

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/059660 A1

(43) International Publication Date

30 April 2015 (30.04.2015)

(51) International Patent Classification:

A61C 17/22 (2006.01)

(NL). MANJUNATH, Dharshan; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL).

(21) International Application Number:

PCT/IB2014/065562

(74) Agents: COOPS, Peter et al.; High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL).

(22) International Filing Date:

23 October 2014 (23.10.2014)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

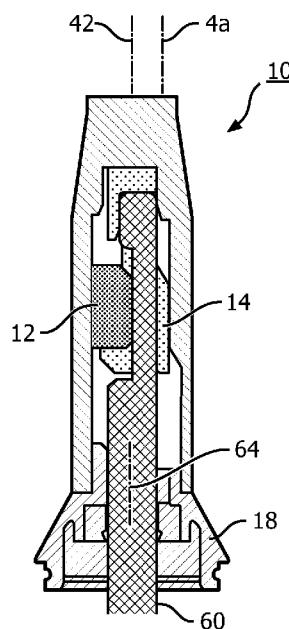
English

(30) Priority Data:

61/895,428 25 October 2013 (25.10.2013) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(71) Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL];
High Tech Campus 5, NL-5656 AE Eindhoven (NL).


(72) Inventor: HALL, Scott, E.; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL).

(72) Inventor: SENADHIPATHI, Raviteja (deceased).

(72) Inventors: SOUNDARARAJAN, Barath Kumar; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven

[Continued on next page]

(54) Title: ATTACHMENT FOR AN ELECTRIC TOOTHBRUSH HANDLE AND METHOD OF ATTACHING

(57) Abstract: An attachment 10 mountable to an electric toothbrush handle 62 having a drive shaft 60 comprises a neck member 16 having an elongated body 40 with a principal axis 42 and a cavity 44; a slide member 12 with an engagement surface 22; a guide sleeve member 14 having a cavity 84, a first outer surface 88 with an engagement opening 90, and a transition surface 92; and a collar member 18. The guide sleeve member, with slide member moveably inserted within the engagement opening, is moveably inserted within the neck member cavity. Insertion of the drive shaft into cavities of the collar member and guide sleeve member from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface, results in the drive shaft being held in frictional contact with the engagement surface of the slide member to enable reliable transfer of force/motion from the drive shaft to the neck member.

FIG. 8D

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, — with international search report (Art. 21(3))
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

ATTACHMENT FOR AN ELECTRIC TOOTHBRUSH HANDLE AND METHOD OF ATTACHING

[0001] The present embodiments relate generally to electric toothbrushes and more particularly, to an attachment or brush head assembly for an electric toothbrush handle having a drive shaft and a method of attaching.

[0002] A brush head portion of an electric powered toothbrush typically has a much shorter useful life than a remainder of the electric toothbrush, i.e., the handle portion, which generally includes a drive shaft, control and power assemblies of the electric toothbrush appliance. The brush head must be both convenient to remove and insert onto the drive shaft of the electric toothbrush, but also must be able to reliably transfer the force of the drive shaft to the brush head with a minimum loss of motion. A large number of different structural arrangements have been used to accomplish these two different and somewhat conflicting requirements. In most cases, the brush head simply has a single configuration which accomplishes both results, i.e., it has a tight enough fit to provide the required force transfer and which can be pulled on and off the drive member (drive shaft) with a reasonable amount of force exerted by a typical user.

[0003] Accordingly, an improved method and apparatus for overcoming the problems in the art is desired.

[0004] In accordance with one aspect, a toothbrush neck assembly is disclosed which includes a connecting arrangement in which the toothbrush neck assembly achieves (i) both radial and axial motion simultaneously and (ii) establishes sufficient frictional contact between the electric toothbrush handle drive shaft and a slide member of the toothbrush neck assembly. Frictional force generated via the frictional contact ensures reliable transfer of force/motion from the drive shaft member to the toothbrush neck assembly.

[0005] In accordance with another aspect, an attachment mountable to a handle having a drive shaft comprises a neck member, a slide member, and a guide sleeve member. The neck member comprises an elongated body with a principal axis, the elongated body having a cavity extending within the elongated body from a distal end of the neck member. The slide member comprises (i) an engagement surface and (ii) a linear displacement surface, opposite the engagement surface. The guide sleeve member comprises an elongated body having a cavity extending within the elongated body from a distal end of

the guide sleeve member. The guide sleeve member further comprises (i) a first outer surface with an engagement opening disposed inward and transverse to the elongated body, and (ii) a second outer surface, opposite the first outer surface, that comprises a transition surface. The slide member is adapted for moveable insertion, engagement surface first, within the engagement opening of the guide sleeve member and extendable within the guide sleeve member cavity. The guide sleeve member, together with moveably inserted slide member, is adapted for moveable insertion, proximal end first, within the cavity of the neck member. Responsive to insertion of the drive shaft into the cavity of the guide sleeve member together with the moveably inserted slide member within the cavity of the neck member from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface, the drive shaft is held in frictional contact with the engagement surface of the slide member. The frictional contact enables a reliable transfer of at least one of force and motion from the drive shaft to the neck member.

[0006] In accordance with another aspect, an attachment mountable to an electric toothbrush handle having a drive shaft is provided. The attachment comprises a neck member, a slide member, a guide sleeve member, and a collar member. The neck member comprises at least a toothbrush neck and having an elongated body with a principal axis, the elongated body having a cavity extending within the elongated body from a distal end of the neck member. The slide member comprises (i) an engagement surface and (ii) a linear displacement surface, opposite the engagement surface. The guide sleeve member comprises an elongated body, the elongated body having a cavity extending within the elongated body from a distal end of the guide sleeve member. The guide sleeve member further comprises (i) a first outer surface with an engagement opening disposed inward and transverse to the elongated body, and (ii) a second outer surface, opposite the first outer surface, that comprises a transition surface. The slide member is adapted for moveable insertion, engagement surface first, within the engagement opening of the guide sleeve member and extendable within the guide sleeve member cavity. The guide sleeve member together with moveably inserted slide member is adapted for moveable insertion, proximal end first, within the cavity of the neck member. In addition, the collar member comprises a body with a cavity extending therein between a proximal end to a distal end. The proximal end of the collar member is configured to be fixedly attached to the distal end of the neck

member for removeably securing the slide member and guide sleeve member within the neck member. Responsive to insertion of the drive shaft into the cavity of the collar member and the cavity of the guide sleeve member together with the moveably inserted slide member within the cavity of the neck member from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface, the drive shaft is held in frictional contact with the engagement surface of the slide member to enable a reliable transfer of at least one of force and motion from the drive shaft to the neck member.

[0007] In accordance with yet another aspect, a method for mounting an attachment to an electric toothbrush handle having a drive shaft is provided. The method comprises providing a neck member having an elongated body with a principal axis, the elongated body having a cavity extending within the elongated body from a distal end of the neck member; providing a slide member having (i) an engagement surface and (ii) a linear displacement surface, opposite the engagement surface; providing a guide sleeve member having an elongated body, the elongated body having a cavity extending within the elongated body from a distal end of the guide sleeve member, the guide sleeve member further having (i) a first outer surface with an engagement opening disposed inward and transverse to the elongated body, and (ii) a second outer surface, opposite the first outer surface, that comprises a transition surface, wherein the slide member is adapted for moveable insertion, engagement surface first, within the engagement opening of the guide sleeve member and extendable within the guide sleeve member cavity, the guide sleeve member together with moveably inserted slide member being adapted for moveable insertion, proximal end first, within the cavity of the neck member; and inserting the drive shaft into the cavity of the guide sleeve member together with the moveably inserted slide member within the cavity of the neck member from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface, wherein the drive shaft is held in frictional contact with the engagement surface of the slide member to enable a reliable transfer of at least one of force and motion from the drive shaft to the neck member.

[0008] In accordance with yet another aspect, the method further comprises removeably securing, via a collar member, the slide member and guide sleeve member within the neck member, wherein the collar member comprises a body with a cavity

extending therein between a proximal end to a distal end, and wherein removably securing includes fixedly attaching the proximal end of the collar member to the distal end of the neck member.

[0009] The embodiments of the present disclosure advantageously solve the problem of motion loss between and handle drive shaft and brush head due to high operating frequency and vibrations.

[0010] Another advantage resides in the mechanism according to the embodiments of the present disclosure which advantageously allows for easy insertion/removal of the brush head from the drive shaft with minimal efforts.

[0011] Still further advantages and benefits will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description.

[0012] The embodiments of the present disclosure may take form in various components and arrangements of components, and in various steps and arrangements of steps. Accordingly, the drawings are for purposes of illustrating the various embodiments and are not to be construed as limiting the embodiments. In the drawing figures, like reference numerals refer to like elements. In addition, it is to be noted that the figures may not be drawn to scale.

[0013] Figure 1 is a sectional view of the assembled attachment or brush neck assembly according to an embodiment of the present disclosure;

[0014] Figure 2 (2A, 2B, 2C) is a combined top, side, and perspective views of a slide member of an attachment according to an embodiment of the present disclosure;

[0015] Figure 3 (3A, 3B, 3C) is a combined sectional view along an elongated body of the neck member, sectional view transverse to the elongated body of the neck member, and a side view of the neck member according to an embodiment of the present disclosure;

[0016] Figure 4 (4A, 4B) is a combined side and perspective views of a drive shaft of an electric toothbrush handle according to an embodiment of the present disclosure;

[0017] Figure 5 (5A-5F) is a combined right perspective, left perspective, left side, sectional view along an elongated body of the guide sleeve member, transition side, and sectional view transverse to the elongated body of the guide sleeve member according to an embodiment of the present disclosure;

[0018] Figure 6 (6A, 6B, 6C) is a combined side, top, and perspective views of the collar member according to an embodiment of the present disclosure;

[0019] Figure 7 (7A, 7B, 7C, 7D) is a combined exploded perspective views at various stages of assembly of component parts of the attachment according to an embodiment of the present disclosure;

[0020] Figure 8 (8A, 8B, 8C, 8D) is a combined sectional views of various stages of insertion of the drive shaft into the attachment or brush neck assembly according to an embodiment of the present disclosure; and

[0021] Figure 9 (9A, 9B, 9C, 9D) is a combined sectional views of various stages of removal of the drive shaft from the attachment or brush neck assembly according to an embodiment of the present disclosure.

