a2 United States Patent

US010698769B2

ao) Patent No.: US 10,698,769 B2

Yancey et al. 45) Date of Patent: *Jun. 30, 2020
(54) TECHNIQUES FOR IMPLEMENTING (52) US. CL
BATCH PROCESSING IN A DATABASE CPC GOG6F 11/1451 (2013.01); GO6F 16/2365
SYSTEM (2019.01); GO6F 16/2372 (2019.01); GO6F
16/273 (2019.01)
(71) Applicant: salesforce.com, inc., San Francisco, CA (58) Field of Classification Search
Us) CPCccue. GOG6F 11/1451; GO6F 16/2372; GOGF
. 16/2365; GO6F 16/273
(72) Inventors: iﬁsixgﬁ}i,;hs,agairgﬁacfcciSC’O?%A{US), See application file for complete search history.
(US); Andrew Waite, Novato, CA
(US); Craig Weissman, San Francisco, (56) References Cited
CA (US)
U.S. PATENT DOCUMENTS
(73) Assignee: siajlsesforce.com, inc., San Francisco, CA 5072370 A 12/1991 Durdik
Us) 5,577,188 A 11/1996 Zhu
. . . o . 5608872 A 3/1997 Schwartz et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 185 days. OTHER PUBLICATIONS
This patent is subject to a terminal dis-)))
claimer. [Online];[published on Apr. 22, 2008];[retrieved on Feb. 26, 2010];
retrieved from http://en.wikipedia.org/wiki/Flat-file-database.
(21) Appl. No.: 15/995,142 (Continued)
(22) Filed: Jun. 1, 2018
Primary Examiner — Jorge A Casanova
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Elliot, Ostrander &
US 2019/0026188 A1 Jan. 24, 2019 Preston, P.C.
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 15/056,764, filed on I accordance with embodiments, there are provided tech-
Feb..29, 20165 now .Pat.. No. 10,007,576, which is a niques for implementing batch processing in a multi-tenant
continuation of application No. 13/916,457, filed on gatabase system. These techniques for implementing batch
Jun. 12, 2013, now Pat. No. 9,275,098, which is a processing in a multi-tenant database system may enable
continuation of application No. 12/197,979, filed on embodiments to provide great flexibility to a tenant of the
Aug. 25, 2008, now Pat. No. 8,473,469. architecture to perform desired functions on content of the
database while allowing the owner of the architecture sched-
(1) Int. Cl. ule the processing of the functions on the content.
GO6F 11/14 (2006.01)
GO6F 16/23 (2019.01)
GOG6F 16/27 (2019.01) 18 Claims, 9 Drawing Sheets

500

/'SCQ

EXECUTE QUEUE

ENQUEUE IDENTIFL [
Q! IFIERS OF OBJECTS INTO AN INVOKE START METHOD ‘l

— 504
RETURN A QUERYLOCATOR OBJECT WITH IDENTIFIERS
OF THE FIRST BATCH OF THR OBJECTS [N EXECTUE

EUR
506

ENQUEUE REQUEST FOR BATCH
PROCESS IN REQUEST QUEUE

l 508

RUN QUERYMORE() METHOD TOQ
CONSTRUCT AN SOBIECT ARRAY

"ADDITIONAL
SUB GROUPS OF
OBIECTS
EXIST TO BE
EXECUTED
)

INVOKE FINISH METHOD

PASS SOBJECT ARRAY TO
EXECUTE METHOD

OBJECT WITH IDENTIFIERS OF AN

L

" S14
RETURN A QUERYLOCATOR

ADDITIONAL BATCH OF THE
OBJIE IN EXECTUE QUEUE

518

INVOKE EXECUTE METHOD
FOR THE ADDITIONAL

BATCH

516

US 10,698,769 B2
Page 2

(56)

5,649,104
5,715,450
5,761,419
5,819,038
5,821,937
5,831,610
5,873,096
5,918,159
5,950,190
5,963,953
6,092,083
6,112,198
6,169,534
6,178,425
6,189,011
6,216,135
6,233,617
6,266,669
6,295,530
6,324,568
6,324,693
6,336,137
D454,139
6,367,077
6,393,605
6,405,220
6,434,550
6,438,562
6,446,089
6,535,909
6,549,908
6,553,563
6,560,461
6,574,635
6,577,726
6,601,087
6,604,117
6,604,128
6,609,150
6,621,834
6,654,032
6,665,648
6,665,655
6,684,438
6,711,565
6,721,765
6,724,399
6,728,702
6,728,960
6,732,095
6,732,100
6,732,111
6,754,681
6,763,351
6,763,501
6,768,904
6,782,383
6,804,330
6,826,565
6,826,582
6,826,745
6,829,655
6,839,608
6,842,748
6,850,895
6,850,949
6,947,927
7,174,483
7,177,866

7,206,805
7,206,807
7,209,929
7,249,118
7,305,577

References Cited

U.S. PATENT DOCUMENTS

> > 0 0 e >

7/1997
2/1998
6/1998
10/1998
10/1998
11/1998
2/1999
6/1999
9/1999
10/1999
7/2000
8/2000
1/2001
1/2001
2/2001
4/2001
5/2001
7/2001
9/2001
11/2001
11/2001
1/2002
3/2002
4/2002
5/2002
6/2002
8/2002
8/2002
9/2002
3/2003
4/2003
4/2003
5/2003
6/2003
6/2003
7/2003
8/2003
8/2003
8/2003
9/2003
11/2003
12/2003
12/2003
2/2004
3/2004
4/2004
4/2004
4/2004
4/2004
5/2004
5/2004
5/2004
6/2004
7/2004
7/2004
7/2004
8/2004
10/2004
11/2004
11/2004
11/2004
12/2004
1/2005
1/2005
2/2005
2/2005
9/2005
2/2007
2/2007

4/2007
4/2007
4/2007
7/2007
12/2007

Carleton et al.
Ambrose et al.
Schwartz et al.
Carleton et al.
Tonelli et al.
Tonelli et al.
Lim et al.
Fomukong et al.
Yeager et al.
Cram et al.
Brodersen et al.
Lohman et al.
Raffel et al.
Brodersen et al.
Lim et al.
Brodersen et al.
Rothwein et al.
Brodersen et al.
Ritchie et al.
Diec

Brodersen et al.
Lee et al.
Feldcamp
Brodersen et al.
Loomans
Brodersen et al.
Warner et al.
Gupta et al.
Brodersen et al.
Rust

Loomans
Ambrose et al.
Fomukong et al.
Stauber et al.
Huang et al.
Zhu et al.

Lim et al.

Diec

Lee et al.
Scherpbier et al.
Zhu et al.
Brodersen et al.
Warner et al.
Brodersen et al.

Subramaniam et al.

Ghosh et al.
Katchour et al.

Subramaniam et al.

Loomans
Warshaysky et al.
Brodersen et al.
Brodersen et al.
Brodersen et al.

Subramaniam et al.

Zhu et al.
Kim

Subramaniam et al.

Jones et al.
Ritchie et al.
Chatterjee et al.
Coker et al.
Huang et al.
Sarabi et al.
Warner et al.
Brodersen et al.
Warner et al.
Chaudhuri et al.
Becher et al.
Holenstein

McLaughlin, Jr.
Cheenath
Dominguez et al.
Sandler et al.
Zhang

7,340,411 B2 3/2008 Cook

7,350,237 B2 3/2008 Vogel et al.
7,373,364 Bl 5/2008 Chapman
7.448,079 B2 11/2008 Tremain
7.484,219 B2 1/2009 Mitra

7,529,728 B2 5/2009 Weissman et al.
7,580,975 B2 8/2009 Cheenath
7,599,953 B2 10/2009 Galindo-Legaria et al.
7,620,655 B2 11/2009 Larsson et al.
7,661,027 B2 2/2010 Langen et al.
7,693,820 B2 4/2010 Larson et al.
7,734,608 B2 6/2010 Fell et al.
7,769,825 B2 8/2010 Karakashian et al.
7,774,366 B2 8/2010 Fisher et al.
7,779,039 B2 8/2010 Weissman et al.

