US 20070294770A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2007/0294770 A1

CUENOD et al.

43) Pub. Date: Dec. 20, 2007

(54)

(735)

(73)

@

(22)

K refilling

METHOD TO PROTECT SOFTWARE
AGAINST UNWANTED USE WITH A
VARIABLE PRINCIPLE

Inventors: Jean-Christophe Emanuel CUENOD,
Montesson (FR); Gilles Jean SGRO,
Bourg de Peage (FR)

Correspondence Address:

SUGHRUE MION, PLLC

2100 PENNSYLVANIA AVENUE, N.W.
SUITE 800

WASHINGTON, DC 20037 (US)

Assignee: SAS VALIDY, Romans (FR)

Appl. No.: 11/835,204

Filed: Aug. 7, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/178,834, filed on
Jun. 25, 2002, now Pat. No. 7,269,740.

(60) Provisional application No. 60/308,824, filed on Aug.
1, 2001.

Publication Classification

(51) Int. CL

GOG6F 11/00 (2006.01)
(52) US. Cle oo 726/25
(57) ABSTRACT

The invention concerns a process to protect a vulnerable
software working on a data processing system against its
unauthorized usage using a memorizing unit. The process
comprises creating a protected software by choosing in the
source of the vulnerable software at least one variable and by
producing the source of the protected software by modifying
the source of the vulnerable software, so that the chosen
variable resides in the memorizing unit.

[Definitions stage ~S14
Prior protection | _w Gonstruction stage ~S12
sub-phase

P / \A Pre-customization stage ~S13
Protection P1
phase Tools making stage ~S14
S ya\| Subsequent
sage protection Creation stage ~S
phase sub-phase i 21
/ Modification stage ~S2s
P2
/R Customization stage ~S,3
Phase of

Patent Application Publication Dec. 20,2007 Sheet 1 of 15 US 2007/0294770 A1

FIG. 10

204

5 / 2u0
\>

2ud

Patent Application Publication Dec. 20,2007 Sheet 2 of 15 US 2007/0294770 A1

FIG. 20

FIG. 22
| : I
5
— 24e8 — 24eu
3 / 6

£

Patent Application Publication Dec. 20,2007 Sheet 3 of 15 US 2007/0294770 A1

FI1G. 30
12 < , 13)
\zﬁw 5 2,@%
/
3 6
FIG. 31
14\ — .,
—H 13 [« 45|16 |
/
6
FI1G. 40

t1 V1 «— X

tz Y « V1

t3... Z « V1

Patent Application Publication Dec. 20,2007 Sheet 4 of 15 US 2007/0294770 A1
_ FIG. 41
-3
t1...| OUT(e4,X).....conce.. L X
A
t.]| Y « IN(&)........ PR - N
16
ts..| Z « IN(&q)ooooooo..... PR
P \
T 24e0 6
3 FIG. 42
e
t..] Vi< X;0UT (&, X)..] —X
¢
A\
tz WY V1 15
ti..| Z < IN@)oonnn P2
_— \
- 2pee S
FIG. 43
L
ty..| OUT(e,X)m.. X .0
t2..] Y «IN().............. 4—_.?
t:...] Z «IN(e)............... 2
T 2468

Patent Application Publication Dec. 20,2007 Sheet 5 of 15 US 2007/0294770 A1

3 FIG. 50
Z «F(X,Y)
—- 2¢
FIG. 51
|3 16 15
t..|CE2: TRIG({). ...ccovocrrirveren R {
<+ %
ts.|CE3: Z IN(G)..ooo. «Z .
™ 2460 /
6
FIG. 52
3
Z «F (X.Y)

2« F (X,Y’)

—~l.2¢

Patent Application Publication Dec. 20,2007 Sheet 6 of 15 US 2007/0294770 A1
;3 FIG.53
>
/1/5 15
CEq: OUT (£,X); OUT(4,Y)...| | XY, /
b4
CEz: TRIG (§)...covvvoverrcrrereneeen ¢ " |/
p— . 4
CE’,: OUT (#,X’) ;0UT(¢,Y’)| 2% .
{‘ «—>
CE’,: TRIG (). > ¢
CE'3: 2 IN (). WaARN 3
CEs: Z « IN(§)rromrc 7| 7
) 7
\z;éea 6
3 FIG. 54
t;..|CE : OUT (£,X), OUT(4,Y)...| | X.Y, 2
t2..|CE2 : TRIG (§). .o f,2
t3. {CE3: Z < IN(®).....cccooooommmrrnrr 2
™ 240
FIG. 60
3
Z « F(X,Y)
—~—_2¢

Patent Application Publication Dec. 20,2007 Sheet 7 of 15 US 2007/0294770 A1

ta.
ts.

tn..

N1,

. |CFE;4

CFE;
CFEs

. CFE4 .

CFEy.1 : TRIG (fen.1)...
CFEy :Z « IN().......

FIG. 61
3
16 15
X [7 7
Y >

fes
ol o

Z « F (X,Y)

Z « F (X,Y’)

1~ 2¢

4P
] s
fen) | s
W
FIG. 62
y

Patent Application Publication Dec. 20,2007 Sheet 8 of 15

CFE; : OUT (£,X)......
CFE’; : OUT (¢,Y)...
CFE; : OUT (4.Y)......
CFE’; : OUT (#',X).....
CFE’s : TRIG ({'e).....
CFE’; : TRIG ({'¢y......
CFE; : TRIG ({¢3).......
CFE, : TRIG (fe,)......

CFEy :Z «IN(3).......
CFE'm: Z' <IN(Z)......

3
[2pes

US 2007/0294770 A1

FIG. 63

_6

ti.
t2.

.| CFE3
.| CFE4

.| CFEN

CFE,
CFE;

: OUT (£,X)....
: OUT (4,Y)....

: TRIG ({e)...
: TRIG (§24)...

CFEj.1 : TRIG (fen-1)
:Z < IN(®).

FIG. 64

Patent Application Publication Dec. 20,2007 Sheet 9 of 15 US 2007/0294770 A1

FIG. 70
| YY V¥
15 17~ <>
13 ! N
18 16
FI1G. 71
BT I S
Cl. 1 TRIG (¢,) |- 15 17
Clost: TRIG(Co)| Lnt1 | 13

Clv2: TRIG(€nso)| |02, 6 | : z ¥
~
1} a b

v e

Patent Application Publication Dec. 20,2007 Sheet 10 of 15 US 2007/0294770 A1

FIG. 72

T
P TRIG(C). —‘3—"—> 15 17
ICln+1:TRIG(€n44)| | 0ty 13
IClos2: TRIG(6ns2)| 222, Pl -

16
e (o)) 18
a\ ,/ b

N\
s \2ges !
6/

PF B FIG.73

Cll | CDs| CIP,| CD; | CIP3| -+ | CDk | CIPk

Ry: CF, CIG, FIG. 74
FIG. 80
-3
Z < F (X,Y)
— ——2¢

Patent Application Publication Dec. 20,2007 Sheet 11 of 15

ti..
t.

-1

n.

CDy: OUT (£,X)..coo..
CD;: OUT (4,Y)............

.|CD3: TRIG ({a)...............