[0022] The embodiments of the present disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting examples that are described and/or illustrated in the drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the present disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the embodiments of the present may be practiced and to further enable those of skill in the art to practice the same. Accordingly, the examples herein should not be construed as limiting the scope of the embodiments of the present disclosure, which is defined solely by the appended claims and applicable law.

[0023] It is understood that the embodiments of the present disclosure are not limited to the particular methodology, protocols, devices, apparatus, materials, applications, etc., described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to be limiting in scope of the embodiments as claimed. It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

[0024] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the embodiments of the present disclosure belong. Preferred methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the embodiments.

[0025] According to one embodiment, an attachment for an electric toothbrush includes a toothbrush neck and connecting assembly that is insert-able onto an electric toothbrush handle drive shaft. The connecting assembly includes a slide member that slides in a slot within the toothbrush neck, along with a guide sleeve. The toothbrush neck and connecting assembly is inserted and moved axially on to the handle drive shaft along an axis of the guide sleeve until an internal conical tapered surface of the toothbrush neck rides over a complementary external tapered surface of the guide sleeve. Riding over the external conical tapered surface of the guide sleeve imparts radial movement to the toothbrush neck and connecting assembly. The imparted radial movement establishes a frictional contact between a flat engagement surface of the slide member and a flat surface within a notch of the drive shaft. The frictional contact between the slide member and the drive shaft enables a positive transfer of force/motion from the drive shaft to the toothbrush neck and connecting assembly.

[0026] According to an embodiment of the present disclosure, an attachment 10 comprises a slide member 12, a guide sleeve member 14, a neck member 16 and a collar member 18, as shown in the sectional view of the assembled attachment of Figure 1. In one embodiment, the attachment 10 comprises a toothbrush neck assembly including a brush 19 for use with an electric toothbrush handle having a drive shaft (not shown).

[0027] Turning now to Figure 2, there is shown a top view FIG. 2A, a side view FIG. 2B, and a perspective view FIG. 2C of the slide member 12 of the attachment 10 according to an embodiment of the present disclosure. The slide member 12 comprises an engagement surface 22 and a linear displacement surface 24, opposite the engagement surface 22. As will be discussed further herein, the engagement surface 22 is configured for being held in frictional contact with a drive shaft of an electric toothbrush handle to enable a reliable transfer of at least one of force and motion from the drive shaft to the neck member 16. In one embodiment, the engagement surface 22 of slide member 12 is

configured for being held in frictional contact with a flat surface of a notch in the drive shaft, as will be discussed further herein below.

[0028] The linear displacement surface 24 extends along a length dimension of the slide member 12, between first and second abutment surfaces (26, 28) at respective ends of slide member 12. Linear displacement surface 24 further includes projections (24a, 24b) extending along sides of the linear displacement surface proximate a first set of side surfaces (34, 36). In one embodiment, the linear displacement surface 24 and projections (24a, 24b) are configured for being moveably fitted within a slot that extends along a first surface of a first pair of inner surfaces of a cavity of the neck member 16, as will be discussed further herein below. Slide member 12 further comprises forward and rearward slant surfaces (30, 32) extending between a respective abutment surface at an corresponding end of the slide member 12 and the engagement surface 22, as shown in FIGs. 2B and 2C. In addition, slide member 12 comprises first and second sets of side surfaces (34, 36) and (35, 37) along a length dimension of slide member 12.

[0029] With reference now to Figure 3, there is shown a sectional view FIG. 3A along line A-A of an elongated body 40 of the neck member 16, a sectional view FIG. 3B along line B-B transverse to the elongated body 40 of the neck member 16, and a side view FIG. 3C of the neck member 16 according to an embodiment of the present disclosure. In one embodiment, the neck member 16 comprises an elongated body 40 with a principal axis 42, the elongated body 40 having a cavity 44 extending within the elongated body from a distal end 46 of the neck member 16. In one embodiment, the cavity 44 extends within the elongated body from the distal end 46 to an inner abutment or end surface 47, towards a proximal end of the neck member 16. In another embodiment, the elongated body 40 of neck member 16 comprises a cylindrically shaped elongated body.

[0030] In addition, cavity 44 of neck member 16 provides for at least two axes parallel to the principal axis 42 and defined in part by first and second pairs of inner surfaces (48, 50) and (52, 54) along a length dimension of the cavity 44.

[0031] The first pair of inner surfaces (48, 50) comprises a first surface 48 and a second surface 50, opposite the first surface, within the cavity 44 of the neck member 16. The first surface 48 further comprises a linear translation surface having a slot that extends along the first surface and is adapted for moveably fitting the linear displacement surface 24 of the slide member 12 therein, wherein the engagement surface 22 of the slide member

12 is maintained at a given radial distance from the principal axis 42 in response to the guide sleeve member 14 together with the moveably inserted slide member 12 being moveably fitted within the cavity 44 of the neck member 16, as will be discussed further herein below. The second surface 50 comprises a transition surface configured to complement a transition surface of the guide sleeve member 14 and to enable a drive shaft to be moveably fitted between the first and second radial positions via the transition surface of the guide sleeve member 14 in response to the guide sleeve member being moveably fitted within the cavity 44 of the neck member 16, as will be discussed further herein below.

[0032] The second pair of inner surfaces (52, 54) along the length dimension of the cavity 44 comprise guide surfaces for a second pair of outer surfaces of the guide sleeve member 14, wherein the second pair of outer surfaces of the guide sleeve member 14 are maintained centered about the principal axis 42 of the neck member 16 in response to the guide sleeve member 14 being moveably fitted within the cavity 44 of the neck member 16.

[0033] With reference to FIGs. 3A and 3C, the neck member 16 further comprises at least one pair of resilient attachment tabs 56 at the distal end 46 of the neck member 16. The at least one pair of resilient attachment tabs 56 is configured for insertion into at least one attachment aperture at the proximal end of the collar member 18, wherein the neck member 16 and collar member 18 become fixedly attached to one another, as will be discussed further herein below.

[0034] In one embodiment, the neck member 16 comprises a toothbrush neck and connecting assembly adapted for insertion onto the drive shaft of an electric toothbrush handle.

[0035] With reference now to Figure 4, there is shown a side view FIG. 4A and a perspective view FIG. 4B of a drive shaft 60 of an electric toothbrush handle 62 according to one embodiment of the present disclosure. Drive shaft 60 comprises a generally cylindrical shaft having a principal axis 64 and is coupled, at a distal end thereof, to a suitable motor or actuator (not shown) within handle 62 for providing at least one of force and motion, including at least one of translational and rotational force/motion along and/or about the drive shaft, as indicated by the corresponding translational/rotational arrows in FIG. 4B. Drive shaft 60 includes a notch 66 disposed along a length dimension thereof, the notch having a generally flat surface. The ends (68, 70) of notch 66 include abutment surfaces, wherein the abutment surfaces 68 and 70 further comprise partial slanted faces. In

addition, in one embodiment, the proximal end 72 of drive shaft 60 includes a top flat face. In another embodiment, drive shaft 60 further includes a flat surface that extends along a length dimension of the drive shaft, between the notch 66 and proximal end 72. In one embodiment, the flat surface 74 is parallel to the principal axis 64 and parallel to the flat surface of notch 66.

[0036] With reference now to Figure 5, there is shown a right perspective view FIG. 5A, a left perspective view FIG. 5B, a left side view FIG. 5C, a sectional view FIG. 5D along line D-D of an elongated body 80 having a principal axis 82 of the guide sleeve member 14, a transition side view FIG. 5E, and a sectional view along line C-C, transverse to the elongated body 80 of the guide sleeve member 14 according to an embodiment of the present disclosure. The elongated body 80 includes a cavity 84 extending within the elongated body from a distal end 86 of the guide sleeve member 14. The guide sleeve member 14 further includes (i) a first outer surface 88 with an engagement opening 90 disposed inward, along, and transverse to the elongated body 80, and (ii) a second outer surface 92, opposite the first outer surface 88, that comprises a transition surface, wherein the slide member 12 is adapted for moveable insertion, engagement surface 22 first, within the engagement opening 90 of the guide sleeve member 14 and extendable within the guide sleeve member cavity 84. The guide sleeve member 14 together with moveably inserted slide member 12 are adapted for moveable insertion, proximal end first, within the cavity 44 of the neck member 16. As will be discussed further herein below, responsive to insertion of the drive shaft 60 into the cavity 84 of the guide sleeve member 14 together with the moveably inserted slide member 12 within the cavity 44 of the neck member 16 from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface 92, the drive shaft 60 is held in frictional contact with the engagement surface 22 of the slide member 12 to enable a reliable transfer of at least one of force and motion from the drive shaft 60 to the neck member 16.

[0037] In one embodiment, the cavity 84 of the guide sleeve member 14 extends within the elongated body 80 of the guide sleeve member from the distal end 86 to a proximal end 94 of the guide sleeve member 14. The proximal end of the cavity comprises an end stop 96 for an insertion of the drive shaft 60 within the guide sleeve member 14. See FIG. 5D.

[0038] In one embodiment, the transition surface 92 comprises (i) a first portion 98 proximate the proximal end 94 of the guide sleeve member 14, (ii) a transition portion 100 intermediate the proximal and distal ends of the guide sleeve member 14 and (iii) a second portion 102 proximate the distal end 86 of the guide sleeve member 14. The transition portion 100 comprises a circumferential tapered surface moveably fitted for displacement along a complementary tapered surface 106 of a second inner surface 50 of the cavity 44 of the neck member 16. In one embodiment, responsive to a displacement of the circumferential tapered surface 100 along the complementary tapered surface 106, the second portion 102 of the transition surface 92 is moveably displaced between a first radial position along a third axis 3a (see FIG. 8A and 8B) offset and parallel to the principal axis 42 and a second radial position along a fourth axis 4a (see FIG. 8C and 8D) offset and parallel to the principal axis, closer to the principal axis 42.

