. The parent link memory 720 may include one or more of the memory
technologies as described herein. The parent link memory 720 includes a plurality of locations
for storing information. Each of the plurality of locations having an address used to access data
stored in the location. For an embodiment, parent link memory 720 includes a plurality of
memory banks with each of the memory banks including a plurality of locations and each
location having an address used to access data. A parent link memory 720 may also include a
single memory bank.

[0052] A parent distributed-linked list 718, according the embodiment illustrated in Figure 7,
also includes a parent free entry manager 722. The free entry manager 722 is configured to
generate a parent available bank set of locations in the parent link memory 720. The parent
available bank set is a group of one or more addresses in the parent link memory 720 that are not
in use or allocated for use. For an embodiment, the one or more addresses reside in different
memory banks of the parent link memory 720. For example, the parent free entry manager 722
is configured to maintain a list of addresses for the locations in parent link memory 720 that are
not used for storing or allocated for storing linked-list metadata for interconnecting snapshots
currently stored in a parent snapshot memory 725 as a parent available bank set. For an
embodiment, a parent free entry manager 722 uses one or more memory technologies including

those known in the art for storing a parent available bank set. For an embodiment, the one or

13

WO 2017/011671 PCT/US2016/042303

more processors 716 are configured to remove a parent link memory address from the parent free
entry manager 722 when a link memory address is used or allocated to store linked-list metadata
to interconnect snapshots stored in a parent context manager 724. Further, the one or more
processors 716 are configured to add a parent link memory address to the parent free entry
manager 722 after the link memory address is no longer in use or allocated. For example, once a
data element or data packet associated with a snapshot is read from main memory 714, the one or
more processors 716 are configured to deallocate or invalidate a location of parent link memory
720 associated with the snapshot, which includes writing the address of the location in the parent
free entry manager 722.

[0053] According to the embodiment illustrated in Figure 7, the parent distributed-linked list
718 includes a parent context manager 724. The parent context manager 724 is configured to
maintain snapshot list metadata including one or more pointers that interconnect one or more
snapshots stored in the parent snapshot memory 725 to generate a list of snapshots. Maintaining
snapshot list metadata includes generating, storing, and updating snapshot list metadata using
techniques including those described herein. The parent snapshot memory 725 includes one or
more of the memory technologies as described herein. The list metadata associated with a list of
data elements maintained in the parent snapshot memory 725 is a snapshot. For an embodiment,
the parent context manager 724 maintains snapshot list metadata including a head address — the
address in the parent snapshot memory 725 for the first entry in a list of snapshots — and a tail
address — the address in the parent snapshot memory 725 for the last entry in the list of
snapshots. Embodiments of a memory system that implement a hierarchical distributed-linked
list as described herein provide the benefit of delinking the main memory from the link memory.
The delinking provides the use of more efficient memory technologies and architecture
including, but not limited to, using single port memory and using memory with lower clock rates.
This provides the use of lower cost memory technologies and lower power consumption while
meeting the needs of a high-speed, high-capacity network device.

[0054] For an embodiment, the memory system is configured to store list metadata maintained
in the child context manager 734 as a snapshot in the parent snapshot memory 725 in response to
receiving the last data element of a list. The memory system may also be configured to store list
metadata maintained in the child context manager 734 as a snapshot in the parent snapshot
memory 725 in response to receiving a data element of a second list. For example, if the child
context manager 734 is currently storing list metadata for a first list of data elements, such as the

data elements associated with a first data packet, and a data element is received at the network

14

WO 2017/011671 PCT/US2016/042303

device for a second list of data elements, such as data elements associated with a second data
packet, the memory system is configured to store the list metadata for the first list as a first
snapshot in the parent snapshot memory 725. The memory system is configured to retrieve the
first snapshot from the parent snapshot memory 725 and store the list metadata from child
context manager 734 to update the list metadata for the first list.

[0055] The memory system is also configured to retrieve a snapshot from the parent snapshot
memory 725 and store the list metadata of the snapshot in the child context manager 734 in
response to a request to transmit a data element or data packet. The memory system is
configured to update the linked-list metadata in the parent context manager 724 and the parent
link memory 720 and deallocate a location in the parent snapshot memory in response to a
request to transmit a data element or data packet, for example, upon storing the list metadata of
the snapshot in the child context manager 734. For an embodiment, the
processor(s)/controller(s) 716 are configured to retrieve a snapshot, store linked-list metadata,
update linked-list metadata and other metadata using techniques including those known in the
art.

[0056] Figure 8 illustrates a block diagram of a portion of a parent distributed-linked list
including multiple banks of parent link memory according to an embodiment. The portion of the
parent distributed-linked list includes a parent snapshot memory 800, a parent link memory 803,
and a parent context manager 814. The parent snapshot memory 800 may be implemented using
techniques described herein. The parent link memory 803 is formed from an array of memory
elements, such as memory banks 804a-d. For an embodiment, each memory bank 804a-d is a
single port memory that provides a single access per clock cycle. As illustrated in Figure 8, the
embodiment includes a first memory bank 804a including locations 806a-d, a second memory
bank 804b including locations 808a-d, a third memory bank 804c including locations 810a-d,
and a fourth memory bank 804d including locations 812a-d.

[0057] Asillustrated in Figure 8, the embodiment also includes a parent context manager 814.
Parent context manager 814 includes multiple tail and head entries. Specifically, the parent
context manager 814 includes a first head entry 816 and a first tail entry 818 for the first bank of
parent link memory 804a, a second head entry 820 and a second tail entry 822 for the second
bank of parent link memory 804b, a third head entry 824 and a third tail entry 826 for the third
bank of parent link memory 804c, and a fourth head entry 828 and a fourth tail entry 830 for the
fourth bank of parent link memory 804d. Each set of tail and head entries maintains snapshot list

metadata for the first and last entry of a list of snapshots, respectively, for each bank of parent

15

WO 2017/011671 PCT/US2016/042303

link memory 803. That is, the first head entry 816 maintains snapshot list metadata for the first
entry stored in the first bank 804a and the first tail entry 818 maintains snapshot list metadata for
the last entry stored in the first bank 804a. The second head entry 820 maintains snapshot list
metadata for the first entry stored in the second bank 804b and the second tail entry 822
maintains snapshot list metadata for the last entry stored in the first bank 804b. The third head
entry 824 maintains snapshot list metadata for the first entry of a list of snapshots stored in the
third bank 804c¢ and the third tail entry 826 maintains metadata for the last entry of the list of
snapshots stored in the third bank 804c. The fourth head entry 828 maintains snapshot list
metadata for the first entry of a list of snapshots stored in the fourth bank 804d and the fourth tail
entry 830 maintains snapshot list metadata for the last entry of the list of snapshots stored in the
fourth bank 804d. Each head and tail entry is configured to store snapshot list metadata
including metadata described herein. Together the lists of snapshots of each bank 804a-d are
used to generate a complete snapshot list that interconnects one or more of the snapshots stored
in the parent snapshot memory 800.

