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tification and/or quantification of one or more carbohydrates. The method
comprises the steps of contacting an objector a sample with a luminescent
conjugated oligothiophene (LCO) and detecting at least one detection signal
of the luminescent conjugated oligothiophene. The presence of and/or the
identity of and/or the quantity of one or more carbohydrates that is or are
present on said object or in said sample is determined based on said detected
detection signal from the LCO. The invention encompasses methods for car-
bohydrate detection by use of oligothiopene derivatives. The methods are
quick, easy and direct and can be performed in real time as well as in situ.
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CARBOHYDRATE DETECTION

Field of the invention
The present invention relates to the use of luminescent conjugated
oligothiophenes (LCOs) for detection of carbohydrates and monitoring of

carbohydrate formation or carbohydrate conversion.

Background of the invention

Carbohydrates are often polymeric and are named, grouped and
classed according to the identity of the composed monosaccharide, the
number of monomeric units, and the carbon position of the covalent bonds
linking each monosaccharide.

Currently a wide range of methods for detection, identification and
quantification of carbohydrates are known and applied across all industries.
However, few of these methods have sufficient resolution to identify the
precise molecule. This is due to the inherent nature of the chemical structure
of polysaccharides, which are large macromolecules composed of a small
group of identical subunits. As a result of this repetitive nature, carbohydrates
do not commonly present unique epitopes or binding surfaces for easy
detection with probes. The lack of unique epitopes and difficulty of detection
IS in contrast to proteins, which have several levels of structural
conformations and unique qualities in addition to the primary amino acid
sequence. In contrast to proteins, antibody based detection systems are
rarely effective when used for carbohydrates.

Identification of carbohydrates is commonly performed by indirect
means and is biased towards soluble carbohydrates. For example, the
carbohydrate identity may be uncovered by an initial monomerization step,
followed by an identification step in which each monomer and the percentage
of each monomer present is identified. The gained monomer information is
then fed back into a determination step in which the identity of the original
carbohydrate is determined.

Other common techniques for carbohydrate analysis use a

combination of chromatography (e.g. thin layer chromatography, gas
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chromatography, high performance liquid chromatography) and detailed
chemical analysis by electrophoresis or mass spectrometry of polymers or
monomers. Often, mass spectrometry is used in combination with a prior step
of separation to purify a mixture before analysis. In addition, monomerization
of the polysaccharide chain is often a requirement for analysis of larger
carbohydrates. While highly accurate, the singular and/or sequential use of
the above methods can be slow and cumbersome, and requires a significant
amount of expertise (Zidkova J and Chmelik J, J. Mass Spectrom. (2001),
36(4):417-21).

In nature, carbohydrates are as ubiquitous as proteins. They function
both as substrates in metabolism, as structural macromolecules, and as
ligands/targets for adhesion, signaling and in many biological interactions. In
pharmaceutical industries as well as other industrial settings, carbohydrates
represent several high grossing products in the market. These products range
from drugs to foods and supplements to new polymers for ‘green’ materials. A
simple sensitive method for carbohydrate identification and quantification is
anticipated to be of great usefulness in these settings.

WO02010/044744 A1 discloses novel thiophene compounds for use in
in vivo imaging of amyloid or aggregated forms of proteins. The document
discloses randomly polymerized polythiophenes, as well as oligomeric
thiophenes of defined length, that bind to and enable detection of such
proteins. The disclosed oligothiophene compounds are for example useful for
diagnosis of Alzheimer’s disease and other diseases involving aggregated or
misfolded proteins.

Aslund, A et al (ACS Chem. Biol. (2009), 4(8):673-684) discloses
pentameric luminescent conjugated oligothiophenes for selective identification
of protein aggregates. The disclosed LCOs can be utilized as research tools
for studying protein aggregation diseases such as prionic diseases and
Alzheimer’s disease.

Klingstedt, T et al (Org. Biomol. Chem. (2011), 9:8356-8370) discloses
a library of luminescent conjugated oligothiophenes of different lengths as
well as their method of synthesis. The disclosed luminescent conjugated
oligothiophenes are useful for selective identification of protein aggregates,
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They facilitate the study of protein aggregation diseases and could also be
utilized for the development of novel diagnostic tools for such diseases.

Summary of the invention

It is a general object of the present invention to provide molecular
probes, and methods utilizing such molecular probes, that can be used for
carbohydrate detection and analysis. It is another object of the invention to
provide probes and methods which can discriminate between different
carbohydrates. Areas of analysis include quantification, purity determination
and tracking of synthesis rate and efficiency. An encompassing object to this
is to provide probes for in vitro, in vivo and in situ detection and analysis of
biologically relevant carbohydrates. Yet another object of the invention is to
provide probes and methods to follow carbohydrate synthesis, verification and
analysis of end product/substrate identity and purity analysis.

These objects are achieved by a molecular probe and a method
according to the appended claims.

The invention relates to the use of a luminescent conjugated
oligothiophene for detection, identification and/or quantification of one or more
carbohydrates.

In one aspect of the invention there is provided a method for detection,
identification and/or quantification of one or more carbohydrates, comprising
the steps of:

— contacting an object or a sample with a luminescent conjugated

oligothiophene;

— detecting at least one detection signal of the luminescent

conjugated oligothiophene; and

— based on said detected detection signal determining the presence,

identity and/or quantity of the carbohydrate or carbohydrates on
said object or in said sample.

The luminescent conjugated oligothiophene (LCO) may be a
pentameric to 15-meric luminescent conjugated oligothiophene. Preferably,
the luminescent conjugated oligothiophene is a pentameric or heptameric
luminescent conjugated oligothiophene. In one embodiment the luminescent
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conjugated oligothiophene comprises one or more functional side chains,
such as amino acids, amino acid derivatives, neurotransmitters,
monoaccharides, polysaccharides, nucleic acids and derivatives as well as
combinations thereof. Disclosed herein are the example heptameric
luminescent conjugated oligothiophenes h-FTAA and h-HTAA, and the
example pentameric luminescent conjugated oligothiophenes p-HTA-Lys, p-
HTEA, p-HTIm, p-HTA-Tyr, p-HTA-Arg, p-HTA-Asp and p-HTA-Glu.

In one embodiment the detection signal is an optical signal, such as a
fluorescence signal or a colorimetric signal, or an electrical signal such as
conductivity.

In an advantageous embodiment the luminescent conjugated
oligothiophene is able to discriminate between at least two different
carbohydrates, enabling identification and/or quantification of different
carbohydrates on the object or in the sample.

The luminescent conjugated oligothiophene may target at least one
insoluble carbohydrate, such as cellulose, chitin, B-glucan, alginate, amylose
and glycogen, or combinations thereof.

Alternatively or additionally, the luminescent conjugated oligothiophene
may target at least one soluble carbohydrate, such as glucose, cellulobiose,
heparin, chondroitin sulfate A, or combinations thereof.

The contacting and/or detecting steps may be carried out in vivo or in
situ.

In one aspect of the invention there is provided novel luminescent
conjugated oligothiophene compounds selected from pHTA-Tyr, pHTA-Arg,
pHTA-Asp, pHTA-Glu and pHTA-Lys. The compounds are all useful in
methods according to the present disclosure.

Brief description of the figures
The invention is now described, by way of example, with reference to

the accompanying figures, in which:
Fig. 1 shows A) exemplifying embodiments of pentameric luminescent

conjugated oligothiophenes (LCOs) of the present disclosure, and B)
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exemplifying embodiments of heptameric luminescent conjugated
oligothiophenes (LCOs) of the present disclosure.
Fig. 2 shows A) a schematic representation of a setup for biofilm
formation, occurring at the air - liquid interface, using an inclined glass cover
5 slip set up in the well of a 6 well plate; B) Congo red assay for verification of
the biofilm profiles of Salmonella enteritidis (S. enteritidis) 3934 wt and
isogenic mutants (AbscA, AcsgA and AcsgD) of known phenotypes.; C-D)
biofilm morphology of S. enteritidis 3934 wt and isogenic mutants located at
the air — liquid interface shown by C) h-FTAA staining and D) h-HTAA
10 staining. Fluorescence confocal analysis (left side) and phase contrast

analysis (right side) of the same slide are shown side by side.