[0039] With reference now to Figure 6, there is shown a side view FIG. 6A, a top view FIG. 6B, and a perspective view FIG. 6C of the collar member 18 according to an embodiment of the present disclosure. The collar member 18 includes a body 110 with a cavity 112 extending therein between a proximal end 114 to a distal end 116. In one embodiment, the proximal end 114 of the collar member 18 is configured to be fixedly attached to the distal end 46 of the neck member 16 for removeably securing the slide member 12 and guide sleeve member 14 within the neck member 16, as will be discussed further herein with reference to FIG. 7.

[0040] With reference to FIG. 6B, in one embodiment, the cavity 112 of the collar member 18 comprises, in cross-section, a size sufficient to allow the cross-section of drive shaft 60 to be moveably fitted through the cavity 112 of the collar member 18 (i) along an axis offset and parallel to the principal axis 42 and (ii) in-line with the principal axis 42. In other words, during one portion of an insertion or removal of the drive shaft from the attachment or brush neck assembly 10, the cross-section of drive shaft 60 is moveably fitted through cavity 112 of the collar member 18 along the axis offset and parallel to the principal axis 42. In another portion of the insertion or removal of the drive shaft from the attachment or brush neck assembly 10, the cross-section of drive shaft 60 is moveably fitted through cavity 112 along an axis in-line with the principal axis 42.

[0041] In another embodiment, the proximal end 114 of the collar member 18 is adapted for cooperation with a distal end 86 surface of the guide sleeve member 14. For

example, the proximal end 114 includes a tapered surface 118 for moveably displacing a complementary tapered surface 120 of the distal end 86 surface of the guide sleeve member 14 to bias the second portion 102 of the transition surface 92 of the guide sleeve member 14 towards the first radial position along the third axis offset and parallel to the principal axis 42 (see FIGs. 8A and 8B). In one embodiment, the collar member 18 further comprises an outer surface 124 at the proximal end 114 thereof that complements an inner surface of the cavity 44 at the distal end 46 of the neck member 16 (see FIGs. 1, 6A-6C, 7A-7D and 8A-8D).

[0042] With reference still to FIGs. 6A, 6B and 6C, the proximal end 114 of the collar member 18 further includes at least one attachment aperture 122. As discussed previously, the distal end 46 of the neck member 16 includes at least one pair of resilient attachment tabs 56 (see FIG. 3A). Responsive to insertion of the at least one pair of resilient attachment tabs 56 into the at least one attachment aperture 122, the collar member 18 is fixedly attached to the neck member 16.

[0043] Turning our attention now to Figure 7, there is shown several exploded perspective views FIG. 7A, FIG. 7B, FIG. 7C and FIG. 7D at various stages of assembly of component parts of the attachment 10 according to an embodiment of the present disclosure. In particular, FIG. 7A illustrates an exploded perspective view of the attachment 10 that includes slide member 12, guide sleeve member 14, neck member 16 and collar member 18. In FIG. 7B, the slide member 12 is moveably inserted, engagement surface 22 first, within the engagement opening 98 of the guide sleeve member 14 and extendable within at least a portion of the guide sleeve member cavity 84. In FIG. 7C, the guide sleeve member 14 together with moveably inserted slide member 12 are moveably inserted, proximal end first, within the cavity 44 of the neck member 16. In addition, responsive to the guide sleeve member 14 together with moveably inserted slide member 12 being moveably inserted, proximal end first, within the cavity 44 of the neck member 16, the linear displacement surface 24 of the slide member 12 is moveably fitted within a slot 49 (FIG. 3B) that extends along the first inner surface 48 of the cavity 44 of the neck member 16. In FIG. 7D, the proximal end 114 of the collar member 18 is fixedly attached to the distal end 46 of the neck member 16 for removeably securing the slide member 12 and guide sleeve member 14 within the neck member 16.

[0044] In another embodiment, a toothbrush neck and connecting assembly comprises slide member 12, guide sleeve member 18 and neck member 16. The slide member 12 is placed on the guide sleeve member 18 on a surface 91 (FIGs. 5C and 5D) as shown in FIG. 7B. The slide member 12 having a projection, wherein the projection corresponds to the linear displacement surface 24 and projections (24a, 24b) extending along sides of the linear displacement surface proximate the first set of side surfaces (34, 36) (FIG. 2A) is inserted into the slot 49 of neck member 16. Outer surfaces 93 (FIG. 5F), opposite one another, of guide sleeve member 14 are in sliding contact between the inner surfaces 52 and 54 of the cavity 44 of neck member 16. The outer surface 124 of collar member 18 couples with (and is fixedly attached via the at least one pair of resilient attachment tabs 56 at the distal end 46 of the neck member 16 inserted into the at least one attachment aperture at the proximal end of the collar member 18) an inner surface at the distal end 46 of the neck member 16. The slide member 12 and guide sleeve member 14 will rest on the collar member 18 in an initial position (see FIG. 1).

[0045] With reference now to Figure 8, there is shown sectional views (FIGs. 8A, 8B, 8C, 8D) at various stages of insertion of the drive shaft 60 into the attachment or brush neck assembly 10 according to an embodiment of the present disclosure. FIG. 8A shows an initial position of the attachment or toothbrush neck assembly 10 being inserted onto the drive shaft 60. The top flat face 72 of the drive shaft 60 is in contact with inner surface 96 of the guide sleeve member 14. The attachment or toothbrush neck assembly 10 is then further pushed onto the drive shaft 60, wherein the circumferential tapered surface 100 of the guide sleeve member 14 mates with a matching tapered surface 106 in the neck member 16 (FIG. 8B). The attachment or toothbrush neck assembly 10 is then pushed further down (FIG. 8B to FIG. 8C), wherein the attachment 10 moves right ward until the surfaces 100 and 106 are in contact and then vertically down where the cylindrical surface 102 of guide sleeve member 14 comes in contact with the inner surface 50 (FIGs. 3B and 3C) of the neck member 16. The movement of the attachment or toothbrush neck assembly 10 continues until the top flat surface 94 of guide sleeve member 14 contacts the inner abutment or end surface 47 of the neck member 16. During the movement as illustrated in FIG. 8A to 8D, the flat engagement surface 22 of the slide member 12 comes in frictional contact, and is held in frictional contact, with the notch flat face 66 of the drive shaft 60.

As a result, the forces of the moving drive shaft are advantageously transferred, positively, to the toothbrush head via the attachment or toothbrush neck assembly 10.

[0046] With reference now to Figure 9, there is shown sectional views (FIGs. 9A, 9B, 9C, 9D) at various stages of removal of the drive shaft 60 from the attachment or brush neck assembly 10 according to an embodiment of the present disclosure. When the attachment or brush neck assembly 10 is to be removed, the brush neck assembly 10 is simply pulled away from the drive shaft 60, wherein the surface 70 of the notch 66 in the drive shaft 60 will come in contact with the slant face 32 of the slide member 12. When pulled further, the bottom surface 26 of the slide member 12 will push the surface 91 of the guide sleeve member 14, which has a tapered surface 120 that complements the tapered surface 118 of the collar member 18 and moves the attachment or brush neck assembly 10 towards the left, wherein the engagement flat surface 22 loses its frictional engagement with the flat surface of the notch 66 of the drive shaft member 60. The drive shaft then exits the attachment or brush neck assembly 10 along the axis parallel to and offset from the principal axis of the neck member 16.

[0047] According to another embodiment, an attachment mountable to an electric toothbrush handle having a drive shaft comprises a neck member, a slide member, a guide sleeve member, and a collar member. The neck member comprises a toothbrush neck and includes an elongated body with a principal axis, the elongated body having a cavity extending within the elongated body from a distal end of the neck member. The slide member comprises (i) an engagement surface and (ii) a linear displacement surface, opposite the engagement surface. The guide sleeve member comprises an elongated body, the elongated body having a cavity extending within the elongated body from a distal end of the guide sleeve member. The guide sleeve member further comprises (i) a first outer surface with an engagement opening disposed inward and transverse to the elongated body, and (ii) a second outer surface, opposite the first outer surface, that comprises a transition surface. The slide member is adapted for moveable insertion, engagement surface first, within the engagement opening of the guide sleeve member and extendable within the guide sleeve member cavity. The guide sleeve member together with the moveably inserted slide member are adapted for moveable insertion, proximal end first, within the cavity of the neck member. The collar member comprises a body with a cavity extending therein between a proximal end to a distal end. The proximal end of the collar member is

configured to be fixedly attached to the distal end of the neck member for removeably securing the slide member and guide sleeve member within the neck member. Responsive to insertion of the drive shaft into the cavity of the collar member and the cavity of the guide sleeve member together with the moveably inserted slide member within the cavity of the neck member from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface, the drive shaft is held in frictional contact with the engagement surface of the slide member to enable a reliable transfer of at least one of force and motion from the drive shaft to the neck member.

[0048] In a still further embodiment, a method for mounting an attachment to an electric toothbrush handle having a drive shaft comprises providing a neck member having an elongated body with a principal axis, the elongated body having a cavity extending within the elongated body from a distal end of the neck member. The method further includes providing a slide member having (i) an engagement surface and (ii) a linear displacement surface, opposite the engagement surface. Still further, the method includes providing a guide sleeve member having an elongated body, the elongated body having a cavity extending within the elongated body from a distal end of the guide sleeve member, the guide sleeve member further having (i) a first outer surface with an engagement opening disposed inward and transverse to the elongated body, and (ii) a second outer surface, opposite the first outer surface, that comprises a transition surface, wherein the slide member is adapted for moveable insertion, engagement surface first, within the engagement opening of the guide sleeve member and extendable within the guide sleeve member cavity, the guide sleeve member together with moveably inserted slide member being adapted for moveable insertion, proximal end first, within the cavity of the neck member. Still further the method includes inserting the drive shaft into the cavity of the guide sleeve member together with the moveably inserted slide member within the cavity of the neck member from (a) a first radial position along an axis offset and parallel to the principal axis to (b) a second radial position in-line with the principal axis, via the transition surface, wherein the drive shaft is held in frictional contact with the engagement surface of the slide member to enable a reliable transfer of at least one of force and motion from the drive shaft to the neck member. In another embodiment, the method further comprises removeably securing, via a collar member, the slide member and guide sleeve

member within the neck member, wherein the collar member comprises a body with a cavity extending therein between a proximal end to a distal end, and wherein removable securing includes fixedly attaching the proximal end of the collar member to the distal end of the neck member.