[0058] For an embodiment, a processor is configured to assign a snapshot sequence identifier
to each snapshot. The snapshot sequence identifier indicates the order in which each snapshot
was received at the network device. For example, a snapshot sequence identifier is assigned
upon arrival of the last data-element received for the snapshot. The snapshot sequence identifier
is stored as linked-list metadata in the location of the parent link memory 803 as described
herein. In addition, the snapshot sequence identifier is stored in a head entry and optionally tail
entry if the corresponding snapshot stored in the parent snapshot memory 800 is the head of a list
of snapshots in a bank or a tail of a list of snapshots in a bank.

[0059] For an embodiment including multiple banks of parent link memory 803, such as the
embodiment illustrated in Figure 8, the memory system is configured to determine the next
snapshot in a list of snapshots by comparing snapshot sequence identifiers assigned to snapshots.
A memory system configured to determine the next snapshot includes a processor configured to
read the head entries 816, 820, 824, and 828 stored for each bank 804a-d in the parent context
manager 814. The processor compares the snapshot sequence identifiers stored in all of the head
entries 816, 820, 824, and 828 to determine which of the snapshots is next in a list of snapshots.
For an embodiment, the lowest snapshot sequence identifier is a numerical value assigned such
that the lowest numerical value can be used to determine the next data element in a list; however,
the system is not limited to using the lowest snapshot sequence identifier as an indicator. A

snapshot sequence identifier, according to an embodiment, is assigned to a data element upon

16

WO 2017/011671 PCT/US2016/042303

arrival to the network device. Once the processor determines the next snapshot in the list, the
processor is configured to retrieve the address of the parent snapshot memory 802a-d where the
snapshot is stored. For an embodiment, a processor is configured to retrieve the address from the
head entry 816, 820, 824, and 828 having the lowest snapshot sequence identifier. A processor is
further configured to use the retrieved address to read the data element out of the parent snapshot
memory 800 and store the snapshot in a child context manager using techniques including those
described herein.

[0060] For an embodiment, a processor is configured to update the linked-list metadata of a
snapshot read out of the parent snapshot memory 800 that is stored in the head entry of the parent
context manager 814. The processor is configured to use the address of the location in the parent
link memory 803 that stores the next entry in the list of snapshots for the bank 804a-d. A
processor is also configured to update a tail entry 818, 822, 826, and 830 for a bank 804a-d when
a new snapshot is added to the list of snapshots for the bank 804a-d, for example, in response to
a new snapshot being stored in the parent context memory 800.

[0061] As described above, a parent free entry manager is used to generate a parent available
bank set for storing entries in the parent link memory 803. For an embodiment including
multiple banks of memory, for example the embodiment illustrated in Figure 8 , the parent free
entry manager is configured to generate a parent available bank set that includes one or more
locations in each of the banks such that an access conflict will not occur. An access conflict
would occur if a read or write access to a bank is required beyond the capabilities of a bank of
the parent link memory. For example, a parent link memory including banks having a single
access port would be limited to either one read or write per clock cycle. Thus, in an embodiment
using banks with a single access port, a parent free entry manager would be configured to
exclude locations of a bank scheduled for a read or write in a clock cycle from the parent
available bank set.

[0062] According to an embodiment, a parent free entry manager is configured to generate a
parent available bank set based on one or more of the following criteria including, but not limited
to: 1) a location is not used by another data element; 2) a bank containing an entry to a list is not
being accessed by a read operation; and 3) a bank containing a link entry is not accessed for
linking operations. Linking operations include, but are not limited to write access to update
linked-list metadata, read access to update a head or tail entry, write access to include linked-list
metadata for a new entry to a list, access to invalidate an entry in a list of snapshots, or other

access to location in parent link memory. A parent free entry manager may also be configured to

17

WO 2017/011671 PCT/US2016/042303

determine read/write access availability for banks including more than a single access port. A
parent free entry manager is configured to determine the availability of a bank based on
techniques known in the art including, but not limited to, a request bit/flag set, a request bus line
activated, a scheduling protocol, or other indicator that access to a bank is scheduled or
otherwise reserved.

[0063] Figure 9 illustrates a flow diagram for a method for implementing a hierarchical
distributed-linked list according to an embodiment. The method includes storing one or more
data elements (902) using techniques including those described herein. The method also
includes maintaining list metadata to interconnect the one or more data elements (904) using
techniques including those described herein. Further, the method includes generating at least a
first snapshot based on the list metadata (906) using techniques including those described herein.
The method includes allocating one or more locations in a memory (908) using techniques
including those describe herein. In addition, the method optionally includes maintaining linked-
list metadata to interconnect the first snapshot with at least a second snapshot (910) using
techniques including those described herein. Moreover, the method optionally includes
determining a next data element of said data-element list based on said list metadata (912) using
techniques including those described herein. The method optionally includes determining a
location in a memory of the second snapshot based on said linked-list metadata 914.

[0064] For an embodiment, a memory system as described herein is configured to generate a
data element list using one or more skip lists. Data element lists using one or more skip list can
overcome read rate limitations inherent in traversing hardware based data element lists. An
example read rate limitation is a result of latency between a read request for a data element and
the availability of the data element. Further, the efficiency gained by using data element lists
including one or more skip lists provides the benefit of using lower cost memory having fewer
access ports, for example a single access port memory. For example, banked memory structures
of a distributed linked list may include skip lists. These skip lists may be used to enable higher
read rates to overcome read rate limitations associated with the hardware.

[0065] For an embodiment, a data element list is generated to include K number of skip lists.
Each of the first K nodes in the data element list is the head of the K skip list. Each skip list
contains a subsequence of data elements that form the complete data element list. For an
embodiment, a system is configured to generate a distance between two subsequent elements in a
skip list to overcome a read response latency based on the hardware design of a memory system.

As an example read rate limitation, consider a memory system having a read rate limitation of

18

WO 2017/011671 PCT/US2016/042303

three clock cycles, the memory system is configured to generate a data element list such that the
second element of the first skip list in the data element list is after the third element in the data
element list. Generating a data element list based on a skip list structure, such as those described
herein, enables fast access to the first K elements in a data element list to overcome the latency
between read accesses as a result of traversing hardware lists.