CDn.1: TRIG ({y.1).......
CON:Z < IN(®)erren

t1..
2.
ta..

CDCR1:0UT (R(#),X)...
CDCR2:0UT (R(¢),Y)...
CDCR;:TRIG (R({d5)).

4CDCR.1:TRIG (R({ex.1))
|CDCRy: Z « IN(R(3)).

US 2007/0294770 Al
FIG. 81
3
- /’}6 ’!5
X
ﬁ, ”
§s
: <+ (%
LN PV
2 |
~L 24¢4 6/
3 FIG. 82
16 15
X 7 7
Y , ;aé
R(s)
%' > ﬂ4 > ¥
: ¥
W P
} N
«—— 20
.
N 6

Patent Application Publication Dec. 20,2007 Sheet 12 of 15 US 2007/0294770 A1

3 FIG. 83
L~
Z <« F (X,Y)
Z«— F (X,Y’)
- 2¢
3 FIG. 84
e

CDCRs: OUT(R(®),X)....| —X)]
CDCR’;: OUT(R®).X).|. X,
CDCR;:OUT(R(#).Y)...| LY
CDCR’2:0UT(R().Y).| Y,
CDCR’3:TRIG(R({#5)). | | R¢%’3)
CDCR’¢:TRIG(R({#)). | | R¢#4)
CDCR;: TRIG(R(§5))... Rgds)
CDCR.: TRIG(R({44))..

R(@s)
CDCRn: Z < IN(R()). | l«—2F
;’

CDCR'm: Z’ « IN(R(z"))

Patent Application Publication Dec. 20,2007 Sheet 13 of 15

t..
ts..

n. |

.|CDCRy: OUT(R(#),X)
CDCR;: OUT(R(¢),Y)
CDCR3: TRIG(R({))....
| CDCRy: TRIG(R({4)).....| | R(¢els)

| 2¢

/3

~CBC4:TRIG(bc)

CDCRy: Z < IN(R))......| [e—2—

US 2007/0294770 A1

FIG. 85

FIG. 90

bc

Patent Application Publication Dec. 20,2007 Sheet 14 of 15 US 2007/0294770 A1

FIG. 92
ti......1..CBC:TRIG(bc)| ——»7?
2
<—'__—
| _24es
-3
FIG. 100
[Definitions stage ~S11
Prior protection | _ w1 Construction stage ~S12
sub-phase
P / : Pre-customization stage ~S13
£ P1
Protection : ~
phase Tools making stage S14
< U Subsequent
Usage protection Creation stage ~Saq
phase sub-phase <:
/ Modification stage ~S2s
P2
/R Customization stage ~S,3
Phase of
\ refilling
FI1G. 110

25—\

Patent Application Publication Dec. 20,2007 Sheet 15 of 15 US 2007/0294770 A1

FIG. 120
31 32
L F—— P
N
eo/ 66
30
FIG. 130
w—, [N FIG. 140
FIG. 150
46 47
N — —»
7 \
60.66 6

45

US 2007/0294770 Al

METHOD TO PROTECT SOFTWARE AGAINST
UNWANTED USE WITH A VARIABLE PRINCIPLE

BACKGROUND OF THE INVENTION

[0001] This invention concerns the technical domain of
data processing systems in the general sense, and is more
precisely aimed at the means of protecting software running
on said data processing systems against unauthorized usage.

[0002] The subject of the invention aims in particular at
the means of protecting software against unauthorized
usage, using a memorizing unit or processing and memo-
rizing unit, such a unit being commonly materialized by a
chip card or a material key on USB port.

[0003] In the technical domain above, the main problem
concerns the unauthorized usage of software by users who
have not paid the license rights. This illicit use of software
causes an obvious loss for software editors, software dis-
tributors and/or any person integrating such software in
products. To avoid such illicit copies, various solutions, in
the state of technology, have been proposed to protect
software.

[0004] Thus, a protection solution is known, which makes
use of a hardware protection system, such as a physical
component named protection key or “dongle”. Such a pro-
tection key should guarantee that the software executes only
in presence of the key. Yet, it must be acknowledged that this
solution is ineffective because it presents the inconvenience
of being easy to bypass. An ill-intentioned person or a
hacker can, with the aid of specialized tools such as disas-
semblers, delete the control instructions of the protection
key. It becomes then possible to make illicit copies corre-
sponding to modified versions of the software able to run
without the protection. Moreover, this solution cannot be
generalized to all software, inasmuch as it is difficult to
connect more than two protection keys to the same system.

BRIEF SUMMARY OF THE INVENTION

[0005] The subject of the invention aims precisely at
finding a solution to the aforementioned problems by pro-
posing a process to protect a software against unauthorized
usage, using an ad hoc memorizing unit or processing and
memorizing unit, inasmuch as the presence of such a unit is
necessary for the software to be completely functional.

[0006] So as to reach such a goal, the subject of the
invention concerns a process to protect, using at least one
blank unit including at least memorization means, a vulner-
able software against its unauthorized usage, said vulnerable
software being produced from a source and working on a
data processing system. The process according to the inven-
tion comprises:
[0007] during a protection phase:
[0008] creating a protected software:

[0009] by choosing in the source of the vulnerable
software:

[0010] at least one variable which, during the
execution of the vulnerable software, partially
defines the state of the latter,

[0011] and at least one portion containing at
least one chosen variable,

Dec. 20, 2007

[0012] by producing a source of the protected
software from the source of the vulnerable soft-
ware, by modifying at least one chosen portion of
the source of the vulnerable software, this modi-
fication being such that during the execution of the
protected software, at least one chosen variable or
at least one copy of chosen variable resides in the
blank unit which is thus transformed into a unit,

[0013] and by producing a first object part of the
protected software from the source of the pro-
tected software, said first object part being such
that during the execution of the protected soft-
ware, appears a first execution part which is
executed in the data processing system and whose
at least a portion takes into account that at least a
variable or at least a copy of variable resides in the
unit,

[0014] and during a usage phase during which the
protected software is executed:

[0015] in the presence of the unit, each time a portion
of'the first execution part imposes it, using a variable
or a copy of variable residing in the unit, so that said
portion is executed correctly and that, consequently,
the protected software is completely functional,

[0016] and in the absence of the unit, in spite of the
request by a portion of the first execution part to use
a variable or a copy of variable residing in the unit,
not being able to fulfill said request correctly, so that
at least said portion is not executed correctly and
that, consequently the protected software is not com-
pletely functional.