Fig. 3 shows A-B) spectral study of unprocessed biofilm cultures (no
washing step performed) of S. enteritidis 3934 wt and isogenic mutants.
Excitation spectrums of A) h-HTAA and B) h-FTAA in 24 h unprocessed

15 cultures of wt ( — ), AbscA( — - ), AcsgA ( ...... ) and AcsgD ( —. ) with
emission read at 545 nm; C-D) spectral study of unprocessed (no washing
step performed) S. enteritidis 3934 wt and isogenic mutants. Emission
spectrum of h-FTAA in 24 h cultures of wt ( — ), AbscA ( — - ), AcsgA (
...... yand AcsgD ( —. ) when excited at C) 405 nm and D) 500 nm.

20 Fig. 4 shows a spectral study of excitation spectrum of pure insoluble
microcrystalline cellulose suspensions of 6.25 mg/ml ( — ), 3.125 mg/ml (
- =), 1.56 mg/ml( ..... yand 0.78 mg/ml ( —. ), when mixed with 3 pyg/ml h-

FTAA
Fig. 5 shows real time tracking of bacterial growth and biofilm formation

25 of S. enteritidis 3934 wt and isogenic mutants AbscA, AcsgA and AcsgD in a
96 well plate. A) comparison of ODggg ( ...... ) against GFP signal (—) of a wt
biofilm culture over 48 hours; B) correlation of ODgoo against GFP signal; C-F)
real-time tracking of biofilm formation of C) S. enteritidis 3934 wt, D) AcsgD,
E) AcsgA and F) AbscA, by use of h-FTAA compared to GFP. GFP (—)

30 curli( == )andcellulose ( ...... ) signals are shown. Curli is detected with

excitation wavelength 405 nm and emission wavelength of 556, and cellulose
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is detected with excitation wavelength of 500 nm and emission wavelength of
600 nm.

Fig. 6 shows a spectroflurometric screen of pentameric LCOs against
pure insoluble powder carbohydrate suspensions of B-1,3,-glucan. 3 uM of
each probe was applied to serial two fold dilutions of the insoluble
carbohydrate of which the concentration shown here are 10 mg/ml (—.), 5
mg/ml ( ...... ), 2.5 mg/ml( — — )and O mg/ml ( — ). The excitation
spectrum of the probe was analyzed for wavelengths 300 — 500 nm with
emission read at 545 nm. Combinations are as follows; 3-1,3,-glucan against
A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA,; F)
pHTIM; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 7 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure insoluble powder
carbohydrate suspensions of 3-1,3,-glucan present in the assay. 3 uM of
each probe was applied to serial two fold dilutions of the insoluble
carbohydrate. Respective probes were excited at wavelengths unique to each
probe (specified in figure), and emission was read at 545 nm. Combinations
are shown as follows; B-1,3,-glucan against A) pHTA-Tyr; B) pHTA-Asp; C)
pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-
Lys. The mean increase in signal ( — ) with [B-1,3-Glucan] and the fitted
regression line ( — — ) is shown.

Fig. 8 shows a spectroflurometric screen of pentameric LCOs against
pure insoluble microcrystalline carbohydrate suspensions of cellulose. 3 uM
of each probe was applied to serial two fold dilutions of the insoluble
carbohydrate of which the concentration shown here are 10 mg/ml (—.), 5
mg/ml ( ...... ), 2.5 mg/ml( — - )and O mg/ml ( — ). The excitation
spectrum of the probe was analyzed for wavelengths 300 — 500 nm with
emission read at 545 nm. Combinations are as follows; cellulose against A)
pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm;
G) pHTA-Glu; and H) pHTA-Lys.

Fig. 9 shows a correlation analysis of the fluorescence intensity of

pentameric LCOs against the concentration of pure insoluble microcrystalline
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carbohydrate suspensions of cellulose present in the assay. 3 uM of each
probe was applied to serial two fold dilutions of the insoluble carbohydrate.
Respective probes were excited at wavelengths unique to each probe
(specified in figure), and emission was read at 545 nm. Combinations are
shown as follows; cellulose against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg;
D) pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys. The
mean increase in signal ( — ) with [cellulose] and the fitted regression line (
— — ) is shown.

Fig. 10 shows a spectroflurometric screen of pentameric LCOs against
pure insoluble powder carbohydrate suspensions of Chitin. 3 uM of each
probe was applied to serial two fold dilutions of the insoluble carbohydrate of
which the concentration shown here are 10 mg/ml (— .), 5 mg/ml ( ...... ), 2.5
mg/ml ( —= = )and 0 mg/ml ( — ). The excitation spectrum of the probe was
analyzed for wavelengths 300 — 500 nm with emission read at 545 nm.
Combinations are as follows; Chitin against A) pHTA-Tyr; B) pHTA-Asp; C)
pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-
Lys.

Fig. 11 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure insoluble powder
carbohydrate suspensions of Chitin present in the assay. 3 uM of each probe
was applied to serial two fold dilutions of the insoluble carbohydrate.
Respective probes were excited at wavelengths unique to each probe
(specified in figure), and emission was read at 545 nm. Combinations are
shown as follows; Chitin against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D)
pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys. The mean
increase in signal ( — ) with [Chitin] and the fitted regression line ( — - ) is
shown.

Fig. 12 shows a spectroflurometric screen of pentameric LCOs against
pure insoluble powder carbohydrate suspensions of sodium alginate. 3 uM of
each probe was applied to serial two fold dilutions of the insoluble
carbohydrate of which the concentration shown here are 5 mg/ml (—.), 2.5

mg/ml ( ...... ), 1.25 mg/ml( — - )and O mg/ml ( — ). The excitation
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spectrum of the probe was analyzed for wavelengths 300 — 500 nm with
emission read at 545 nm. Combinations are as follows; sodium alginate
against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA,;
F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 13 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure insoluble powder
carbohydrate suspensions of sodium alginate present in the assay. 3 uM of
each probe was applied to serial two fold dilutions of the insoluble
carbohydrate. Respective probes were excited at wavelengths unique to each
probe (specified in figure), and emission was read at 545 nm. Combinations
are shown as follows; sodium alginate against A) pHTA-Tyr; B) pHTA-Asp; C)
pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-
Lys. The mean increase in signal ( — ) with [sodium alginate] and the fitted
regression line ( — — ) is shown.

Fig. 14 shows a spectroflurometric screen of pentameric LCOs against
pure carbohydrate solutions of Glucose. 3 uM of each probe was applied to
serial two fold dilutions of the carbohydrate of which the concentration shown
here are 5 mg/ml (—.), 2.5 mg/ml ( ...... ), 1.25 mg/ml ( = = )and 0 mg/ml (
— ). The excitation spectrum of the probe was analyzed for wavelengths 300
— 500 nm with emission read at 545 nm. Combinations are as follows;
Glucose against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E)
pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 15 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure carbohydrate solutions of
Glucose present in the assay. 3 uM of each probe was applied to serial two
fold dilutions of the carbohydrate. Respective probes were excited at
wavelengths unique to each probe (specified in figure), and emission was
read at 545 nm. Combinations are shown as follows; Glucose against A)
pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm;
G) pHTA-GIu; and H) pHTA-Lys. The mean increase in signal ( — ) with

[Glucose] and the fitted regression line ( — — ) is shown.
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Fig. 16 shows a spectroflurometric screen of pentameric LCOs against
pure carbohydrate suspensions of amylose. 3 UM of each probe was applied
to serial two fold dilutions of the carbohydrate of which the concentration
shown here are 5 mg/ml (—.), 2.5 mg/ml ( ...... ), 1.25mg/ml( ——)andO
mg/ml ( — ). The excitation spectrum of the probe was analyzed for
wavelengths 300 — 500 nm with emission read at 545 nm. Combinations are
as follows; amylose against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D)
pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 17 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure carbohydrate
suspensions of amylose present in the assay. 3 uM of each probe was
applied to serial two fold dilutions of the carbohydrate. Respective probes
were excited at wavelengths unique to each probe (specified in figure), and
emission was read at 545 nm. Combinations are shown as follows; amylose
against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA,;
F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys. The mean increase in signal ( —
) with [Amylose] and the fitted regression line ( — — ) is shown.