7,814,052 B2 10/2010 Bezar et al.
7,814,470 B2 10/2010 Mamou et al.
7,827,138 B2 11/2010 Salmon et al.

8,244,759 B2 8/2012 Brooks et al.
8,296,321 B2 10/2012 Durdik et al.
8,443,366 Bl 5/2013 Yancey
8,473,518 Bl 6/2013 Yancey et al.
8,776,067 Bl 7/2014 Yancey
9,361,366 Bl 6/2016 Yancey et al.
2001/0044791 Al 11/2001 Richter et al.
2002/0022986 Al 2/2002 Coker et al.
2002/0029161 Al 3/2002 Brodersen et al.
2002/0029376 Al 3/2002 Ambrose et al.
2002/0035577 Al 3/2002 Brodersen et al.
2002/0042264 Al 4/2002 Kim
2002/0042843 Al 4/2002 Diec
2002/0072951 Al 6/2002 Lee et al.
2004/0111410 Al 6/2004 Burgoon et al.
2005/0262188 Al 11/2005 Mamou et al.
2011/0078213 Al 3/2011 Bezar et al.

OTHER PUBLICATIONS

[Online];[published on Apr. 25, 2008];[retrieved on Feb. 26, 2010];
retrieved from http://en.wikipedia.org/wiki/Relational-database.
[Online];[published on Oct. 17, 2008];[retrieved on Feb. 26, 2010];
retrieved from http://en.wikipedia.org/wiki/Push-technology.

Final Office Action for U.S. Appl. No. 12/197,979, dated Apr. 21,
2011, 14 pages.

International Search Report and Written Opinion for International
Patent Application No. PCT/US2010/050021, dated Dec. 28, 2018,
10 pages.

Lee, et al., “Composition of executable business process models by
combining business rules and process flows,” Expert Systems With
Application, Oxford, GB, vol. 33, No. 1, Dec. 22, 2006, pp.
221-229.

Mietzer, et al., “Combining Different Multi-tenancy Patterns in
Service Oriented Applications,” IEE International Enterprise Dis-
tributed Object Computing Conference, NJ, USA, Sep. 1, 2009, pp.
131-140.

Non-Final Office Action for U.S. Appl. No. 12/197,979, dated Dec.
6, 2010, 13 pages.

Notice of Allowance for U.S. Appl. No. 12/197,979, dated Apr. 24,
2013, 9 pages.

Salesforce, ATAX Toolkit Developer’s Guide, https://resources.docs.
salesforce.com/sfdc/pdf/apex_ajax.pdf?major=146, salesforce.com,
Apr. 2007, pp. 1-40.

Salesforce, Apex Web Services API Developer’s Guide, https://
resources.docs.salesforce.com/sfdc/pdf/apex_api.pdf?major=146,
salesforce.com, Apr. 2007, pp. 1-423.

Wang, et al., “Integrated Constraint Violation Handling for Dynamic
Services Composition,” IEE International Conference on Services
Computing, NJ, USA, Sep. 21, 2009, pp. 168-175.

Wang, et al.,“A Study and Performance Evaluation of the Multi-
Tenant Data Tier Design Patterns for Service Oriented Computing,”
IEE International Conference on E-Business Engineering, NJ, USA,
Oct. 22, 2008, pp. 94-101.

US 10,698,769 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS
Wermelinger, et al., “Using coordination contracts for flexible
adaptation to changing business rules,” Proceedings of the Sixth

International Workshop on Software Evolution, NJ, USA, Sep. 1,
2003, pp. 115-120.

* cited by examiner

U.S. Patent Jun. 30, 2020 Sheet 1 of 9 US 10,698,769 B2

14

(’“"’12

FIG. 1

10

21 %

U.S. Patent Jun. 30, 2020 Sheet 2 of 9 US 10,698,769 B2

68

5
: x - /“71

32 J—

72"’"“*\\

FIG. 2

U.S. Patent Jun. 30, 2020 Sheet 3 of 9 US 10,698,769 B2

r

81

82

83

FIG. 3

U.S. Patent

Jun. 30, 2020

2 {/\ 110
/ 81
112

e

83

2~

Sheet 4 of 9

{

US 10,698,769 B2

114

/—Q\HS

FIG. 4

w

W

T

e 117

7
V227

M"‘\\Hﬁ?

121

U.S. Patent Jun. 30, 2020 Sheet 5 of 9 US 10,698,769 B2

500 502
a e

ENQUEUE IDENTIFIERS OF OBIECTS INTO AN

. ‘ e INVOKE START METHOD
EXECUTE QUEUE

(‘,-"'m 5{}4 é
RETURN A QUERYLOCATOR OBIECT WITH IDENTIFIERS
{3F THE FIRST BATCH OF THE OBJECTS IN EXECTUE
QUEUE
oT808

£
ENQUEUE REQUEST FOR BATCH
PROCESS IN REQUESY QUEUE

i ff,ﬂ*‘”“‘“‘ 508

RUN QUERYMORE() METHOD TO
CONSTRUCT AN SOBIECT ARRAY

i ;s

PASS SOBJECT ARRAY TO
EXECUTE METHOD

K]

SDONL S 514
p ADD{TS}?}%@ , RETURN A QUERYLOCATOR
SUB GR ~ e L T - ,
ORIBETS e _| OBJECT \;gm{ IDENTIFIERS OF AN
P ADDITIONAL BATCH OF THE

. EXISTTOBE
S EXECUTED .~ OBIECTS IN EXECTUE QUEUE

7

~ 518
/

i

INVOKE EXECUTE METHQD
FOR THE ARDITIONAL
BATCH

wepd INVOKE FINISH METHOD |7 O
516

FIG. 5

U.S. Patent Jun. 30, 2020 Sheet 6 of 9 US 10,698,769 B2

2 110
{fﬂhl;>-275
/s
L

o 122
282 120
P %_\’
7/
28 = .
NN ez~
- 381 126 133 132
S N i
137 ANV R
383 . 139 ERRRRAN 136
~ 777 N
{ w141 m\ﬁ\\\\\‘@ 138
128 - = N
DR 7o/ 140
\’///f//ff_\\
142

FIG. &

U.S. Patent Jun. 30, 2020 Sheet 7 of 9 US 10,698,769 B2

(A \ {/' 614

[|
/40 A x
4) /f' i8

616
, - 6?6 PROCESSOR -
APPLICATION SUB SYSTEM PROCESS
PLATFORM SPACE
.
22 | NETWORK
INTERFACE

Network

A~ s 602 602
yae . e
USER USER USER
SYSTEM SYSTEM SYSTEM

F1G. 7

U.S. Patent Jun. 30, 2020 Sheet 8 of 9 US 10,698,769 B2

02
624 /“‘6 /622
m’h\.\
5 1

INPUT MEMORY |}—628
SYSTEM SYSTEM

620] »

T OPERATING [l 630

PROCESSOR SYSTEM/
SYSTEM

626%\\ HTTP | 632

CLIEN

OUTPUT
SYSTEM

FIG. 8

U.S. Patent Jun. 30, 2020 Sheet 9 of 9 US 10,698,769 B2

oo,
.
242
é 42 ? » 21
18
814
|
7 {
APPLICATION s \
A SETUP TENANT MANAGEMENT SYSTEM
11 MECHANISM PROCESS PROCESS > 800
S0 111 save ;
o ROUTINES
/ TENANT 1 TENANT 2 TENANT N
308 | 1 FL/SOQL PROCESS PROCESS PROCESS
/ 50 e 52 s _J
806 API Ul
T~ N 504 s02 ./ =T
o g
ey, oot -
n~, oo
APPL. |~ 8124 APPL. B12y
SERVER sees SERVER st

Fi1G. 9

US 10,698,769 B2

1

TECHNIQUES FOR IMPLEMENTING
BATCH PROCESSING IN A DATABASE
SYSTEM

CLAIM OF PRIORITY

This continuation application is related to, and claims
priority to, the utility patent application entitled “TECH-
NIQUES FOR IMPLEMENTING BATCH PROCESSING
IN' A DATABASE SYSTEM,” filed Feb. 29, 2016, having
application number of Ser. No. 15/056,764; and this con-
tinuation application is related to, and claims priority to, the
utility patent application entitled “TECHNIQUES FOR
IMPLEMENTING BATCH PROCESSING IN A DATA-
BASE SYSTEM,” filed Jun. 12, 2013, having application
number of Ser. No. 13/916,457; and this continuation appli-
cation is related to, and claims priority to, the utility patent
application entitled “TECHNIQUES FOR IMPLEMENT-
ING BATCH PROCESSING IN A MULTI-TENANT ON-
DEMAND DATABASE SYSTEM,” filed Aug. 25, 2008,
having application Ser. No. 12/197,979, the entire contents
of all of which are incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

The current invention relates generally to databases. More
particularly the current invention relates to techniques for
implementing batch processes on multi-tenant databases.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also be inventions.