[0017] According to a preferred embodiment, the process
according to the invention comprises:

[0018] during the protection phase:

[0019] modifying the protected software:

[0020] by choosing in the source of the protected
software:

[0021] at least one algorithmic processing which
during the execution of the protected software,
uses at least one chosen variable, and enables to
obtain at least one result variable,

[0022] and at least one portion containing at least
one chosen algorithmic processing,

[0023] by modifying at least one chosen portion of
the source of the protected software, this modifica-
tion being such that:

[0024] during the execution of the protected soft-
ware the first execution part is executed in the data
processing system and a second execution part is
executed in the unit which also includes process-
ing means,

[0025] at least the functionality of at least one
chosen algorithmic processing is executed by
means of the second execution part,

[0026] at least one chosen algorithmic processing
is split so that during the execution of the pro-

US 2007/0294770 Al

tected software, appear, by means of the second
execution part, several distinct steps, namely:

[0027] the placing of at least one variable at the
unit’s disposal,

[0028] the carrying out in the unit, of the func-
tionality of the algorithmic processing on at
least said variable,

[0029] and possibly, the placing of at least one
result variable at the data processing system’s
disposal by the unit,

[0030] for at least one chosen algorithmic process-
ing, steps commands are defined so that during the
execution of the protected software, each step
command is executed by the first execution part
and triggers in the unit, the execution by means of
the second execution part, of a step,

[0031] and a sequence of the steps commands is
chosen among the set of sequences allowing the
execution of the protected software,

[0032] and by producing:

[0033] the first object part of the protected soft-
ware, said first object part being such that during
the execution of the protected software, the steps
commands are executed according to the chosen
sequence,

[0034] and a second object part of the protected
software, said second object part being such that,
after upload to the blank unit and during the
execution of the protected software, appears the
second execution part by means of which the steps
triggered by the first execution part are executed,

[0035] and uploading the second object part to the blank
unit, with the intention of obtaining the unit,

[0036] and during the usage phase:

[0037] in the presence of the unit and each time a step
command contained in a portion of the first execution
part imposes it, executing the corresponding step in the
unit, so that said portion is executed correctly and that,
consequently, the protected software is completely
functional,

[0038] and in the absence of the unit, in spite of the
request by a portion of the first execution part to trigger
the execution of a step in the unit, not being able to
fulfill said request correctly, so that at least said portion
is not executed correctly and that, consequently, the
protected software is not completely functional.

[0039] According to another preferred embodiment, the
process according to the invention comprises:

[0040] during the protection phase:
[0041] defining:
[0042] a set of elementary functions whose

elementary functions are liable to be executed in
the unit which also includes processing means,

[0043] and a set of elementary commands for said
set of elementary functions, said elementary com-
mands being liable to be executed in the data

Dec. 20, 2007

processing system and to trigger the execution in
the unit, of the elementary functions,

[0044] constructing exploitation means enabling to
transform the blank unit into the unit able to execute
the elementary functions of said set, the execution of
said elementary functions being triggered by the
execution in the data processing system, of elemen-
tary commands,

[0045] modifying the protected software:

[0046] by choosing in the source of the protected
software:

[0047] atleastone algorithmic processing which
during the execution of the protected software,
uses at least one chosen variable, and enables to
obtain at least one result variable,

[0048] and at least one portion containing at
least one chosen algorithmic processing,

[0049] by modifying at least one chosen portion of
the source of the protected software, this modifi-
cation being such that:

[0050] during the execution of the protected
software the first execution part is executed in
the data processing system and a second execu-
tion part is executed in the unit,

[0051] at least the functionality of at least one
chosen algorithmic processing is executed by
means of the second execution part,

[0052] at least one chosen algorithmic process-
ing is split so that during the execution of the
protected software, said algorithmic processing
is executed by means of the second execution
part, using elementary functions,

[0053] for at least one chosen algorithmic pro-
cessing, elementary commands are integrated to
the source of the protected software, so that
during the execution of the protected software,
each elementary command is executed by the
first execution part and triggers in the unit, the
execution by means of the second execution
part, of an elementary function,

[0054] and a sequence of the elementary com-
mands is chosen among the set of sequences
allowing the execution of the protected soft-
ware,

[0055] and by producing:

[0056] the first object part of the protected soft-
ware, said first object part being such that
during the execution of the protected software,
the elementary commands are executed accord-
ing to the chosen sequence,

[0057] and a second object part of the protected
software containing the exploitation means,
said second object part being such that, after
upload to the blank unit and during the execu-
tion of the protected software, appears the sec-
ond execution part by means of which the

US 2007/0294770 Al

elementary functions triggered by the first
execution part are executed,

[0058] and uploading the second object part to the
blank unit, with the intention of obtaining the unit,

[0059]

[0060] in the presence of the unit and each time an
elementary command contained in a portion of the
first execution part imposes it, executing the corre-
sponding elementary function in the unit, so that said
portion is executed correctly and that, consequently,
the protected software is completely functional,

[0061] and in the absence of the unit, in spite of the
request by a portion of the first execution part, to
trigger the execution of an elementary function in the
unit, not being able to fulfill said request correctly, so
that at least said portion is not executed correctly and
that, consequently, the protected software is not
completely functional.

and during the usage phase:

[0062] According to another preferred embodiment, the
process according to the invention comprises:

[0063] during the protection phase:
[0064] defining:

[0065] a set of elementary functions whose
elementary functions are liable to be executed in
the unit,

[0066] and a set of elementary commands for said
set of elementary functions, said elementary com-
mands being liable to be executed in the data
processing system and to trigger the execution in
the unit, of the elementary functions,

[0067] constructing exploitation means enabling the
unit, to execute the elementary functions of said set,
the execution of said elementary functions being
triggered by the execution in the data processing
system, of elementary commands,

[0068] and modifying the protected software:

[0069] by choosing in the source of the protected
software, at least one step which during the execu-
tion of the protected software, carries out the
functionality of an algorithmic processing,

[0070] by modifying at least one chosen portion of
the source of the protected software, this modifi-
cation being such that:

[0071] at least one chosen step is split so that
during the execution of the protected software,
said step is executed by means of the second
execution part, using elementary functions,

[0072] for at least one chosen step, elementary
commands are integrated to the source of the
protected software, so that during the execution
of'the protected software, each elementary com-
mand is executed by the first execution part and
triggers in the unit, the execution by means of
the second execution part, of an elementary
function,

Dec. 20, 2007

[0073] and a sequence of the elementary com-
mands is chosen among the set of sequences
allowing the execution of the protected soft-
ware,

[0074]

[0075] the first object part of the protected soft-
ware, said first object part being such that
during the execution of the protected software,
the elementary commands are executed accord-
ing to the chosen sequence,

[0076] and the second object part of the pro-
tected software also containing the exploitation
means, said second object part being such that,
after upload to the unit and during the execution
of the protected software, appears the second
execution part by means of which the elemen-
tary functions triggered by the first execution
part are executed,

and by producing:

[0077]

[0078] in the presence of the unit and each time an
elementary command contained in a portion of the
first execution part imposes it, executing the corre-
sponding elementary function in the unit, so that said
portion is executed correctly and that, consequently,
the protected software is completely functional,

[0079] and in the absence of the unit, in spite of the
request by a portion of the first execution part, to
trigger the execution of an elementary function in the
unit, not being able to fulfill said request correctly, so
that at least said portion is not executed correctly and
that, consequently, the protected software is not
completely functional.

and during the usage phase:

[0080] According to another preferred embodiment, the
process according to the invention comprises:

[0081]
[0082] defining:

[0083] at least one software execution characteris-
tic, liable to be monitored at least in part in the
unit,

[0084] at least one criterion to abide by for at least
one software execution characteristic,

a during the protection phase:

[0085] detection means to implement in the unit
and enabling to detect that at least one software
execution characteristic does not abide by at least
one associated criterion,