[0049] The measures/device features which are disclosed herein to solve the identified problems, and provide resulting advantages, include one or more of the following: riding over of a conical tapered portion of the brush neck member onto the guide sleeve member; simultaneous, i.e., both axial and radial, movement of the brush neck member (i.e., the brush head assembly) during insertion of the brush neck member over the drive shaft; the frictional force attained between flat surfaces of the drive shaft (i.e., a notch in the drive shaft) and a slide member; and alignment of both brush neck member axis and electric toothbrush handle axis ensure an even distribution of the rotating masses.

[0050] Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. For example, the embodiments of the present disclosure can be advantageously used in power toothbrush applications. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.

[0051] In addition, any reference signs placed in parentheses in one or more claims shall not be construed as limiting the claims. The word “comprising” and “comprises,” and the like, does not exclude the presence of elements or steps other than those listed in any claim or the specification as a whole. The singular reference of an element does not exclude the plural references of such elements and vice-versa. One or more of the embodiments may be implemented by means of hardware comprising several distinct elements, and/or by means of a suitably programmed computer. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different

dependent claims does not indicate that a combination of these measures cannot be used to an advantage.

CLAIMS:

1. An attachment (10) mountable to a handle (62) having a drive shaft (60), the attachment comprising:

 a neck member (16) having an elongated body (40) with a principal axis (42), the neck member elongated body having a cavity (44) extending within the neck member elongated body from a distal end (46) of the neck member;

 a slide member (12) having (i) an engagement surface (22) and (ii) a linear displacement surface (24), opposite the engagement surface; and

 a guide sleeve member (14) having an elongated body (80), the guide sleeve member elongated body having a cavity (84) extending within the guide sleeve member elongated body from a distal end (86) of the guide sleeve member, the guide sleeve member further having (i) a first outer surface (88) with an engagement opening (90) disposed inward and transverse to the guide sleeve member elongated body, and (ii) a second outer surface (92), opposite the first outer surface, that comprises a transition surface, wherein the slide member (12) is adapted for moveable insertion, engagement surface first, within the engagement opening (90) of the guide sleeve member (14) and extendable within the guide sleeve member cavity (84), the guide sleeve member (14) together with moveably inserted slide member (12) being adapted for moveable insertion, proximal end first, within the cavity (44) of the neck member (16), wherein responsive to insertion of the drive shaft (60) into the cavity (84) of the guide sleeve member (14) together with the moveably inserted slide member (12) within the cavity (44) of the neck member (16) from (a) a first radial position along an axis offset and parallel to the principal axis (42) to (b) a second radial position in-line with the principal axis (42), via the transition surface (92), the drive shaft (60) is held in frictional contact with the engagement surface (22) of the slide member (12) to enable a reliable transfer of at least one of force and motion from the drive shaft (60) to the neck member (16).

2. The attachment of claim 1, wherein a notch flat surface (66) of the drive shaft (60) is held in frictional contact with the engagement surface (22) of the slide member (12).

3. The attachment of claim 1, wherein the cavity (84) of the guide sleeve member (14) extends within the guide sleeve member elongated body (80) from the distal end (86) to a

proximal end (94) of the guide sleeve member, wherein the proximal end of the cavity (84) comprises an end stop (96) for insertion of the drive shaft (60) within the guide sleeve member (14).

4. The attachment of claim 1, wherein the linear displacement surface (24) extends along a length dimension of the slide member (12), further wherein responsive to the guide sleeve member (14) together with moveably inserted slide member (12) being moveably inserted, proximal end first, within the cavity (44) of the neck member (16), the linear displacement surface (24) is moveably fitted within a slot (49) that extends along a first inner surface (48) of the cavity (44) of the neck member (16).

5. The attachment of claim 4, further wherein the slot (49) extends along the first inner surface (48) parallel to the principal axis (42).

6. The attachment of claim 1, wherein the transition surface (92) comprises a first portion (98) proximate the proximal end of the guide sleeve member (14), a transition portion (100) intermediate the proximal and distal ends of the guide sleeve member, and a second portion (102) proximate the distal end (86) of the guide sleeve member, wherein the transition portion comprises a circumferential tapered surface moveably fitted for displacement along a complementary tapered surface (106) of a second inner surface (50) of the cavity (44) of the neck member (16), wherein responsive to a displacement of the circumferential tapered surface along the complementary tapered surface, the second portion of the transition surface is moveably displaced between a first radial position along a third axis (3a) offset and parallel to the principal axis (42) and a second radial position along a fourth axis (4a) offset and parallel to the principal axis (42), closer to the principal axis.

7. The attachment of claim 1, wherein the neck member (16) comprises a toothbrush neck and connecting assembly adapted for insertion onto the drive shaft (60) of an electric toothbrush handle (62).

8. The attachment of claim 1, further comprising:

a collar member (18) having a body (110) with a cavity (112) extending therein between a proximal end (114) to a distal end (116), wherein the proximal end of the collar member is configured to be fixedly attached to the distal end (46) of the neck member (16) for removeably securing the slide member (12) and guide sleeve member (14) within the neck member (16).

9. The attachment of claim 8, wherein the cavity (112) of the collar member (18) comprises, in cross-section, a size sufficient to allow the drive shaft (60) to be moveably fitted through the cavity of the collar member (i) along the axis offset and parallel to the principal axis (42) and (ii) in-line with the principal axis (42).

10. The attachment of claim 8, further wherein the proximal end (114) of the collar member (18) is adapted for cooperation with a distal end (86) surface of the guide sleeve member (14), wherein the proximal end (114) includes a tapered surface (118) for moveably displacing a complementary tapered surface (120) of the distal end (86) surface of the guide sleeve member (14) to bias the second portion (102) of the transition surface (92) of the guide sleeve member (14) towards the first radial position along the third axis (3a) offset and parallel to the principal axis (42).

11. The attachment of claim 8, further wherein the proximal end (114) of the collar member (18) includes at least one attachment aperture (122) and wherein the distal end (46) of the neck member (16) includes at least one pair of resilient attachment tabs (56), wherein responsive to insertion of the at least one pair of resilient attachment tabs (56) into the at least one attachment aperture (122), the collar member (18) is fixedly attached to the neck member (16).

12. The attachment of claim 1, wherein the cavity (44) of the neck member (16) further comprises first and second pairs of inner surfaces ((48,50),(52,54)) along a length dimension of the cavity (44).

13. The attachment of claim 12, wherein the first pair of inner surfaces (48,50) comprise a first surface (48) and a second surface (50), opposite the first surface, within the cavity (44) of the neck member (16).

14. The attachment of claim 13, wherein the first surface (48) comprises a linear translation surface having a slot (49) that extends along the first surface and is adapted for moveably fitting the linear displacement surface (24) of the slide member (12) therein, wherein the engagement surface (22) of the slide member (12) is maintained at a given radial distance from the principal axis (42) in response to the guide sleeve member (14) together with the moveably inserted slide member (12) being moveably fitted within the cavity (44) of the neck member (16).

15. The attachment of claim 13, wherein the second surface (50) comprises a transition surface configured to complement the transition surface (92) of the guide sleeve member (14) and to enable the drive shaft (60) to be moveably fitted between the first and second radial positions via the transition surface (92) of the guide sleeve member (14) in response to the guide sleeve member being moveably fitted within the cavity (44) of the neck member (16).

16. The attachment of claim 12, wherein the second pair of inner surfaces (52,54) comprise guide surfaces for a second pair of outer surfaces (93) of the guide sleeve member (14), wherein the second pair of outer surfaces of the guide sleeve member are maintained centered about the principal axis (42) in response to the guide sleeve member (14) being moveably fitted within the cavity (44) of the neck member (16).

17. The attachment of claim 1, wherein the neck member elongated body (40) comprises a cylindrically shaped elongated body.

18. An attachment (10) mountable to an electric toothbrush handle (62) having a drive shaft (60), the attachment comprising:

a neck member (16) that comprises a toothbrush neck and having an elongated body (40) with a principal axis (42), the neck member elongated body having a cavity (44) extending within the neck member elongated body from a distal end (46) of the neck member;

a slide member (12) having (i) an engagement surface (22) and (ii) a linear displacement surface (24), opposite the engagement surface;

a guide sleeve member (14) having an elongated body (80), the guide sleeve member elongated body having a cavity (84) extending within the guide sleeve member elongated body from a distal end (86) of the guide sleeve member, the guide sleeve member further having (i) a first outer surface (88) with an engagement opening (90) disposed inward and transverse to the guide sleeve member elongated body, and (ii) a second outer surface (92), opposite the first outer surface, that comprises a transition surface, wherein the slide member (12) is adapted for moveable insertion, engagement surface first, within the engagement opening (90) of the guide sleeve member (14) and extendable within the guide sleeve member cavity (84), the guide sleeve member (14) together with moveably inserted slide member (12) being adapted for moveable insertion, proximal end first, within the cavity (44) of the neck member (16); and

a collar member (18) having a body (110) with a cavity (112) extending therein between a proximal end (114) to a distal end (116), wherein the proximal end (114) of the collar member is configured to be fixedly attached to the distal end (46) of the neck member (16) for removeably securing the slide member (12) and guide sleeve member (14) within the neck member (16), wherein responsive to insertion of the drive shaft (60) into the cavity (112) of the collar member (18) and the cavity (84) of the guide sleeve member (14) together with the moveably inserted slide member (12) within the cavity (44) of the neck member (16) from (a) a first radial position along an axis offset and parallel to the principal axis (42) to (b) a second radial position in-line with the principal axis (42), via the transition surface (92), the drive shaft (60) is held in frictional contact with the engagement surface (22) of the slide member (12) to enable a reliable transfer of at least one of force and motion from the drive shaft (60) to the neck member (16).