In conventional database systems, users access their data
resources in one logical database. A user of such a conven-
tional system typically retrieves data from and stores data on
the system using the user’s own systems. A user system
might remotely access one of a plurality of server systems
that might in turn access the database system. Data retrieval
from the system might include the issuance of a query from
the user system to the database system. The database system
might process the request for information received in the
query and send to the user system information relevant to the
request. The efficient retrieval of accurate information and
subsequent delivery of this information to the user system
has been and continues to be a goal of administrators of
database systems.

Unfortunately, conventional database approaches might
become inefficient if, for example, updating applications in
the presence of complex data structures. A database system

20

25

35

40

45

50

55

2

may also process a query relatively slowly if, for example,
a relatively large number of users substantially concurrently
access the database system.

Accordingly, it is desirable to provide techniques enabling
an owner of the database system to improve the ease of use
of the database system.

BRIEF SUMMARY

In accordance with embodiments, there are provided
techniques for implementing batch processing in a multi-
tenant on-demand database system. These techniques for
implementing batch processing in a multi-tenant on-demand
database system can enable embodiments to ease the burden
of manipulating data when updating the database. It may
also reduce the computational load on the database by
holding execution of batch processes until a desired time.

In an embodiment and by way of example, a method
implementing batch processing in a multi-tenant on-demand
database system includes operating on instructions from a
tenant to have the database system perform processes on a
subset of content stored on the database system. Identified
among the instructions is an object associated with a class to
execute a batch code interface that invokes multiple methods
to schedule and execute functions upon the subset. The batch
code interface is executed asynchronously with operations
of the database system by invoking the multiple methods,
thereby providing a batch processing facility to the tenant.

The present invention is described with reference to an
embodiment in which an apparatus implements a batch
process in a multi-tenant on demand architecture. Although
the invention is discussed with respect to supporting mul-
tiple tenants; the present invention is not limited to multi-
tenant database systems. Embodiments may be practiced
using other database architectures, i.e., ORACLE®, DB2®
by IBM and the like without departing from the scope of the
embodiments claimed.

Any of the above embodiments may be used alone or
together with one another in any combination. Inventions
encompassed within this specification may also include
embodiments that are only partially mentioned or alluded to
or are not mentioned or alluded to at all in this brief
summary or in the abstract. Although various embodiments
of the invention may have been motivated by various
deficiencies with the prior art, which may be discussed or
alluded to in one or more places in the specification, the
embodiments of the invention do not necessarily address any
of these deficiencies. In other words, different embodiments
of the invention may address different deficiencies that may
be discussed in the specification. Some embodiments may
only partially address some deficiencies or just one defi-
ciency that may be discussed in the specification, and some
embodiments may not address any of these deficiencies.

BRIEF SUMMARY OF THE DRAWINGS

In the following drawings like reference numbers are used
to refer to like elements. Although the following figures
depict various examples of the invention, the invention is not
limited to the examples depicted in the figures.

FIG. 1 illustrates a representative architecture for batch
processing in a multi-tenant database system in accordance
with one embodiment of the present invention;

FIG. 2 is a simplified schematic view showing relation-
ships between tenant information and objects stored on a
database shown in FIG. 1 in accordance with the present
invention;

US 10,698,769 B2

3

FIG. 3 is a plan view showing the relation between
methods of a batch code interface and objects in a database
shown in FIG. 1;

FIG. 4 is a simplified plan view showing a single batch
code interface and the sequence in which a method associ-
ated therewith is called for different sub-groups of objects;

FIG. 5 is an operational flow diagram illustrating a high
level overview of a method for batch processing in a
multi-tenant database system in accordance with one
embodiment;

FIG. 6 is simplified plan view showing multiple batch
code interfaces and the sequence in which requests to invoke
methods associated with the multiple batch code interfaces
occurs in accordance with an embodiment of the present
invention;

FIG. 7 illustrates a block diagram of an example of a
representative system in which the architecture, shown in
FIG. 1. may be practiced;

FIG. 8 is a detailed block diagram of a user system, shown
in FIG. 7; and

FIG. 9 illustrates a block diagram of an embodiment of
elements of FIG. 7 and various possible interconnections
between these elements.

DETAILED DESCRIPTION

Systems and methods are provided to implement batch
processing in a multi-tenant on-demand database system. As
used herein, the term multi-tenant database system (MTS)
refers to those systems in which various elements of hard-
ware and software of the database system may be shared by
one or more users. For example, a given application server
may simultaneously process requests for a great number of
customers, and a given database table may store rows for a
potentially much greater number of customers.

FIG. 1 illustrates a database architecture 10 that includes
server side facilities 12 and client side facilities 14 in data
communication over a network 16. Server side facilities 12
includes processor sub-system 18, memory space 20, in data
communication therewith, and network interface resources
22 in data communication with both memory space 20 and
processor sub-system 18. Processor sub-system 18 may be
any known processor sub-system in the art, e.g., the CORE
DUO® or the CORE 2 DUO® from Intel Corporation of
Santa Clara, Calif. Memory space 20 includes drive storage
21, shown as one or more hard drives 23 and 24, as well as
data and instruction registers, shown as 28, and volatile and
non-volatile memory shown as 30. Data communication
network 16 may be any network or combination of networks
of devices that communicate with one another. Network 16
can be any one or any combination of a LAN (local area
network), WAN (wide area network), telephone network,
wireless network, point-to-point network, star network,
token ring network, hub network, or other appropriate
configuration. As the most common type of computer net-
work in current use is a TCP/IP (Transter Control Protocol
and Internet Protocol) network, such as the global inter-
network of networks often referred to as the “Internet” with
a capital “I,” that network will be used in many of the
examples herein. However, it should be understood that the
networks that the present invention might use are not so
limited, although TCP/IP is a frequently implemented pro-
tocol.

Server side facilities 12 access to a database 32 by
multiple users 25-27 of client side facilities 14 over data
communication network 16. To that end, network interface
resources 22 include a plurality of virtual portals 33-35.
Each virtual portal 33-35 provides an “instance” of a portal
user interface coupled to allow access to database 32.

10

15

20

25

35

40

45

50

4

Typically, tenants obtain rights to store information, referred
to as tenant information 38 and 40, on database 32 and make
the same accessible to one or more users 25-27 to whom the
tenant provides authorization. This is typically achieved by
rental agreements between the tenant and an owner/provider
of architecture 10. In this manner, architecture 10 provides
an on-demand database service to users 25-27 that are not
necessarily concerned with building and/or maintaining the
database system; rather, these functions are addressed
between the tenant and the owner/provider.