[0066] Figure 10 illustrates a block diagram of an exemplary data element list using skip lists
generated by a system according to an embodiment. The data element list 1000, according to
this example, includes three skip lists. Each skip list includes a head node. In Figure 10, the
head nodes are labeled 1001, 1002, and 1003. Each head node in the data list includes a link,
such as a pointer as describe herein, to the next element in the skip list. As described herein, the
location of the next element in a skip list within the data element list is based in part on the
number of skip lists in a data element list. The number of skip lists in a data element list may
also be based on a desired read rate of data elements for the system. In the example illustrated in
Figure 10, the first skip list having the head node 1001 is linked to the second node of the first
skip list 1004. The second skip list having the head node 1002, the second node in the data
element list, is linked to the second node of the second skip list 1005. The third skip list having a
head node 1003 is linked to the second node of the third skip list 1006.

[0067] Figure 11 illustrates a block diagram of an exemplary method for read accesses using
skip lists according to an embodiment to access the data elements of the data element list. The
example described below assumes that the latency between a read request for a data element and
the availability of the data element is three clock cycles. However, one skilled in the art would
understand that different arrangements of skip lists could be used to address any amount of
latency. The system initiates the read event to read a first node of a data element list (1102). For
example, the system initiates, at a time zero, a read event to read the head node of the first skip
list 1001 from the data element list 1000, as illustrated in Figure 10, by issuing the read request
for the head node of the first skip list 1001, the first node in the data element list and the head
node of the first skip list in the data element list, using techniques including those described
herein. As described above a memory system, for example, determines the first node in the data
element list by reading head entries using techniques describe herein. The metadata associated
with the first data element in the data element list is read (1104), which according to an
embodiment, includes the address in a main memory where the first data element is stored and a
pointer for the next node in the skip list. For the example illustrated in Figure 10, the next node

in the skip list after the head node of the first skip list 1001 is determined to be the second node

19

WO 2017/011671 PCT/US2016/042303

of the first skip list 1004 based on the metadata read. The system now having the pointer for the
next node in the skip list can now operate in parallel to access the metadata associated with the
next data element in the first skip list based on the read metadata (1106). For example, referring
to Figure 10, the metadata associated with the head node of the first skip list 1001 is used to
access the metadata associated with the second node of the first skip list 1004 so that the
metadata for the second node of the first skip list 1004 is available at a time 3.

[0068] The method includes initiating a read event for a second node of a data element list
(1108). For example, with reference to Figure 10, at a time 1, the system initiates a read event to
read the head node of the second skip list 1002 from the data element list 1000 by issuing the
read request for the head node of the second skip list 1002, which is the second node in the data
element list 1000, using techniques including those described herein. As described above a
system, for example, determines the second node in the data element list by reading head entries
using techniques describe herein. Once the second node is determined, the metadata associated
with the second data element of the data element list is read (1110), which according to an
embodiment, includes the address in a main memory where the second data element is stored and
a pointer for the next node in the skip list. Continuing with the example as illustrated in Figure
10, the system determines the second node of the second skip list 1005 by reading the metadata
associated with the head node of the second skip list 1002. Further, the method includes
accessing the metadata associated with the next data element in a second skip list based on the
read metadata (1112). For example, using the example in Figure 10, the system uses the pointer
that references the second node of the second skip list 1005 and can now operate in parallel to
access the metadata associated with the second node of the second skip list 1005 so that the
metadata will be available at a time 4.

[0069] Continuing with the example with reference to Figure 10, at a time 2, the system
initiates the read event to read the third node, the head node of the third skip list 1003, from the
data element list 1000 by issuing the read request for the head node of the third skip list 1003,
using techniques including those described herein. For example, as described above a memory
system determines the third node in the data element list by reading head entries using
techniques describe herein. Once the third node is determined to be the head node of the third
skip list 1003, the metadata associated with the head node of the third skip list 1003 is read,
which according to an embodiment, includes the address in a main memory where the third data
element is stored and a pointer for the next node in the skip list. As illustrated in Figure 10, the

next node in the skip list is the second node of the third skip list 1006. The system now having

20

WO 2017/011671 PCT/US2016/042303

the pointer for the next node in the skip list can now operate in parallel to access the metadata
associated with data element so that the metadata associated with data element will be available
at time 5.

[0070] Atatime 3, the metadata associated with the second node of the first skip list 1004 in
the data element list 1000 is available based on the initiation of the read access at time O by
reading the pointer. At time 4, the metadata associated with the second node of the second skip
list 1005 in the data element list 1000 is available based on the initiation of the read access at
time 1 by reading the pointer. The method would continue the process described above until the
last node in the data element list is read. Figure 12 illustrates a block diagram of a link memory
and a context manager configured to store the data element list illustrated in Figure 10 according
to an embodiment.

[0071] For an embodiment, a memory system configured to generate a data element list that
includes one or more skip lists includes a memory system including multiple banks of
distributed-linked list memory, including those described herein. The link memory is configured
to contain data element link nodes associated with the data element list using techniques
including those described herein. For an embodiment, each bank of the link memory is
associated with a skip list of the data element list. Each entry in the link memory, according to
an embodiment, includes metadata including a pointer providing the address of the location of
data elements stored in the main memory, a next pointer to reference to the address in the link
memory which includes the metadata for the next element in the skip list, and a sequence
identifier. For another embodiment, each entry in the link memory is associated with a buffer
memory entry assignment. Such an embodiment provides storage for metadata such as a next
pointer for the next element in the skip list. This provides the benefit of requiring a smaller
memory allocation for each entry of a link memory while maintaining the metadata to implement
a data element list including skip lists. For an embodiment, an entry in the link memory includes
other associated data including metadata as described herein. Moreover, the memory system
includes a context manager configured to maintain multiple tail and head entries using
techniques including those described herein. For an embodiment, the context manager includes a
head entry and tail entry for each bank associated with a skip list.

[0072] Figure 13 illustrates a flow diagram for a method for implementing the method of
generating a data element list including one or more skip lists and the associated metadata
according to an embodiment. Figures 14a-f illustrate block diagrams representing the state of a

portion of a parent distributed-linked list including multiple banks during the method as

21

WO 2017/011671 PCT/US2016/042303

illustrated in Figure 13. For an embodiment, a method to generate a data element list including
one or more skip lists includes receiving a first data element 1302 as illustrated in Figure 13.
The method includes generating a first metadata including a next pointer to reference to the
address in the link memory for the metadata of the next element in the skip list 1304 and writing
the first metadata in a memory system to form the first node of the data element list 1306 using
techniques including those described herein. For example, as illustrated in Figure 14a, the
generated first metadata 1216a is written to a first head entry 816.

[0073] Asillustrated in Figure 13, the method includes generating second metadata including a
next pointer to reference to the address in the link memory for the metadata of the next element
in the second skip list 1308 and writing the second metadata in a memory system for a second
data element 1310 that arrives at a network device using techniques including those described
herein to form a second node of the data element list, which is the second node of the data
element list and the head node of a second skip list. The second metadata, for example, is
generated in response to receiving a second data element. For example, as illustrated in Figure
14b, the generated second metadata 1220a is written to a second head entry 824.