19. A method for mounting an attachment (10) to an electric toothbrush handle (62) having a drive shaft (60), the method comprising:

providing a neck member (16) having an elongated body (40) with a principal axis (42), the neck member elongated body having a cavity (44) extending within the neck member elongated body from a distal end (46) of the neck member;

providing a slide member (12) having (i) an engagement surface (22) and (ii) a linear displacement surface (24), opposite the engagement surface;

providing a guide sleeve member (14) having an elongated body (80), the guide sleeve member elongated body having a cavity (84) extending within the guide sleeve member elongated body from a distal end (86) of the guide sleeve member, the guide sleeve member further having (i) a first outer surface (88) with an engagement opening (90) disposed inward and transverse to the guide sleeve member elongated body, and (ii) a second outer surface (92), opposite the first outer surface, that comprises a transition surface, wherein the slide member (12) is adapted for moveable insertion, engagement surface first, within the engagement opening (90) of the guide sleeve member (14) and extendable within the guide sleeve member cavity (84), the guide sleeve member (14) together with moveably inserted slide member (12) being adapted for moveable insertion, proximal end first, within the cavity (44) of the neck member (16); and

inserting the drive shaft (60) into the cavity (84) of the guide sleeve member (14) together with the moveably inserted slide member (12) within the cavity (44) of the neck member (16) from (a) a first radial position along an axis offset and parallel to the principal axis (42) to (b) a second radial position in-line with the principal axis (42), via the transition surface (92), wherein the drive shaft (60) is held in frictional contact with the engagement surface (22) of the slide member (12) to enable a reliable transfer of at least one of force and motion from the drive shaft (60) to the neck member (16).

20. The method of claim 19, further comprising:

removeably securing, via a collar member (18), the slide member and guide sleeve member within the neck member, wherein the collar member comprises a body (110) with a cavity (112) extending therein between a proximal end (114) to a distal end (116), and

wherein removeably securing includes fixedly attaching the proximal end (114) of the collar member to the distal end (46) of the neck member (16).