With architecture 10, multiple users 25-27 may access
database 32 through a common network address, in this
example a universal resource locator (URL). In response,
webpages and other content may be provided to users 25-27
over network 16. The resources of database 32 that users
25-27 may access can be different, depending on user’s
25-27 security or permission level and/or tenant association.
As a result, data structures included in tenant information is
managed so as to be allocated at the tenant level, while other
data structures might be managed at the user level. Because
architecture 10 supports multiple tenants including possible
competitors, security protocols 42 and other system software
44, stored for example on hard drive 26, maintain applica-
tions and applications’ use to only those users 25-27 with
proper access rights. Also, because many tenants may desire
access to architecture 10 rather than maintain their own
system, redundancy, up-time, and backup are additional
functions that may be implemented in architecture 10. In
addition to user-specific data and tenant specific data, server
side facilities 12 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

For example, in certain embodiments architectures 10
may allow users 25-27 associated with the tenant, referred to
as tenant users, access to a sub-portion of the content of the
database information that the tenant may be allowed to
access. The sub-portion that any one of users 25-27 may
access may be the same as, or different from, the sub-portion
that the remaining users 25-27 may access. Users 25-27 not
associated with a tenant would not be allowed access to
information 38 and 40. For example, assume users 25 and 26
are associated with the tenant corresponding to tenant infor-
mation 38 and not associated with the tenant corresponding
to tenant information 40. Users 25 and 26 would not be
allowed access to tenant information 40 and would be
allowed access to tenant information 38 or a sub-portion
thereof. In the present example, user 25 may be allowed
access to a first portion of tenant information 38 and user 26
may be allowed access to a second portion of tenant infor-
mation 38, which is mutually exclusive. Similarly, were user
27 associated with the tenant corresponding to tenant infor-
mation 40 and not the tenant corresponding to tenant infor-
mation 38, user 27 would be allowed to access tenant
information 40, or a portion thereof, and not tenant infor-
mation 38. It is possible, however, that one of users 25-27
are associated to the tenants corresponding to both sets of
tenant information 38 and 40.

Virtual portals 33, 34 and 35 facilitate providing resources
of database 32 on behalf of a tenant to users 25-27 associated
with the tenant. Each user 25-27 logs into one of virtual
portals 33, 34 and 35 to access resources of database 32
through a unique uniform resource locator (URL) or other
type of address. Based on the URL and other identifying
information associated with users 25-27, architecture 10
may determine the resources of database 32 users 25-27 may
access. For example, user 25 communicates with database

US 10,698,769 B2

5

through virtual portal 33, user 26 communicates with data-
base 32 through virtual portal 34, and user 27 communicates
with database through virtual portal 35. It is possible,
however, that all users 25-27 may use a common portal, as
well. To that end, users 25-27 desiring to access resources of
database 32 employ virtual portals 33, 34 and 35 to validate
against the information stored on architecture 10, corre-
sponding to the user 25-27 requesting access to a sub-
portion of content on database 32.

The result of the communications between users 25-27
and server side facilities 12 results in multiple processes 50,
52 and 54 being executed by processor sub-system 18. Thus,
it is desired that processor sub-system 18 be capable of
providing uninterrupted interaction with users 25-27 to
provide online transaction processing (OLTP) to each of
users 25-27. As a result, each of processes 50, 52 and 54 may
include one or more threads of execution. This is shown as
threads 56 associated with process 50, threads 58 associated
with process 52 and threads 60 associated with process 54.

Referring to both FIGS. 1 and 2, it is desired that tenants
and/or users 25-27 associated therewith have the ability to
easily and reliably manipulate large volumes of data while
avoiding consuming excessive resources of processor sub-
system J 8. The challenge presented by these seemingly
contravening requirements is realized by realizing the nature
of the use of architecture 10 by tenants. An example of a
tenant may be a company that employs a sales force where
each salesperson uses server side facilities 12 to manage
their sales process, such as by a management representative
of the tenant, e.g., Vice President of Sales, the Chief Execu-
tive Officer of the tenant and the like. In this fashion,
architecture facilitates Customer Relations Management
(CRM). Thus, one or more of users 25-27 may be a
salesperson that maintains information applicable to that
salesperson’s sales process and may be different from infor-
mation related to other salespersons’ sales process. Although
the sales force accessing database 32 is represented by three
users 25-27, in practice hundreds of salespersons would
access database 32. Moreover, sales process data of each
sales person may include thousands of files. An example of
sales process data may include, without limitation, contact
data, leads data, customer follow-up data, performance data,
goals and progress data applicable to that salesperson’s
personal sales process.

Moreover, to facilitate management of this information,
the tenant associated with the salespersons may restrict each
of the salespersons to access specific sales process informa-
tion. However, a tenant, or representative thereof based upon
a contractual relationship between the salesperson and the
representative, may be able to view all sale process infor-
mation for the salespersons associated with the tenant. An
example of a contractual relationship is a managerial/super-
visory relationship. The managerial relationship between the
salesperson and the tenant representative may provide the
representative with a higher permission level when com-
pared to the permission level of the salesperson, because,
inter alia, the tenant representative may be a manager/
supervisor of the salesperson. Another contractual relation-
ship may be the principle agent relationship wherein the
tenant representative has no day-to-day management
responsibility of the salesperson. Nonetheless, as the repre-
sentative of the principle, e.g., the tenant, the representative
may view all of the salesperson information, because the
salespersons may be deemed to be merely agents of the
tenant.

Tenant information 38 and 40 may be viewed as a
collection of objects, such as a set 61-66 of logical tables,

20

40

45

55

65

6

containing data fitted into predefined categories. This is
shown as data objects 67-73 with respect to tenant set 63. A
“table” is one representation of a data object, and may be
used herein to simplify the conceptual description of objects
and custom objects according to the present invention. It
should be understood that “table” and “object” may be used
interchangeably herein. Thus, it is realized that large
amounts of objects having complex interrelationships may
be subject to a request for manipulation, for example, a
managerial relationship between a salesperson or thousands
of salespersons, may change. To implement this change may
require a substantial percentage of the computational
resources of the processor sub-system 18. Thus, manipulat-
ing such a large quantity of data objects 67-73 may interfere
with the computing experience of users 25-27 taking advan-
tage of OLTP processes 50, 52, and 54.

Referring to both FIGS. 1 and 3, one embodiment of the
current invention facilitates manipulation of large quantities
of data objects in response to receiving request from a tenant
and/or users 25-27 while reducing the risk of interference, or
perceived interference, with OLTP processes 50, 52 and 54.
This is achieved by providing system software 44 with a
batch engine 75 that carries-out requests for manipulation of
a large number of objects 67-73 asynchronously with respect
to OLTP processes 50, 52 and 54. Batch engine 75 facilitates
scheduling execution of functions on large quantities of data
at the request of a tenant and/or user 25-27, referred to as a
batch request. To that end, batch engine 75 includes a batch
code interface 76 that is implemented when a class 77 of one
or more special objects, shown as 78-80, is included in
instructions from a tenant and/or a user 25-27. The instruc-
tions are typically included in tenant information 38 and 40
or may be received, in situ, during one of OLTP processes
50, 52 and 54. Batchable code interface 76 invokes multiple
methods 81-83 that function to schedule and execute batch
requests. Pseudo code for an example of batchable code
interface 76 written using the Apex language available from
Salesforce.com, inc. of San Francisco, Calif. is as follows:

/**

* Returns a QueryLocator object, which is a handle to the

full result set

* 10 be processed.

*/

Database. Query Locator start(Database.Batchablelnput

stateVar);

/**

* Each iteration over the Query Locator object returned in

the start() method

* will produce a batch of SObject records to process. This

method will be

* called for every batch, and will perform whatever work

is defined by the

* Apex developer.

*/

void executeBatch(Database.Batchablelnput state Var,

SObject| | scope);

/**

* After completing all invocations of executeBatch, which

means all data

* identified in the startO method has been processed, this

method will be

* called and allows a developer to implement their own

cleanup, notify,

* etc. behavior.

*/

void finish(Database.BatchableInput state Var).

US 10,698,769 B2

7

First method 81 is the Database.QuerylLocator start
(START) method that identifies the full set 84 of objects
85-91 that is the subject of the batch request. Second method
82 is the void executeBatch (EXECUTE) method that
executes the manipulation defined by a tenant and or user
25-27. Third method 83 is the void finish (FINISH) method
that is invoked after START method 81 and EXECUTE
method 82 have completed. The result that occur in response
to invocation of FINISH method 83 is defined by tenants
and/or users 25-27 and may include sending notifications to
users 25-27 that the batch process is complete and/or further
details concerning the changes to tenant information 38 and
40 as a result of the batch process.

