
US010698769B2

United States Patent
Yancey et al .

(10) Patent No .: US 10,698,769 B2
(45) Date of Patent : * Jun . 30 , 2020

(54) TECHNIQUES FOR IMPLEMENTING
BATCH PROCESSING IN A DATABASE
SYSTEM

(71) Applicant : salesforce.com , inc . , San Francisco , CA
(US)

(52) U.S. CI .
CPC G06F 11/1451 (2013.01) ; G06F 16/2365

(2019.01) ; G06F 16/2372 (2019.01) ; G06F
16/273 (2019.01)

(58) Field of Classification Search
CPC GOOF 11/1451 ; G06F 16/2372 ; G06F

16/2365 ; G06F 16/273
See application file for complete search history . (72) Inventors : Scott Yancey , San Francisco , CA (US) ;

Andrew Smith , San Francisco , CA
(US) ; Andrew Waite , Novato , CA
(US) ; Craig Weissman , San Francisco ,
CA (US)

(56) References Cited

U.S. PATENT DOCUMENTS
(73) Assignee : salesforce.com , inc . , San Francisco , CA

(US) 5,072,370 A
5,577,188 A
5,608,872 A

12/1991 Durdik
11/1996 Zhu
3/1997 Schwartz et al .

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 185 days .
This patent is subject to a terminal dis
claimer .

OTHER PUBLICATIONS

[Online] ; [published on Apr. 22 , 2008] ; [retrieved on Feb. 26 , 2010] ;
retrieved from http://en.wikipedia.org/wiki/Flat-file-database .

(Continued) (21) Appl . No .: 15 / 995,142
(22) Filed : Jun . 1 , 2018

(65) Prior Publication Data
Primary Examiner Jorge A Casanova
(74) Attorney , Agent , or Firm — Elliot , Ostrander &
Preston , P.C. US 2019/0026188 A1 Jan. 24 , 2019

(57) ABSTRACT Related U.S. Application Data
(63) Continuation of application No. 15 / 056,764 , filed on

Feb. 29 , 2016 , now Pat . No. 10,007,576 , which is a
continuation of application No. 13 / 916,457 , filed on
Jun . 12 , 2013 , now Pat . No. 9,275,098 , which is a
continuation of application No. 12 / 197,979 , filed on
Aug. 25 , 2008 , now Pat . No. 8,473,469 .

In accordance with embodiments , there are provided tech
niques for implementing batch processing in a multi - tenant
database system . These techniques for implementing batch
processing in a multi - tenant database system may enable
embodiments to provide great flexibility to a tenant of the
architecture to perform desired functions on content of the
database while allowing the owner of the architecture sched
ule the processing of the functions on the content . (51) Int . Ci .

G06F 11/14
G06F 16/23
GOOF 16/27

(2006.01)
(2019.01)
(2019.01) 18 Claims , 9 Drawing Sheets

500 502

ENQUEUE IDENTIFIERS OF OBJECTS INTO AN
EXECUTE QUEUE

INVOKE START METHOD

504
RETURN A QUERYLOCATOR OBJECT WITH IDENTIFIERS
OF THE FIRST BATCH OF THE OBJECTS IN EXECTUE

QUEUR

50-6

ENQUEUE REQUEST FOR BATCH
PROCESS IN REQUEST QUEUE

508

RUN QUERYMOREO METHOD TO
CONSTRUCT AN SOBJECT ARRAY

510

PASS SOBJECT ARRAY TO
EXECUTE METHOD

$ 12 ADDITIONAL
SUB GROUPS OF

OBJECTS
EXIST TO BE
EXECUTED

514
RETURN A QUERYLOCATOR

OBJECT WITH IDENTIFIERS OF AN
ADDITIONAL BATCH OF THE
OBJECTS IN EXECTUE QUEUE

518

INVOKE EXECUTE METHOD
FOR THE ADDITIONAL

BATCH

INVOKE FINISH METHOD
516

US 10,698,769 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,340,411 B2
7,350,237 B2
7,373,364 B1
7,448,079 B2
7,484,219 B2
7,529,728 B2
7,580,975 B2
7,599,953 B2
7,620,655 B2
7,661,027 B2
7,693,820 B2
7,734,608 B2
7,769,825 B2
7,774,366 B2
7,779,039 B2
7,814,052 B2
7,814,470 B2
7,827,138 B2
8,244,759 B2
8,296,321 B2
8,443,366 B1
8,473,518 B1
8,776,067 B1
9,361,366 B1

2001/0044791 A1
2002/0022986 A1
2002/0029161 A1
2002/0029376 Al
2002/0035577 A1
2002/0042264 A1
2002/0042843 Al
2002/0072951 Al
2004/0111410 A1
2005/0262188 A1
2011/0078213 A1

3/2008 Cook
3/2008 Vogel et al .
5/2008 Chapman

11/2008 Tremain
1/2009 Mitra
5/2009 Weissman et al .
8/2009 Cheenath

10/2009 Galindo - Legaria et al .
11/2009 Larsson et al .
2/2010 Langen et al .
4/2010 Larson et al .
6/2010 Fell et al .
8/2010 Karakashian et al .
8/2010 Fisher et al .
8/2010 Weissman et al .
10/2010 Bezar et al .
10/2010 Mamou et al .
11/2010 Salmon et al .
8/2012 Brooks et al .

10/2012 Durdik et al .
5/2013 Yancey
6/2013 Yancey et al .
7/2014 Yancey
6/2016 Yancey et al .
11/2001 Richter et al .
2/2002 Coker et al .
3/2002 Brodersen et al .
3/2002 Ambrose et al .
3/2002 Brodersen et al .
4/2002 Kim
4/2002 Diec
6/2002 Lee et al .
6/2004 Burgoon et al .

11/2005 Mamou et al .
3/2011 Bezar et al .

5,649,104 A
5,715,450 A
5,761,419 A
5,819,038 A
5,821,937 A
5,831,610 A
5,873,096 A
5,918,159 A
5,950,190 A
5,963,953 A
6,092,083 A
6,112,198 A
6,169,534 B1
6,178,425 B1
6,189,011 B1
6,216,135 B1
6,233,617 B1
6,266,669 B1
6,295,530 B1
6,324,568 B1
6,324,693 B1
6,336,137 B1
D454,139 S
6,367,077 B1
6,393,605 B1
6,405,220 B1
6,434,550 B1
6,438,562 B1
6,446,089 B1
6,535,909 B1
6,549,908 B1
6,553,563 B2
6,560,461 B1
6,574,635 B2
6,577,726 B1
6,601,087 B1
6,604,117 B2
6,604,128 B2
6,609,150 B2
6,621,834 B1
6,654,032 B1
6,665,648 B2
6,665,655 B1
6,684,438 B2
6,711,565 B1
6,721,765 B2
6,724,399 B1
6,728,702 B1
6,728,960 B1
6,732,095 B1
6,732,100 B1
6,732,111 B2
6,754,681 B2
6,763,351 B1
6,763,501 B1
6,768,904 B2
6,782,383 B2
6,804,330 B1
6,826,565 B2
6,826,582 B1
6,826,745 B2
6,829,655 B1
6,839,608 B2
6,842,748 B1
6,850,895 B2
6,850,949 B2
6,947,927 B2
7,174,483 B2
7,177,866 B2 *

OTHER PUBLICATIONS

7/1997 Carleton et al .
2/1998 Ambrose et al .
6/1998 Schwartz et al .
10/1998 Carleton et al .
10/1998 Tonelli et al .
11/1998 Tonelli et al .
2/1999 Lim et al .
6/1999 Fomukong et al .
9/1999 Yeager et al .

10/1999 Cram et al .
7/2000 Brodersen et al .
8/2000 Lohman et al .
1/2001 Raffel et al .
1/2001 Brodersen et al .
2/2001 Lim et al .
4/2001 Brodersen et al .
5/2001 Rothwein et al .
7/2001 Brodersen et al .
9/2001 Ritchie et al .