[0074] The method also includes generating third metadata including a next pointer to
reference to the address in the link memory for the metadata of the next element in the third skip
list 1312 and writing the third metadata in a memory system for a third data element 1314 that
arrives at a network device using techniques including those described herein to form a third
node of the data element list, which is the head node of the third skip list. For example, as
illustrated in Figure 14c, the generated third metadata 1224a is written to a third head entry 820.
Further, the method includes generating fourth metadata including a next pointer to reference to
the address in the link memory for the metadata of the next element in the first skip list 1316 and
writing the metadata in a memory system for a fourth data element 1318 that arrives at a network
device using techniques including those described herein to form a fourth node of the data
element list, which is the second node of the first skip list. For example, as illustrated in Figure
14d, the generated fourth metadata 1216b is written to a location 806b in a first memory bank.
[0075] Moreover, the method includes generating fifth metadata including a next pointer to
reference to the address in the link memory for the metadata of the next element in the second
skip list 1320 and writing the metadata in a memory system for a fifth data element 1322 that
arrives at a network device using techniques including those described herein to form a fifth
node of the data element list, which is the second node of the second skip list. For example, as

illustrated in Figure 14e, the generated fifth metadata 1220b is written to a location 808c in a

22

WO 2017/011671 PCT/US2016/042303

second memory bank. The method includes generating sixth metadata including a next pointer
to reference to the address in the link memory for the metadata of the next element in the third
skip list 1324 and writing the metadata in a memory system for a sixth data element 1326 that
arrives at a network device using techniques including those described herein to form a sixth
node of the data element list, which is the second node of the third skip list. For example, as
illustrated in Figure 14f, the generated sixth metadata 1224b is written to a location 810b in a
third memory bank.

[0076] For a memory system configured to generate a data element list including one or more
skip lists, each skip list in a data element list behaves as a single data element list. For example,
the order of reads is determined by comparing the sequence identifiers that is stored in head
entries of each skip list using techniques including those described herein. Such a memory
system is configured to ensure access conflicts are not encountered by implementing access
constraints. Further, a memory system is configured to restrict writes to memory banks of a link
memory during clock cycles that a read access is scheduled. Moreover, to minimize access
conflicts, a memory system is configured to have a number of memory banks in a link memory
based on a desired read rate.

[0077] A method for implementing a write for a memory system configured to generate a data
element list including one or more skip lists includes generating an available bank list in a link
memory. Figure 15 illustrates a flow diagram for generating an available bank list in a link
memory according to an embodiment. Generating an available bank list, potentially for each
writer/source, may include one or more of removing all full banks from the list 1522; removing
the one or more banks required for read access in the same clock cycle as the write access 1524;
removing one or more banks that were selected by the same writer in the last y clock cycles
1526, where v is determined based on a desired read rate of the memory system; and removing
the one or more banks selected for write access in the same clock cycle as other writers 1528.
Further, the method includes selecting the least filled bank from the generated available bank list
1530.

[0078] For an embodiment, a memory system is configured to implement a hierarchical
distributed-linked list based on data element lists that include one or more snapshot skip lists.
The memory system is configured to interconnect data elements by generating data element lists
using techniques including those described herein. Further, the memory system is configured to
implement a hierarchical distributed-linked list by generating one or more snapshots based on list

metadata to maintain the lists of data elements that include one or more skip lists using

23

WO 2017/011671 PCT/US2016/042303

techniques including those described herein. Further, the memory system is configured to
maintain linked-list metadata to interconnect a plurality of snapshots using techniques including
those described herein.

[0079] By interconnecting snapshots, the memory system, for example, is configured to
maintain the order of data packets in the order that the data packet is received at a network
device, such as based on the order of the last cell received for a data packet. In addition, the
memory system is configured to form a queue of data packets by interconnecting snapshots
based on a data element list that includes one or more skip lists. A queue may be formed based
on a destination address, network policies, traffic shaping, and/or other techniques including
those known in the art for ordering data packets. Using techniques described herein, the memory
system is configured to maintain linked-list metadata to generate snapshots to interconnect one
or more lists of cells of a data packet. Further, the memory system implementing a hierarchical
distributed-linked list is configured to maintain the cells for each data packet received and to
maintain the order of each data packet received such that each data packet can be retrieved from
the memory system for egress based on the order received and/or the order the packet is placed
in a queue. Moreover, the interconnected snapshots generated from data element lists including
skip lists can be used to provide high read rates at a given operating frequency.

[0080] For an embodiment, the memory system is configured to generate interconnected
snapshots (data element set list) that include one or more snapshot skip lists such that each
snapshot (date element set) that are included in the interconnected snapshots has an associated
snapshot list node in the interconnected snapshots. The snapshot list node includes snapshot list
metadata for the snapshot it is associated with. The snapshot list metadata, for an embodiment,
includes a head address — the address in a memory for the first data element in the snapshot; a
tail address — the address in the memory for the last data element in the snapshot; and a next
snapshot pointer. The next snapshot pointer, includes a link or a pointer as described herein, to
the next snapshot in the snapshot skip list. As described herein, the location of the next element
in a snapshot skip list within the interconnected snapshots depends on the number of snapshot
skip lists in the interconnected snapshots. The number of snapshot skip lists in an interconnected
snapshots list may be based on a desired read rate of data elements for the memory system.
[0081] Figure 16 illustrates an interconnected snapshot list (data element set list — 1423)
generated by a memory system according to an embodiment. The interconnected snapshot list
includes four snapshot list nodes (1418, 1419, 1420, 1421) that are associated with 4 variable
length snapshots (1401, 1406, 1410, 1414). The four snapshot list nodes (1418, 1419, 1420,

24

WO 2017/011671 PCT/US2016/042303

1421) include three snapshot skip lists, two of which include a single node. The snapshot skip
list includes the first snapshot list node 1418 and the fourth snapshot list node 1421. The first
snapshot list node includes snapshot list metadata for snapshot 1401, such as snapshot list
metadata described herein, and a next snapshot pointer to the subsequent snapshot list node in the
snapshot skip list, 1421. The second snapshot list node 1419, such as snapshot list metadata
described herein. The third snapshot list node 1420, such as snapshot list metadata described
herein.

[0082] For an embodiment, a memory system configured to implement a hierarchical
distributed-linked list from data element lists that include one or more snapshot skip lists
includes a child distributed-linked list, a parent distributed-linked list, and a main memory. The
child distributed-linked list includes multiple memory banks and is configured to generate a list
of data elements to generate a data element list including one or more skip lists using techniques
describe herein. The parent distributed-linked list is configured to generate a snapshot based on
a data element list generated by a child distributed-linked list using techniques described herein.
The parent distributed-linked list is also configured to maintain linked-list metadata to
interconnect multiple snapshots to generate an interconnected snapshot list including one or more
snapshot skip lists using techniques described herein. By interconnecting snapshots, a parent
distributed-linked list, for example, is configured to maintain the order of data elements in the
order that the data element is received at a network device, such as based on the order of the last
cell received for a data packet. In addition, a parent distributed-linked list is configured to form
a queue of data packets by interconnecting snapshots.