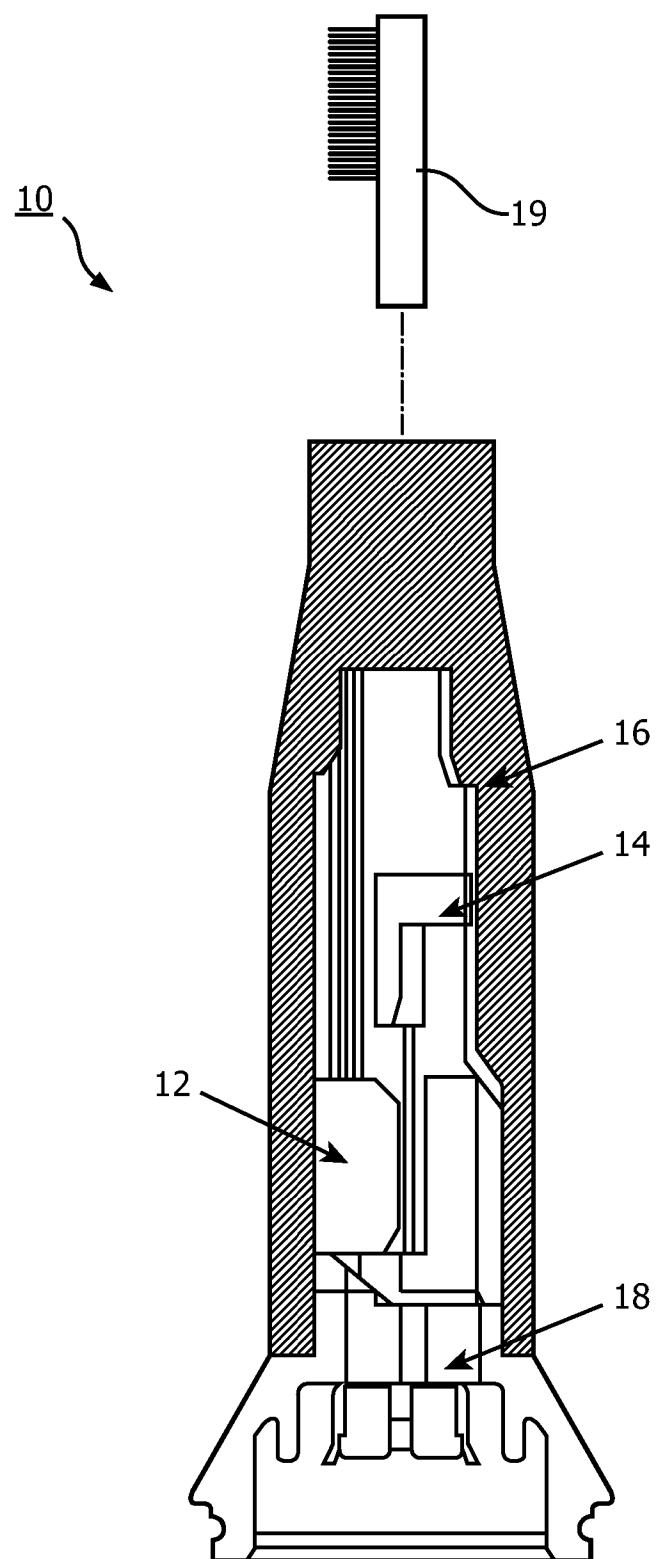


FIG. 1

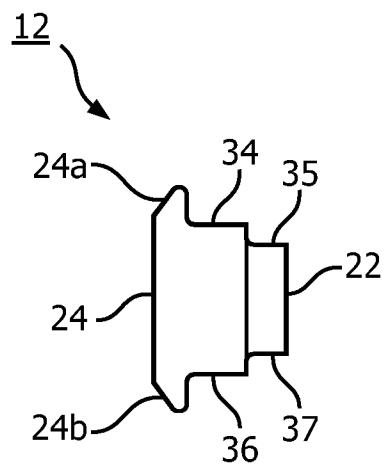


FIG. 2A

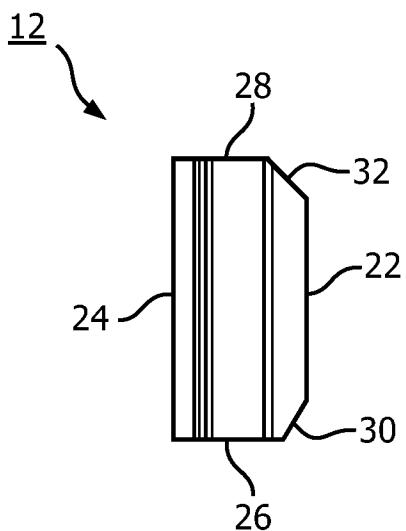


FIG. 2B

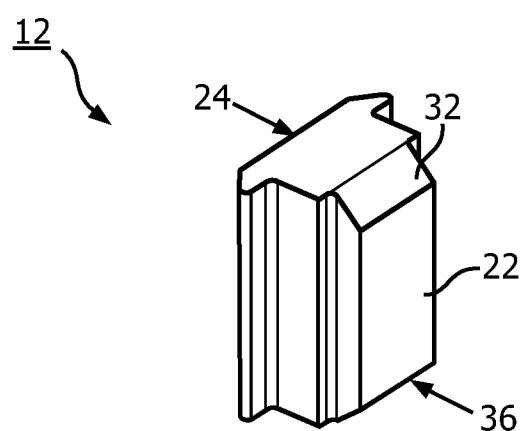


FIG. 2C

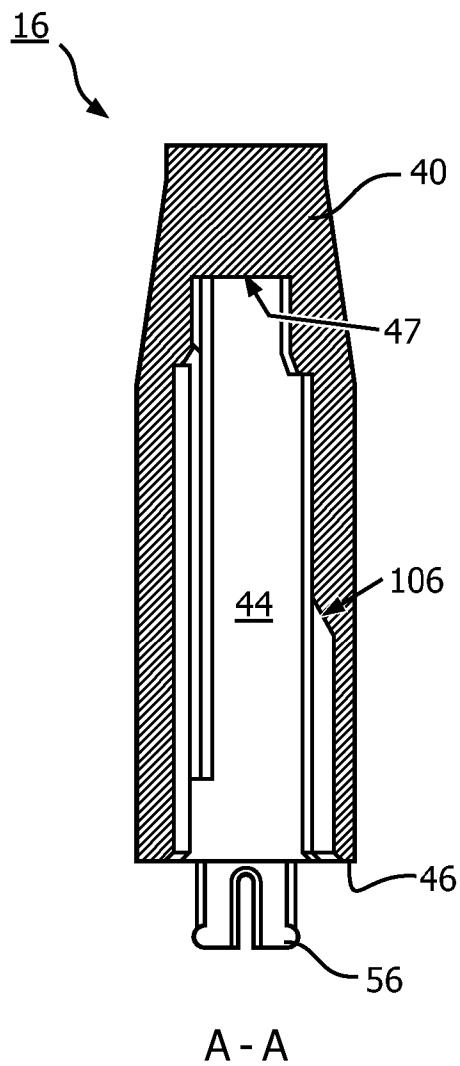


FIG. 3A

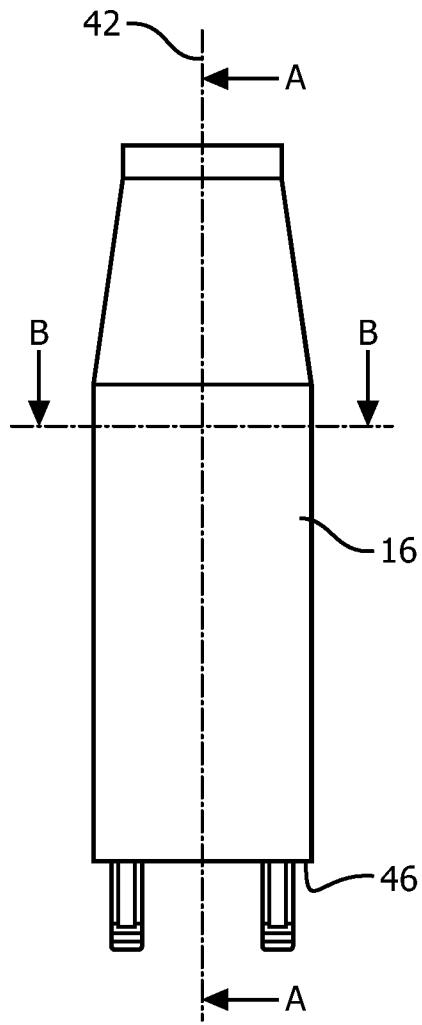


FIG. 3C

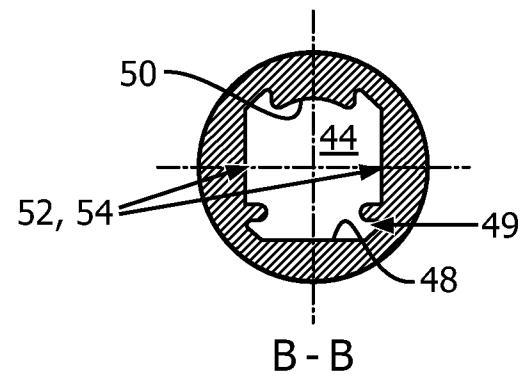


FIG. 3B

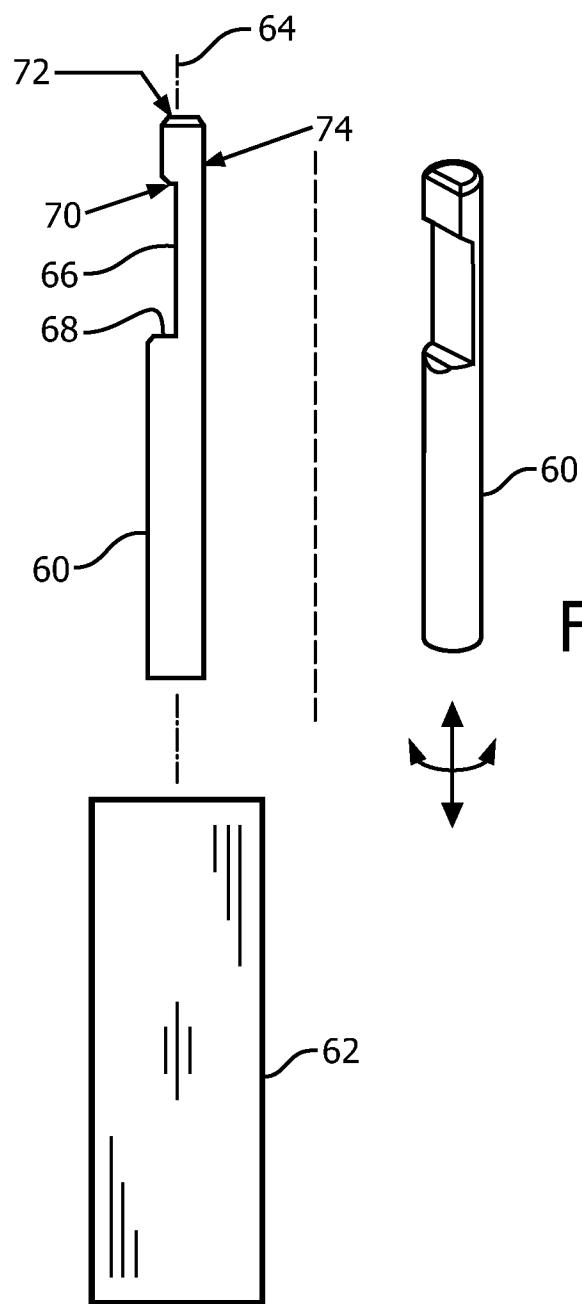


FIG. 4A

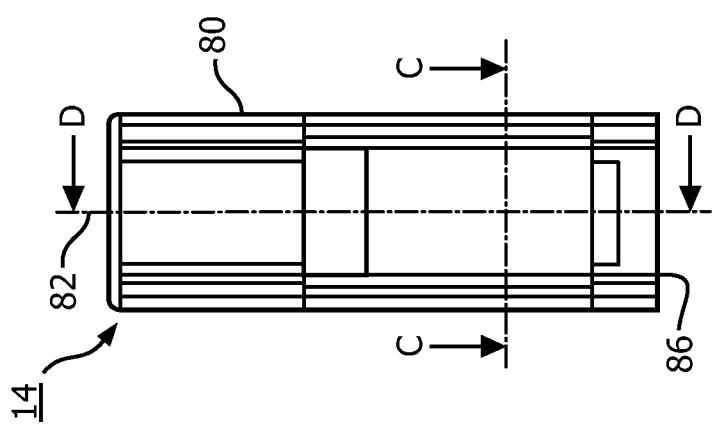


FIG. 5E

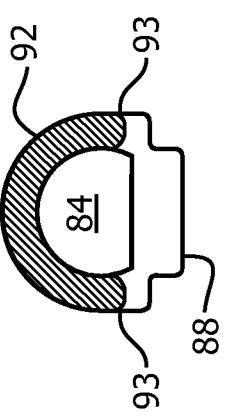


FIG. 5F