11/2001 Diec
11/2001 Brodersen et al .
1/2002 Lee et al .
3/2002 Feldcamp
4/2002 Brodersen et al .
5/2002 Loomans
6/2002 Brodersen et al .
8/2002 Warner et al .
8/2002 Gupta et al .
9/2002 Brodersen et al .
3/2003 Rust
4/2003 Loomans
4/2003 Ambrose et al .
5/2003 Fomukong et al .
6/2003 Stauber et al .
6/2003 Huang et al .
7/2003 Zhu et al .
8/2003 Lim et al .
8/2003 Diec
8/2003 Lee et al .
9/2003 Scherpbier et al .
11/2003 Zhu et al .
12/2003 Brodersen et al .
12/2003 Warner et al .
2/2004 Brodersen et al .
3/2004 Subramaniam et al .
4/2004 Ghosh et al .
4/2004 Katchour et al .
4/2004 Subramaniam et al .
4/2004 Loomans
5/2004 Warshaysky et al .
5/2004 Brodersen et al .
5/2004 Brodersen et al .
6/2004 Brodersen et al .
7/2004 Subramaniam et al .
7/2004 Zhu et al .
7/2004 Kim
8/2004 Subramaniam et al .

10/2004 Jones et al .
11/2004 Ritchie et al .
11/2004 Chatterjee et al .
11/2004 Coker et al .
12/2004 Huang et al .
1/2005 Sarabi et al .
1/2005 Warner et al .
2/2005 Brodersen et al .
2/2005 Warner et al .
9/2005 Chaudhuri et al .
2/2007 Becher et al .
2/2007 Holenstein G06F 11/2064

707/615
4/2007 McLaughlin , Jr.
4/2007 Cheenath
4/2007 Dominguez et al .
7/2007 Sandler et al .

12/2007 Zhang

[Online] ; [published on Apr. 25 , 2008] ; [retrieved on Feb. 26 , 2010] ;
retrieved from http://en.wikipedia.org/wiki/Relational-database .
[Online] ; [published on Oct. 17 , 2008] ; [retrieved on Feb. 26 , 2010] ;
retrieved from http://en.wikipedia.org/wiki/Push-technology .
Final Office Action for U.S. Appl . No. 12 / 197,979 , dated Apr. 21 ,
2011 , 14 pages .
International Search Report and Written Opinion for International
Patent Application No. PCT / US2010 / 050021 , dated Dec. 28 , 2018 ,
10 pages .
Lee , et al . , “ Composition of executable business process models by
combining business rules and process flows , ” Expert Systems With
Application , Oxford , GB , vol . 33 , No. 1 , Dec. 22 , 2006 , pp .
221-229 .
Mietzer , et al . , “ Combining Different Multi - tenancy Patterns in
Service Oriented Applications , ” IEE International Enterprise Dis
tributed Object Computing Conference , NJ , USA , Sep. 1 , 2009 , pp .
131-140 .
Non - Final Office Action for U.S. Appl . No. 12 / 197,979 , dated Dec.
6 , 2010 , 13 pages .
Notice of Allowance for U.S. Appl . No. 12 / 197,979 , dated Apr. 24 ,
2013 , 9 pages .
Salesforce , AJAX Toolkit Developer's Guide , https://resources.docs .
salesforce.com/sfdc/pdf/apex_ajax.pdf?major=146 , salesforce.com ,
Apr. 2007 , pp . 1-40 .
Salesforce , Apex Web Services API Developer's Guide , https : //
resources.docs.salesforce.com/sfdc/pdf/apex_api.pdf?major=146 ,
salesforce.com , Apr. 2007 , pp . 1-423 .
Wang , et al . , “ Integrated Constraint Violation Handling for Dynamic
Services Composition , ” IEE International Conference on Services
Computing , NJ , USA , Sep. 21 , 2009 , pp . 168-175 .
Wang , et al . , “ A Study and Performance Evaluation of the Multi
Tenant Data Tier Design Patterns for Service Oriented Computing , "
IEE International Conference on E - Business Engineering , NJ , USA ,
Oct. 22 , 2008 , pp . 94-101 .

7,206,805 B1
7,206,807 B2
7,209,929 B2
7,249,118 B2
7,305,577 B2

US 10,698,769 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Wermelinger , et al . , “ Using coordination contracts for flexible
adaptation to changing business rules , ” Proceedings of the Sixth
International Workshop on Software Evolution , NJ , USA , Sep. 1 ,
2003 , pp . 115-120 .

* cited by examiner

U.S. Patent Jun . 30 , 2020 Sheet 1 of 9 US 10,698,769 B2

14

27
25

pend

wa

34 €€ 9 €

22

94 50 ZS er in

1DA 18
21

U.S. Patent Jun . 30 , 2020 Sheet 2 of 9 US 10,698,769 B2

23

38 69

68
61 62 63

70 32

64 /// 65 / 72 73

FIG . 2

U.S. Patent Jun . 30 , 2020 Sheet 3 of 9 US 10,698,769 B2

84

101
92

86

87

76
89

81
103 77

82 78

83 79

FIG . 3

U.S. Patent Jun . 30 , 2020 Sheet 4 of 9 US 10,698,769 B2

110 76

81

112
82

" 115
83

119

121

FIG . 4

U.S. Patent Jun . 30 , 2020 Sheet 5 of 9 US 10,698,769 B2

S02

ENQUEUE IDENTIFIERS OF OBJECTS INTO AN
EXECUTE QUEUE INVOKE START METHOD

504

RETURN A QUERY LOCATOR OBJECT WITH IDENTIFIERS
OF THE FIRST BATCH OR THE OBJECTS IN EXECTUE

ENQUEUE REQUEST FOR BATCH
PROCESS IN REQUEST QUEUE

T 508

RUN QUERYMOREO METHOD TO
CONSTRUCTAN SOBJECT ARRAY

PASS SOBJECT ARRAY TO
EXECUTE METHOD

514
ADDITIONAL

SUB GROUPS OF ERYLOCA RETURN A QUERYLOCATOR
OBJECT WITH IDENTIFIERS OF AN
ADDITIONAL BATCH OF THE Y EXIST TO BE

EXECUTED OBJECTS IN EXECTUE QUEUE

INVOKE EXECUTE METHOD
FOR THE ADDITIONAL

INVOKE FINISH METHOD

FIG . 5

U.S. Patent Jun . 30 , 2020 Sheet 6 of 9 US 10,698,769 B2

32
276

281

122
282 120

130 3 283
124

131

381 126 133 132
376 135

137
134

383 139 136
382

141 138
128

476 140

481 142

143

482
483

576

581 1 KH
582

583

FIG . 6

U.S. Patent Jun . 30 , 2020 Sheet 7 of 9 US 10,698,769 B2

-600

21
614

C
38 23 42 24 PROGRAM

CODE

40 44

616
606 PROCESSOR

APPLICATION
PLATFORM

PROCESSOR
SUB SYSTEM PROCESS

SPACE

22 NETWORK
INTERFACE

16

Network

602 602 602

USER
SYSTEM

USER
SYSTEM

USER
SYSTEM

FIG . 7

U.S. Patent Jun . 30 , 2020 Sheet 8 of 9 US 10,698,769 B2

602 622 624

-628 INPUT
SYSTEM

MEMORY
SYSTEM

620
OPERATING
SYSTEM

630

PROCESSOR
SYSTEM

626 632 HTTP
CLIENT

OUTPUT
SYSTEM

FIG . 8

U.S. Patent Jun . 30 , 2020 Sheet 9 of 9 US 10,698,769 B2

24
23

42 21
816 32

18 40
814

APPLICATION
SETUP

MECHANISM
TENANT MANAGEMENT

PROCESS
SYSTEM
PROCESS 800

810 SAVE
ROUTINES

TENANT 1
PROCESS

TENANT 2
PROCESS

TENANT N
PROCESS 808 PL / SOQL

52 54

806

804 802

OLO

8121 -812N APPL .
SERVER

APPL .
SERVER

FIG . 9

1

5

10

US 10,698,769 B2
2

TECHNIQUES FOR IMPLEMENTING may also process a query relatively slowly if , for example ,
BATCH PROCESSING IN A DATABASE a relatively large number of users substantially concurrently

SYSTEM access the database system .
Accordingly , it is desirable to provide techniques enabling

CLAIM OF PRIORITY an owner of the database system to improve the ease of use
of the database system .