Fig. 18 shows a spectroflurometric screen of pentameric LCOs against
pure carbohydrate suspensions of glycogen. 3 uM of each probe was applied
to serial two fold dilutions of the carbohydrate of which the concentration
shown here are 5 mg/ml (—.), 2.5 mg/ml ( ...... ), 1.25mg/ml( == )andO
mg/ml ( — ). The excitation spectrum of the probe was analyzed for
wavelengths 300 — 500 nm with emission read at 545 nm. Combinations are
as follows; glycogen against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D)
pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 19 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure carbohydrate
suspensions of glycogen present in the assay. 3 uM of each probe was
applied to serial two fold dilutions of the carbohydrate. Respective probes
were excited at wavelengths unique to each probe (specified in figure), and
emission was read at 545 nm. Combinations are shown as follows; glycogen
against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA,;
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F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys. The mean increase in signal ( —
) with [glycogen] and the fitted regression line ( — — ) is shown.

Fig. 20 shows a spectroflurometric screen of pentameric LCOs against
pure carbohydrate solutions of cellulobiose. 3 uM of each probe was applied
to serial two fold dilutions of the carbohydrate of which the concentration
shown here are 5 mg/ml (—.), 2.5 mg/ml ( ...... ), 1.25mg/ml( ——)andO
mg/ml ( — ). The excitation spectrum of the probe was analyzed for
wavelengths 300 — 500 nm with emission read at 545 nm. Combinations are
as follows; cellulobiose against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D)
pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 21 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure carbohydrate solutions of
cellulobiose present in the assay. 3 UM of each probe was applied to serial
two fold dilutions of the carbohydrate. Respective probes were excited at
wavelengths unique to each probe (specified in figure), and emission was
read at 545 nm. Combinations are shown as follows; cellulobiose against A)
pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm;
G) pHTA-GIu; and H) pHTA-Lys. The mean increase in signal ( — ) with
[cellulobiose] and the fitted regression line ( — — ) is shown.

Fig. 22 shows a spectroflurometric screen of pentameric LCOs against
pure carbohydrate solutions of heparin. 3 uM of each probe was applied to
serial two fold dilutions of the carbohydrate of which the concentration shown
here are 5 mg/ml (—.), 2.5 mg/ml ( ...... ), 1.25 mg/ml ( = — )and 0 mg/ml (
— ). The excitation spectrum of the probe was analyzed for wavelengths 300
— 500 nm with emission read at 545 nm. Combinations are as follows; heparin
against A) pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA,;
F) pHTIm; G) pHTA-Glu; and H) pHTA-Lys.

Fig. 23 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure carbohydrate solutions of
heparin present in the assay. 3 uM of each probe was applied to serial two
fold dilutions of the carbohydrate. Respective probes were excited at

wavelengths unique to each probe (specified in figure), and emission was
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read at 545 nm. Combinations are shown as follows; heparin against A)
pHTA-Tyr; B) pHTA-Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm;
G) pHTA-GIu; and H) pHTA-Lys. The mean increase in signal ( — ) with
[heparin] and the fitted regression line ( — — ) is shown.

Fig. 24 shows a spectroflurometric screen of pentameric LCOs against
pure carbohydrate solutions of Chondroitin Sulfate A (CS(A)) 3 uM of each
probe was applied to serial two fold dilutions of the carbohydrate of which the
concentration shown here are 0.5 mg/ml (—.), 0.25 mg/ml ( ...... ), 0.125
mg/ml ( —= = )and 0 mg/ml ( — ). The excitation spectrum of the probe was
analyzed for wavelengths 300 — 500 nm with emission read at 545 nm.
Combinations are as follows; CS(A)against A) pHTA-Tyr; B) pHTA-Asp; C)
pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H) pHTA-
Lys.

Fig. 25 shows a correlation analysis of the fluorescence intensity of
pentameric LCOs against the concentration of pure carbohydrate solutions of
CS(A)present in the assay. 3 uM of each probe was applied to serial two fold
dilutions of the carbohydrate. Respective probes were excited at wavelengths
unique to each probe (specified in figure), and emission was read at 545 nm.
Combinations are shown as follows; CS(A)against A) pHTA-Tyr; B) pHTA-
Asp; C) pHTA-Arg; D) pHTA-His; E) pHTEA; F) pHTIm; G) pHTA-Glu; and H)
pHTA-Lys. The mean increase in signal ( — ) with [Chrondroitin Sulfate A]

and the fitted regression line ( — = ) is shown.

Detailed description

The present invention relates to molecular probes, so called
luminescent conjugated oligothiophenes (LCOs) for use in carbohydrate
detection, identification and analysis.

A particular LCO probe targets and binds to one or several different
carbohydrates, as exemplified by the prototype probes in this disclosure.
When the LCO is exposed to and interacts with a target carbohydrate, the
LCO molecule undergoes a unique geometric change, which is reflected by a
target specific output signal that can be detected as a detection signal. The



WO 2014/007730 PCT/SE2013/050810

10

15

20

25

30

12

output signal may for instance be detected as a spectrofluorometric signal, a
colorimetric signal, a change in electrical conductivity, or a combination of
different signals. The geometric change may for instance result in an
increased or decreased emitted fluorescence signal and/or in a shift in
excitation wavelength for peak emission (Amax). In one alternative, the
geometric change may result in a measurable change in conductivity of the
LCO or a conductive polymer coupled thereto.

Profiling of individual target specific detection signals of an LCO, which
are produced with each binding target, allows for identification and
quantification of specific carbohydrates. Many of the prototype LCOs in this
disclosure have dual or multiple sensitivity for different carbohydrates and are
able to discriminate between them by yielding detection signals that are
specific for each target carbohydrate.

Analysis of LCO detection signals in this disclosure is comprised
largely of spectrofluorometric readouts, to which the excitation wavelength for
peak emission (Amax) as well as the intensity of emitted fluorescence are of
particular interest. Included are the excitation and emission spectra of target
bound LCOs. The excitation spectrum entails the detection of the intensity of
fluorescence emitted at a specific wavelength when the LCO in a sample is
excited by lasers within a range of wavelengths. The emission spectrum
entails the detection of the intensity of emissions at different wavelengths
within a specified range, when LCOs within a sample are excited at a defined
wavelength.

Prototype LCOs in this disclosure show sensitivity to carbohydrates in
a biologically relevant detection range. This includes structural carbohydrates
(eg. B-1,3-glucan, cellulose, chitin and sodium alginate), metabolic substrates
and intermediates (a-D-glucose and cellulobiose), storage carbohydrates
(amylose and glycogen), and glycoaminoglycans (heparin and chondroitin
sulfate A).

Luminescent conjugated oligothiophenes
Conjugated oligothiophenes result from the oligomerization of

thiophenes, a sulfur heterocycle. Electrons are delocalized along their
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conjugated backbones, giving these oligomers conductive and/or optical
properties. Conjugated oligothiophenes can become conducting when
electrons are added or removed from the conjugated 1r-orbitals via doping.
Binding of LCO probe to targets is driven by electrostatic interactions. Also,
interaction of these oligomers with target molecules may cause twisting of
their backbone structure, resulting in electron distortion and dramatic shifts in
their optical properties. As such, the oligothiophenes have a wide range of
binding targets which can be individually identified through a corresponding
unique oligomer backbone related signal.

The LCOs of the present invention are composed of a core
oligothiophene to which side groups can be added to improve the core
component’s intrinsic function. The core component consists of a pentameric,
hexameric, heptameric, octameric, nonameric, decameric or 11-, 12-, 13-, 14-
or 15-meric oligothiophene, i.e of polymeric thiophenes consisting of five to
fifteen monomers of thiophene. Preferably the component consists of an odd
number of monomers as they can hold a larger number of side groups. LCOs
of even numbers also target carbohydrates and yield a detection signal but
are restricted in the numbers of side groups that may be added.

A wide variety of side groups having different properties can be bound
to the core component. For example, the side groups may have anionic,
cationic or zwitterionic functionalities. The side groups may be derived from,
for example, amino acids, amino acid derivatives, neurotransmitters,
monosaccharides, polysaccharides, nucleic acids or combinations and
derivatives thereof. The side groups provide the LCOs with molecular
properties that increase their affinity for their target compounds and that
enable the LCOs to bind to and form complexes with their target compounds.
For example, negatively or positively charged side groups enable ionic
bonding between the LCO and the target. lonic and other side group
functionalities may also or alternatively enable hydrogen bonding or other
forms of non-covalent bonding between the LCO and its target compounds.