[0083] For an embodiment, the memory system is configured to store data elements with a data
element list when it arrives. The data element is stored in a receive context across skip lists and
utilizes access constraints including those describe herein with regard to implementing skip lists.
Upon arrival of the last data element in the data element set, the snapshot is captured and stored
in a data element set list using techniques including those described herein. Figure 17 illustrates
a flow diagram for a method of generating an interconnected snapshot list including one or more
data element set lists including one or more skip lists and the associated snapshot list metadata
according to an embodiment. Figures 18a-f illustrate block diagrams representing the state of a
portion of a parent distributed-linked list including multiple banks during the method as
illustrated in Figure 17. As illustrated in Figure 17, the method includes capturing the first
snapshot 1602 and storing it in a data element set list. For an embodiment, storing a first

snapshot in a data element set list includes generating first snapshot list metadata including a

25

WO 2017/011671 PCT/US2016/042303

next snapshot pointer to reference to the address in memory for the metadata of the next snapshot
in the first snapshot skip list and writing the metadata in a memory system to form the first
snapshot list node of the data element set list using techniques for storing and writing metadata
including those described herein. For example, as illustrated in Figure 18a the generated first
snapshot list metadata 1502a is written to a second head entry 824.

[0084] At Figure 17, the method includes generating second snapshot list metadata including a
next snapshot pointer to reference to the address in the memory for the metadata of the next
snapshot in a snapshot skip list 1606, if any, and writing the second snapshot list metadata in a
memory system for a second snapshot 1608 using techniques including those described herein to
form a second snapshot list node of the data element list, which is the second node of the data
element set list. For example, as illustrated in Figure 18b, the generated second snapshot list
metadata 1504a is written to a first head entry 816. The method also includes generating third
snapshot list metadata including a next snapshot pointer to reference to the address in the
memory for the snapshot list metadata of the next snapshot in a snapshot skip list 1610, if any,
and writing the third snapshot list metadata in a memory system for a third snapshot 1612 using
techniques including those described herein to form a third snapshot list node of the data element
set list. For example, as illustrated in Figure 18c, the generated third snapshot list metadata
1506a is written to a fourth head entry 828. Further, as illustrated in Figure 17, the method
includes generating fourth snapshot list metadata including a next snapshot pointer to reference
to the address in the memory for the fourth snapshot list metadata of the next snapshot in a
snapshot skip list 1614, if any, and writing the fourth snapshot list metadata in a memory system
for a fourth snapshot 1616 using techniques including those described herein to form a fourth
snapshot list node of the data element set list, which is the second node of the first snapshot skip
list. For example, as illustrated in Figure 18d, the generated fourth metadata 1504b is written to
a location 810a in a third memory bank.

[0085] A method for implementing a write for a memory system configured to generate a
hierarchical distributed-linked list from data element lists that include one or more snapshot skip
lists includes generating an available bank list in a link memory, including child-link memory
and parent link memory. Figure 19 illustrates a flow diagram for generating an available bank
list in a link memory, including child-link memory and parent link memory according to an
embodiment. Generating an available bank list may include one or more of removing all full
banks from the list 1702; removing a bank required for read access in the same cycle as the write

access 1704; removing one or more banks that were selected by the same writer in the last y

26

WO 2017/011671 PCT/US2016/042303

clock cycles 1706, where v is determined based on a desired read rate of the memory system; and
removing one or more banks selected for write access in the same clock cycle as the other writers
1708. Further, the method includes selecting the least filled bank from the generated available
bank list 1710.

[0086] Figure 20 illustrates a block diagram of an exemplary method for read accesses using
one or more snapshot skip lists according to an embodiment. A method for implementing a read
for a memory system configured to generate a hierarchical distributed-linked list from data
element lists that include one or more snapshot skip lists includes determining a next snapshot
skip list using snapshot sequence identifiers at the head entry of each skip list (1802). The
method also includes selecting the snapshot skip list with the lowest sequence identifier at the
head entry (1804). The method also includes reading a head entry of the selected snapshot skip
list (1806) and evaluating the snapshot in that entry (1808). The snapshot provides the set of
data element list skip lists. The method also includes determining the next data element list skip
list using data element sequence identifiers at the head entry of each skip list (1810). The
method also includes selecting the skip list with the lowest sequence identifier at the heat entry.
For an embodiment, a round robin mechanism is used instead of sequence identifiers to
determine the next data element or snapshot in a data element list and/or a skip list.

[0087] Embodiments described herein may be implemented using one or more of a
semiconductor chip, ASIC, FPGA, and using discrete components. Moreover, elements of the
memory system may be implemented as one or more cores on a semiconductor chip, such as a
system on a chip (“SoC”). Embodiments described herein may also be implemented on a
machine, such as a network device and one or more computer systems, including a program
storage device. The program storage device includes, but is not limited to, one or more of any of
mass storage that is remotely located from the machine, random access memory, non-volatile
memory, magnetic or optical storage disks, and other computer readable storage mediums.
[0088] In the foregoing specification, specific exemplary embodiments of the invention have
been described. It will, however, be evident that various modifications and changes may be
made thereto. The specification and drawings are, accordingly, to be regarded in an illustrative

rather than a restrictive sense.

27

WO 2017/011671 PCT/US2016/042303

What is claimed is:
1. A memory system for a network device comprising:

a main memory configured to store one or more data elements;

link memory including a plurality of memory banks, each memory bank of said plurality
of memory banks configured to maintain one or more pointers to interconnect said one or more
memory locations in said main memory to form at least one list including a first skip list of one
or more skip lists; and

a context manager configured to maintain first metadata for a first head node of said first
skip list, said metadata for said first head node includes a link to second metadata for a second

node of said first skip list.

2. The memory system of claim 1, wherein said first metadata is snapshot list metadata.

3. The memory system of claim 1, wherein said first metadata includes a sequence
identifier.

4. The memory system of claim 2, wherein said at least one list is a snapshot list.

5. The memory system of claim 2, wherein each memory bank of said plurality of memory

banks includes a single access port.

6. The memory system of claim 1 further comprising a free-entry manager configured to
generate an available bank set including one or more locations in said link memory that are not

currently used to maintain said one or more pointers.

7. The memory system of claim 6, wherein said free-entry manager is configured to
generate said available bank set including said one or more locations that are not currently used
to maintain said one or more pointers such that a write operation to said link memory does not

conflict with a read operation.

8. The memory system of claim 6, wherein said free-entry manager is configured to
generate said available bank set by removing one or more banks based on the number of clock

cycles since a last write access.