To ensure that a single batch process does not consume
too great a quantity of resources of processor sub-subsystem
18, START method 81 calls a QueryLocator object 92 that
points to a maximum number of objects that may be sched-
uled for uninterrupted processing. Specifically, the Query-
Locator object 92 represents a server side database cursor
persisted on architecture 10. As a result, Query Locator
object 92 will retrieve a predetermined maximum number of
objects 85-91 from set 84. As shown QueryLocator object 92
retrieves four different sub-groups 100, 101, 102 and 103, of
objects 85-91. Sub-group 100 includes objects 85 and 86;
sub-group 101 includes objects 87 and 88; sub-group 102
includes objects 89 and 90; and sub-group 103 includes
object 91. As a result, EXECUTE method 82 is invoked four
times by process 94, each time operating on a different one
of sub-groups 100-103. In operation, the total number of
objects in a result set that is identified by START method 81
may be in the millions. Therefore, the predetermined num-
ber retried by Query Locator object 92 is a quantity defined
by the owner of architecture 10 and is dependent upon
several technological and business factors, such as the
processing capacity of architecture 10 and/or the business
arrangements with tenants and/or a priori information con-
cerning the consumption history of the resources of archi-
tecture 10. For example, an instance of batch engine 44 is a
process 94 executing in processor sub-system 18, which,
inter alia, which monitors the operation of architecture 10 to
determine an appropriate time for invoking methods 81-83.
This may be determined by dynamically monitoring other
processes executing in processor sub-system 18, such as
OLTP process 50, 52 and 54 and/or on a particular time
during which consumption of architecture has historically
been reduced, e.g., on Christmas day, Sundays and the like.
Additionally, process 94 monitors the number of batch
requests that architecture has scheduled for different tenants
and determines the sequence in which to execute the
EXECUTE method 82.

Referring to FIGS. 1, 3, 4 and 5, in operation, upon
determining that a batch request is present, process 94
enqueues, at step 500, the batch request in a queue, referred
to as a request queue 110, associated with memory space 20,
i.e., in registers 28. As shown, request 112 corresponds to
batch code interface 76. To facilitate invocation of
EXECUTE method 82, process 94 enqueues an identifier of
one of sub-groups 100-103 of objects 85-91 that will be the
subject of EXECUTE method 82 in a second queue, referred
to as execute queue 114, associated with memory space 20,
i.e., in registers 28. Specifically, upon dequeue of request
112, process 94 instantiates the object associated therewith,
for example one of objects 78-80 and invokes START
method 81 at step 502. START method 81 returns, at step
504, QueryLocator object 92 that contains the identifier to
the first batch of the result set of objects, for example
sub-group 100 containing objects 85 and 86. As a result,

10

15

20

25

30

35

40

45

50

55

60

65

8

process 94 enqueues execute queue 114 with the identifiers
of sub-group 100 for example as identifier 115 at step 506.
Upon dequeue of identifier 115, a queryMore() method is
run by process 94 that returns an SObject array, which is an
array representation of an instance of an entity or a row in
32. SObject array contains the objects that are to be the
subject of EXECUTE method 82 at step 508. At step 510,
process 94 then passes the SObject array to execute method
82 to perform the manipulation defined by method 82. At
step 512 query More method determines whether additional
objects 85-91 of set 84 remain to be subjected to EXECUTE
method 82. If so, then process 94 enqueues execute queue
114 with the identifiers 117 for the next sub-group 101 of
objects 87 and 88, at step 514. Following step 514,
EXECUTE method 82 is invoked for the additional objects
85-91 of set 84; thereafter, step 512 occurs. Steps 514 and
512 repeat for the remaining sub-groups 102 and 103 having
identifiers 119 and 121, respectfully. Finish method 83 is
invoked at step 516 once it is determined at step 512 that
there are no additional sub-groups of object that are to be
subjected to EXECUTE method 82. It should be noted that
process 94 will enqueue only a single sub-group in execute
queue 114 for a given request 112. In this manner, when
multiple batch code interfaces are queued in request queue
110 no one batch code interface prevented from having
methods associated therewith invoked for an unreasonable
length of time/process cycles.

Referring to FIGS. 1 and 6, database 32 is shown having
four different batch code interfaces 276, 376, 476 and 576.
For purposes of the present example batch code interfaces
276 and 376 correspond to a common tenant and batch code
interfaces 476 and 576 correspond to two different tenants,
which are also different from the tenant corresponding to
batch code interfaces 276 and 376. Batch code interface 276
has a START method 281, an EXECUTE method 282 and a
FINISH method 283; batch code interface 376 has a START
method 381, an EXECUTE method 382 and a FINISH
method 383; batch code interface 476 has a START method
481, an EXECUTE method 482 and a FINISH method 483;
and batch code interface 576 has a START method 581, an
EXECUTE method 582 and a FINISH method 583. To
schedule each of batch code interface 276, 376, 476 and 576
for execution, process 94 places the requests in request
queue 110. As shown, request 122 corresponds to batch code
interface 276, request 124 corresponds to batch code inter-
face 376, request 126 corresponds to batch code interface
476 and request 128 corresponds to batch code interface
576. To facilitate invocation of the EXECUTE methods 282,
382, 482 and 582, process 94 enqueues an identifier of one
of several sub-groups (not shown) of objects (not shown)
that will be the subject of one of EXECUTE methods 282,
382, 482 and 582 in EXECUTE queue 120. As shown,
EXECUTE queue 120 includes identifiers 130-143. Identi-
fiers 130, 134, 138, 140, 142 and 143 identify objects that
are the subject of EXECUTE method 282. Identifiers 131,
135, 139 and 141 identify objects that are the subject of
EXECUTE method 382. Identifiers 123 and 127 identify
objects that are the subject of EXECUTE method 482.
Identifiers 133 and 137 identify objects that are the subject
of EXECUTE method 582.

With request 122 being first in request queue 110, start
method 281 occurs before any of the remaining methods
282-283, 381-383, 481-483 and 581-583. However, this
does not mean that request 122 will be completed before any
of the remaining requests, 124, 126 and 128. Rather, as
shown, multiple invocations of each of EXECUTE methods
282, 382, 482 and 582 occur in response requests 122, 124,

US 10,698,769 B2

9

126 and 128, respectively. The invocation of any one of
EXECUTE methods 282, 382, 482 and 582 is interleaved
with the remaining EXECUTE methods 282, 382, 482 and
582. This results in at least one of EXECUTE methods 282,
382, 482 and 582 being invoked before completion of at
least one request 122, 124, 126 and 128, in the present
example. In this manner, no one request 122, 124, 126 and
128 prevents any of the remaining requests 122, 124, 126
and 128 to be subjected to an unreasonable amount of
latency before execution of the methods associated there-
with occurs. As shown, method 282 is invoked to operate
upon a first sub-group of objects associated with identifier
130. However, before method 282 operates on a second
sub-group of objects associated with identifier 134, method
382 is invoked to operate on a sub-group of objects asso-
ciated with identifier 131, method 482 is invoked to operate
on a sub-group of objects associated with identifier 132 and
method 582 is invoked to operate on a sub-group of objects
associated with identifier 133. Thus, process 94 interleaves
invocation of the various methods 282, 382, 482 and 582
associated with requests 122, 124, 126 and 128, respectively.

Referring to both FIGS. 1 and 7 a block diagram of a
server system 600 employed to implement architecture 10 is
shown as including multiple user systems 602 included in
client side facilities 14 and in data communication with
server system 600 over network 16. Server system 600
includes a processor sub-system 18, application platform
606, network interface 22, and drive storage 31 that includes
database 32. In addition server system 600 includes program
code 614, and process space 616. Program code 614 may
include, among other code, code to facilitate a tenant to
control the look-and-feel of the experience users 25-27 have
when accessing database 32. Process space 616 facilitates
execution of MTS system processes and tenant-specific
processes, such as running applications as part of an appli-
cation hosting service. Additional processes that may
execute on server system 600 include database indexing
processes. In other embodiments, server system 600 may not
have all of the components listed and/or may have other
elements instead of, or in addition to, those listed above.
Server system 600, and additional instances of an MTS,
where more than one is present, and all components thereof
may be operator configurable using applications including
computer code to run using a central processing unit such as
processor sub-system 18.