This continuation application is related to , and claims
priority to , the utility patent application entitled “ TECH BRIEF SUMMARY
NIQUES FOR IMPLEMENTING BATCH PROCESSING
IN A DATABASE SYSTEM , ” filed Feb. 29 , 2016 , having In accordance with embodiments , there are provided
application number of Ser . No. 15 / 056,764 ; and this con techniques for implementing batch processing in a multi
tinuation application is related to , and claims priority to , the tenant on - demand database system . These techniques for
utility patent application entitled " TECHNIQUES FOR implementing batch processing in a multi - tenant on - demand
IMPLEMENTING BATCH PROCESSING IN A DATA database system can enable embodiments to ease the burden
BASE SYSTEM , ” filed Jun . 12 , 2013 , having application 15 of manipulating data when updating the database . It may
number of Ser . No. 13 / 916,457 ; and this continuation appli also reduce the computational load on the database by
cation is related to , and claims priority to , the utility patent holding execution of batch processes until a desired time .
application entitled “ TECHNIQUES FOR IMPLEMENT In an embodiment and by way of example , a method
ING BATCH PROCESSING IN A MULTI - TENANT ON implementing batch processing in a multi - tenant on - demand
DEMAND DATABASE SYSTEM , ” filed Aug. 25 , 2008 , 20 database system includes operating on instructions from a
having application Ser . No. 12 / 197,979 , the entire contents tenant to have the database system perform processes on a
of all of which are incorporated herein by reference . subset of content stored on the database system . Identified

among the instructions is an object associated with a class to
COPYRIGHT NOTICE execute a batch code interface that invokes multiple methods

25 to schedule and execute functions upon the subset . The batch
A portion of the disclosure of this patent document code interface is executed asynchronously with operations

contains material that is subject to copyright protection . The of the database system by invoking the multiple methods ,
copyright owner has no objection to the facsimile reproduc thereby providing a batch processing facility to the tenant .
tion by anyone of the patent document or the patent disclo The present invention is described with reference to an
sure , as it appears in the Patent and Trademark Office patent 30 embodiment in which an apparatus implements a batch
file or records , but otherwise reserves all copyright rights process in a multi - tenant on demand architecture . Although
whatsoever . the invention is discussed with respect to supporting mul

tiple tenants ; the present invention is not limited to multi
TECHNICAL FIELD tenant database systems . Embodiments may be practiced

35 using other database architectures , i.e. , ORACLE® , DB2®
The current invention relates generally to databases . More by IBM and the like without departing from the scope of the

particularly the current invention relates to techniques for embodiments claimed .
implementing batch processes on multi - tenant databases . Any of the above embodiments may be used alone or

together with one another in any combination . Inventions
BACKGROUND 40 encompassed within this specification may also include

embodiments that are only partially mentioned or alluded to
The subject matter discussed in the background section or are not mentioned or alluded to at all in this brief

should not be assumed to be prior art merely as a result of summary or in the abstract . Although various embodiments
its mention in the background section . Similarly , a problem of the invention may have been motivated by various
mentioned in the background section or associated with the 45 deficiencies with the prior art , which may be discussed or
subject matter of the background section should not be alluded to in one or more places in the specification , the
assumed to have been previously recognized in the prior art . embodiments of the invention do not necessarily address any
The subject matter in the background section merely repre of these deficiencies . In other words , different embodiments
sents different approaches , which in and of themselves may of the invention may address different deficiencies that may
also be inventions . 50 be discussed in the specification . Some embodiments may

In conventional database systems , users access their data only partially address some deficiencies or just one defi
resources in one logical database . A user of such a conven ciency that may be discussed in the specification , and some
tional system typically retrieves data from and stores data on embodiments may not address any of these deficiencies .
the system using the user's own systems . A user system
might remotely access one of a plurality of server systems 55 BRIEF SUMMARY OF THE DRAWINGS
that might in turn access the database system . Data retrieval
from the system might include the issuance of a query from In the following drawings like reference numbers are used
the user system to the database system . The database system to refer to like elements . Although the following figures
might process the request for information received in the depict various examples of the invention , the invention is not
query and send to the user system information relevant to the 60 limited to the examples depicted in the figures .
request . The efficient retrieval of accurate information and FIG . 1 illustrates a representative architecture for batch
subsequent delivery of this information to the user system processing in a multi - tenant database system in accordance
has been and continues to be a goal of administrators of with one embodiment of the present invention ;
database systems . FIG . 2 is a simplified schematic view showing relation
Unfortunately , conventional database approaches might 65 ships between tenant information and objects stored on a

become inefficient if , for example , updating applications in database shown in FIG . 1 in accordance with the present
the presence of complex data structures . A database system invention ;

US 10,698,769 B2
3 4

FIG . 3 is a plan view showing the relation between Typically , tenants obtain rights to store information , referred
methods of a batch code interface and objects in a database to as tenant information 38 and 40 , on database 32 and make
shown in FIG . 1 ; the same accessible to one or more users 25-27 to whom the

FIG . 4 is a simplified plan view showing a single batch tenant provides authorization . This is typically achieved by
code interface and the sequence in which a method associ- 5 rental agreements between the tenant and an owner / provider
ated therewith is called for different sub - groups of objects ; of architecture 10. In this manner , architecture 10 provides

FIG . 5 is an operational flow diagram illustrating a high an on - demand database service to users 25-27 that are not
level overview of a method for batch processing in a necessarily concerned with building and / or maintaining the
multi - tenant database system in accordance with one database system ; rather , these functions are addressed
embodiment ; 10 between the tenant and the owner / provider .

FIG . 6 is simplified plan view showing multiple batch With architecture 10 , multiple users 25-27 may access
code interfaces and the sequence in which requests to invoke database 32 through a common network address , in this
methods associated with the multiple batch code interfaces example a universal resource locator (URL) . In response ,
occurs in accordance with an embodiment of the present webpages and other content may be provided to users 25-27
invention ; 15 over network 16. The resources of database 32 that users

FIG . 7 illustrates a block diagram of an example of a 25-27 may access can be different , depending on user's
representative system in which the architecture , shown in 25-27 security or permission level and / or tenant association .
FIG . 1. may be practiced ; As a result , data structures included in tenant information is

FIG . 8 is a detailed block diagram of a user system , shown managed so as to be allocated at the tenant level , while other
in FIG . 7 ; and 20 data structures might be managed at the user level . Because

FIG . 9 illustrates a block diagram of an embodiment of architecture 10 supports multiple tenants including possible
elements of FIG . 7 and various possible interconnections competitors , security protocols 42 and other system software
between these elements . 44 , stored for example on hard drive 26 , maintain applica

tions and applications ' use to only those users 25-27 with
DETAILED DESCRIPTION 25 proper access rights . Also , because many tenants may desire

access to architecture 10 rather than maintain their own
Systems and methods are provided to implement batch system , redundancy , up - time , and backup are additional

processing in a multi - tenant on - demand database system . As functions that may be implemented in architecture 10. In
used herein , the term multi - tenant database system (MTS) addition to user - specific data and tenant specific data , server
refers to those systems in which various elements of hard- 30 side facilities 12 might also maintain system level data
ware and software of the database system may be shared by usable by multiple tenants or other data . Such system level
one or more users . For example , a given application server data might include industry reports , news , postings , and the
may simultaneously process requests for a great number of like that are sharable among tenants .
customers , and a given database table may store rows for a For example , in certain embodiments architectures 10 potentially much greater number of customers . 35 may allow users 25-27 associated with the tenant , referred to FIG . 1 illustrates a database architecture 10 that includes as tenant users , access to a sub - portion of the content of the server side facilities 12 and client side facilities 14 in data database information that the tenant may be allowed to communication over a network 16. Server side facilities 12 access . The sub - portion that any one of users 25-27 may includes processor sub - system 18 , memory space 20 , in data access may be the same as , or different from , the sub - portion communication therewith , and network interface resources 22 in data communication with both memory space 20 and 40 that the remaining users 25-27 may access . Users 25-27 not
processor sub - system 18. Processor sub - system 18 may be associated with a tenant would not be allowed access to
any known processor sub - system in the art , e.g. , the CORE information 38 and 40. For example , assume users 25 and 26
DUO® or the CORE 2 DUO? from Intel Corporation of are associated with the tenant corresponding to tenant infor
Santa Clara , Calif . Memory space 20 includes drive storage mation 38 and not associated with the tenant corresponding
21 , shown as one or more hard drives 23 and 24 , as well as 45 to tenant information 40. Users 25 and 26 would not be
data and instruction registers , shown as 28 , and volatile and allowed access to tenant information 40 and would be
non - volatile memory shown as 30. Data communication allowed access to tenant information 38 or a sub - portion
network 16 may be any network or combination of networks thereof . In the present example , user 25 may be allowed
of devices that communicate with one another . Network 16 access to a first portion of tenant information 38 and user 26
can be any one or any combination of a LAN (local area 50 may be allowed access to a second portion of tenant infor
network) , WAN (wide area network) , telephone network , mation 38 , which is mutually exclusive . Similarly , were user
wireless network , point - to - point network , star network , 27 associated with the tenant corresponding to tenant infor
token ring network , hub network , or other appropriate mation 40 and not the tenant corresponding to tenant infor configuration . As the most common type of computer net mation 38 , user 27 would be allowed to access tenant work in current use is a TCP / IP (Transfer Control Protocol 55 information 40 , or a portion thereof , and not tenant infor and Internet Protocol) network , such as the global inter mation 38. It is possible , however , that one of users 25-27 network of networks often referred to as the “ Internet " with are associated to the tenants corresponding to both sets of a capital “ I , ” that network will be used in many of the tenant information 38 and 40 . examples herein . However , it should be understood that the
networks that the present invention might use are not so Virtual portals 33 , 34 and 35 facilitate providing resources
limited , although TCP / IP is a frequently implemented pro- 60 of database 32 on behalf of a tenant to users 25-27 associated
tocol . with the tenant . Each user 25-27 logs into one of virtual