0. The memory system of claim 1, wherein each memory bank of said plurality of memory
banks is designated to maintain said one or more pointers for a different one of said one or more
skip lists.

28

WO 2017/011671 PCT/US2016/042303

10. The memory system of claim 2, wherein said snapshot list metadata is used to form at

least one snapshot skip list.

11. A method for implementing a memory system in a network device comprising:

storing one or more data elements;

maintaining one or more pointers to interconnect said one or more memory locations in
said main memory to form at least one list including at least a first skip list;

allocating one or more locations in at least one memory bank of said plurality of memory
banks; and

maintaining first metadata for a first head node of said first skip list, said metadata for

said first head node includes a link to second metadata for a second node of said first skip list.

12. The method of claim 11 further comprising generating a sequence identifier to include in

said first metadata for said first head node of said first skip list.

13. The method of claim 11, wherein said at least one list is a snapshot list and said first skip

list is a snapshot skip list.
14. The method of claim 13 further comprising determining a second snapshot skip list.

15. The method of claim 14, wherein determining a second snapshot skip list is based on

using one or more snapshot sequence identifiers.

16. The method of claim 15 further comprising determining a next data element in said

second snapshot skip list.

17. The method of claim 11 further comprising generating an available bank set including
one or more locations in said plurality of memory banks that are not currently being used to store

metadata.

18. A memory system for a network device comprising:

a main memory configured to store one or more data elements;

a parent distributed-linked list configured to store linked-list metadata; and

a child distributed-linked list configured to maintain list metadata to interconnect said one
or more data elements stored in said main memory to generate at least a first snapshot, said
linked-list metadata references said first snapshot and said first snapshot including a data element
list including one or more skip lists.

29

WO 2017/011671 PCT/US2016/042303

19. The memory system of claim 18 further configured to generate at least a second snapshot
based on said list metadata and configured to generate a first snapshot skip list including said

first snapshot and a second snapshot skip list including a second snapshot.

20. The memory system of claim 18, wherein said parent distributed-linked list includes a
plurality of head entries, each head entry of said plurality of head entries is configured to store a

snapshot sequence identifier for a head node for the one or more skip lists.

21. The memory system of claim 19, wherein said first snapshot is a first head node of said
first snapshot skip list and said second snapshot is a second head node of said second snapshot

skip list.

22, The memory system of claim 21, wherein said second head entry is configured to store

second snapshot list metadata for a second node in said second snapshot skip list.

23. The memory system of claim 18 further comprising a free-entry manager configured to
generate an available bank set including one or more locations in said parent distributed-linked
list that are not currently storing said linked-list metadata such that a write operation to said

parent distributed-linked list does not conflict with a read operation.

24, A memory system for a network device comprising:

a means for storing one or more data elements;

a means for maintaining one or more pointers to interconnect said one or more memory
locations in said means for storing one or more data elements to form at least one list including at
least a first skip list; and

a means for maintaining first metadata for a first head node of said first skip list, said
metadata for said first head node includes a link to second metadata for a second node of said

first skip list.

30

WO 2017/011671 PCT/US2016/042303

E
E
E
E
Distributed-Linked List !
; Main Memory 5
! 20 |
Nl e \ Link Memory |
e |
o E
N E
1 E
D 2 o 22 f
Processor(s) ™, FreeEntry E
E Controller(s) E Manager E
i E
! 3 E
E
g 16 24\ Context |
Manager i

i
; f
Lo e

1/28

WO 2017/011671 PCT/US2016/042303

200 204
202a 208a
202b 208h
202¢ 206¢
202d 206d
210
fwf
2127
214

Figure 2

2/28

WO 2017/011671

300

302a

302b

302¢

302d

PCT/US2016/042303

= mmr wmm e e nm mmr wm m mn wmm s = <m s W mm R < s = <w s W =m R w<m = <w W<

304d!

306a 308a
3060 308b
306c 308¢c
306d 308d
i§4c
310a 312a
310b 312b
310c 312¢c
310d 312d
314
315~ 320w
318 322

Figure 3

3/28

WO 2017/011671

Store One or More Dats
Elements

l

Maintain One or More Pointers
{o interconnect The One or
More Dala Elements

|

Allocate One or More
Locations in A Link Memory

.

402

404

™ 406

Maintain Metadata to Form a
List of The One or More Data
Eiements

. 408

Figure 4

4/28

PCT/US2016/042303

WO 2017/011671

Receive a Data Element

i

Store a Data Element

I

Generate an Available Bank
Set of Locations in Memory for
Storing Pointers

.

Allocate A Free Location in
Memory

|

Write Metadsta in The Free
Location of Memory

.

Update a Tail Entry and
Optionally a Head Entry

Figure 5

5/28

PCT/US2016/042303

504

. 506

. 508

e 512

WO 2017/011671

Receive A Read Request for A
Data Element

L

Determine The Next Data
Element of A List Stored in
Memaory

L

Retrieve Location For The
Next Data klement of The List

|

Read The Next Data Element
From Memory Based on The
Retrieved Location

l

Update a Head Entry and
Optionally a Tail Eniry

Figure ©

6/28

602

604

™. 606

™. 608

L 810

PCT/US2016/042303

WO 2017/011671

PCT/US2016/042303

Main Memory Linked List
E
720\\ Parent Link
E Memory
@‘L—P
.
.
722 Parent
- Processor(sy N Free Entry
E Controfier(s) Manager
E
| ¢
E 716 724 “_ Parent Context
E Manager
E
E
E 726
E f 705 Parent
| f) \ Snapshot
E Child Distributed- Memory
g Linked List
b 1730 Child Link
é * Memory
E
E
E
| |74~ Child Free a
| Entry Manager
E
E
E
L 1734 | Child Context
g N Manager
E
E
Figure 7

7/28

Parent Distributed-

710

WO 2017/011671

800

802a

802b

802Z¢

802d

803

PCT/US2016/042303

804d

e

5 804a

| 4

i

! 806a 808a

i

§

i 806b 808D

§

5 B0BC B08c

E

i

i

i

; 8064 808d

E

i

§

i

i

; 804c

E

; 810a 812a

i

E 810b 812b

!

f

E 810¢c 812¢c

|

§

E

! 810d 8124

E

b o i e o cmm o o mm mm wm i mm omm e mm nm mms <mm s mxn mm mms wmm o mms wmm m mn . mms

814

st6~_] oo~]
sto~{ oo~]
soa~{ | so8~ |
so6~[| sso~|]

Figure 8

8/28

WO 2017/011671

Store One or More Data
Elemenis

Maintain List Metadata to
interconnect The One or More
Data Elements to Generate a

Data-Element List

1

Generate at Least A First
Sriapshot Based on The List
Metadata

k-4

Allocate One or More
Locations in A Parent Link
Memory

802

904

TN 908

™. 908

io Interconnect The First §
Snapshot with at Least A §
Second Snapshot to Generate |
a Snapshot List §
{Optional) i