Prototype LCOs for use with the present invention are the pentameric

(i.e. having a pentameric oligothiophene core component) and heptameric
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(i.e. having a heptameric oligothiophene core component) forms shown in Fig.
1A and 1B, respectively. Examples of pentameric forms include, pHTEA
(penta Hydrogen Thiophene Ethanol Amine), pHTIm (penta Hydrogen
Thiophene Imidazole), pHTA-Lys (penta Hydrogen Thiophene Acetic acid

5 Lysine), pHTA-Tyr (penta Hydrogen Thiophene Acetic acid Tyrosine) pHTA-
Arg (penta Hydrogen Thiophene Acetic acid Arginine), pHTA-Asp (penta
Hydrogen Thiophene Acetic acid Aspartic acid), pHTA-His (penta Hydrogen
Thiophene Acetic acid Histidine) and pHTA-Glu (penta Hydrogen Thiophene
Acetic acid Glutamic acid). Examples of heptameric forms include h-HTAA

10 (hepta Hydrogen Thiophene Acstic Acid) and hFTAA (hepta Formic

Thiophene Acetic Acid).

In one aspect the invention comprises a novel compound selected from

pHTA-Tyr, pHTA-Arg, pHTA-Asp, pHTA-Glu and pHTA-Lys.
The LCOs of the present disclosure are designed to target

15 carbohydrates while being non-cytotoxic. Each of the prototype LCO probes
possess a wide affinity for macromolecules that are related under the
category of carbohydrates. They can be related by charge, hydrophobicity ,
geometry, structure and/or hydrogen donor and acceptor properties. Different
probe-carbohydrate pairs possess a unique spectrofluorometric signature,

20 through which the pairs or, if the LCO is known, the carbohydrate can be
identified.

Some of the LCOs of the present invention target and yield a detection
signal with one specific carbohydrate, but not to other carbohydrates. Such
LCOs allow for detection and identification of a single specific carbohydrate.

25 Other LCOs of the present invention target several different carbohydrates
and yield a specific detection signal, e.g. a specific excitation/emission
spectrum for each target. In the latter case, unique spectral signatures of the
LCO for the respective carbohydrate targets allows for identification of the
bound component. Such LCOs thus allow for dual or multiple detection and

30 discrimination of several different carbohydrates, using a single LCO. Still
other LCOs target multiple carbohydrates and yield an identical or similar

detection signal for all target carbohydrates. Such LCOs allow for detection
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and determination of presence of carbohydrate, but it does not allow for
discrimination between or identification of different carbohydrates.

Selected side groups can be added to a core LCO to enhance its
sensitivity for a certain target or enhance its ability to discriminate between
different targets. Side groups as well as other modifications of the core
component can also be used to add other functionalities.

In one embodiment, the LCO is designed such that an electronic signal
is directly or indirectly evoked when the probe binds to its target
carbohydrate. The electronic signal may originate from an LCO polymer itself,
or a coupled conductive organic or inorganic material that translates the
geometric change of the LCO into an electrical signal. In said embodiment,
probe binding to a carbohydrate is translated to an electronic readout, e.g. by
an electrical detector or handheld device. Such detector or device may in
addition be arranged to alert a user of the presence of carbohydrate, e.g. as
the amount of carbohydrate reaches a defined threshold. As a specific
example, such an alert system may for instance be used to alert for presence
of biofilm, by detection of the carbohydrate components in biofilm. Much like
blood glucose detectors, such detector devices may also be used to indicate
the absence, presence or an overwhelming presence of a carbohydrate.
Applications include monitoring of blood, foods, patient health or
manufacturing pipelines, for good manufacturing practices (GMP) or for
quality assurance.

The LCOs as disclosed herein may be provided for use in a variety of
media, sensors, devices or products. For example, the LCOs of the present
disclosure may be comprised as a liquid additive. The probe can also be

printed on surfaces or can be constituted in liquid or aerosol sprays.

Procedures for synthesizing LCOs have been described in Klingstedt,
T. et al. (Org. Biomol, Chem (2011), 9:8356-8370); Aslund, A et al. (ACS
Chem. Biol. (2009), 4:673-684; Aslund, A et al. (Bioconjugate Chem. (2007),
18:1860-1868) and WO2010/044744. A variety of LCOs that may be used in
accordance with the present invention may be prepared by the person skilled

in the art, in light of the teachings therein.
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Method for detecting, identifying and/or quantifying one or more

carbohydrates

The present invention provides a method for detection, identification and/or

quantification of one or more carbohydrates, comprising the steps of:

- contacting an object or a sample with a luminescent conjugated
oligothiophene;

- detecting at least one detection signal of the luminescent conjugated
oligothiophene; and

- based on said detected detection signal determining the presence, identity
and/or quantity of the carbohydrate or carbohydrates on said object or in
said sample.

Herein, the expression “detecting, identifying and/or quantifying
carbohydrates” includes any type of activity by which the presence, identity
and/or quantity of one or more carbohydrates is analyzed. Such activities
include, but are not limited to, the identification of unknown carbohydrates
within a sample, determination of presence or absence of a carbohydrate or
carbohydrates in a sample, quantification of known carbohydrates in a
preparation, tracking of carbohydrate conversion from substrate to product
during manufacture of a carbohydrate, determination of the location and
identity of a carbohydrate in a biological sample or on biological or non-
biological surfaces using end time studies or studies in real time. For
example, presence of glycoproteins or carbohydrates on cellular surface can
be identified and quantified. In the manufacture of new ‘green’ carbohydrate
based materials, the identity and purity of carbohydrates present in such
materials can be assessed or verified. The half-life or degradation time of a
carbohydrate based material can also be assessed. Similarly, in the
manufacture of molecular or biological drugs or pharmaceuticals, the identity
and purity of carbohydrates present in such drug or pharmaceutical
preparations can be assessed or verified.

The object or sample to be contacted can be any kind of object or
sample on or in which it is desirable to evaluate presence, identity or quantity
of carbohydrates. A sample may for instance be a chemical or a biological
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sample, such as a sample from a carbohydrate manufacturing process or a
carbohydrate extraction process. A sample may also be a tissue or blood
sample in or from a human or animal patient, or a water sample from nature
or from an industry, such as a wastewater treatment plant. Monitoring or
detecting carbohydrate in/on a tissue sample from a patient includes
monitoring or detecting carbohydrate in/on an isolated sample procured from
the patient as well as monitoring or detecting a tissue sample in vivo or in situ.
An object may for example be an environmental surface, such as the surface
of a bench, table, sink, wall, floor, pipe, furniture or any other interior fittings of
a hospital, a domestic setting or a factory. It may also be a device such as a
medical device, an apparatus, a piece of equipment, a tool, sports gear or
other types of gear, or any other device. The binding of the LCO to its target
can thus be detected in solution or on a surface, i.e. the method is usable
both in solid and liquid assays. A particular advantage of the present
invention is that no washing step is required; carbohydrate may be detected
directly in unprocessed biological cultures or samples, in vitro, in vivo or in
situ. This enables studies of for example carbohydrate behavior and/or
formation on objects or in in vitro, in vivo or in situ samples, in real time.
Extending the above application to temporal developmental studies, by
following a specific signal unique to one carbohydrate, the temporal dynamics
of its production can be determined.

The carbohydrate may be analyzed in a pure to relatively pure form,
I.e. in a sample comprising mainly the carbohydrate, or may be detected in a
more complex form, i.e. where the carbohydrate is present in a more complex
mixture such as in a tissue or a biological sample.

The method of the present invention is equally applicable for detection,
identification and/or quantification of soluble and insoluble carbohydrates. It is
particularly useful for analysis of insoluble carbohydrates, for which no other
ease-of-use method is available to date. Carbohydrates that may be
analyzed include carbohydrates of any size, i.e. monosaccharides as well as
oligosaccharides and larger polysaccharides. The carbohydrate may be
isolated from other compounds or may be in a mixture with other compounds
or may be intermolecularly or covalently bound to other molecules or
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structures. Examples of carbohydrates that may be analyzed include, but is
not limited to, the carbohydrates demonstrated herein; $-1,3-glucan,
cellulose, chitin, sodium-alginate, a-D-glucose, cellulobiose, amylose,
glycogen, heparin and chondroitin sulfate A.