Server side facilities 12 access to a database 32 by portals 33 , 34 and 35 to access resources of database 32
multiple users 25-27 of client side facilities 14 over data through a unique uniform resource locator (URL) or other
communication network 16. To that end , network interface type of address . Based on the URL and other identifying
resources 22 include a plurality of virtual portals 33-35 . 65 information associated with users 25-27 , architecture 10
Each virtual portal 33-35 provides an “ instance ” of a portal may determine the resources of database 32 users 25-27 may
user interface coupled to allow access to database 32 . access . For example , user 25 communicates with database

US 10,698,769 B2
5 6

through virtual portal 33 , user 26 communicates with data containing data fitted into predefined categories . This is
base 32 through virtual portal 34 , and user 27 communicates shown as data objects 67-73 with respect to tenant set 63. A
with database through virtual portal 35. It is possible , “ table ” is one representation of a data object , and may be
however , that all users 25-27 may use a common portal , as used herein to simplify the conceptual description of objects
well . To that end , users 25-27 desiring to access resources of 5 and custom objects according to the present invention . It
database 32 employ virtual portals 33 , 34 and 35 to validate should be understood that “ table ” and “ object may be used
against the information stored on architecture 10 , corre interchangeably herein . Thus , it is realized that large sponding to the user 25-27 requesting access to a sub amounts of objects having complex interrelationships may portion of content on database 32 . be subject to a request for manipulation , for example , a

The result of the communications between users 25-27 10
and server side facilities 12 results in multiple processes 50 , managerial relationship between a salesperson or thousands

of salespersons , may change . To implement this change may 52 and 54 being executed by processor sub - system 18. Thus ,
it is desired that processor sub - system 18 be capable of require a substantial percentage of the computational
providing uninterrupted interaction with users 25-27 to resources of the processor sub - system 18. Thus , manipulat
provide online transaction processing (OLTP) to each of 15 ing such a large quantity of data objects 67-73 may interfere
users 25-27 . As a result , each of processes 50 , 52 and 54 may with the computing experience of users 25-27 taking advan
include one or more threads of execution . This is shown as tage of OLTP processes 50 , 52 , and 54 .
threads 56 associated with process 50 , threads 58 associated Referring to both FIGS . 1 and 3 , one embodiment of the
with process 52 and threads 60 associated with process 54 . current invention facilitates manipulation of large quantities

Referring to both FIGS . 1 and 2 , it is desired that tenants 20 of data objects in response to receiving request from a tenant
and / or users 25-27 associated therewith have the ability to and / or users 25-27 while reducing the risk of interference , or
easily and reliably manipulate large volumes of data while perceived interference , with OLTP processes 50 , 52 and 54 .
avoiding consuming excessive resources of processor sub This is achieved by providing system software 44 with a
system J 8. The challenge presented by these seemingly batch engine 75 that carries - out requests for manipulation of
contravening requirements is realized by realizing the nature 25 a large number of objects 67-73 asynchronously with respect
of the use of architecture 10 by tenants . An example of a to OLTP processes 50 , 52 and 54. Batch engine 75 facilitates
tenant may be a company that employs a sales force where scheduling execution of functions on large quantities of data
each salesperson uses server side facilities 12 to manage at the request of a tenant and / or user 25-27 , referred to as a
their sales process , such as by a management representative batch request . To that end , batch engine 75 includes a batch
of the tenant , e.g. , Vice President of Sales , the Chief Execu- 30 code interface 76 that is implemented when a class 77 of one
tive Officer of the tenant and the like . In this fashion , or more special objects , shown as 78-80 , is included in
architecture facilitates Customer Relations Management instructions from a tenant and / or a user 25-27 . The instruc
(CRM) . Thus , one or more of users 25-27 may be a tions are typically included in tenant information 38 and 40
salesperson that maintains information applicable to that or may be received , in situ , during one of OLTP processes
salesperson's sales process and may be different from infor- 35 50 , 52 and 54. Batchable code interface 76 invokes multiple
mation related to other salespersons ' sales process . Although methods 81-83 that function to schedule and execute batch
the sales force accessing database 32 is represented by three requests . Pseudo code for an example of batchable code
users 25-27 , in practice hundreds of salespersons would interface 76 written using the Apex language available from
access database 32. Moreover , sales process data of each Salesforce.com , inc . of San Francisco , Calif . is as follows :
sales person may include thousands of files . An example of 40
sales process data may include , without limitation , contact * Returns a Query Locator object , which is a handle to the
data , leads data , customer follow - up data , performance data , full result set
goals and progress data applicable to that salesperson's * to be processed .
personal sales process . * /
Moreover , to facilitate management of this information , 45 Database . Query Locator start (Database.BatchableInput

the tenant associated with the salespersons may restrict each stateVar) ;
of the salespersons to access specific sales process informa / **
tion . However , a tenant , or representative thereof based upon * Each iteration over the Query Locator object returned in
a contractual relationship between the salesperson and the the start (method
representative , may be able to view all sale process infor- 50 * will produce a batch of SObject records to process . This
mation for the salespersons associated with the tenant . An method will be
example of a contractual relationship is a managerial / super * called for every batch , and will perform whatever work
visory relationship . The managerial relationship between the is defined by the
salesperson and the tenant representative may provide the * Apex developer
representative with a higher permission level when com- 55 * /
pared to the permission level of the salesperson , because , void executeBatch (Database.BatchableInput state Var ,
inter alia , the tenant representative may be a manager / SObject [] scope) ;
supervisor of the salesperson . Another contractual relation / **
ship may be the principle agent relationship wherein the After completing all invocations of executeBatch , which
tenant representative has no day - to - day management 60 means all data
responsibility of the salesperson . Nonetheless , as the repre * identified in the start method has been processed , this
sentative of the principle , e.g. , the tenant , the representative method will be
may view all of the salesperson information , because the * called and allows a developer to implement their own
salespersons may be deemed to be merely agents of the cleanup , notify ,
tenant . * etc. behavior .

Tenant information 38 and 40 may be viewed as a * /
collection of objects , such as a set 61-66 of logical tables , void finish (Database.BatchableInput state Var) .