Application platform 606 may be a framework that allows
the applications of architecture 10 to run, such as the
hardware and/or software, e.g., the operating system. In an
embodiment, application platform 606 may enable creation,
managing and executing one or more applications developed
by the owner/provider of architecture 10, users 25-27
accessing architecture 10 via user systems 602, or third party
application developers accessing architecture 10 via user
systems 602.

In one embodiment, server system 600 implements a
web-based customer relationship management (CRM) sys-
tem. For example, in one embodiment, server system 600
includes application servers configured to implement and
execute CRM software applications as well as provide
related data, code, forms, webpages and other information to
and from user systems 602 and to store to, and retrieve from,
database system related data, objects, and Webpage content.
Architecture 10 typically stores data for multiple tenants in
the same physical database object, however, tenant data
typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one
tenant does not have access to another tenant’s data, unless

10

15

20

25

30

35

40

45

50

55

60

65

10

such data is expressly shared. In certain embodiments,
server system 600 implements applications other than, or in
addition to, the CRM application discussed above. For
example, server system 600 may provide tenant access to
multiple hosted (standard and custom) applications, includ-
ing a CRM application. User (or third party developer)
applications, which may or may not include CRM, may be
supported by the application platform 606, which manages
creation, storage of the applications into one or more data-
base objects and executing of the applications in a virtual
machine in the process space of server system 600.

Referring to FIGS. 1, 7 and 8, to facilitate web-based
CRM, user systems 602 might communicate with server
system 600 using TCP/IP and, at a higher network level, use
other common Internet protocols to communicate, such as
HTTP, FTP, AFS, WAP, etc. To that end, user systems 602
may be any computing device capable of interfacing directly
or indirectly to the Internet or other network connection,
such as desktop personal computer, workstation, laptop,
PDA, cell phone, or any wireless access protocol (WAP)
enabled device and the like running an HTTP client 49. An
example of a user system 602 includes a processor system
620, a memory system 622, an input system 624, and output
system 626. Processor system 620 may be any combination
of one or more processors. Memory system 622 may be any
combination of one or more memory devices, volatile,
and/or non-volatile memory. A portion of memory system is
used to run operating system 628 in which HTTP client 630
executes. Input system 624 may be any combination of input
devices, such as one or more keyboards, mice, trackballs,
scanners, cameras, and/or interfaces to networks. Output
system 626 may be any combination of output devices, such
as one or more monitors, printers, and/or interfaces to
networks. HTTP client 630 allows users 25-27 of users
systems 602 to access, process and view information, pages
and applications available to it from server system 600 over
network 16. Examples of HTTP client 630 include various
browsing applications, such as Microsoft’s Internet Explorer
browser, Netscape’s Navigator browser, Opera’s browser, or
a WAP-enabled browser in the case of a cell phone, PDA or
other wireless device, or the like. Access is gained to
requisite tenant information 38 and 40 by entering the URL
(not shown) into the URL box 632 of HTTP client 630. The
URL directs users 25-27 to the appropriate virtual portal for
to determine authorization and permission level to access the
requisite tenant information.

Data corresponding with each user 25-27 may be separate
from the data corresponding to the remaining users 25-27
regardless of the tenant associated with users 25-27; how-
ever, some data might be shared or accessible by a plurality
of users 25-27 or all of users 25-27 associated with a tenant.
Thus, there might be some data structures managed by
server system 600 that are allocated at the tenant level while
other data structures might be managed at the user level.
Because an MTS typically support multiple tenants includ-
ing possible competitors, the MTS should have security
protocols that keep data, applications, and application use
separate. Also, because many tenants may opt for access to
an MTS rather than maintain their own system, redundancy,
up-time, and backup are additional functions that may be
implemented in the MTS. In addition to user-specific data
and tenant specific data, server system 600 might also
maintain system level data usable by multiple tenants or
other data. Such system level data might include industry
reports, news, postings, and the like that are sharable among
tenants.

US 10,698,769 B2

11

According to one embodiment, server system 600 pro-
vides security mechanisms to keep each tenant’s data sepa-
rate unless the data is shared. If more than one M TS is used,
they may be located in close proximity to one another (e.g.,
in a server farm located in a single building or campus), or
they may be distributed at locations remote from one another
(e.g., one or more servers located in city A and one or more
servers located in city B). As used herein, each MTS could
include one or more logically and/or physically connected
servers distributed locally or across one or more geographic
locations. Additionally, the term “server” is meant to include
a computer system, including processing hardware and
process space(s), and an associated storage system and
database application (e.g., OODBMS or RDBMS) as is well
known in the art. It should also be understood that “server
system” and “server” are often used interchangeably herein.
Similarly, the database object described herein can be imple-
mented as single databases, a distributed database, a collec-
tion of distributed databases, a database with redundant on
line or offline backups or other redundancies, etc., and might
include a distributed database or storage network and asso-
ciated processing intelligence.

Referring to FIG. 9, a specific embodiment of a server
system 800 includes database 32, as discussed above, as well
as processor sub-system 18 and a network interface 122. In
addition, server system 800 includes a user interface (UI)
802, application program interface (API) 804, PL/SOQL
806, save routines 808, an application setup mechanism 810,
applications servers 812,-812,, system process space 814,
tenant processes 50, 52 and 54, tenant management pro-
cesses 816. User interface (UI) 802, application program
interface (API) 804, PL/SOQL 806, save routines 808, an
application setup mechanism 810, tenant processes 50, 52
and 54, tenant management processes 816 are shown as
processes running in processor sub-system 18. However, it
should be noted that the computer readable code to imple-
ment the processes may be stored on drive storage 31. In
other embodiments, server system 800 may not have the
same elements as those listed above and/or may have other
elements instead of, or in addition to, those listed above.
Network interface 122 is implemented as a plurality of
HTTP application servers 812,-812,.

Referring to FIGS. 1, 6 and 8, each application server
812,-812,, may be configured to service requests of user
systems 602 for access to database 32. In this configuration,
tenant information 38 and 40 consists of different informa-
tion storage areas that may physical differentiation, e.g.,
different hard disks, and/or a logical separation of the
information and may include application metadata 92 for
each user or groups of users. For example, a copy of a user’s
most recently used (MRU) items might be included. Simi-
larly, a copy of MRU items for an entire organization that is
a tenant might be stored. Ul 802 provides a user interface
and API 804 provides an application programmer interface
to server system 800 resident processes to users and/or
developers at user systems 602. The tenant data and the
system data may be stored in various databases, such as one
or more Oracle™ databases.

Referring again to FIGS. 1, 6 and 8, it is not necessary that
the one or more HTTP application servers 812,-812,; be
implemented as the sole network interface between server
system 800 and network 16. Rather, other communication
techniques might be used in conjunction with HTTP appli-
cation servers 812,-812,; or in lieu thereof. In some imple-
mentations, the interface between server system 800 and
network 16 includes load sharing functionality, such as
round-robin HTTP request distributors to balance loads and

10

15

20

25

30

35

40

45

50

55

60

65

12

distribute incoming HTTP requests evenly over a plurality of
servers. At least as for users 25-27 one of HTTP application
servers 812,-812,, each of the plurality of servers has access
to the MTS data; however, other alternative configurations
may be used instead.

Application platform 606 includes an application setup
mechanism 810 that supports application developers’ cre-
ation and management of applications, which may be saved
as metadata by save routines 808 for execution by subscrib-
ers as one or more tenant process spaces 84 managed by
tenant management process 86, for example. Invocations to
such applications may be coded using PL/SOQL 806 that
provides a programming language style interface extension
to API 804. A detailed description of some PL/SOQL
language embodiments is discussed in commonly owned
co-pending U.S. patent application Ser. No. 11/859,498
entitted, METHOD AND SYSTEM FOR ALLOWING
ACCESS TO DEVELOPED APPLICATIONS VIA A
MULTI-TENANT ON-DEMAND DATABASE SERVICE,
by Craig Weissman, filed Sep. 21, 2007, which is incorpo-
rated in its entirety herein for all purposes. Invocations to
applications may be detected by one or more system pro-
cesses, which manage retrieving application metadata for
the subscriber making the invocation and executing the
metadata as an application in a virtual machine.