The luminescent conjugated oligothiphene (LCO) of the method of the
present invention is any LCO as defined herein, comprising homooligomers of
thiophene. The conjugated oligothiophene may be a pentameric to 15-meric
conjugated oligothiophene, preferably a pentameric or heptameric conjugated
oligothiophene. The LCO may also comprise one or more functional side
groups such as side groups derived from amino acids, amino acid derivatives,
neurotransmitters, monosaccharides, polysaccharides, nucleic acids or other
anionic, cationic or zwitterionic side groups. Examples of heptameric
conjugated oligothiophene that may be used in the method of the invention
include h-FTAA or h-HTAA. Examples of pentameric conjugated
oligothiophene that may be used in the method of the invention include pHTA-
His, pHTA-Lys, pHTEA, pHTIm, pHTA-Tyr, pHTA-Arg, pHTA-Asp and pHTA-
Glu.

Binding of LCO to carbohydrates result in conformational changes of
the LCO backbone, which in turn alters intra- and inter-chain processes of the
LCO. This conformational change can be detected as a detection signal of the
LCO, for example an optical signal such as a fluorometric signal, or an
electrical signal such as conductivity. Fluorometric signals can be detected
through fluorescence imaging, e.g. using fluorescence confocal microscopy.
Alternatively, fluorometric signals may be detected by fluorescence
spectroscopy, through excitation and emission spectrums and/or
subsequently predefined single excitation and emission sets dependent on
the LCO used and/or the carbohydrate to be determined.

This disclosure presents, as proof of concept, spectrofluorometric
signals detected by fluorescence spectroscopy. Excitation and emission
spectrums and/or subsequently predefined single excitation and emission are
used to demonstrate detection sensitivity of LCOs to carbohydrates. Typically,
excitation wavelengths lie in the range of 300 — 500 nm and emission
wavelengths lie in the range of 500 — 700 nm. Analysis of excitation and
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emission spectrums then feed into the selection of a relevant single excitation
and emission set. Each bound carbohydrate induces different twisting of the
LCO backbone, resulting in unique spectral signatures for each bound
carbohydrate. These unique spectral signatures and signal intensities can be
used to distinguish the compounds and thus to determine their identity and
quantity in a given sample, liquid or on a surface.

The fluorescence property of a probe has direct effect on the visual
color it presents. This may in turn be a parameter for detection. Indirect
colorimetric methods in which a detected signal (of any nature) is represented
by a pseudo-color, may also serve as means of representing LCO - target
binding.

In alternative embodiments the conformational change of the LCO, and
thus the binding of the LCO to its target, can be detected by methods which
are directed to monitoring deviations in physical parameters. This can non-
exclusively include optical (FRET, fluorescence quenching, absorption
colormetric, refraction index), material properties (mass, visco-elastic
properties, thickness or other properties) and electronic properties (material
conductively, ion release or uptake, electron release or uptake, resistance).

In a laboratory setting the binding of the LCO to its carbohydrate target
is suitably detected through fluorometric signaling. Methods and devices for
fluorometric detection are well known in the art and include fluorescence
based microscopy, e.g. fluorescent confocal microscopy and fluorometric
plate readers. Such methods and devices are suitable for detection of
carbohydrates in solution, culture or tissue samples.

In other settings handheld devices, known in the art, for fluorescence
detection may be more suitable, e.g. in an industrial or hospital setting. Such
compact devices may also be useful in settings where minimal weight is
preferred, such as in the air transport industry or in environmentally friendly
vehicles.

In other embodiments the LCO, or a combination of LCOs, is suitably
implemented as an active part of a biosensor device and/or chip based
sensor, e.g. by immobilizing the LCO(s) on a substrate in a biosensor cell.
Modifiable side groups to the core component of the LCO allows for functional
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adaptation of the LCO probe to use in biosensors as well as for
immobilization of the probe to the substrate. A complex between the LCO and
the target carbohydrate is formed on the surface of the substrate, the complex
formation inducing a physical change that can be transformed into a detection
signal. Suitably the biosensor device comprises a receptacle for said
substrate as well as detection means. Describing a generic biosensor device,
a fluorescence detection biosensor may for example comprise an internal or
external light source for generating excitation energy to excite the LCO bound
to the target, and an internal or external detector for detecting fluorescent
energy generated by the LCO upon excitation.

Based on the detected detection signal several types of information
relating to the carbohydrate may be determined.

In one embodiment of the method it is determined whether
carbohydrate is present or absent on the object or in the sample. Conclusions
of absence or presence of carbohydrate may for instance be drawn by
comparing the fluorescent signal from the LCO, as determined e.g. by
fluorescence confocal imaging or by fluorescence spectroscopy, gained from
the object or sample analyzed, with a negative control sample known to lack
carbohydrate. The negative control defines the signal quality of unbound LCO
probe. This sets the baseline peak excitation/emission wavelengths and
signal magnitude of said unbound probe. The conclusion is drawn that the
analyzed sample comprises carbohydrate when a redshift in peak
excitation/emission wavelength and/or a simultaneous increase or decrease
in signal magnitude is detected. The change in signal properties from the
baseline is dependent on the geometric change in probe molecular backbone,
arising from the positive binding of the LCO to the carbohydrate. This binding
generally leads to a red shift in the peak excitation/emission wavelength
and/or an increase in signal magnitude. In some cases the binding of the LCO
to the carbohydrate may however lead to quenching of the fluorescent signal
from the LCO.

In one embodiment the quantity of carbohydrate that is present on the
object or in the sample is determined. For this purpose a calibration curve of
the excitation and emission properties of selected LCO across wavelengths
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with known quantities of a specific carbohydrate is prepared. A single
excitation/emission set specific to a carbohydrate is then defined to which a
calibration curve is constructed, the calibration curve defining a relationship
between excitation/emission detection signal and carbohydrate amount. The
magnitude of the detection signal gained from the analyzed object or sample
is compared to the calibration curve, and conclusion of the amount of
carbohydrate on the analyzed object or in the analyzed sample is drawn.

In another embodiment the identity of carbohydrate or carbohydrates
that are present on an object or in a sample is determined. In such an
embodiment a LCO capable of distinguishing between different carbohydrates
is used to contact the object or sample. The LCO to be used may for instance
be selected by being known to bind to one specific carbohydrate, but not to
other carbohydrates. A panel of LCOs generated from a library of related
LCOs may be applied for the identification of the carbohydrate or
carbohydrates present in a sample. Alternatively, the LCO to be used may be
able to bind to several types of carbohydrates and yield a specific detection
signal, e.g. a specific excitation/emission spectrum for each target. Unique
signatures of the LCO for respective carbohydrate targets allows for
identification of the bound component. Again in this embodiment, a negative
control is used to define the baseline qualities of the signal of unbound
probes.

Based on generating a library of spectral signatures of known
carbohydrates (positive controls), detecting the absence of characteristic
peaks when comparing an unknown sample to this library would suggest the
absence of the carbohydrate. Definition of a single excitation/emission set for
a particular carbohydrate and subsequent construction of a standard curve
would also serve to conclude if said component is absent. A panel of different
LCOs that are sensitive to carbohydrates exceedingly different based on
structure/charge can also be used to identify a larger pool of polymeric
substances.

Alternatively detection of an identified carbohydrate can be enhanced
by progressive modification of the LCO prototype. This embodiment would
encompass the addition and/or removal of functional chemical groups of the
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probe to either enhance binding to a specific molecule and/or enhance the
fluorescent property of a bound LCO, such that the peak excitation/emission
and signal magnitude stands out against other LCO — target pairs.

Uses

Carbohydrates are useful within many areas and are utilized in various
applications as for example drugs, supplements, condiments and sweeteners,
as well as materials. LCOs are therefore useful as indicators for the
production and quality assessment of carbohydrate compounds for such
applications. Use of LCOs in carbohydrate detection, identification and
quantification will largely be within the pharmaceutical and food industries, as
well as in research.