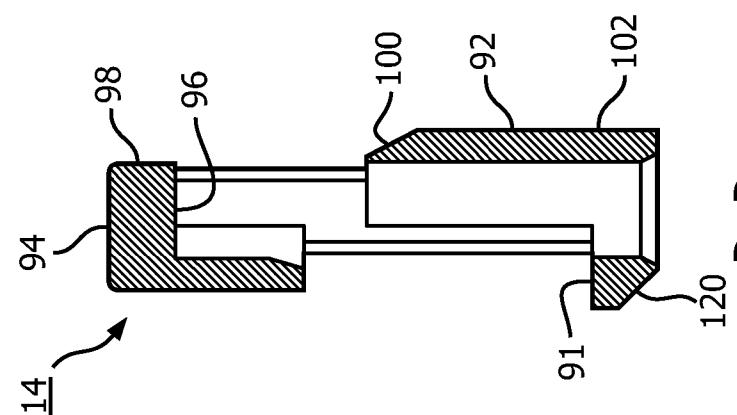


FIG. 5D

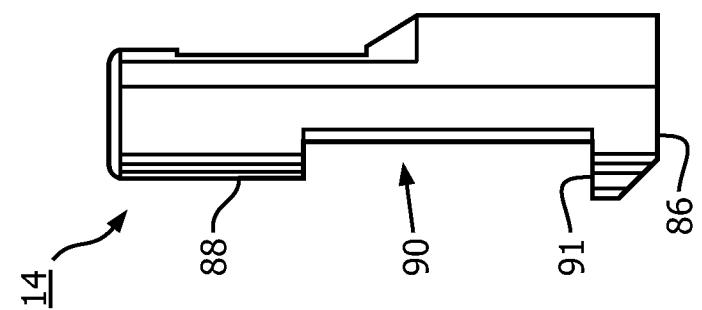


FIG. 5C

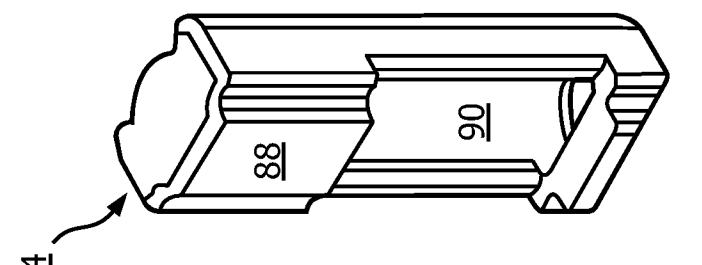


FIG. 5B

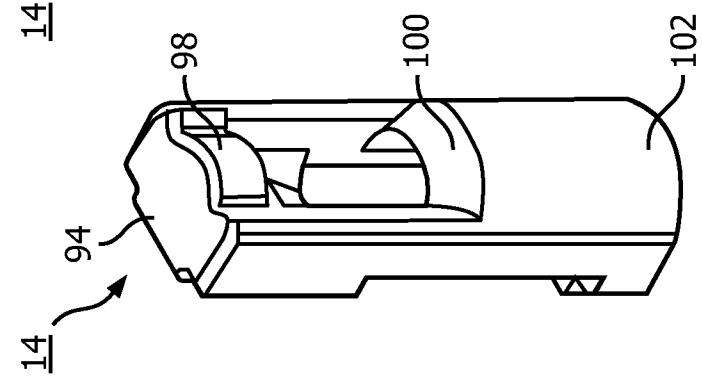


FIG. 5A

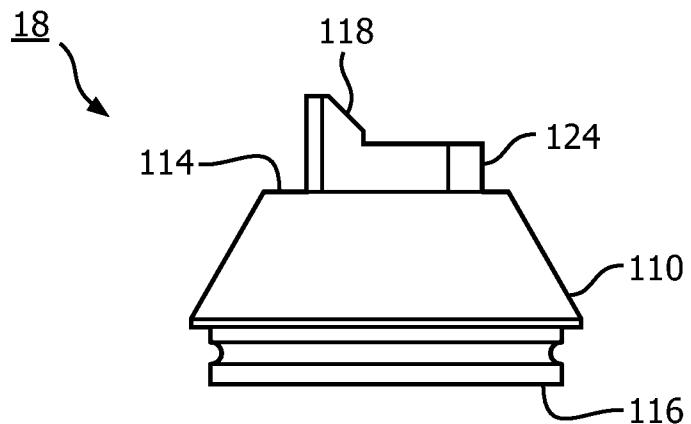


FIG. 6A

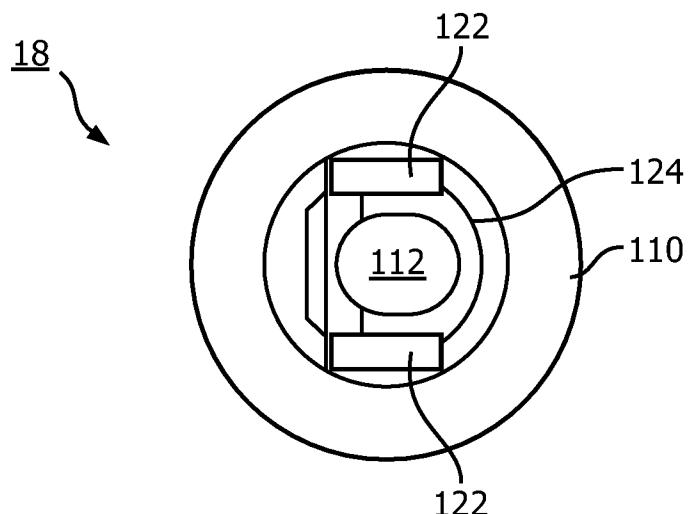


FIG. 6B

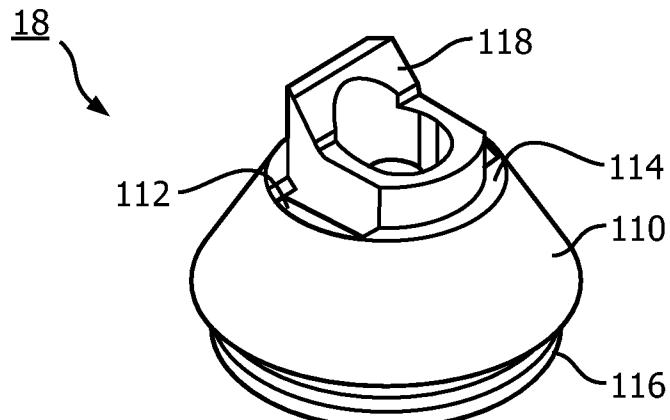


FIG. 6C

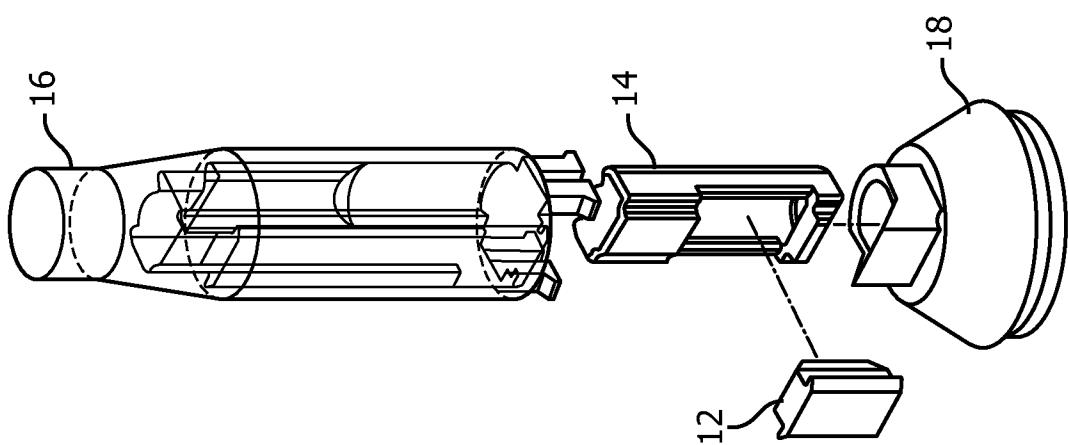
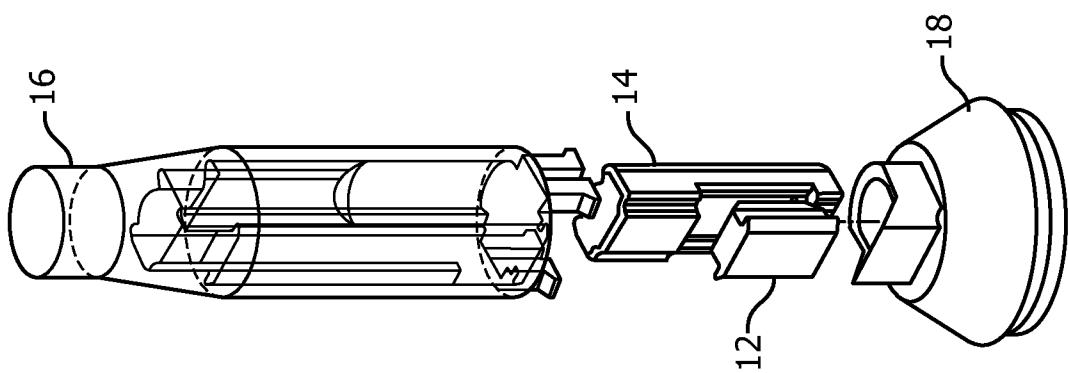
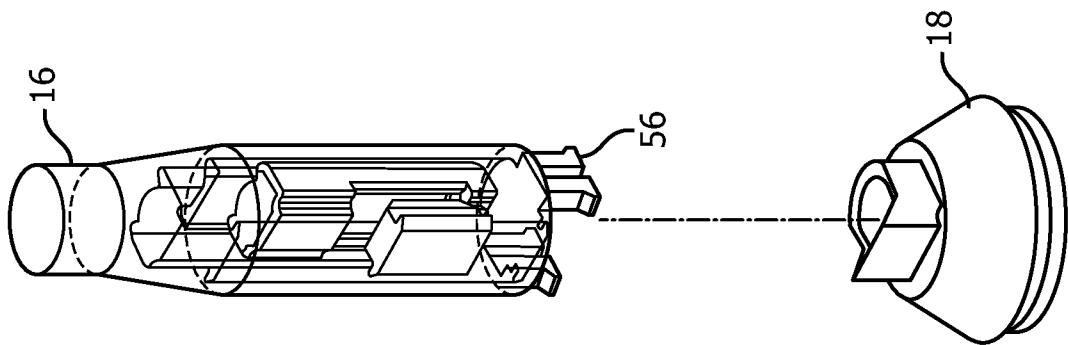
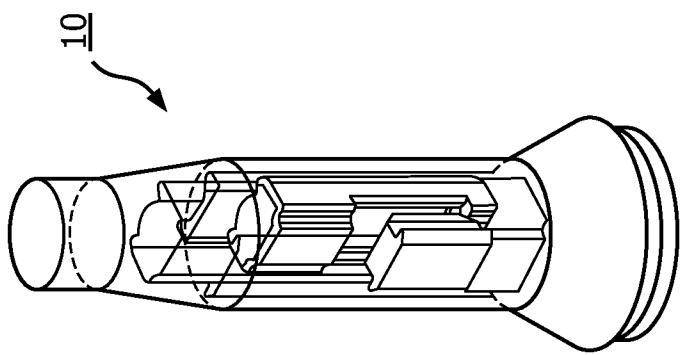