/ **

65

US 10,698,769 B2
7 8

First method 81 is the Database . QueryLocator start process 94 enqueues execute queue 114 with the identifiers
(START) method that identifies the full set 84 of objects of sub - group 100 for example as identifier 115 at step 506 .
85-91 that is the subject of the batch request . Second method Upon dequeue of identifier 115 , a queryMore () method is
82 is the void executeBatch (EXECUTE) method that run by process 94 that returns an SObject array , which is an
executes the manipulation defined by a tenant and or user 5 array representation of an instance of an entity or a row in
25-27 . Third method 83 is the void finish (FINISH) method 32. SObject array contains the objects that are to be the
that is invoked after START method 81 and EXECUTE subject of EXECUTE method 82 at step 508. At step 510 ,
method 82 have completed . The result that occur in response process 94 then passes the SObject array to execute method
to invocation of FINISH method 83 is defined by tenants 82 to perform the manipulation defined by method 82. At
and / or users 25-27 and may include sending notifications to 10 step 512 query More method determines whether additional
users 25-27 that the batch process is complete and / or further objects 85-91 of set 84 remain to be subjected to EXECUTE
details concerning the changes to tenant information 38 and method 82. If so , then process 94 enqueues execute queue
40 as a result of the batch process . 114 with the identifiers 117 for the next sub - group 101 of

To ensure that a single batch process does not consume objects 87 and 88 , at step 514. Following step 514 ,
too great a quantity of resources of processor sub - subsystem 15 EXECUTE method 82 is invoked for the additional objects
18 , START method 81 calls a Query Locator object 92 that 85-91 of set 84 ; thereafter , step 512 occurs . Steps 514 and
points to a maximum number of objects that may be sched 512 repeat for the remaining sub - groups 102 and 103 having
uled for uninterrupted processing . Specifically , the Query identifiers 119 and 121 , respectfully . Finish method 83 is
Locator object 92 represents a server side database cursor invoked at step 516 once it is determined at step 512 that
persisted on architecture 10. As a result , Query Locator 20 there are no additional sub - groups of object that are to be
object 92 will retrieve a predetermined maximum number of subjected to EXECUTE method 82. It should be noted that
objects 85-91 from set 84. As shown Query Locator object 92 process 94 will enqueue only a single sub - group in execute
retrieves four different sub - group 100 , 101 , 102 and 103 , of queue 114 for a given request 112. In this manner , when
objects 85-91 . Sub - group 100 includes objects 85 and 86 ; multiple batch code interfaces are queued in request queue
sub - group 101 includes objects 87 and 88 ; sub - group 102 25 110 no one batch code interface prevented from having
includes objects 89 and 90 ; and sub - group 103 includes methods associated therewith invoked for an unreasonable
object 91. As a result , EXECUTE method 82 is invoked four length of time / process cycles .
times by process 94 , each time operating on a different one Referring to FIGS . 1 and 6 , database 32 is shown having
of sub - groups 100-103 . In operation , the total number of four different batch code interfaces 276 , 376 , 476 and 576 .
objects in a result set that is identified by START method 81 30 For purposes of the present example batch code interfaces
may be in the millions . Therefore , the predetermined num 276 and 376 correspond to a common tenant and batch code
ber retried by Query Locator object 92 is a quantity defined interfaces 476 and 576 correspond to two different tenants ,
by the owner of architecture 10 and is dependent upon which are also different from the tenant corresponding to
several technological and business factors , such as the batch code interfaces 276 and 376. Batch code interface 276
processing capacity of architecture 10 and / or the business 35 has a START method 281 , an EXECUTE method 282 and a
arrangements with tenants and / or a priori information con FINISH method 283 ; batch code interface 376 has a START
cerning the consumption history of the resources of archi method 381 , an EXECUTE method 382 and a FINISH
tecture 10. For example , an instance of batch engine 44 is a method 383 ; batch code interface 476 has a START method
process 94 executing in processor sub - system 18 , which , 481 , an EXECUTE method 482 and a FINISH method 483 ;
inter alia , which monitors the operation of architecture 10 to 40 and batch code interface 576 has a START method 581 , an
determine an appropriate time for invoking methods 81-83 . EXECUTE method 582 and a FINISH method 583. To
This may be determined by dynamically monitoring other schedule each of batch code interface 276 , 376 , 476 and 576
processes executing in processor sub - system 18 , such as for execution , process 94 places the requests in request
OLTP process 50 , 52 and 54 and / or on a particular time queue 110. As shown , request 122 corresponds to batch code
during which consumption of architecture has historically 45 interface 276 , request 124 corresponds to batch code inter
been reduced , e.g. , on Christmas day , Sundays and the like . face 376 , request 126 corresponds to batch code interface
Additionally , process 94 monitors the number of batch 476 and request 128 corresponds to batch code interface
requests that architecture has scheduled for different tenants 576. To facilitate invocation of the EXECUTE methods 282 ,
and determines the sequence in which to execute the 382 , 482 and 582 , process 94 enqueues an identifier of one
EXECUTE method 82 . 50 of several sub - groups (not shown) of objects (not shown)

Referring to FIGS . 1 , 3 , 4 and 5 , in operation , upon that will be the subject of one of EXECUTE methods 282 ,
determining that a batch request is present , process 94 382 , 482 and 582 in EXECUTE queue 120. As shown ,
enqueues , at step 500 , the batch request in a queue , referred EXECUTE queue 120 includes identifiers 130-143 . Identi
to as a request queue 110 , associated with memory space 20 , fiers 130 , 134 , 138 , 140 , 142 and 143 identify objects that
i.e. , in registers 28. As shown , request 112 corresponds to 55 are the subject of EXECUTE method 282. Identifiers 131 ,
batch code interface 76. To facilitate invocation of 135 , 139 and 141 identify objects that are the subject of
EXECUTE method 82 , process 94 enqueues an identifier of EXECUTE method 382. Identifiers 123 and 127 identify
one of sub - groups 100-103 of objects 85-91 that will be the objects that are the subject of EXECUTE method 482 .
subject of EXECUTE method 82 in a second queue , referred Identifiers 133 and 137 identify objects that are the subject
to as execute queue 114 , associated with memory space 20 , 60 of EXECUTE method 582 .
i.e. , in registers 28. Specifically , upon dequeue of request With request 122 being first in request queue 110 , start
112 , process 94 instantiates the object associated therewith , method 281 occurs before any of the remaining methods
for example one of objects 78-80 and invokes START 282-283 , 381-383 , 481-483 and 581-583 . However , this
method 81 at step 502. START method 81 returns , at step does not mean that request 122 will be completed before any
504 , Query Locator object 92 that contains the identifier to 65 of the remaining requests , 124 , 126 and 128. Rather , as
the first batch of the result set of objects , for example shown , multiple invocations of each of EXECUTE methods
sub - group 100 containing objects 85 and 86. As a result , 282 , 382 , 482 and 582 occur in response requests 122 , 124 ,

be

US 10,698,769 B2
9 10

126 and 128 , respectively . The invocation of any one of such data is expressly shared . In certain embodiments ,
EXECUTE methods 282 , 382 , 482 and 582 is interleaved server system 600 implements applications other than , or in
with the remaining EXECUTE methods 282 , 382 , 482 and addition to , the CRM application discussed above . For
582. This results in at least one of EXECUTE methods 282 , example , server system 600 may provide tenant access to
382 , 482 and 582 being invoked before completion of at 5 multiple hosted (standard and custom) applications , includ
least one request 122 , 124 , 126 and 128 , in the present ing a CRM application . User (or third party developer) example . In this manner , no one request 122 , 124 , 126 and applications , which may or may not include CRM , may be 128 prevents any of the remaining requests 122 , 124 , 126 supported by the application platform 606 , which manages
and 128 to be subjected to an unreasonable amount of
latency before execution of the methods associated there- 10 base objects and executing of the applications in a virtual creation , storage of the applications into one or more data
with occurs . As shown , method 282 is invoked to operate machine in the process space of server system 600 . upon a first sub - group of objects associated with identifier
130. However , before method 282 operates on a second Referring to FIGS . 1 , 7 and 8 , to facilitate web - based
sub - group of objects associated with identifier 134 , method CRM , user systems 602 might communicate with server
382 is invoked to operate on a sub - group of objects asso- 15 system 600 using TCP / IP and , at a higher network level , use
ciated with identifier 131 , method 482 is invoked to operate other common Internet protocols to communicate , such as
on a sub - group of objects associated with identifier 132 and HTTP , FTP , AFS , WAP , etc. To that end , user systems 602
method 582 is invoked to operate on a sub - group of objects may be any computing device capable of interfacing directly
associated with identifier 133. Thus , process 94 interleaves or indirectly to the Internet or other network connection ,
invocation of the various methods 282 , 382 , 482 and 582 20 such as desktop personal computer , workstation , laptop ,
associated with requests 122 , 124 , 126 and 128 , respectively . PDA , cell phone , or any wireless access protocol (WAP)