R KRR R GO KR R KK RKRKR KRR XD X

Determine a Next Data |
Element of The Data-Element |
List {

{Optional) {

| Determine Locationina |
| Memory of The Second §
| Snapshot Based on The List- §
3 Link Metadala i
| {Optional) {

Figure 9

9/28

210

™o g12

Tl 14

PCT/US2016/042303

PCT/US2016/042303

WO 2017/011671

0} @inbi4

//// ,//fi/;iiffiiéMMMMiiiiﬁi!fﬁﬂX\\ a\\\&\\\»

¢

0001

10/28
SUBSTITUTE SHEET (RULE 26)

WO 2017/011671

initiate Read Event For A First
Node of A Data Element List

l

Read Metladata Associated
with The First Node including
A First Next Pointer

x

Access The Metadaia
Associated with Next Data
Element in A First Skip List

Based On The Read Metadata

l

Initiate Read Event For A
Second Node of A Data
Element List

L

Read Metadata Associated
with The Second Node
Including A Second Next
Pointer

L

Access The Metadata
Associated with The Next Data
Element in A Second Skip List
Based On The Read Metadata

Figure 11

11/28

PCT/US2016/042303

1102

1104

1106

w.1108

Tl 1110

1112

WO 2017/011671

PCT/US2016/042303
i? ““““““““““““““““““““““““““““““““““ |
|
804a
803 | i34b
3 |
a 8063 808a
| 806D |
o 12160 808b
a 808c |
g 806c 12200
i |
i |
{ |
: :
! 8064 808d |
i i
i |
{ |
: :
! 804c 804d
| |
i |
i |
g 810a 812a 2
1810 |
| 1224b 812b
i |
§ 810c 812c !
3 2
i |
i |
| |
§ 810d 812d |
s i
.
814
816 -~ 12163 820 e 12743
818~ FDD e
82 e 12208 8B
e L p——

Figure 12

12/28

WO 2017/011671

Receive A First Data Element

i

Generate First Matadata

+
Write The First Metadata in A
Memory System For The First
Data Element

&

1302

4304

1308

Generate Second Metadata

L

Write The Second Metadata in
A Memory System For A
Second Data Element

1310

L

Generate Third Metadata

L

Write The Third Metadata in
A Memory System For A Third
Data Elament

™. 1314

l

Generate Fourth Meladata

1316

‘

Write The Fourth Metadata in
A Memory System For A
Fourth Data Element

1318

l

Generate Fifth Metadatla

1320

Figure 13

13/28

PCT/US2016/042303

Wirite The Fifth Metadata in
A Memory System For A Fifth
Datg Element

1322

L

Generate Sixth Metadata

Tl 1324

!

Wiite The Sixth Metadata in
A Memory System For A Sixth
Data Clement

1326

WO 2017/011671

PCT/US2016/042303
e
a0 j34a 804b
\
| 8062 808a
|
| 806D 808D
|
E 806¢c RO8C
|
|
|
| 8064 808d
|
|
|
|
| 804c 8044
|
{ 810a 812a
|
| 810b 8120
|
|
| 810c 812¢c
|
|
|
|
E 810d 8124
e
§;4
BAG == 12168 B2 () wee
818 e B3 cmuer
824N 828N ..
826 R

Figure 14a

14/28

WO 2017/011671 PCT/US2016/042303

S
|
804 ,
803 E f}a %{340
1§
E 8062 808a
|
| 8060 808b
}
|
E 808c 808c
E
|
| 806d 808d
|
}
j
! 804c 804d
E
| 810a 812a
]
E 810d 812b
}
§ 810c 812¢
|
]
|
E
| 8104 812d
j
e
814
816N 12168 82C’N ...
818 = 8D emer
82 G 12208 828
gy o P—

Figure 14b

15/28

WO 2017/011671 PCT/US2016/042303

| 804a 804b)|
803 | [} (j |
A |
|
| 806a 8083 |
! i
’ i
| 8060 808D |
’ i
; 806¢ 808c |
| |
! i
‘ i
; |
i
| 8064 8084 |
| |
! i
‘ i
; |
| 804c 804d|
| {J |
; i
{
| 810a 812a |
’ |
; 810d 8120 |
|
! i
| 810c 812¢c |
3 |
’ |
‘ !
; i
| 810d 812d |
|
| |
e |
814
816 —~ 1218a] gyp~ | 1224a)
818 > R e
824N 12208 SZSM
826~ B30~
Figure 14c¢

16/28

WO 2017/011671 PCT/US2016/042303
o e !
i 804a
803 | p §34b
It E
; 806a 808g
| 8060 |
' 12180 808b ;
]
806¢ 808c E
i
|
8064 808d |
|
|
|
|
804c 804d
E
8103 812a :
]
810d 8120 |
|
]
810¢ 812¢ |
|
|
]
E
810d 812d i
f;4
816G e 12163 82 e 12245
818 oo §3D e
B2 G 12208 B2 B
B2G e 830w~r

Figure 14d

17/28

WO 2017/011671 PCT/US2016/042303
fi—r——m e :
H
04
503 | jj 3 804b
i }
[§
! 806a 8082 §
| 806D |
B 12160 8085 i
a 808¢ |
§ 08¢ 1220b§
i §
{ }
i §
| b
i }
! 8064 808d :
§ §
i }
i §
? E
% 804c 804l
3 {J
5 §
H
| 810a 812a i
i }
§ 810b 812b E
i §
: 810c 812¢c !
? E
| §
| }
i {
3 510d 8124 i
i §
| }
.
i;4
B1G oo 12162 B[e 12242
818 o RO D
82 4ene 1220a 828~
806~ B30

Figure 14e

18/28

WO 2017/011671

PCT/US2016/042303

19/28

804
803, | / @ i34bg
’ |
; 806a 808a
| 8060 |
| \k 12160 808D |
i 808c i
|]
| BOGC 1220b
{]
| i
|]
| |
| 806d 8084 |
| |
| i
|]
| |
| B04c 804d
a o
| 810a 812a |
18105 i
| 12240 812b i
i]
| 810c 812¢ g
| |
|]
i i
|]
; 810d 812d E
{]
e e
814
816 ~~— 12163 820 12248
818 =~ R s
824 12208 828~
826G B30
Figure 14f

WO 2017/011671

Remove All Full Banks From
The List

L

Remove One or More Banks
Required for A Read Access in
A Same Clock Cycle As A
Write Access

1524

L

Remove One or More Banks
Selected by The Same Witer
in The Last y Clock Cycles

L1526

L

Remove One or More Banks
Selected for Write Access in A
Same Clock Cycle as Other
Writers

1528

(.