[0086] and coercion means to implement in the
unit and enabling to inform the data processing
system and/or modify the execution of a software,
when at least one criterion is not abided by,

[0087] constructing the exploitation means enabling
the unit, to also implement the detection means and
the coercion means,

[0088] and modifying the protected software:

[0089] by choosing at least one software execution
characteristic to monitor, among the software
execution characteristics liable to be monitored,

US 2007/0294770 Al

[0090] by choosing at least one criterion to abide
by for at least one chosen software execution
characteristic,

[0091] by choosing in the source of the protected
software, elementary functions for which at least
one chosen software execution characteristic is to
be monitored,

[0092] by modifying at least one chosen portion of
the source of the protected software, this modifi-
cation being such that during the execution of the
protected software, at least one chosen execution
characteristic is monitored by means of the second
execution part, and the fact that a criterion is not
abided by leads to the data processing system
being informed and/or to a modification of the
execution of the protected software,

[0093] and by producing the second object part of
the protected software containing the exploitation
means also implementing the detection means and
the coercion means, said second object part being
such that, after upload to the unit and during the
execution of the protected software, at least one
software execution characteristic is monitored and
the fact that a criterion is not abided by leads to the
data processing system being informed and/or to a
modification of the execution of the protected
software,

[0094]
[0095]

[0096] as long as all the criteria corresponding to
all the monitored execution characteristics of all
the modified portions of the protected software are
abided by, enabling said portions of the protected
software to work nominally and consequently
enabling the protected software to work nomi-
nally,

[0097] and if at least one of the criteria correspond-
ing to a monitored execution characteristic of a
portion of the protected software is not abided by,
informing the data processing system of it and/or
modifying the functioning of the portion of the
protected software, so that the functioning of the
protected software is modified.

and during the usage phase:

in the presence of the unit:

[0098] According to a variant embodiment, the process
according to the invention comprises:

[0099] during the protection phase:
[0100] defining:

[0101] as software execution characteristic liable
to be monitored, a variable of measurement of the
usage of a functionality of a software,

[0102] as criterion to abide by, at least one thresh-
old associated to each variable of measurement,

[0103] and actualization means enabling to update
at least one variable of measurement,

[0104] constructing the exploitation means enabling
the unit to also implement the actualization means,

Dec. 20, 2007

[0105] and modifying the protected software:

[0106] by choosing as software execution charac-
teristic to monitor, at least one variable of mea-
surement of the usage of at least one functionality
of a software,

[0107] by choosing:

[0108] at least one functionality of the protected
software whose usage is liable to be monitored
using a variable of measurement,

[0109] at least one variable of measurement
used to quantify the usage of said functionality,

[0110] at least one threshold associated to a
chosen variable of measurement corresponding
to a limit of usage of said functionality,

[0111] and at least one method of update of a
chosen variable of measurement depending on
the usage of said functionality,

[0112] and by modifying at least one chosen por-
tion of the source of the protected software, this
modification being such that, during the execution
of the protected software, the variable of measure-
ment is actualized by means of the second execu-
tion part depending on the usage of said function-
ality, and at least one threshold crossing is taken
into account,

[0113] and during the usage phase, in the presence of
the unit, and in the case where at least one threshold
crossing corresponding to at least one limit of usage is
detected, informing the data processing system of it
and/or modifying the functioning of the portion of the
protected software, so that the functioning of the pro-
tected software is modified.

[0114] According to a variant embodiment, the process
according to the invention comprises:

[0115] during the protection phase:
[0116] defining:

[0117] for at least one variable of measurement,
several associated thresholds,

[0118] and different coercion means corresponding
to each of said thresholds,

[0119] and modifying the protected software:

[0120] by choosing in the source of the protected
software, at least one chosen variable of measure-
ment to which must be associated several thresh-
olds corresponding to different limits of usage of
the functionality,

[0121] by choosing at least two thresholds associ-
ated to the chosen variable of measurement,

[0122] and by modifying at least one chosen por-
tion of the source of the protected software, this
modification being such that, during the execution
of the protected software, the crossings of the
various thresholds are taken into account differ-
ently, by means of the second execution part,

US 2007/0294770 Al

[0123]
[0124]

[0125] in the case where the crossing of a first
threshold is detected, enjoining the protected soft-
ware not to use the corresponding functionality
anymore,

[0126] and in the case where the crossing of a
second threshold is detected, making ineffective
the corresponding functionality and/or at least one
portion of the protected software.

and during the usage phase:

in the presence of the unit:

[0127] According to a variant embodiment, the process
according to the invention comprises:

[0128] during the protection phase:

[0129] defining refilling means enabling to credit at
least one software functionality monitored by a vari-
able of measurement with at least one additional
usage,

[0130] constructing the exploitation means also
allowing the unit to implement the refilling means,

[0131]

[0132] by choosing in the source of the protected
software, at least one chosen variable of measure-
ment enabling to limit the usage of a functionality
and which must be able to be credited with at least
one additional usage,

[0133] and by modifying at least one chosen por-
tion, this modification being such that during a
phase called of refilling, at least one additional
usage of at least one functionality corresponding
to a chosen variable of measurement can be cred-
ited,

and modifying the protected software:

[0134]

[0135] reactualizing at least one chosen variable of
measurement and/or at least one associated thresh-
old, so as to allow at least one additional usage of the
functionality.

and during the phase of refilling:

[0136] According to a variant embodiment, the process
according to the invention comprises:

[0137] during the protection phase:
[0138] defining:

[0139] as software execution characteristic liable
to be monitored, a profile of software usage,

[0140] and as criterion to abide by, at least one
feature of software execution,

[0141]

[0142] by choosing as software execution charac-
teristic to monitor at least one profile of software
usage,

and modifying the protected software:

[0143] by choosing at least one feature of execu-
tion by which at least one chosen profile of usage
must abide,

[0144] and by modifying at least one chosen por-
tion of the source of the protected software, this
modification being such that, during the execution

Dec. 20, 2007

of the protected software, the second execution
part abides by all the chosen features of execution,

[0145] and during the usage phase in the presence of the
unit, and in the case where it is detected that at least one
feature of execution is not abided by, informing the data
processing system of it and/or moditying the function-
ing of the portion of the protected software, so that the
functioning of the protected software is modified.

[0146] According to a variant embodiment, the process
according to the invention comprises:

[0147] during the protection phase:
[0148] defining:

[0149] an instructions set whose instructions are
liable to be executed in the unit,

[0150] a set of instructions commands for said
instructions set, said instructions commands being
liable to be executed in the data processing system
and to trigger in the unit the execution of the
instructions,

[0151] as profile of usage, the chaining of the
instructions,

[0152] as feature of execution, an expected chain-
ing for the execution of the instructions,

[0153] as detection means, means enabling to
detect that the chaining of the instructions does not
correspond to the expected one,

[0154] and as coercion means, means enabling to
inform the data processing system and/or to
modify the functioning of the portion of protected
software when the chaining of the instructions
does not correspond to the expected one,

[0155] constructing the exploitation means also
enabling the unit to execute the instructions of the
instructions set, the execution of said instructions
being triggered by the execution in the data process-
ing system, of the instructions commands,

[0156] and modifying the protected software:

[0157] by modifying at least one chosen portion of
the source of the protected software:

[0158] by transforming the elementary func-
tions into instructions,

[0159] by specifying the chaining by which
must abide at least some of the instructions
during their execution in the unit,

[0160] and by transforming the elementary com-
mands into instructions commands correspond-
ing to the instructions used,

[0161] and during the usage phase, in the presence of
the unit, in the case where it is detected that the
chaining of the instructions executed in the unit does
not correspond to the expected one, informing the data
processing system of it and/or moditying the function-
ing of the portion of the protected software, so that the
functioning of the protected software is modified.