Referring to both FIGS . 1 and 7 a block diagram of a enabled device and the like running an HTTP client 49. An
server system 600 employed to implement architecture 10 is example of a user system 602 includes a processor system
shown as including multiple user systems 602 included in 620 , a memory system 622 , an input system 624 , and output
client side facilities 14 and in data communication with 25 system 626. Processor system 620 may be any combination
server system 600 over network 16. Server system 600 of one or more processors . Memory system 622 may any
includes a processor sub - system 18 , application platform combination of one or more memory devices , volatile ,
606 , network interface 22 , and drive storage 31 that includes and / or non - volatile memory . A portion of memory system is
database 32. In addition server system 600 includes program used to run operating system 628 in which HTTP client 630
code 614 , and process space 616. Program code 614 may 30 executes . Input system 624 may be any combination of input
include , among other code , code to facilitate a tenant to devices , such as one or more keyboards , mice , trackballs ,
control the look - and - feel of the experience users 25-27 have scanners , cameras , and / or interfaces to networks . Output
when accessing database 32. Process space 616 facilitates system 626 may be any combination of output vices , such
execution of MTS system processes and tenant - specific as one or more monitors , printers , and / or interfaces to
processes , such as running applications as part of an appli- 35 networks . HTTP client 630 allows users 25-27 of users
cation hosting service . Additional processes that may systems 602 to access , process and view information , pages
execute on server system 600 include database indexing and applications available to it from server system 600 over
processes . In other embodiments , server system 600 may not network 16. Examples of HTTP client 630 include various
have all of the components listed and / or may have other browsing applications , such as Microsoft's Internet Explorer
elements instead of , or in addition to , those listed above . 40 browser , Netscape’s Navigator browser , Opera's browser , or
Server system 600 , and additional instances of an MTS , a WAP - enabled browser in the case of a cell phone , PDA or
where more than one is present , and all components thereof other wireless device , or the like . Access is gained to
may be operator configurable using applications including requisite tenant information 38 and 40 by entering the URL
computer code to run using a central processing unit such as (not shown) into the URL box 632 of HTTP client 630. The
processor sub - system 18 . 45 URL directs users 25-27 to the appropriate virtual portal for

Application platform 606 may be a framework that allows to determine authorization and permission level to access the
the applications of architecture 10 to run , such as the requisite tenant information .
hardware and / or software , e.g. , the operating system . In an Data corresponding with each user 25-27 may be separate
embodiment , application platform 606 may enable creation , from the data corresponding to the remaining users 25-27
managing and executing one or more applications developed 50 regardless of the tenant associated with users 25-27 ; how
by the owner / provider of architecture 10 , users 25-27 ever , some data might be shared or accessible by a plurality
accessing architecture 10 via user systems 602 , or third party of users 25-27 or all of users 25-27 associated with a tenant .
application developers accessing architecture 10 via user Thus , there might be some data structures managed by
systems 602 . server system 600 that are allocated at the tenant level while

In one embodiment , server system 600 implements a 55 other data structures might be managed at the user level .
web - based customer relationship management (CRM) sys Because an MTS typically support multiple tenants includ
tem . For example , in one embodiment , server system 600 ing possible competitors , the MTS should have security
includes application servers configured to implement and protocols that keep data , applications , and application use
execute CRM software applications as well as provide separate . Also , because many tenants may opt for access to
related data , code , forms , webpages and other information to 60 an MTS rather than maintain their own system , redundancy ,
and from user systems 602 and to store to , and retrieve from , up - time , and backup are additional functions that may be
database system related data , objects , and Webpage content . implemented in the MTS . In addition to user - specific data
Architecture 10 typically stores data for multiple tenants in and tenant specific data , server system 600 might also
the same physical database object , however , tenant data maintain system level data usable by multiple tenants or
typically is arranged so that data of one tenant is kept 65 other data . Such system level data might include industry
logically separate from that of other tenants so that one reports , news , postings , and the like that are sharable among
tenant does not have access to another tenant's data , unless tenants .

US 10,698,769 B2
11 12

According to one embodiment , server system 600 pro distribute incoming HTTP requests evenly over a plurality of
vides security mechanisms to keep each tenant's data sepa servers . At least as for users 25-27 one of HTTP application
rate unless the data is shared . If more than one MTS is used , servers 812 , -812n , each of the plurality of servers has access
they may be located in close proximity to one another (e.g. , to the MTS data ; however , other alternative configurations
in a server farm located in a single building or campus) , or 5 may be used instead .
they may be distributed at locations remote from one another Application platform 606 includes an application setup
(e.g. , one or more servers located in city A and one or more mechanism 810 that supports application developers ' cre
servers located in city B) . As used herein , each MTS could ation and management of applications , which may be saved
include one or more logically and / or physically connected as metadata by save routines 808 for execution by subscrib
servers distributed locally or across one or more geographic 10 ers as one or more tenant process spaces 84 managed by
locations . Additionally , the term “ server ” is meant to include tenant management process 86 , for example . Invocations to
a computer system , including processing hardware and such applications may be coded using PL / SOQL 806 that
process space (s) , and an associated storage system and provides a programming language style interface extension
database application (e.g. , OODBMS or RDBMS) as is well to API 804. A detailed description of some PL / SOQL
known in the art . It should also be understood that “ server 15 language embodiments is discussed in commonly owned
system ” and “ server ” are often used interchangeably herein . co - pending U.S. patent application Ser . No. 11 / 859,498
Similarly , the database object described herein can be imple entitled , METHOD AND SYSTEM FOR ALLOWING
mented as single databases , a distributed database , a collec ACCESS TO DEVELOPED APPLICATIONS VIA A
tion of distributed databases , a database with redundant on MULTI - TENANT ON - DEMAND DATABASE SERVICE ,
line or offline backups or other redundancies , etc. , and might 20 by Craig Weissman , filed Sep. 21 , 2007 , which is incorpo
include a distributed database or storage network and asso rated in its entirety herein for all purposes . Invocations to
ciated processing intelligence . applications may be detected by one or more system pro

Referring to FIG . 9 , a specific embodiment of a server cesses , which manage retrieving application metadata for
system 800 includes database 32 , as discussed above , as well the subscriber making the invocation and executing the
as processor sub - system 18 and a network interface 122. In 25 metadata as an application in a virtual machine .
addition , server system 800 includes a user interface (UI) Each HTTP application servers 812 -812y may be com
802 , application program interface (API) 804 , PL / SOQL municably coupled to database systems , e.g. , database 32 ,
806 , save routines 808 , an application setup mechanism 810 , via a different network connection . For example , one HTTP
applications servers 812 , -812N , system process space 814 , application server 812 , might be coupled via the network 16
tenant processes 50 , 52 and 54 , tenant management pro- 30 (e.g. , the Internet) , another HTTP application servers 812 ,
cesses 816. User interface (UI) 802 , application program 812y might be coupled via a direct network link , and another
interface (API) 804 , PL / SOQL 806 , save routines 808 , an one of HTTP application servers 812 -812y might be
application setup mechanism 810 , tenant processes 50 , 52 coupled by yet a different network connection . Transfer
and 54 , tenant management processes 816 are shown as Control Protocol and Internet Protocol (TCP / IP) are typical
processes running in processor sub - system 18. However , it 35 protocols for communicating between HTTP application
should be noted that the computer readable code to imple servers 812 , -812y and database 32. However , it will be
ment the processes may be stored on drive storage 31. In apparent to one skilled in the art that other transport proto
other embodiments , server system 800 may not have the cols may be used to optimize the system depending on the
same elements as those listed above and / or may have other network interconnect used .
elements instead of , or in addition to , those listed above . 40 In certain embodiments , each of HTTP application servers
Network interface 122 is implemented as a plurality of 812 , -812y is configured to handle requests for any user
HTTP application servers 812 , -812y . associated with any organization that is a tenant . Because it