In pharmaceutical industries carbohydrates form a huge library of
products. Exemplar groups or products are carbohydrate supplements;
biopharmaceutical products; biodegradable materials for medical use; drugs,
as well as filters; polymers; and surfaces. Heparin, an important anticoagulant
is a well-known carbohydrate for pharmaceutical uses. Similarly, Chondroitin
sulfate A, a carbohydrate closely related to heparin, is in market as a health
supplement. GMP regulations dictate the importance of showing the identity
and purity of a product. The LCO method of the present invention may be
applied as a cheap and rapid method to such ends. The LCOs may also be
used as indicators showing the synthesis efficiency for the production of
important carbohydrates.

In the food and beverage industry, artificial sweeteners are commonly
used as sugar substitutes, and to some extent, as cost cutting measures.
Carbohydrate based condiments and additives are also increasingly used
within the food and beverage industries. Analysis of carbohydrate relevant
addition to and alteration of food may become increasingly important as the
long term health implications to such molecules are not completely
understood. LCOs may therefore be useful in indicating the presence of
specific natural carbohydrates, or the presence and identity of substituted
molecules that are carbohydrate in nature. Detection of metabolically
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important carbohydrates such as glucose, amylose and glycogen are shown
in this disclosure.

In ready-made and packaged foods, LCOs may be used as indicators
which sense a change in food quality when placed in close proximity with said
food items. This change may be the detection of the presence of a
carbohydrate which gradually appears/becomes detected, as the food
deviates from the original quality when initially made.

The LCOs and methods disclosed herein may be used in basic
research to study and gain greater understanding of carbohydrate formation,
breakdown, and of carbohydrate characteristics. Cellulose conversion into
biofuels has been the subject of extensive research. Cellulose is converted to
cellulobiose and glucose during the process. This can encompass a wide
variety of settings in which the quality and quantity of carbohydrates is
relevant. The fluorometric shifts in LCO optical profiles, gained as a
carbohydrate substrate is converted to a product, can again provide a cheap
and rapid method for the analysis of the efficiency of a synthesis method and
the quality of the product formed. LCOs can be applied to track the
conversion of any detectable carbohydrate.

LCOs may further be used in biological research for analysis of
formation and/or behavior of a carbohydrate containing biological entity such
as a cell or a glycoprotein. Using the LCOs of the present invention, such
research may be performed in vitro, in vivo or in a live tissue sample in situ.

Probes in this disclosure are sensitive to structural carbohydrates in
the extracellular matrix (ECM) of microbial biofilm. Different microbes are
known to utilize a variety of possible structural carbohydrates in their ECM,
the best known carbohydrates being cellulose, 3-1,3-glucan, chitin and
alginate. Carbohydrate based identification of biofilm morphologies and
quantity can be a novel and highly accurate approach to biofilm detection.
Since the ECM of a biofilm is a heterogeneous organization of insoluble
structures, a panel of different LCOs will allow the identification of such
insoluble structures. Furthermore, since the composition of biofilm formed
from different species of bacteria is believed to be unique, a panel of different
LCOs also allows for identification of different bacterial species.
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In the plant and foresting industry materials and products (wood, pulp
and paper) are primarily carbohydrates (insoluble structural carbohydrates).
Wood, pulp, and paper originating from different sources (e.g. different trees)
may be detected by profiling the type, quantity and quality of the composed
carbohydrates. LCOs with the ability to detect carbohydrates may hold great
use to this end. Similarly, the quality of wood, pulp, and paper may be
identified using LCOs. This may involve applying LCOs to determine the
purity of carbohydrates present.

Examples

As will be demonstrated below, the ability of the LCOs of the present
invention to target not only amyloid proteins but also carbohydrates was
surprisingly found while studying biofilm. Biofilms are heterogeneous,
complex 3D matrices that comprise a population of microbial cells, which are
embedded in an extracellular matrix (ECM). Two well characterized
components of the ECM are structural polysaccharides, such as cellulose,
and the amyloid protein curli. The following examples demonstrate the ability
of LCOs to target and identify the carbohydrate component of biofilms,
mammalian storage carbohydrates, metabolic intermediates of carbohydrates
and glycosoaminoglycans, both in end point and real time studies, as well as
to detect, identify and quantify carbohydrates in complex structures such as

biofilm and in more pure form.

EXAMPLE 1 — Detection of carbohydrate component in biofilm

Aim of study:
To demonstrate that the prototype LCO h-FTAA is able to detect a

carbohydrate component, i.e. cellulose, in biofilm using confocal analysis.

Study design:
I. Confirmation of known biofilm morphology using a traditional Congo red
plate assay
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To verify biofilm morphology related to curli and/or cellulose production, S.
enteritidis wt strain 3934 and isogenic mutants AbscA (curli+, cellulose-),
AcsgA (curli-, cellulose+), and AcsgD (curli-, cellulose-) were cultivated on LB
agar plates (without salt), supplemented with Congo red (40 pug/ml) and
Coomassie brilliant blue G-250 (20 pg/ml). Plates were incubated for 48 h at
28°C.

Il. LCO Assay for fluorescence analysis of biofilm and biofilm morphology
Glass cover-slips were introduced to the wells of a 6-well plate (according to
the set-up shown in Fig. 2A) to provide surfaces for biofilm formation, which at
the end of experiment could be easily removed for microscope analysis. To
prepare for the biofilm experiment, individual cultures of S. enteritidis wt strain
3934 and isogenic mutants AbscA, AcsgA, and AcsgD were grown in LB
medium in flasks overnight. Each culture was diluted 100-fold in fresh LB and
cultivated in a shaking incubator (230 rpm) at 37°C to ODggo = 0.6. Cultures
were diluted to a culture density of 10° CFU/ml in LB without salt and
dispensed into the cover-slip containing 6 well plates in 8 ml aliquots. After
incubating the plates for 48 h at 28°C, glass cover-slips were removed and
washed twice with PBS before fixation in 4 ml of 4% formaldehyde for 1 h.
Fixed samples were washed twice, then immersed in solutions of h-FTAA (2
Mg/ml), h-HTAA (2 pug/ml) and PBS respectively, for 30 minutes in the dark.
PBS functioned as the negative control, used to assess the level of auto-
fluorescence. Treated slides were then washed twice with PBS and mounted
with Vectashield® for fluorescence-based confocal laser scanning microscopy
analysis. Specifically, the edge of the biofilm formed at the liquid air interface
was visualized using the appropriate fluorescence filters. In Fig. 2C-D each
slide is represented by an image showing the fluorescence produced by
biofilm bound LCOs when excited (left side). The right side is an overlay of an
optical inspection of bacterial presence by phase contrast with LCO
fluorescence. Phase contrast is a traditional method for visual confirmation of

biofilm attachment on surfaces.

Results:
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All strains showed the expected morphotype in the Congo red assay (Fig.
2B). The specifics of each strains morphotype are related to their biofilm-
forming capacity in terms of curli and cellulose production, and this
connection has previously been reported by others.

The LCO assay is able to differentiate curli/cellulose morphologies
(Fig. 2C-D, Fig. 2C showing results for h-FTAA and Fig. 2D for h-HTAA). The
fluorescent signal from the LCOs (h-FTAA as well as h-HTAA) coincides with
visible bacteria aggregates when verified by phase contrast microscopy. With
curli present (wt and AbscA), the biofilm formed was large and in spaced
clusters. When only cellulose is expressed (AcsgA), the quantity of cover-slip
attached biofilm was greatly reduced, appearing as a thin layer of fluorescent
cells. h-FTAA gave a fluorescent signal coinciding with the visible bacteria
aggregates produced by cellulose” and curli AcsgA. AcsgD, which lacks both
curli and cellulose expression, did not produce detectable biofilm.

Phase contrast microscopy shows superficial characteristics of the
biofilm morphology. Optical observations made on the biofilm morphology
coincided with that of fluorescence confocal analysis of biofilm bound LCOs.

Conclusion:

The LCO probes bound to and allowed visualisation of biofilms under
fluorescence analysis. In addition they allowed for discrimination of the
biofilms morphologies originating from the different bacterial phenotypes. The
LCO probe h-FTAA was shown to yield a fluorescence detection signal for the
strain AcsgA, which expresses cellulose but not curli, indicating that h-FTAA

is able to detect another component than curli, possibly cellulose.
EXAMPLE 2 — LCOs generate unique ‘individualised’ spectral signatures,
even in unwashed cultures, based on the curli and cellulose content of

biofilm.