Each HTTP application servers 812,-812,, may be com-
municably coupled to database systems, e.g., database 32,
via a different network connection. For example, one HTTP
application server 812, might be coupled via the network 16
(e.g., the Internet), another HTTP application servers 812, -
812,, might be coupled via a direct network link, and another
one of HTTP application servers 812,-812,, might be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical
protocols for communicating between HTTP application
servers 812,-812,, and database 32. However, it will be
apparent to one skilled in the art that other transport proto-
cols may be used to optimize the system depending on the
network interconnect used.

In certain embodiments, each of HTTP application servers
812,-812,, is configured to handle requests for any user
associated with any organization that is a tenant. Because it
is desirable to be able to add and remove application servers
from the server pool at any time for any reason, there is
preferably no server affinity for a user and/or organization to
a specific one of HTTP application servers 812,-812,,. In
one embodiment, therefore, an interface system implement-
ing a load balancing function (e.g., an F5 Big-IP load
balancer) is communicably coupled between HTTP appli-
cation servers 812,-812,; and the user systems 602 to dis-
tribute requests to HTTP application servers 812,-812,. In
one embodiment, the load balancer uses a least connections
algorithm to route user requests to HTTP application servers
812,-812,,. Other examples of load balancing algorithms,
such as round robin and observed response time, also can be
used. For example, in certain embodiments, three consecu-
tive requests from the same user 25-27 could hit three
different HTTP application servers 812,-812,, and three
requests from different user systems 602 could hit a common
HTTP application server 812,-812,,. In this manner, server
system 800 is multi-tenant, wherein server system 800
handles storage of, and access to, different objects, data and
applications across disparate users and organizations.

In certain embodiments, user systems 602 (which may be
client systems) communicate with HTTP application servers
812,-812,, to request and update system-level and tenant-
level data from server system 800 that may require sending

US 10,698,769 B2

13

one or more queries to database 32. Server system 800 (e.g.,
an application server 812 in server system 800) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. Database may generate query plans to access
the requested data from the database.

While the invention has been described by way of
example and in terms of the specific embodiments, it is to be
understood that the invention is not limited to the disclosed
embodiments. To the contrary, it is intended to cover various
modifications and similar arrangements as would be appar-
ent to those skilled in the art. For example, the present
processes may be embodied as a computer program product
that includes a machine-readable storage medium (media)
having instructions stored thereon/in which can be used to
program a computer to perform any of the processes of the
embodiments described herein.

Computer code for operating and configuring the server
system to intercommunicate and to process webpages, appli-
cations and other data and media content as described herein
are preferably downloaded and stored on a hard disk, but the
entire program code, or portions thereof, may also be stored
in any other volatile or non-volatile memory medium or
device as is well known, such as a ROM or RAM, or
provided on any media capable of storing program code,
such as any type of rotating media including floppy disks,
optical discs, digital versatile disk (DVD), compact disk
(CD), microdrive, and magneto-optical disks, and magnetic
or optical cards, nanosystems (including molecular memory
1Cs), or any type of media or device suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and down-
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN, etc.)
using any communication medium and protocols (e.g., TCP/
1P, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for implementing
embodiments of the present invention can be implemented
in any programming language that can be executed on a
client system and/or server or server system such as, for
example, C, C++, HTML, any other markup language,
Java™, JavaScript, ActiveX, any other scripting language,
such as VBScript, and many other programming languages
as are well known may be used. (Java™ is a trademark of
Sun Microsystems, Inc.). Therefore, the scope of the
appended claims should be accorded the broadest interpre-
tation so as to encompass all such modifications and similar
arrangements.

What is claimed is:

1. A method for asynchronous batch processing in an on
demand computing architecture, having at least a processor
and a memory therein to execute instructions for the asyn-
chronous batch processing, wherein the method comprises:

receiving from a plurality of users a plurality of online

transaction processing requests;

receiving a batch processing request from a user to

manipulate a plurality of data objects;

executing by the processor a plurality of online transac-

tion processes responsive to receiving the plurality of
online transaction processing requests;

scheduling a batch process in which the processor is to

asynchronously manipulate the data objects with
respect to the processor executing the plurality of
online transaction processes, responsive to receiving
the batch processing request;

10

25

30

40

45

50

14

executing by the processor the batch process, as sched-
uled, to asynchronously manipulate the data objects;
and

sending, via a service bus, after executing the batch
process, one of: a first message that the asynchronous
manipulation of the data objects by the batch process is
complete, and a second message regarding changes to
the data objects as a result of execution of the batch
process as scheduled.

2. The method of claim 1, wherein the scheduling of the
batch process and the executing of the batch process as
scheduled to asynchronously manipulate the data objects
comprises invoking:

a start method that identifies the data objects to be

asynchronously manipulated by the batch process;

an execute method that schedules and executes the asyn-
chronous manipulation of the identified data objects by
the batch process; and

wherein sending, via the service bus, after executing the
batch process, one of: a first message that the asynchronous
manipulation of the data objects by the batch process is
complete, and a second message regarding changes to the
data objects as a result of execution of the batch process as
scheduled, comprises invoking:

a finish method that, after the start and execute methods
have completed, sends one of: a first message that the
asynchronous manipulation of the identified data
objects by the batch process is complete, and a second
message regarding changes to the identified data
objects as a result of execution of the batch process as
scheduled.

3. The method of claim 2, wherein the start method that
identifies the data objects to be asynchronously manipulated
by the batch process further selects a maximum number of
the identified data objects, the asynchronous manipulation of
which is to be scheduled for uninterrupted execution by the
batch process; and

wherein the execute method that schedules and executes
the asynchronous manipulation of the identified data
objects, schedules and executes without interruption
the asynchronous manipulation of the maximum num-
ber of the identified data objects by the batch process.

4. The method of claim 3, wherein the start method that
selects the maximum number of data objects, the asynchro-
nous manipulation of which is to be scheduled for uninter-
rupted execution by the batch process, further identifies
separate transaction groups of the maximum number of the
identified data objects, the asynchronous manipulation of
each separate transaction group to be scheduled for unin-
terrupted execution by the batch process; and

wherein the execute method that schedules and executes
without interruption the asynchronous manipulation of
the maximum number of the identified data objects by
the batch process, executes without interruption the
asynchronous manipulation of each of the separate
transaction groups of the maximum number of the
identified data objects by the batch process.

5. The method of claim 4, wherein the scheduling of the
batch process and the executing of the batch process, as
scheduled, to asynchronously manipulate the data objects
comprises separately invoking the execute method to asyn-
chronously manipulate each of the separate transaction
groups of the maximum number of the identified data
objects by the batch process.

US 10,698,769 B2

15

6. The method of claim 5, further comprising:

posting into a first message queue the batch processing
request in response to receiving the batch processing
request to asynchronously manipulate the data objects;

retrieving the batch processing request from the first
message queue;

posting into a second message queue a respective

sequence number for each of the separate transaction
groups of the maximum number of the identified data
objects, responsive to retrieving the batch processing
request from the first message queue;

wherein invoking the start method that selects the separate

transaction groups of the maximum number of the
identified data objects, comprises invoking the start
method that selects the separate transaction groups of
the maximum number of the identified data objects
based on the posted respective sequence numbers in the
second message queue; and

wherein separately invoking the execute method to asyn-

chronously manipulate each of the separate transaction

groups of the maximum number of the identified data

objects comprises:

retrieving from the second message queue each respec-
tive sequence number for each of the separate trans-
action groups of the maximum number of the iden-
tified data objects; and,

invoking the execute method to asynchronously
manipulate a respective one of the separate transac-
tions for the maximum number of the identified data
objects, as identified by the retrieved respective
sequence number.