US 2007/0294770 Al

[0162] According to a variant embodiment, the process
according to the invention comprises:

[0163] during the protection phase:
[0164] defining:
[0165] as instructions set, an instructions set whose at
least some instructions work with registers and use at

least one operand with the intention of returning a
result,

[0166] for at least some of the instructions working
with registers:

[0167] a part defining the functionality of the
instruction,
[0168] and a part defining the expected chaining

for the execution of the instructions and including
bits fields corresponding to:

[0169] an identification field of the instruction,

[0170] and for each operand of the instruction:

[0171] a flag field,

[0172] and an expected identification field of
the operand,

[0173] for each register belonging to the exploitation
means and used by the instructions set, a generated
identification field in which is automatically memo-
rized the identification of the last instruction which
has returned its result in said register,

[0174] as detection means, means enabling, during
the execution of an instruction, for each operand,
when the flag field imposes it, to check the equality
of the generated identification field corresponding to
the register used by said operand, and the expected
identification field of the origin of said operand,

[0175] and as coercion means, means enabling to
modify the result of the instructions, if at least one of
the checked equalities is false.

[0176] According to another preferred embodiment, the
process according to the invention comprises:

[0177] during the protection phase:
[0178] defining:

[0179] as a triggering command, an elementary
command or an instruction command,

[0180] as a dependent function, an elementary
function or an instruction,

[0181] as an order, at least one argument for a
triggering command, corresponding at least in part
to the information transmitted by the data process-
ing system to the unit, so as to trigger the execu-
tion of the corresponding dependent function,

[0182] a method of renaming of the orders
enabling to rename the orders so as to obtain
triggering commands with renamed orders,

[0183] and restoring means designed to be used in
the unit during the usage phase, and enabling to
restore the dependent function to execute, from
the renamed order,

Dec. 20, 2007

[0184] constructing exploitation means enabling the
unit to also implement the restoring means,

[0185]

[0186] by choosing in the source of the protected
software, triggering commands,

and modifying the protected software:

[0187] by modifying at least one chosen portion of
the source of the protected software by renaming
the orders of the chosen triggering commands, so
as to conceal the identity of the corresponding
dependent functions,

[0188]

[0189] the first object part of the protected soft-
ware, said first object part being such that
during the execution of the protected software,
the triggering commands with renamed orders
are executed,

[0190] and the second object part of the pro-
tected software containing the exploitation
means also implementing the restoring means,
said second object part being such that, after
upload to the unit and during the execution of
the protected software, the identity of the
dependent functions whose execution is trig-
gered by the first execution part is restored by
means of the second execution part, and the
dependent functions are executed by means of
the second execution part,

and by producing:

[0191] and during the usage phase:

[0192] in the presence of the unit and each time a
triggering command with renamed order, contained
in a portion of the first execution part imposes it,
restoring in the unit, the identity of the correspond-
ing dependent function and executing it, so that said
portion is executed correctly and that, consequently,
the protected software is completely functional,

[0193] and in the absence of the unit, in spite of the
request by a portion of the first execution part, to
trigger the execution of a dependent function in the
unit, not being able to fulfill said request correctly, so
that at least said portion is not executed correctly and
that, consequently, the protected software is not
completely functional.

[0194] According to a variant embodiment, the process
according to the invention comprises:

[0195] during the protection phase:

[0196] defining for at least one dependent function, a
family of dependent functions algorithmically
equivalent, but triggered by triggering commands
whose renamed orders are different,

[0197] and modifying the protected software:

[0198] by choosing, in the source of the protected
software at least one triggering command with
renamed order,

[0199] and by modifying at least one chosen por-
tion of the source of the protected software by
replacing at least the renamed order of one chosen
triggering command with renamed order, with

US 2007/0294770 Al

another renamed order, triggering a dependent
function of the same family.

[0200] According to a variant embodiment, the process
according to the invention comprises:

[0201] during the protection phase, defining, for at least
one dependent function, a family of algorithmically
equivalent dependent functions:

[0202] by concatenating a field of noise to the infor-
mation defining the functional part of the dependent
function to execute in the unit,

[0203] or by using the identification field of the
instruction and the expected identification fields of
the operands.

[0204] According to a variant embodiment, the process
according to the invention comprises:

[0205] during the protection phase:
[0206] defining:

[0207] as method of renaming of the orders, a
ciphering method to cipher the orders,

[0208] and as restoring means, means implement-
ing a deciphering method to decipher the renamed
orders and thus restore the identity of the depen-
dent functions to execute in the unit.

[0209] According to another preferred embodiment, the
process according to the invention comprises:

[0210] during the protection phase:
[0211] modifying the protected software:

[0212] by choosing, in the source of the protected
software, at least one conditional branch carried
out in at least one chosen algorithmic processing,

[0213] by modifying at least one chosen portion of
the source of the protected software, this modifi-
cation being such that during the execution of the
protected software, the functionality of at least one
chosen conditional branch is executed, by means
of the second execution part, in the unit,

[0214]

[0215] the first object part of the protected soft-
ware, said first object part being such that
during the execution of the protected software,
the functionality of at least one chosen condi-
tional branch is executed in the unit,

[0216] and the second object part of the pro-
tected software, said second object part being
such that, after upload to the unit and during the
execution of the protected software, appears the
second execution part by means of which the
functionality of at least one chosen conditional
branch is executed,

and by producing:

[0217]

[0218] in the presence of the unit and each time a
portion of the first execution part imposes it, execut-
ing the functionality of at least one conditional
branch in the unit, so that said portion is executed

and during the usage phase:

Dec. 20, 2007

correctly and that, consequently, the protected soft-
ware is completely functional,

[0219] and in the absence of the unit and in spite of
the request by a portion of the first execution part to
execute the functionality of a conditional branch in
the unit, not being able to fulfill said request cor-
rectly, so that at least said portion is not executed
correctly and that consequently, the protected soft-
ware is not completely functional.

[0220] According to a variant embodiment, the process
according to the invention comprises, during the protection
phase, modifying the protected software:

[0221] by choosing, in the source of the protected
software, at least one series of chosen conditional
branches,

[0222] by modifying at least one chosen portion of the
source of the protected software, this modification
being such that during the execution of the protected
software, the overall functionality of at least one cho-
sen series of conditional branches is executed, by
means of the second execution part, in the unit,

[0223]

[0224] the first object part of the protected software,
said first object part being such that during the
execution of the protected software, the functionality
of at least one chosen series of conditional branches
is executed in the unit,

[0225] and the second object part of the protected
software, said second object part being such that,
after upload to the unit and during the execution of
the protected software, appears the second execution
part by means of which the overall functionality of at
least one chosen series of conditional branches is
executed.

and by producing:

[0226] The process according to the invention thus enables
to protect usage of a software by using a memorizing unit
which presents the characteristic of containing a part of the
software being executed. It follows that any derived version
of the software attempting to work without the memorizing
unit imposes to recreate the part of the software contained in
the memorizing unit during the execution, or else said
derived version of the software will not be completely
functional.