Aim of study:
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To show the ability of LCOs to discriminate between biofilm morphologies
comprising different curli and cellulose content, by showing the unique
spectral signature LCOs possess with each biofilm.

Study design:

I. Biofilm growth in 96 well plates

A fresh overnight culture of the clinically derived S. enteritidis wt strain 3934
and isogenic mutants (AbscA; AcsgA and AcsgD) was inoculated into fresh
LB and cultivated at 37°C to ODggo = 0.6. After diluting each respective
culture with LB (without salt) to a cell density of 10° CFU/ml, it was aliquoted
into three separate flasks. h-FTAA (2 ug/ml) and h-HTAA (2 pg/ml) were each
added to two of the flasks, whereas PBS, used as a control, was added to the
third flask. 50 ul of each culture was next inoculated in triplicates into
separate wells of 96-well plates and incubated at 28°C for 48 hours.

/. Spectral analysis

After removing the biofilm cultures from the incubator, no processing steps
were implemented before the detection of LCO signals. Plates were read
using the Synergy Mx Monochromator-Based Multi-Mode Microplate Reader.
Excitation spectra of LCOs were collected by exciting the sample from 300 to
500 nm and detecting emission at 545 nm. Emission spectra for curli bound
LCOs was collected by reading the emission signal between 500 — 700 nm
when the sample was excited at 405 nm. Emission spectra for cellulose
bound LCOs was collected by reading the emission signal between 520 — 700

nm when the sample was excited at 500 nm.

Results:

Spectral profiles of h-HTAA did not differentiate biofilm morphologies formed
by the different isogenic mutants (Fig. 3A). Excitation spectra patterns of h-
HTAA were identical across all isogenic strains. On the other hand, h-FTAA
produced distinguishable spectral patterns of excitation peaks and shoulders
with each strain (Fig. 3B). When h-FTAA is excited at 380 nm in the presence
of curli (wf and AbscA), a unique spike in emission (excitation shoulder) is
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detected. When h-FTAA is excited at 380 nm in the absence of curli (AcsgA
AcsgD), a spike in emission (excitation shoulder) at ~355 nm is detected
instead. Finally, when h-FTAA is excited at 480 nm in the presence of
cellulose (wt and AcsgA) a unique peak emission is detected.

In overview, h-FTAA in curli positive strains (wf and AbscA) had higher
emission when excited between 360 nm and 425 nm. The data suggests that
excitation of biofilm bound h-FTAA below 425 nm give a signal more specific
for h-FTAA bound curli, while excitation above 480 nm gives a signal more
specific for h-FTAA bound cellulose.

Using an excitation wavelength of 405 nm for curli and 500 nm for
cellulose respectively, the emission spectra for the S. enteritidis wt and
isogenic strains were analyzed.

When excited at 405 nm (Fig. 3C), h-FTAA in curli positive strains (wt
and bscA) had a higher emitted signal intensity at ~556 nm vs curli negative
AcsgA and AcsgD . Comparison of wt, AbscA and AcsgA against AcsgD
indicates that when biofilm is expressed there is a red-shift in emission peak
from 525 nm to 550 — 560 nm.

Using an excitation wavelength of 500 nm (Fig. 3D), the emission of h-
FTAA was higher across all wavelengths in cellulose positive strains with two
prominent peaks in emission at 560 and 600 nm. The unique emission peak
at 600 nm formed a cellulose specific signal discriminating its presence from

cellulose negative biofilms.

Conclusion:

The LCO h-FTAA produces unique spectral signatures for each biofilm
morphology. h-FTAA discriminates biofilm based on unique spectral profiles
produced through the interaction with ECM components curli and cellulose.
The method does not require physical separation of biofilm from a raw
culture. The LCO h-HTAA could not differentiate different biofilm amounts
formed by different bacteria phenotypes without washing steps. h-HTAA may
be applied better as a general probe for biofilm detection with washing steps
akin to Crystal violet. However, h-HTAA has the advantage of being a non-
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bactericidal probe which can be present in the growth medium throughout the
experiment.

EXAMPLE 3: Verification of cellulose specific spectral signature

Aim of study:
To verify the ability of the LCO h-FTAA to target and give a spectral signature
for cellulose, and to verify its utility in quantification of cellulose.

Study design:

Serial two fold dilutions of pure insoluble microcrystalline cellulose
suspensions from 6.25 mg/ml to 0.0488 was prepared to which h-FTAA was
added to a concentration of 3 uM. 100 pl aliquots was dispensed into a 96
well plate. Plates were read using the Synergy Mx Monochromator-Based
Multi-Mode Microplate Reader. Excitation spectra of LCOs were collected by
exciting the sample from 300 to 500 nm and detecting emission at 545 nm.
Cellulose concentrations shown here are 6.25 mg/ml, 3.125 mg/ml, 1.5625
mg/ml and 0.78125 mg/ml.

Results:

In the presence of pure cellulose, excitation of h-FTAA at ~480 nm gives a
peak in emission detected at 545 nm (Fig. 4). This signal intensity increased
proportionally with cellulose concentration, verifying that h-FTAA indeed binds

cellulose.

Conclusions:

The heptameric LCO h-FTAA can be used for detection and quantification of
the carbohydrate cellulose.

EXAMPLE 4 — Real time tracking of biofilm formation

Aim of study:
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To demonstrate the use of h-FTAA in real-time tracking of biofilm formation,
showing the change in biofilm correlated RFU (relative fluorescence unit) over
time in relation to culture growth.

Study design:

The turbidity of a bacterial culture, measured by absorbance at ODggp is used
to define culture density. Expression of GFP provides a direct representation
of bacterial growth and culture density. S. enteritidis 3934 wt and isogenic
mutants AbscA, AcsgA, and AcsgD were transformed with the plasmid P2777
which carries the gfp gene for a more direct representation of culture density
through fluorescence detection. Fresh overnight cultures of each strain was
inoculated into fresh LB and cultivated at 37°C to ODggg = 0.6. After diluting
the culture with LB (without salt) to a cell density of 10°> CFU/ml, it was
aliquoted to two separate flasks. h-FTAA (2 ug/ml) was added to one flask,
whereas PBS, used as a control, was added to the second flask. 50 ul of
each culture mixture was inoculated in triplicates onto 4 96 well plates and
incubated at 28°C. Plates were read for GFP expression as well as curli
bound h-FTAA signal (Ex 405 nm, Em 556 nm) and cellulose bound h-FTAA
signal (Ex 500 nm, Em 600 nm) in tandem hourly over 48 h, to allow 4 h
interval scans of each plate in attempt to avoid bleaching of fluorophores.
RFU data of GFP and h-FTAA from the four plates were combined in a single

plot to visualize the hourly change in signals over time.

Results:

Comparison of the trend of increase in GFP signal plotted against absorbance
at ODeoo in biofilm cultures showed close correlation (Fig. 5A). Plotting
absorbance against GFP signal gave an R? value of 0.9423 (Fig. 5B),
suggesting close correlation of the two signals. This indicated that GFP
expression can be used as a means to monitor bacterial growth.

Tracking of h-FTAA signals (Fig. 5C-F) in parallel to GFP fluorescence
shows the temporal relationship between biofilm formation and culture growth
phases. In S. enteritidis wt strain 3934 (Fig. 5C), GFP signal holds constant
for the first 6 h (lag phase) before increasing exponentially (logarithmic growth
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phase) before reaching a plateau at 15 h (stationary phase). In relation, both
curli and cellulose signals holds constant for the first 16 h, then increases to a
plateau after 22 h. The data implies biofilm formation is initiated towards late
exponential phase of culture growth and that cellulose and curli production is
simultaneous.

Detected h-FTAA signal does not contain significant bleed through
fluorescence from GFP. Observing the fluorescence profile of AcsgD hourly
over 48 h in a parallel assay, the increase in GFP signal did not cause a
increase in curli and cellulose signals (Fig. 5D). The trend observed in
excitation and emission sets for curli and cellulose tracking was therefore not
the result of signal overflow from the GFP presence.