7. Non-transitory computer readable media having
instructions stored thereon that, when executed by a proces-
sor, cause an application executing in an on-demand com-
puting architecture to perform operations comprising:

receiving from a plurality of users a plurality of online

transaction processing requests;

receiving a batch processing request from a user to

manipulate a plurality of data objects;

executing by the processor a plurality of online transac-

tion processes responsive to receiving the plurality of
online transaction processing requests;

scheduling a batch process in which the processor is to

asynchronously manipulate the data objects with
respect to the processor executing the plurality of
online transaction processes, responsive to receiving
the batch processing request;

executing by the processor the batch process, as sched-

uled, to asynchronously manipulate the data objects;
and

sending, via a service bus, after executing the batch

process, one of: a first message that the asynchronous
manipulation of the data objects by the batch process is
complete, and a second message regarding changes to
the data objects as a result of execution of the batch
process as scheduled.

8. The computer readable media of claim 7, wherein the
instructions that cause the scheduling of the batch process
and the executing of the batch process as scheduled to
asynchronously manipulate the data objects comprises
invoking:

a start method that identifies the data objects to be

asynchronously manipulated by the batch process;

an execute method that schedules and executes the asyn-

chronous manipulation of the identified data objects by
the batch process; and

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein sending, via the service bus, after executing the
batch process, one of: a first message that the asynchronous
manipulation of the data objects by the batch process is
complete, and a second message regarding changes to the
data objects as a result of execution of the batch process as
scheduled, comprises invoking:

a finish method that, after the start and execute methods
have completed, sends one of: a first message that the
asynchronous manipulation of the identified data
objects by the batch process is complete, and a second
message regarding changes to the identified data
objects as a result of execution of the batch process as
scheduled.

9. The computer readable media of claim 8, wherein the
start method that identifies the data objects to be asynchro-
nously manipulated by the batch process further selects a
maximum number of the identified data objects, the asyn-
chronous manipulation of which is to be scheduled for
uninterrupted execution by the batch process; and

wherein the execute method that schedules and executes
the asynchronous manipulation of the identified data
objects, schedules and executes without interruption
the asynchronous manipulation of the maximum num-
ber of the identified data objects by the batch process.

10. The computer readable media of claim 9, wherein the
start method that selects the maximum number of data
objects, the asynchronous manipulation of which is to be
scheduled for uninterrupted execution by the batch process,
further identifies separate transaction groups of the maxi-
mum number of the identified data objects, the asynchro-
nous manipulation of each separate transaction group to be
scheduled for uninterrupted execution by the batch process;
and

wherein the execute method that schedules and executes
without interruption the asynchronous manipulation of
the maximum number of the identified data objects by
the batch process, executes without interruption the
asynchronous manipulation of each of the separate
transaction groups of the maximum number of the
identified data objects by the batch process.

11. The computer readable media of claim 10, wherein the
instructions that cause the scheduling of the batch process
and the executing of the batch process, as scheduled, to
asynchronously manipulate the data objects comprises sepa-
rately invoking the execute method to asynchronously
manipulate each of the separate transaction groups of the
maximum number of the identified data objects by the batch
process.

12. The computer readable media of claim 11, further
comprising instructions that cause the application executing
in the on-demand computing architecture to perform opera-
tions comprising:

posting into a first message queue the batch processing
request in response to receiving the batch processing
request to asynchronously manipulate the data objects;

retrieving the batch processing request from the first
message queue;

posting into a second message queue a respective
sequence number for each of the separate transaction
groups of the maximum number of the identified data
objects, responsive to retrieving the batch processing
request from the first message queue;

wherein invoking the start method that selects the separate
transaction groups of the maximum number of the
identified data objects, comprises invoking the start
method that selects the separate transaction groups of
the maximum number of the identified data objects

US 10,698,769 B2

17

based on the posted respective sequence numbers in the
second message queue; and
wherein separately invoking the execute method to asyn-
chronously manipulate each of the separate transaction
groups of the maximum number of the identified data
objects comprises:
retrieving from the second message queue each respec-
tive sequence number for each of the separate trans-
action groups of the maximum number of the iden-
tified data objects; and,

invoking the execute method to asynchronously
manipulate a respective one of the separate transac-
tions for the maximum number of the identified data
objects, as identified by the retrieved respective
sequence number.

13. A system to execute within an on-demand computing
architecture, wherein the system comprises:

a processor and a memory to execute instructions at the

system,
software instructions that, when executed by the proces-
sor, cause an application executing in the on-demand
computing architecture to:
receive from a plurality of users a plurality of online
transaction processing requests;

receive a batch processing request from a user to
manipulate a plurality of data objects;

execute by the processor a plurality of online transac-
tion processes responsive to receiving the plurality of
online transaction processing requests;

schedule a batch process in which the processor is to
asynchronously manipulate the data objects with
respect to the processor executing the plurality of
online transaction processes, responsive to receiving
the batch processing request;

execute by the processor the batch process, as sched-
uled, to asynchronously manipulate the data objects;
and

send, via a service bus, after executing the batch
process, one of: a first message that the asynchro-
nous manipulation of the data objects by the batch
process is complete, and a second message regarding
changes to the data objects as a result of execution of
the batch process as scheduled.

14. The system of claim 13, wherein the software instruc-
tions that cause the application to schedule the batch process
and execute the batch process as scheduled to asynchro-
nously manipulate the data objects comprises invoking:

a start method that identifies the data objects to be

asynchronously manipulated by the batch process;

an execute method that schedules and executes the asyn-
chronous manipulation of the identified data objects by
the batch process; and

wherein to send, via the service bus, after executing the
batch process, one of: a first message that the asynchronous
manipulation of the data objects by the batch process is
complete, and a second message regarding changes to the
data objects as a result of execution of the batch process as
scheduled, comprises invoking:

a finish method that, after the start and execute methods
have completed, sends one of: a first message that the
asynchronous manipulation of the identified data
objects by the batch process is complete, and a second
message regarding changes to the identified data
objects as a result of execution of the batch process as
scheduled.

15. The system of claim 14, wherein the start method that

identifies the data objects to be asynchronously manipulated

10

15

20

25

30

35

40

45

50

55

60

65

18

by the batch process further selects a maximum number of
the identified data objects, the asynchronous manipulation of
which is to be scheduled for uninterrupted execution by the
batch process; and

wherein the execute method that schedules and executes

the asynchronous manipulation of the identified data
objects, schedules and executes without interruption
the asynchronous manipulation of the maximum num-
ber of the identified data objects by the batch process.
16. The system of claim 15, wherein the start method that
selects the maximum number of data objects, the asynchro-
nous manipulation of which is to be scheduled for uninter-
rupted execution by the batch process, further identifies
separate transaction groups of the maximum number of the
identified data objects, the asynchronous manipulation of
each separate transaction group to be scheduled for unin-
terrupted execution by the batch process; and
wherein the execute method that schedules and executes
without interruption the asynchronous manipulation of
the maximum number of the identified data objects by
the batch process, executes without interruption the
asynchronous manipulation of each of the separate
transaction groups of the maximum number of the
identified data objects by the batch process.
17. The system of claim 16, wherein the instructions that
cause the application to schedule the batch process and
execute of the batch process, as scheduled, to asynchro-
nously manipulate the data objects comprises separately
invoking the execute method to asynchronously manipulate
each of the separate transaction groups of the maximum
number of the identified data objects by the batch process.
18. The system of claim 17, further comprising software
instructions that, when executed by the processor, cause the
application executing in the on-demand computing archi-
tecture to:
post into a first message queue the batch processing
request in response to receiving the batch processing
request to asynchronously manipulate the data objects;

retrieve the batch processing request from the first mes-
sage queue;

post into a second message queue a respective sequence

number for each of the separate transaction groups of
the maximum number of the identified data objects,
responsive to retrieving the batch processing request
from the first message queue;

wherein invoking the start method that selects the separate

transaction groups of the maximum number of the
identified data objects, comprises invoking the start
method that selects the separate transaction groups of
the maximum number of the identified data objects
based on the posted respective sequence numbers in the
second message queue; and

wherein separately invoking the execute method to asyn-

chronously manipulate each of the separate transaction

groups of the maximum number of the identified data

objects comprises the system to:

retrieve from the second message queue each respec-
tive sequence number for each of the separate trans-
action groups of the maximum number of the iden-
tified data objects; and,

invoke the execute method to asynchronously manipu-
late a respective one of the separate transactions for
the maximum number of the identified data objects,
as identified by the retrieved respective sequence
number.