Referring to FIGS . 1 , 6 and 8 , each application server is desirable to be able to add and remove application servers
812 , -812y may be configured to service requests of user from the server pool at any time for any reason , there is
systems 602 for access to database 32. In this configuration , 45 preferably no server affinity for a user and / or organization to
tenant information 38 and 40 consists of different informa a specific one of HTTP application servers 812 , -8127 . In
tion storage areas that may physical differentiation , e.g. , one embodiment , therefore , an interface system implement
different hard disks , and / or a logical separation of the ing a load balancing function (e.g. , an F5 Big - IP load
information and may include application metadata 92 for balancer) is communicably coupled between HTTP appli
each user or groups of users . For example , a copy of a user's 50 cation servers 812 -812y and the user systems 602 to dis
most recently used (MRU) items might be included . Simi tribute requests to HTTP application servers 812 , -812y . In
larly , a copy of MRU items for an entire organization that is one embodiment , the load balancer uses a least connections
a tenant might be stored . UI 802 provides a user interface algorithm to route user requests to HTTP application servers
and API 804 provides an application programmer interface 812 , -812y . Other examples of load balancing algorithms ,
to server system 800 resident processes to users and / or 55 such as round robin and observed response time , also can be
developers at user systems 602. The tenant data and the used . For example , in certain embodiments , three consecu
system data may be stored in various databases , such as one tive requests from the same user 25-27 could hit three
or more OracleTM databases . different HTTP application servers 812 -812y , and three

Referring again to FIGS . 1 , 6 and 8 , it is not necessary that requests from different user systems 602 could hit a common
the one or more HTTP application servers 812 , -812y be 60 HTTP application server 812 -812y . In this manner , server
implemented as the sole network interface between server system 800 is multi - tenant , wherein server system 800
system 800 and network 16. Rather , other communication handles storage of , and access to , different objects , data and
techniques might be used in conjunction with HTTP appli applications across disparate users and organizations .
cation servers 812 , -812y or in lieu thereof . In some imple In certain embodiments , user systems 602 (which may be
mentations , the interface between server system 800 and 65 client systems) communicate with HTTP application servers
network 16 includes load sharing functionality , such as 812 , -812y to request and update system - level and tenant
round - robin HTTP request distributors to balance loads and level data from server system 800 that may require sending

1

5

US 10,698,769 B2
13 14

one or more queries to database 32. Server system 800 (e.g. , executing by the processor the batch process , as sched
an application server 812 in server system 800) automati uled , to asynchronously manipulate the data objects ;
cally generates one or more SQL statements (e.g. , one or and
more SQL queries) that are designed to access the desired sending , via a service bus , after executing the batch
information . Database may generate query plans to access process , one of : a first message that the asynchronous
the requested data from the database . manipulation of the data objects by the batch process is While the invention has been described by way of complete , and a second message regarding changes to
example and in terms of the specific embodiments , it is to be the data objects as a result of execution of the batch understood that the invention is not limited to the disclosed process as scheduled . embodiments . To the contrary , it is intended to cover various 10
modifications and similar arrangements as would be appar 2. The method of claim 1 , wherein the scheduling of the
ent to those skilled in the art . For example , the present batch process and the executing of the batch process as
processes may be embodied as a computer program product scheduled to asynchronously manipulate the data objects
that includes a machine - readable storage medium (media) comprises invoking :
having instructions stored thereon / in which can be used to 15 a start method that identifies the data objects to be
program a computer to perform any of the processes of the asynchronously manipulated by the batch process ;
embodiments described herein . an execute method that schedules and executes the asyn

Computer code for operating and configuring the server chronous manipulation of the identified data objects by
system to intercommunicate and to process webpages , appli the batch process ; and
cations and other data and media content as described herein 20 wherein sending , via the service bus , after executing the
are preferably downloaded and stored on a hard disk , but the batch process , one of a first message that the asynchronous
entire program code , or portions thereof , may also be stored manipulation of the data objects by the batch process is
in any other volatile or non - volatile memory medium or complete , and second message regarding hanges to the
device as is well known , such as a ROM or RAM , or data objects as a result of execution of the batch process as
provided on any media capable of storing program code , 25 scheduled , comprises invoking :
such as any type of rotating media including floppy disks , a finish method that , after the start and execute methods
optical discs , digital versatile disk (DVD) , compact disk have completed , sends one of : a first message that the (CD) , microdrive , and magneto - optical disks , and magnetic asynchronous manipulation of the identified data
or optical cards , nanosystems (including molecular memory objects by the batch process is complete , and a second ICs) , or any type of media or device suitable for storing 30
instructions and / or data . Additionally , the entire program message regarding changes to the identified data

objects as a result of execution of the batch process as code , or portions thereof , may be transmitted and down scheduled . loaded from a software source over a transmission medium , 3. The method of claim 2 , wherein the start method that e.g. , over the Internet , or from another server , as is well
known , or transmitted over any other conventional network 35 identifies the data objects to be asynchronously manipulated
connection as is well known (e.g. , extranet , VPN , LAN , etc.) by the batch process further selects a maximum number of
using any communication medium and protocols (e.g. , TCP / the identified data objects , the asynchronous manipulation of
IP , HTTP , HTTPS , Ethernet , etc.) as are well known . It will which is to be scheduled for uninterrupted execution by the
also be appreciated that computer code for implementing batch process ; and
embodiments of the present invention can be implemented 40 wherein the execute method that schedules and executes
in any programming language that can be executed on a the asynchronous manipulation of the identified data
client system and / or server or server system such as , for objects , schedules and executes without interruption
example , C , C ++ , HTML , any other markup language , the asynchronous manipulation of the maximum num
JavaTM , JavaScript , ActiveX , any other scripting language , ber of the identified data objects by the batch process .
such as VBScript , and many other programming languages 45 4. The method of claim 3 , wherein the start method that
as are well known may be used . (JavaTM is a trademark of selects the maximum number of data objects , the asynchro
Sun Microsystems , Inc.) . Therefore , the scope of the nous manipulation of which is to be scheduled for uninter
appended claims should be accorded the broadest interpre rupted execution by the batch process , further identifies tation so as to encompass all such modifications and similar separate transaction groups of the maximum number of the arrangements . identified data objects , the asynchronous manipulation of
What is claimed is : each separate transaction group to be scheduled for unin 1. A method for asynchronous batch processing in an on

demand computing architecture , having at least a processor terrupted execution by the batch process ; and
wherein the execute method that schedules and executes and a memory therein to execute instructions for the asyn without interruption the asynchronous manipulation of chronous batch processing , wherein the method comprises : 55

receiving from a plurality of users a plurality of online the maximum number of the identified data objects by
transaction processing requests ; the batch process , executes without interruption the

receiving a batch processing request from a user to asynchronous manipulation of each of the separate
manipulate a plurality of data objects ; transaction groups of the maximum number of the

executing by the processor a plurality of online transac- 60 identified data objects by the batch process .
tion processes responsive to receiving the plurality of 5. The method of claim 4 , wherein the scheduling of the
online transaction processing requests ; batch process and the executing of the batch process , as

scheduling a batch process in which the processor is to scheduled , to asynchronously manipulate the data objects
asynchronously manipulate the data objects with comprises separately invoking the execute method to asyn
respect to the processor executing the plurality of 65 chronously manipulate each of the separate transaction
online transaction processes , responsive to receiving groups of the maximum number of the identified data
the batch processing request ; objects by the batch process .