FIG. 7D

FIG. 7C

FIG. 7B

FIG. 7A

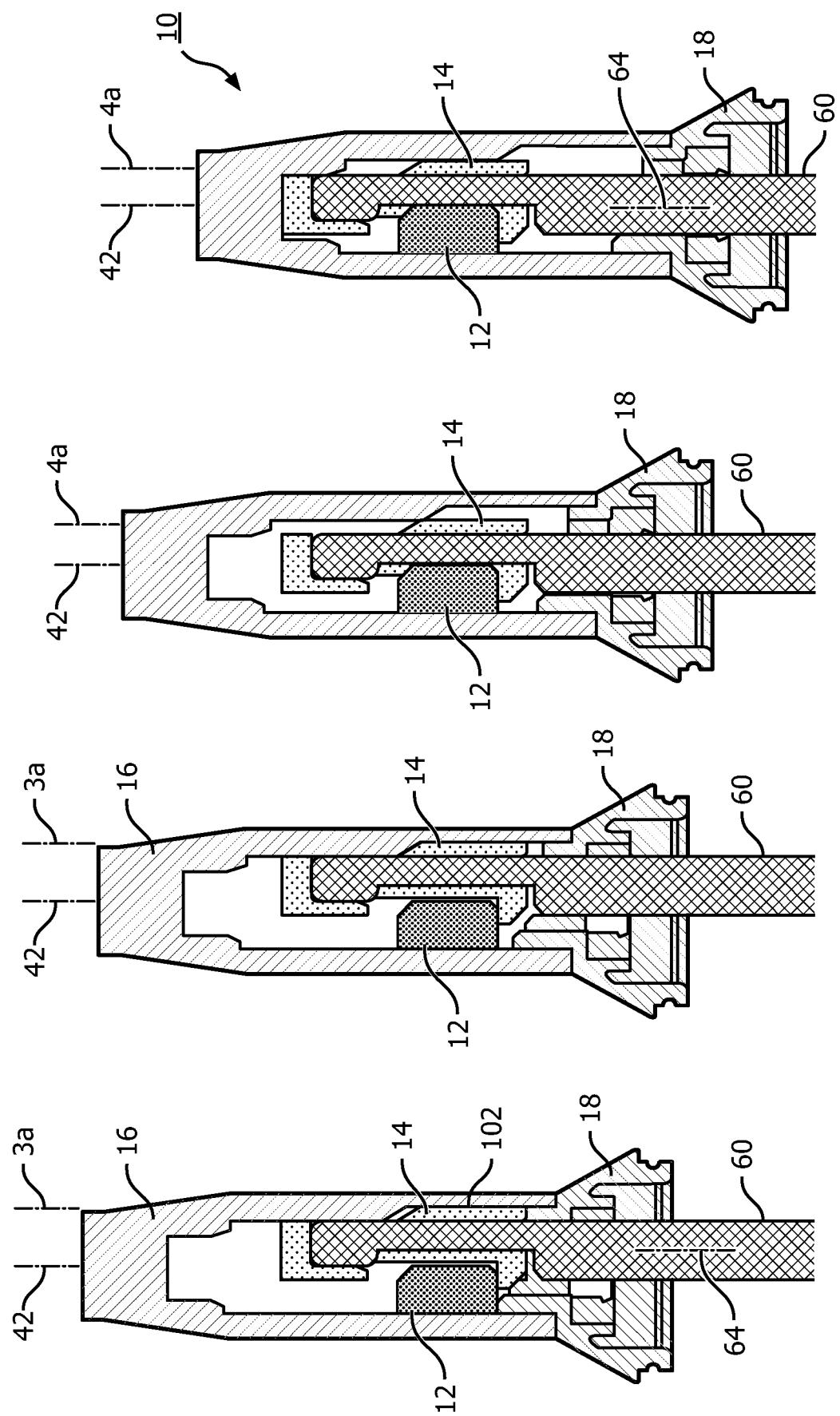


FIG. 8A

FIG. 8B

FIG. 8C

FIG. 8D

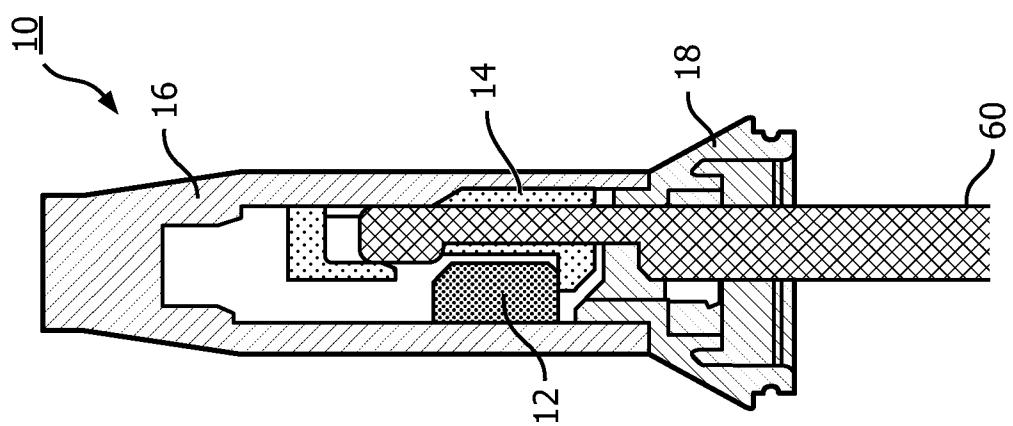


FIG. 9A

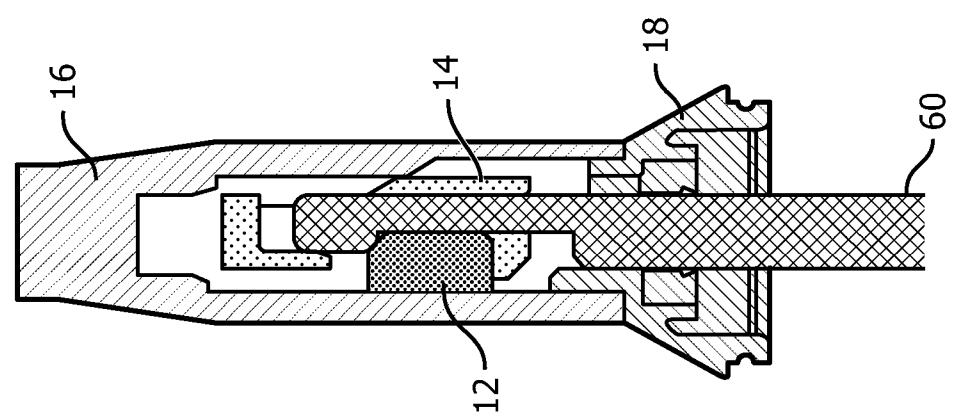


FIG. 9B

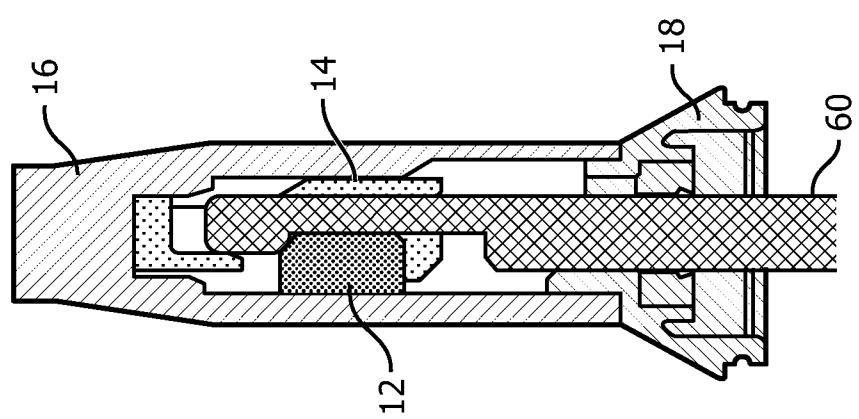


FIG. 9C

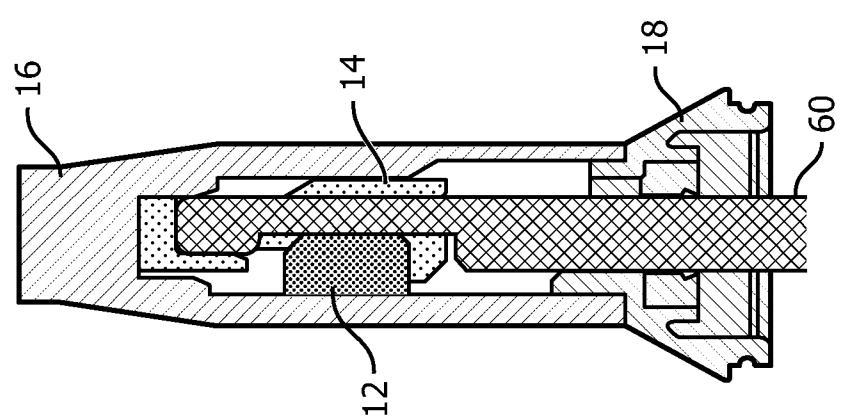


FIG. 9D

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2014/065562

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61C17/22
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2003/101526 A1 (HILSCHER ALEXANDER [DE] ET AL) 5 June 2003 (2003-06-05) figure 11 -----	1-20
A	WO 2013/061219 A1 (KONINKL PHILIPS ELECTRONICS NV [NL]) 2 May 2013 (2013-05-02) figures -----	1-20
A	DE 10 2006 060133 A1 (BRAUN GMBH [DE]) 19 June 2008 (2008-06-19) figures -----	1-20
A	WO 2005/046506 A1 (BRAUN GMBH [DE]; SCHAEFER NORBERT [DE]; EISENKOLB ERIK [DE]; ENGELMOHR) 26 May 2005 (2005-05-26) figures ----- -/-	1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

3 February 2015

11/02/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Fouquet, Michèle

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2014/065562

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00/76420 A1 (GIMELLI PRODUKTIONS AG [CH]; BIGLER MICHAEL [CH]) 21 December 2000 (2000-12-21) figures -----	1-20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2014/065562

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2003101526	A1	05-06-2003	DE 10159395 A1 EP 1518512 A2 US 2003101526 A1 US 2004255409 A1 US 2007234493 A1 US 2008022469 A1 US 2008022470 A1 US 2008022471 A1 US 2008022501 A1 US 2008022503 A1 US 2008028549 A1 US 2008032265 A1 US 2008034515 A1 US 2010281637 A1 US 2010316975 A1 US 2011247155 A1 US 2011248085 A1
			12-06-2003 30-03-2005 05-06-2003 23-12-2004 11-10-2007 31-01-2008 31-01-2008 31-01-2008 31-01-2008 31-01-2008 07-02-2008 07-02-2008 14-02-2008 11-11-2010 16-12-2010 13-10-2011 13-10-2011
WO 2013061219	A1	02-05-2013	CN 103889366 A EP 2747700 A1 JP 2014530734 A US 2014298603 A1 WO 2013061219 A1
			25-06-2014 02-07-2014 20-11-2014 09-10-2014 02-05-2013
DE 102006060133	A1	19-06-2008	AU 2007334966 A1 BR PI0719584 A2 CA 2670768 A1 CN 101557775 A DE 102006060133 A1 EP 2111181 A1 ES 2409954 T3 JP 5496678 B2 JP 2010512809 A KR 20090096697 A RU 2009127721 A US 2010043156 A1 WO 2008074411 A1 ZA 200903414 A
			26-06-2008 17-12-2013 26-06-2008 14-10-2009 19-06-2008 28-10-2009 28-06-2013 21-05-2014 30-04-2010 14-09-2009 27-01-2011 25-02-2010 26-06-2008 28-04-2010
WO 2005046506	A1	26-05-2005	AT 423528 T CN 1882291 A DE 10352993 A1 DK 1682032 T3 EP 1682032 A1 ES 2325444 T3 HK 1096568 A1 US 2005108838 A1 WO 2005046506 A1
			15-03-2009 20-12-2006 16-06-2005 29-06-2009 26-07-2006 04-09-2009 11-03-2011 26-05-2005 26-05-2005
WO 0076420	A1	21-12-2000	AU 6149500 A WO 0076420 A1
			02-01-2001 21-12-2000

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2014/065562

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-18 (partially)
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.2

Claims Nos.: 1-18(partially)

Claims 1-18 are not clear and concise as required by Art. 6 PCT.

Claims 1-17 are not supported by the description, contrary to Art. 6 PCT because in claim 1, an attachment mountable to a handle having a drive shaft in general is defined, whereas the only embodiment described in the description and shown in the figures is an electric toothbrush.

Claims 1 and 18 are not concise because 2 independent claims define the same subject-matter in different wording. In claim 18 additionally a collar member is defined such that claim 18 should be made dependent on claim 1.

Moreover in independent claims 1 and 18 the attachment is defined in relation to the drive shaft 60, which is not part of the attachment. It seems that throughout the claims 2, 3, 7, 9, 15 this drive shaft is very important in order to clearly define the attachment, such that a combination of an attachment and a drive shaft of an electric toothbrush should be claimed in order to fulfil the requirements of Art. 6 PCT.

The search was therefore directed to an electric toothbrush comprising a handle having a drive shaft to which an attachment comprising a neck member; a slide member and a guide sleeve member as defined in claim 1 can be attached.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guidelines C-IV, 7.2), should the problems which led to the Article 17(2) declaration be overcome.