BRIEF DESCRIPTION OF THE DRAWINGS

[0227] Various other characteristics emerge from the
description made below in reference to the appended dia-
grams which show, as non-limiting examples, embodiments
and implementations of the subject of the invention.

[0228] FIGS. 10 and 11 are functional blocks diagrams
illustrating the various representations of a software respec-
tively not protected and protected by the process in accor-
dance with the invention.

[0229] FIGS. 20 to 22 illustrate as examples, various
embodiments of an apparatus implementing the process in
accordance with the invention.

[0230] FIGS. 30 and 31 are functional blocks diagrams
making explicit the general principle of the process in
accordance with the invention.

US 2007/0294770 Al

[0231] FIGS. 40 to 43 are diagrams illustrating the pro-
tection process according to the invention implementing the
principle of protection by variable.

[0232] FIGS. 50 to 54 are diagrams illustrating the pro-
tection process according to the invention implementing the
principle of protection by temporal dissociation.

[0233] FIGS. 60 to 64 are diagrams illustrating the pro-
tection process according to the invention implementing the
principle of protection by elementary functions.

[0234] FIGS. 70 to 74 are diagrams illustrating the pro-
tection process according to the invention implementing the
principle of protection by detection and coercion.

[0235] FIGS. 80 to 85 are diagrams illustrating the pro-
tection process according to the invention implementing the
principle of protection by renaming.

[0236] FIGS. 90 to 92 are diagrams illustrating the pro-
tection process according to the invention implementing the
principle of protection by conditional branch.

[0237] FIG. 100 is a diagram illustrating the different
phases of implementation of the subject of the invention.

[0238] FIG. 110 illustrates an embodiment of a system
allowing the implementation of the construction stage of the
protection phase in accordance with the invention.

[0239] FIG. 120 illustrates an embodiment of a pre-cus-
tomization unit used in the protection process in accordance
with the invention.

[0240] FIG. 130 illustrates an embodiment of a system
allowing the implementation of the tools making stage of the
protection phase in accordance with the invention.

[0241] FIG. 140 illustrates an embodiment of a system
allowing the implementation of the protection process
according to the invention.

[0242] FIG. 150 illustrates an embodiment of a customi-
zation unit used in the protection process in accordance with
the invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0243] In the rest of the description, the following defini-
tions will be used:

[0244] A data processing system 3 is a system able to
execute a program.

[0245] A memorizing unit is a unit able to accept data
provided by a data processing system 3, to store the
data and to restore it upon request of the data process-
ing system 3.

[0246] A processing and memorizing unit is a unit able:

[0247] to accept data provided by a data processing
system 3,

[0248] to return data to the data processing system 3,

[0249] to store data at least partly in secret and to
retain at least a part of said data even if the unit is
switched off,

[0250] and to carry out algorithmic processing on
data, part or all of the result being secret.

Dec. 20, 2007

[0251] Aunit 6 is a memorizing unit or a processing and
memorizing unit implementing the process according
to the invention.

[0252] A blank unit 60 is a unit which does not imple-
ment the process according to the invention, but which
can receive data transforming it into a unit 6.

[0253] A blank unit 60 can possibly become a unit 6
during the execution of a software protected by the
process according to the invention and become again
after the execution, a blank unit 60.

[0254] A pre-customized unit 66 is a blank unit 60
which has received part of data enabling it, after
reception of supplementary data, to be transformed into
a unit 6.

[0255] The upload of information to a blank unit 60 or
a pre-customized unit 66 corresponds to a transfer of
information to the blank unit 60 or the pre-customized
unit 66, and to a storage of said transferred information.
The transfer can possibly include a change of the
information format.

[0256] A variable, a function or data contained in the
data processing system 3 will be indicated by an
uppercase letter, while a variable, a function or data
contained in the unit 6 will be indicated by a lowercase
letter.

[0257] A “protected software”, is a software which has
been protected by at least one of the principles of
protection implemented by the process in accordance
with the invention.

[0258] A “vulnerable software”, is a software which has
not been protected by any principle of protection imple-
mented by the process in accordance with the inven-
tion.

[0259] In the case where differentiation between a vul-
nerable software and a protected software is not impor-
tant, the term “software” is used.

[0260] A software has various representations depend-
ing on the instant considered in its life cycle:

[0261] a source representation,
[0262] an object representation,
[0263] a distribution,

[0264] or a dynamic representation.

[0265] A source representation of a software is under-
stood as a representation which after transformation,
results in an object representation. A source represen-
tation can offer different levels, from a conceptual
abstract level to a level executable directly by a data
processing system or a processing and memorizing
unit.

[0266] An object representation of a software corre-
sponds to a level of representation which after transfer
to a distribution and upload to a data processing system
or a processing and memorizing unit, can be executed.
It can be, for instance, a binary code, an interpreted
code, etc.

US 2007/0294770 Al

[0267] A distribution is a physical or virtual support
containing the object representation, said distribution
having to be put at the user’s disposal to enable them
to use the software.

[0268] A dynamic representation corresponds to the
execution of the software from its distribution.

[0269] A portion of a software corresponds to some part
of the software and can, for instance correspond, to one
or several consecutive or not instructions, and/or one or
several consecutive or not functional blocks, and/or one
or several functions, and/or one or several subpro-
grams, and/or one or several modules. A portion of a
software can also correspond to all of said software.

[0270] FIGS. 10 and 11 illustrate the various representa-
tions respectively of a vulnerable software 2v in the general
sense, and of a protected software 2p protected according to
the process in accordance with the invention.

[0271] FIG. 10 illustrates various representations of a
vulnerable software 2v appearing during its life cycle. The
vulnerable software 2v can thus appear under any of the
following representations:

[0272] a source representation 2vs,
[0273] an object representation 2vo,
[0274] a distribution 2vd. Said distribution can have

commonly the form of a physical distribution medium
such as a CDROM or the form of files distributed
through a network (GSM, Internet, etc.),

[0275] or a dynamic representation 2ve corresponding
to the execution of the vulnerable software 2v on a data
processing system 3 of any known type, which classi-
cally includes, at least one processor 4.