50

10

US 10,698,769 B2
15 16

6. The method of claim 5 , further comprising : wherein sending , via the service bus , after executing the
posting into a first message queue the batch processing batch process , one of : a first message that the asynchronous

request in response to receiving the batch processing manipulation of the data objects by the batch process is
request to asynchronously manipulate the data objects ; complete , and a second message regarding changes to the

retrieving the batch processing request from the first 5 data objects as a result of execution of the batch process as
message queue ; scheduled , comprises invoking :

posting into a second message queue a respective a finish method that , after the start and execute methods
sequence number for each of the separate transaction have completed , sends one of : a first message that the
groups of the maximum number of the identified data asynchronous manipulation of the identified data
objects , responsive to retrieving the batch processing objects by the batch process is complete , and a second
request from the first message queue ; message regarding changes to the identified data

objects as a result of execution of the batch process as wherein invoking the start method that selects the separate scheduled . transaction groups of the maximum number of the 9. The computer readable media of claim 8 , wherein the identified data objects , comprises invoking the start 15 start method that identifies the data objects to be asynchro
method that selects the separate transaction groups of nously manipulated by the batch process further selects a
the maximum number of the identified data objects maximum number of the identified data objects , the asyn
based on the posted respective sequence numbers in the chronous manipulation of which is to be scheduled for
second message queue ; and uninterrupted execution by the batch process ; and

wherein separately invoking the execute method to asyn- 20 wherein the execute method that schedules and executes
chronously manipulate each of the separate transaction the asynchronous manipulation of the identified data
groups of the maximum number of the identified data objects , schedules and executes without interruption
objects comprises : the asynchronous manipulation of the maximum num
retrieving from the second message queue each respec ber of the identified data objects by the batch process .

tive sequence number for each of the separate trans- 25 10. The computer readable media of claim 9 , wherein the
action groups of the maximum number of the iden start method that selects the maximum number of data
tified data objects ; and , objects , the asynchronous manipulation of which is to be

invoking the execute method to asynchronously scheduled for uninterrupted execution by the batch process ,
manipulate a respective one of the separate transac further identifies separate transaction groups of the maxi
tions for the maximum number of the identified data 30 mum number of the identified data objects , the asynchro
objects , as identified by the retrieved respective nous manipulation of each separate transaction group to be
sequence number . scheduled for uninterrupted execution by the batch process ;

7. Non - transitory computer readable media having and
instructions stored thereon that , when executed by a proces wherein the execute method that schedules and executes
sor , cause an application executing in an on - demand com- 35 without interruption the asynchronous manipulation of
puting architecture to perform operations comprising : the maximum number of the identified data objects by

receiving from a plurality of users a plurality of online the batch process , executes without interruption the
transaction processing requests ; asynchronous manipulation of each of the separate

receiving a batch processing request from a user to transaction groups of the maximum number of the
manipulate a plurality of data objects ; identified data objects by the batch process .

executing by the processor a plurality of online transac 11. The computer readable media of claim 10 , wherein the
tion processes responsive to receiving the plurality of instructions that cause the scheduling of the batch process
online transaction processing requests ; and the executing of the batch process , as scheduled , to

scheduling a batch process in which the processor is to asynchronously manipulate the data objects comprises sepa
asynchronously manipulate the data objects with 45 rately invoking the execute method to asynchronously
respect to the processor executing the plurality of manipulate each of the separate transaction groups of the
online transaction processes , responsive to receiving maximum number of the identified data objects by the batch
the batch processing request ; process .

executing by the processor the batch process , as sched 12. The computer readable media of claim 11 , further
uled , to asynchronously manipulate the data objects ; 50 comprising instructions that cause the application executing
and in the on - demand computing architecture to perform opera

sending , via a service bus , after executing the batch tions comprising :
process , one of : a first message that the asynchronous posting into a first message queue the batch processing
manipulation of the data objects by the batch process is request in response to receiving the batch processing
complete , and a second message regarding changes to 55 request to asynchronously manipulate the data objects ;
the data objects as a result of execution of the batch retrieving the batch processing request from the first
process as scheduled . message queue ;

8. The computer readable media of claim 7 , wherein the posting into a second message queue a respective
instructions that cause the scheduling of the batch process sequence number for each of the separate transaction
and the executing of the batch process as scheduled to 60 groups of the maximum number of the identified data
asynchronously manipulate the data objects comprises objects , responsive to retrieving the batch processing
invoking : request from the first message queue ;

a start method that identifies the data objects to be wherein invoking the start method that selects the separate
asynchronously manipulated by the batch process ; transaction groups of the maximum number of the

an execute method that schedules and executes the asyn- 65 identified data objects , comprises invoking the start
chronous manipulation of the identified data objects by method that selects the separate transaction groups of
the batch process ; and the maximum number of the identified data objects

40

10

15

US 10,698,769 B2
17 18

based on the posted respective sequence numbers in the by the batch process further selects a maximum number of
second message queue ; and the identified data objects , the asynchronous manipulation of

wherein separately invoking the execute method to asyn which is to be scheduled for uninterrupted execution by the
chronously manipulate each of the separate transaction batch process ; and
groups of the maximum number of the identified data 5 wherein the execute method that schedules and executes objects comprises : the asynchronous manipulation of the identified data
retrieving from the second message queue each respec objects , schedules and executes without interruption tive sequence number for each of the separate trans the asynchronous manipulation of the maximum num action groups of the maximum number of the iden ber of the identified data objects by the batch process . tified data objects ; and ,
invoking the execute method to asynchronously 16. The system of claim 15 , wherein the start method that

selects the maximum number of data objects , the asynchro manipulate a respective one of the separate transac
tions for the maximum number of the identified data nous manipulation of which is to be scheduled for uninter
objects , as identified by the retrieved respective rupted execution by the batch process , further identifies

separate transaction groups sequence number . of the maximum number of the
13. A system to execute within an on - demand computing identified data objects , the asynchronous manipulation of

architecture , wherein the system comprises : each separate transaction group to be scheduled for unin
a processor and a memory to execute instructions at the terrupted execution by the batch process ; and

wherein the execute method that schedules and executes system ;
software instructions that , when executed by the proces- 20 without interruption the asynchronous manipulation of

the maximum number of the identified data objects by sor , cause an application executing in the on - demand
computing architecture to : the batch process , executes without interruption the
receive from a plurality of users a plurality of online asynchronous manipulation of each of the separate

transaction processing requests ; transaction groups of the maximum number of the
identified data objects by the batch process . receive a batch processing request from a user to 25

manipulate a plurality of data objects ; 17. The system of claim 16 , wherein the instructions that
execute by the processor a plurality of online transac cause the application to schedule the batch process and

tion processes responsive to receiving the plurality of execute of the batch process , as scheduled , to asynchro
online transaction processing requests ; nously manipulate the data objects comprises separately

schedule a batch process in which the processor is to 30 invoking the execute method to asynchronously manipulate
asynchronously manipulate the data objects with each of the separate transaction groups of the maximum

number of the identified data objects by the batch process . respect to the processor executing the plurality of
online transaction processes , responsive to receiving 18. The system of claim 17 , further comprising software
the batch processing request ; instructions that , when executed by the processor , cause the

execute by the processor the batch process , as sched- 35 application executing in the on - demand computing archi
tecture to : uled , to asynchronously manipulate the data objects ;

and post into a first message queue the batch processing
send , via a service bus , after executing the batch request in response to receiving the batch processing

process , one of : a first message that the asynchro request to asynchronously manipulate the data objects ;
nous manipulation of the data objects by the batch 40 retrieve the batch processing request from the first mes
process is complete , and a second message regarding sage queue ;

changes to the data objects as a result of execution of post into a second message queue a respective sequence
number for each of the separate transaction groups of the batch process as scheduled .

14. The system of claim 13 , wherein the software instruc the maximum number of the identified data objects ,
tions that cause the application to schedule the batch process 45 responsive to retrieving the batch processing request

from the first message queue ; and execute the batch process as scheduled to asynchro
nously manipulate the data objects comprises invoking : wherein invoking the start method that selects the separate

a start method that identifies the data objects to be transaction groups of the maximum number of the
asynchronously manipulated by the batch process ; identified data objects , comprises invoking the start

an execute method that schedules and executes the asyn- 50 method that selects the separate transaction groups of
chronous manipulation of the identified data objects by the maximum number of the identified data objects
the batch process ; and based on the posted respective sequence numbers in the

wherein to send , via the service bus , after executing the second message queue ; and
batch process , one of : a first message that the asynchronous wherein separately invoking the execute method to asyn
manipulation of the data objects by the batch process is 55 chronously manipulate each of the transaction separate
complete , and a second message regarding changes to the groups of the maximum number of the identified data
data objects as a result of execution of the batch process as objects comprises the system to :

retrieve from the second message queue each respec scheduled , comprises invoking : tive a finish method that , after the start and execute methods sequence number for each of the separate trans
action have completed , sends one of : a first message that the 60 of the maximum number of the iden groups
tified data objects ; and , asynchronous manipulation of the identified data

objects by the batch process is complete , and a second invoke the execute method to asynchronously manipu
message regarding changes to the identified data late a respective one of the separate transactions for

the maximum number of the identified data objects , objects as a result of execution of the batch process as as identified by the retrieved respective sequence scheduled . number . 15. The system of claim 14 , wherein the start method that
identifies the data objects to be asynchronously manipulated

65