Analysis of AcsgA (Fig. 5E) shows that in the absence of curli
expression, biofilm formation kinetics is changed. The onset of peak cellulose
expression occurs earlier at 13 h, reaches a plateau at 18 h with higher rate.
The RFU intensity at plateau is also higher than the wt when at the same
biofilm growth phase. This indicates that cellulose expression may be
increased in response to curli absence. Because of the wide emission profile
of cellulose bound h-FTAA, a substantial amount of spillover is detected in the
curli fluorescence channel.

Analysis of AbscA (Fig. 5F) shows that in the absence of cellulose
expression, curli expression no longer follows a sigmoidal trend seen in Fig
6C. Curli production appears to increase gradually throughout. Once again,
due to the wide emission spectrum of curli bound LCO, a degree of spillover
is detected in the cellulose fluorescence channel.

When cellulose is not present in the ECM, as in AbscA (Fig. 5F), the
dynamics of ECM formation is changed. In contrast to the wt (Fig. 5C) and
AcsgA (Fig. 5E) cultures, there was no apparent ‘time lag’ between the
exponential phase of culture growth and the induction of ECM formation. Curli
production appeared to increase gradually throughout.

Conclusion:
The LCO probe h-FTAA enables real time analysis of biofilm formation.
Cellulose and curli specific signals could be detected every hour in an
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ongoing culture. The increase in signal over time reflects increase in biofilm
quantity as it is being formed. Comparison of culture growth (represented by
GFP signal) and biofilm signals from the h-FTAA suggest that biofilm
formation occurs when the culture reaches stationary phase, which is in
agreement with previous studies. Channels selected for curli and cellulose
detection do not experience significant noise from GFP fluorescence. The
wide emission spectrum of curli/cellulose bound h-FTAA bleeds through into

the GFP channel. However, this does not affect analysis.

EXAMPLE 5 — Evaluation of the ability of LCOs to bind and discriminate
structural carbohydrates (e.g. B-1,3-glucan, cellulose, chitin, sodium alginate),
metabolic substrates and intermediates (e.g. a-D-glucose, cellulobiose),
storage carbohydrates (e.g. amylose, glycogen), and glycoaminoglycans (e.g.
heparin, chondroitin sulfate A).

Aim of study:

To demonstrate the use of pentameric LCOs in differentiating $-1,3-glucan,
cellulose, chitin, sodium alginate, a-D-glucose, cellulobiose, amylose,
glycogen, heparin, and chondroitin sulfate A by studying changes in the
excitation wavelength for maximum emission (Amax), and the correlation

between signal intensity and carbohydrate concentration.

Study Design:

Serial dilutions of carbohydrate suspensions were prepared in dH»0.
Concentrations ranging from 10 to 0.039 mg/ml was used for $-1,3-glucan,
cellulose and chitin, whereas 5 to 0.019 mg/ml was used for sodium alginate,
glucose, amylose, glycogen, cellulobiose, heparin, chondroitin sulfate A. 3 uM
of each LCO probe was added to 1 ml aliquots of each concentration of
carbohydrate, after which 100 ul was dispensed in triplicates into 96 well
plates. Excitation spectra were collected by exciting the sample from 300 to
500 nm and detecting emission at 545 nm. Detection of carbohydrate is
concluded when there is a reproducible change in Amax and/or RFU intensity
with reference to the negative control. Data from three concentrations, as well
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as the negative control are shown for each carbohydrate as specified in
respective figure.
The correlation and trend between signal intensity and carbohydrate
concentration was shown by plotting the concentration of the carbohydrate
5 against the corresponding fluorescence signal of carbohydrate bound LCO.
The excitation wavelength (emission detected at 545 nm) selected for each
LCO is either (1) the Amax, or (2) the excitation wavelength which suffers the
lowest background. A linear regression analysis is performed to determine the
relationship between the carbohydrate concentration and RFU.
10 Results are shown in figures 6-25 and are summarized in Tables 1-10
below.
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Based on a change (positive or negative) in magnitude of detected signal

and/or a shift in Amax upon binding of the LCO to the carbohydrate,

conclusions are drawn that the carbohydrates can be detected and/or

differentiated by specific LCOs as indicated below:

B-1,3-Glucan
Cellulose
Chitin

Sodium alginate
Glucose
Amylose

Glycogen

Cellulobiose
Heparin

pHTA-Asp, pHTA-Arg, pHTEA, pHTA-Glu, pHTA-Lys
pHTA-Arg, pHTA-His, pHTEA, pHTIm, pHTA-Lys
pHTA-Tyr, pHTA-Asp, pHTA-Arg, pHTA-His, pHTEA,
pHTIM. pHTA-Glu, pHTA-Lys

pHTA-Arg, pHTA-His, pHTEA, pHTIm, pHTA-Lys
pHTA-Tyr, pHTA-Asp, pHTA-Glu

pHTA-Asp, pHTA-His, pHTEA, pHTIm, pHTA-Glu,
pHTA-Lys

pHTA-Tyr, pHTA-Asp, pHTA-Arg, pHTA-His, pHTEA,
pHTIM pHTA-Glu, pHTA-Lys

pHTA-Tyr, pHTA-Asp, pHTA-Glu

pHTA-Arg, pHTIm, pHTA-Glu

Chondroitin sulfate A: pHTA-Tyr, pHTA-Arg, pHTA-His. pHTEA, pHTIm,

pHTA-Lys
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CLAIMS

1. Method for detection, identification and/or quantification of one or more
5 carbohydrates, comprising the steps of:
a) contacting an object or a sample with a luminescent conjugated
oligothiophene;
b) detecting at least one detection signal of the luminescent conjugated
oligothiophene; and
10 c) based on said detected detection signal determining the presence,
identity and/or quantity of the carbohydrate or carbohydrates on said
object or in said sample.

2.  Method according to claim 1, wherein said luminescent conjugated
15 oligothiophene is a pentameric to 15-meric luminescent conjugated

oligothiophene.

3. Method according to claim 1, wherein said luminescent conjugated
oligothiophene is a pentameric or heptameric luminescent conjugated
20 oligothiophene.

4.  Method according to any of claims 2-3, wherein said luminescent
conjugated oligothiophene comprises one or more functional side
chains.

25

5. Method according to claim 4, wherein said functional side chain(s) is/are
selected from amino acids, amino acid derivatives, neurotransmitters,
monoaccharides, polysaccharides, nucleic acids and derivatives as well
as combinations thereof.

30
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10.

11.

12.

13.

40

Method according to any of the previous claims, wherein said
heptameric luminescent conjugated oligothiophene is h-FTAA or h-
HTAA, and said pentameric luminescent conjugated oligothiophene is
any of pHTA-His, pHTA-Lys, pHTEA, pHTIm, pHTA-Tyr, pHTA-Arg,
pHTA-Asp and pHTA-Glu.

Method according to any of the preceding claims, wherein said detection
signal is an optical signal such as a fluorescence signal, a colorimetric
signal, or an electrical signal such as conductivity.

Method according to any of the previous claims, wherein the
luminescent conjugated oligothiophene is able to discriminate between

at least two different carbohydrates.

Method according to any of the previous claims, wherein at least one of

the carbohydrates is an insoluble carbohydrate.

Method according to claim 9, wherein said insoluble polysaccharide is
any of cellulose, chitin, B-glucan, alginate, amylose and glycogen, or
combinations thereof.

Method according to any of claims 1-9, wherein at least one of the
carbohydrates is a soluble carbohydrate.

Method according to claim 11, wherein said soluble carbohydrate is any
of glucose, cellulobiose, heparin, chondroitin sulfate A, or combinations

thereof.

Method according to any of the previous claims, wherein at least one of
the carbohydrates is a structural carbohydrate, a storage carbohydrate,
a glycoaminoglycan, an intermediate product of carbohydrate
conversion and/or a metabolic substrate.
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14. Method according to any of the preceding claims, wherein at least step

a) and/or step b) is or are carried out in vivo, in vitro or in situ.

5 15. Use of a luminescent conjugated oligothiophene for detection,
identification and/or quantification of one or more carbohydrates.

16. Compound selected from pHTA-Tyr, pHTA-Arg, pHTA-Asp, pHTA-Glu
and pHTA-Lys.
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