L

Select the Least Filled Bank
From The Generated Available
Bank List

1530

Figure 15

20/28

PCT/US2016/042303

PCT/US2016/042303

WO 2017/011671

91 ainbi o e :

msgiggggsssssssigg3353353383838383BB.BBBB;;_BR.BB.BB

8
Livl ™ TR BT 0ZFL 1251

§
§
&

}
!
vl eovi ¥OrL G0FL m
!

- @0
% it
qgonca grenn
AU SR S
P
¥
&5
X
3
<5
.

| —— 4000 1000t OO0 OO0 OOCO OOOD OO00 GOOO OO0 GODON OOOD(- G000 4000 000t 000k OO0 OO0 TODO OO0 0000 600D 0000 500 G000+ 5000 3000

21/28
SUBSTITUTE SHEET (RULE 26)

WO 2017/011671

PCT/US2016/042303

Capturing A First Snapshot

1602

i

Store The First Snapshot

i

1604

Generate Second Snapshot
List Metadata

L1806

Write The Second Snapshot
List Metadata in A Memory
System For A Second
Snapshot

*

Generate Third Snapshot List
Metadata

Tl 1610

i

Write The Third Snapshot List
Metadata in A Memory System
For A Third Snapshot

L1612

!

Generate Fourth Snapshot List
Metadata

1614

+

Write The Third Snapshot List
Metadata in A Memory System
For A Third Snapshot

Figure 17

22/28

WO 2017/011671 PCT/US2016/042303

i..._n..._......._,......_n..._......._,......_n..._......._,......_n..._......._,......_E

i 804a 804b)]

803 | (j |

A |

i

| 806a 8082 |

! i

| j

| 806b 808b |

’ a

; 806¢c 808¢c i

| |

| j

| i

; i

i

| 8064 808d |

| |

| j

| i

; i

| 8040 8044

| ?

; i

i

| 810a 812a i

! a

| 810b 812b |

! i

’ i

i 810c 812¢ i

| |

| a

! i

! i

| 810d 812d |

| |

e e e e a

?4
81 6N 820N ..

818 8D e
828~
826~ 830~

Figure 18a

23/28

WO 2017/011671 PCT/US2016/042303
1""""“""”""'"“""”“"““m“mm““““m“mm““““"’“m"}
| 804a 804b

803 | fj |
Al |
i
| 806 8084 !
! 1
’ i
| 806b 808b |
‘ i
; 806¢ 808C !
! 3
’ i
! |
; j
i
| 806d 808d i
3 |
’ i
! |
; j
| 804c 804d|
i
s g
i
| 810a 812a |
‘ i
| 810d 812b |
‘ i
! 1
| 810c 812¢ |
3 |
! i
! |
‘ i
| 810d 812d |
| |
e e i
§;4
816 woee 19043 RO} wee
818~ 8D e
824l L 15023 | 828~
B2 830~ |

Figure 18b

24/28

WO 2017/011671

803

806a

806b

8U6C

806d

804c

810a

810d

810¢

PCT/US2016/042303
804b!
|
808a
808b
808c
808d
804d

812a

812b

812¢

818 e R D s

ey 1502a 808 oo

826w 830
Figure 18¢

25/28

WO 2017/011671 PCT/US2016/042303

s i

i 804a 804b

803 | (} |

A |

| 8062 808a |

| |

| |

| 806D 808b |

{ |

; 806¢ 808¢ E

i |

| |

| |

; :

| 806d B08d ;

| |

| |

| |

; :

| 804c 804d

| 810z |

i \ |

| 1504b 812a |

! |

; 810d 812b E

| |

; 810c 812¢ |

| |

| |

| |

{ |

| 810d 812d |

| |

L !

814
896 e 15042 890} e
818 e RDD omrene
824 15028 828~
B2G~ 830

Figure 18d

26/28

WO 2017/011671

Remove All Full Banks From
The List

1702

L

Remove One or More Banks
Required for A Read Access in
A Same Clock Cycle As A
Write Access

1704

L

Remove One or More Banks
Selected by The Same Witer
in The Last y Clock Cycles

TN 1706

L

Remove One or More Banks
Selected for Write Access in A
Same Clock Cycle as Other
Writers

1708

L

Select the Least Filled Bank
From The Generated Available
Bank List

1710

Figure 19

27/28

PCT/US2016/042303

WO 2017/011671

Determine A Next Snapshot
Skip List

1802

Select The Snapshot Skip List

1804

.

Read A Head Entry of The
Selected Snapshot Skip List

. 1806

L

Evaluate The Snapshot in The
Head Entry

1808

L

Determine The Next Data
Element List Skip List

1810

Figure 20

28/28

PCT/US2016/042303

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/042303

A. CLASSIFICATION OF SUBJECT MATTER

CPC - GO6F 3/06; GO6F 12/02; G11B 20/10 (2016.08)

IPC(8) - GO6F 3/06; GOSF 9/45; GO6F 12/02; G11B 20/10 (2016.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC - GO6F 3/06; GO6F 9/45; GO6F 12/02; G118 20/10
CPC - GO6F 3/06; GO6F 12/02; G11B 20/10

Minimum documentation searched (classification system followed by classification symbols)

USPC - 711/118; 711/171; 717/155 (keyword delimited)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Orbit, Google Patents, Google Scholar, Google

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms used: main memory, skip list, pointers, connect, head, node

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2013/0215886 A1 (JUNIPER NETWORKS, INC.) 22 August 2013 (22.08.2013) entire 1-24
document

Y US 6,117,185 A (SCHMIDT) 12 September 2000 (12.09.2000) entire document 1-24
Y US 2006/0206536 A1 (SAWDON et al) 14 September 2006 (14.09.20086) entire document 2-5, 10, 12, 15, 16, 20-22
Y US 2013/0036274 A1 (CAVIUM INC et al) 07 February 2013 (07.02.2013) entire document 5
Y US 2003/0235189 A1 (MATHEWS et al) 25 December 2003 (25.12.2003) entire document 6-8, 17,23
Y US 2013/0151467 A1 (KRISHNAN et al) 13 June 2013 (13.06.2013) entire document 7,23
Y US 7,321,951 B2 (WONG et al) 22 January 2008 (22.01.2008) entire document 8
Y US 2014/0351535 A1 (NETAPP, INC.) 27 November 2014 (27.11.2014) entire document 10, 13-16
Y US 2012/0203739 A1 (SOUNDARARAJAN et al) 09 August 2012 (09.08.2012) entire document |18-23
Y US 2009/0006804 A1 (LUBBERS et al) 01 January 2009 (01.01.2009) entire document 19, 21, 22

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apﬁlication but cited to understand
the principle or theory underlying the invention

“X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

12 September 2016

Date of mailing of the international search report

07 0CT 2016

Name and mailing address of the 1SA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: §71-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - wo-search-report