[0276] FIG. 11 illustrates various representations of a
protected software 2p appearing during its life cycle. The
protected software 2p can thus appear under any of the
following representations:

[0277] a source representation 2ps including a first
source part intended for the data processing system 3
and possibly, a second source part intended for the unit
6, part of said source parts can commonly be contained
in common files,

[0278] an object representation 2po including a first
object part 2pos intended for the data processing sys-
tem 3 and possibly, a second object part 2pou intended
for the unit 6,

[0279]

[0280] a first distribution part 2pds containing the
first object part 2pos, said first distribution part 2pds
being intended for the data processing system 3 and
which can commonly have the form of a physical
distribution medium such as a CDROM or the form
of files distributed through a network (GSM, Inter-
net, etc.),

[0281]
form:

a distribution 2pd including:

and a second distribution part 2pdu having the

[0282] of at least one blank unit 60,

Dec. 20, 2007

[0283] or of at least one pre-customized unit 66 to
which a part of the second object part 2pou has
been uploaded and for which the user has to finish
the customization by uploading supplementary
data so as to obtain a unit 6, said supplementary
data being obtained, for instance, by download
through a network,

[0284] or of at least one unit 6 to which the second
object part 2pou has been uploaded,

[0285] or a dynamic representation 2pe corresponding
to the execution of the protected software 2p. Said
dynamic representation 2pe includes a first execution
part 2pes which is executed in the data processing
system 3 and an second execution part 2peu which is
executed in the unit 6.

[0286] In the case where the differentiation between the
different representations of the protected software 2p is not
important, the expressions first part of the protected software
and second part of the protected software shall be used.

[0287] The implementation of the process according to the
invention in accordance with the dynamic representation of
FIG. 11, uses an apparatus 1p including a data processing
system 3 linked up by a link 5 to a unit 6. The data
processing system 3 is of any type and includes, classically,
at least one processor 4. The data processing system 3 can
be a computer or be part, for instance, of various machines,
devices, fixed or mobile products, or vehicles in the general
sense. The link 5 can be realized in any possible way, such
as for instance a serial link, a USB bus, a radio link, an
optical link, a network link or a direct electric connection to
a circuit of data processing system 3, etc. It should be
observed that the unit 6 can possibly be physically located
inside the same integrated circuit than the processor 4 of the
data processing system 3. In this case, the unit 6 can be
considered as a co-processor in relation to the processor 4 of
the data processing system 3 and the link 5 is internal to the
integrated circuit.

[0288] FIGS. 20 to 22 show in an illustrative and non-
limiting manner, various embodiments of the apparatus 1p
allowing the implementation of the protection process in
accordance with the invention.

[0289] In the embodiment illustrated in FIG. 20, the
protection apparatus 1p includes, as a data processing sys-
tem 3, a computer and, as a unit 6, a chip card 7 and its
interface 8 commonly called card reader. The computer 3 is
linked up to the unit 6 by a link 5. During the execution of
the protected software 2p, the first execution part 2pes which
is executed in the computer 3 and the second execution part
2peu which is executed in the chip card 7 and its interface
8, must both be functional so that the protected software 2p
is completely functional.

[0290] In the embodiment illustrated in FIG. 21, the
protection apparatus 1p equips a product 9 in the general
sense, including various components 10 adapted to the
function(s) assumed by such a product 9. The protection
apparatus 1p includes, on the one hand, a data processing
system 3 embedded in the product 9 and, on the other hand,
a unit 6 associated with the product 9. So that the product 9
is completely functional, the protected software 2p, must be
completely functional. Thus, during the execution of the
protected software 2p, the first execution part 2pes which is

US 2007/0294770 Al

executed in the data processing system 3 and the second
execution part 2peu which is executed in the unit 6, must
both be functional. Said protected software 2p enables
therefore indirectly, to protect against unauthorized usage,
the product 9 or one of its functionalities. For instance, the
product 9 can be an installation, a system, a machine, a toy,
a piece of domestic appliances, a phone, etc.

[0291] In the embodiment illustrated in FIG. 22, the
protection apparatus 1p includes several computers, as well
as part of a communication network. The data processing
system 3 is a first computer linked up by a link 5 of network
type, to a unit 6 constituted by a second computer. For the
implementation of the invention, the second computer 6 is
used as a license server for a protected software 2p. During
the execution of the protected software 2p, the first execu-
tion part 2pes which is executed in the first computer 3 and
the second execution part 2pex which is executed in the
second computer 6, must both be functional so that the
protected software 2p is completely functional.

[0292] FIG. 30 enables to make explicit more precisely,
the protection process in accordance with the invention. It
should be observed that a vulnerable software 2v, is con-
sidered as being executed totally in a data processing system
3. On the other hand, in the case of the implementation of a
protected software 2p, the data processing system 3 includes
transfer means 12 linked up by the link 5, to transfer means
13 being part of the unit 6 enabling to establish communi-
cation between the first execution part 2pes and the second
execution part 2peu of the protected software 2p.

[0293] It must be considered that the transfer means 12, 13
are of software and/or hardware nature and are capable of
providing and, possibly, optimizing the data communication
between the data processing system 3 and the unit 6. Said
transfer means 12, 13 are adapted to enable to have at one’s
disposal a protected software 2p which is, preferably, inde-
pendent from the type of link 5 used. Said transfer means 12,
13 are not part of the subject of the invention and are not
described more precisely as they are well known by the Man
of art. The first part of the protected software 2p includes
commands. During the execution of the protected software
2p, the execution of said commands by the first execution
part 2pes enables the communication between the first
execution part 2pes and the second execution part 2peu. In
the rest of the description, said commands are represented by
IN, OUT or TRIG.

[0294] As illustrated in FIG. 31, to allow the implemen-
tation of the second execution part 2peu of the protected
software 2p, the unit 6 includes protection means 14. In the
case where the unit 6 is a memorizing unit, the protection
means 14 include memorization means 15. In the case where
the unit 6 is a processing and memorizing, the protection
means 14 include memorization means 15 and processing
means 16.

[0295] For the sake of simplification in the rest of the
description, it is chosen to consider, during the execution of
the protected software 2p, the presence of the unit 6 or the
absence of the unit 6. In actual fact, a unit 6 providing
protection means 14 not adapted to the execution of the
second execution part 2peu of the protected software 2p is
also considered as missing, each time the execution of the
protected software 2p is not correct. In other words:

[0296] a unit 6 physically present and including protec-
tion means 14 adapted to the execution of the second

Dec. 20, 2007

execution part 2peu of the protected software 2p, is
always considered as present,

[0297] a unit 6 physically present but including protec-
tion means 14 not adapted, i.e. not allowing the correct
implementation of the second execution part 2peu of
the protected software 2p is considered as present,
when it works correctly, and as missing when it does
not work correctly,

[0298] and a unit 6 physically missing is always con-
sidered as missing.

[0299] Inthe case where the unit 6 is constituted by a chip
card 7 and its interface 8, the transfer means 13 are split into
two parts, one being on the interface 8 and the other one
being on the chip card 7. In this embodiment, the absence of
the chip card 7 is considered as equivalent to the absence of
the unit 6. In other words, in the absence of the chip card 7
and/or its interface 8, the protection means 14 are not
accessible and do not enable the execution of the second
execution part 2peu of the protected software 2p, so much so
that the protected software 2p is not completely functional.

[0300] In accordance with the invention, the protection
process aims at implementing a principle of protection
called by <<variable>> a description of which is carried out
in relation to FIGS. 40 to 43.

[0301] For the implementation of the principle of protec-
tion by variable, is chosen in the source of the vulnerable
software 2vs at least one variable which, during the execu-
tion of the vulnerable software 2v, partially defines its state.
By state of a software, must be understood the set of pieces
of information, at a given moment, necessary to the com-
plete execution of said software, so much so that the absence
of such a chosen variable prejudices the complete execution
of said software. Is also chosen at least one portion of the
source of the vulnerable software 2vs containing at least one
chosen variable.

[0302] At least one chosen portion of the source of the
vulnerable software 2vs is then modified, so as to obtain the
source of the protected software 2ps. This modification is
such that during the execution of the protected software 2p,
at least one portion of the first execution part 2pes which is
executed in the data processing system 3, takes into account
that at least one chosen variable or at least one copy of
chosen variable resides in the unit 6. For the implementation
of the principle of protection by variable, the unit 6 includes
at least memorization means 15.

[0303] FIG. 40 illustrates an example of execution of a
vulnerable software 2v. In this example, during the execu-
tion of the vulnerable software 2v in the data processing
system 3, appear:

[0304] at time instant t,, the assignment of the data X to
the variable V|, represented by V,sX,

[0305] at time instant t,, the assignment of the value of
the variable V| to the variable Y, represented by YssV,

[0306] and at time instant t5, the assignment of the value
of the variable V, to the variable Z, represented by
/sV,.

[0307] FIG. 41 illustrates an example of a first form of
implementation of the invention for which the variable
resides in the unit 6. In this example, during the execution

US 2007/0294770 Al

in the data processing system 3 of the first execution part
2pes of the protected software 2p, and in presence of the unit
6, appear:

[0308] at time instant t;, the execution of a transfer
command triggering the transfer of the data X from the
data processing system 3 to the variable v, located in
the memorization means 15 of the unit 6, said transfer
command being represented by OUT(v,, X) and cor-
responding in the end to the assignment of the data X
to the variable v,,

[0309] at time instant t,, the execution of a transfer
command triggering the transfer of the value of the
variable v, residing in the unit 6 to the data processing
system 3 so as to assign it to the variable Y, said transfer
command being represented by IN(v,, and correspond-
ing in the end to the assignment of the value of the
variable v, to the variable Y,

[0310] and at time instant t,, the execution of a transfer
command triggering the transfer of the value of the
variable v, residing in the unit 6 to the data processing
system 3 so as to assign it to the variable Z, said transfer
command being represented by IN(v,) and correspond-
ing in the end to the assignment of the value of the
variable v, to the variable Z.

[0311] It should be observed that during the execution of
the protected software 2p, at least one variable resides in the
unit 6. Thus, when a portion of the first execution part 2pes
of the protected software 2p imposes it, and in the presence
of the unit 6, the value of said variable residing in the unit
6 is transferred to the data processing system 3 to be used by
the first execution part 2pes of the protected software 2p, so
much so that said portion is 110 executed correctly and that,
consequently, the protected software 2p is completely func-
tional.

[0312] FIG. 42 illustrates an example of a second form of
implementation of the invention for which a copy of the
variable resides in the unit 6. In this example, during the
execution in the data processing system 3 of the first
execution part 2pes of the protected software 2p, and in the
presence of the unit 6, appear:

[0313] attime instant t,, the assignment of the data X to
the variable V|, located in the data processing system 3,
as well as the execution of a transfer command trig-
gering the transfer of the data X from the data process-
ing system 3 to the variable v, located in the memori-
zation means 15 of the unit 6, said transfer command
being represented by OUT(v,, X),

[0314] at time instant t,, the assignment of the value of
the variable V, to the variable Y,

[0315] and at time instant t,, the execution of a transfer
command triggering the transfer of the value of the
variable v, residing in the unit 6 to the data processing
system 3 so as to affect it to the variable Z, said transfer
command being represented by IN(v,).

[0316] It should be observed that during the execution of
the protected software 2p, at least one copy of a variable
resides in the unit 6. Thus, when a portion of the first
execution part 2pes of the protected software 2p, imposes it,
and in the presence of the unit 6, the value of said copy of
variable residing in the unit 6 is transferred to the data

Dec. 20, 2007

processing system 3 to be used by the first execution part
2pes of the protected software 2p, so much so that said
portion is executed correctly and that, consequently, the
protected software 2p is completely functional.

[0317] FIG. 43 illustrates an example of attempt of execu-
tion of the protected software 2p, when the unit 6 is missing.
In this example, during the execution in the data processing
system 3 of the first execution part 2pes of the protected
software 2p:

[0318] at time instant t,, the execution of the transfer
command OUT(v,, X) cannot trigger the transter of the
data X to the variable v, taking into account the
absence of the unit 6,

[0319] at time instant t,, the execution of the transfer
command IN(v,) cannot trigger the transfer of the value
of the variable v, to the data processing system 3,
taking into account the absence of the unit 6,

[0320] and at time instant t,, the execution of the
transfer command IN(v,) cannot trigger the transfer of
the value of the variable v, to the data processing
system 3, taking into account the absence of the unit 6.

[0321] Tt therefore appears that in the absence of the unit
6, at least one request by a portion of the first execution part
2pes to use a variable or a copy of variable residing in the
unit 6, cannot be fulfilled correctly, so that at least said
portion is not executed correctly and that, consequently, the
protected software 2p is not completely functional.

[0322] 1t should be observed that the data transfers
between the data processing system 3 and the unit 6 illus-
trated in the previous examples use only simple assignments
but that the Man of art will know how to combine them with
other operations to obtain complex operations such as for
instance OUT(v1, 2*¥X+3) or Zs(5*v1+v2).

[0323] According to another advantageous characteristic
of the invention, the protection process aims at implement-
ing a principle of protection, called by “temporal dissocia-
tion”, a description of which is carried out in relation to
FIGS. 50 to 54.

[0324] For the implementation of the principle of protec-
tion by temporal dissociation, is chosen, in the source of the
vulnerable software 2vs, at least one algorithmic processing
using at least one operand and returning at least one result.
Is also chosen at least one portion of the source of the
vulnerable software 2vs containing at least one chosen
algorithmic processing.

[0325] At least one chosen portion of the source of the
vulnerable software 2vs is then modified, so as to obtain the
source of the protected software 2ps. This modification is
such that, among others:

[0326] during the execution of the protected software
2p, at least one portion of the first execution part 2pes,
which is executed in the data processing system 3, takes
into account that the functionality of at least one chosen
algorithmic processing is executed in the unit 6,

[0327] during the execution of the protected 2p, the
second execution part 2peu, which is executed in the
unit 6, executes at least the functionality of at least one
chosen algorithmic processing,

US 2007/0294770 Al

[0328] during the execution of the protected software
2p, each chosen algorithmic processing is split into
several distinct steps, namely:

[0329] step 1: the placing of the operand(s) at the unit
6’s disposal,

[0330] step 2: the carrying out in the unit 6, of the
functionality of the chosen algorithmic processing
using said operand(s),

[0331] and step 3: possibly, the placing of the result
of the chosen algorithmic processing at the data
processing system 3’s disposal by the unit 6,

[0332] steps commands are defined to trigger the execu-
tion of the steps,

[0333] and a sequence of the steps commands is chosen
among the set of sequences allowing the execution of
the protected software 2p.

[0334] The first execution part 2pes of the protected
software 2p, which is executed in the data processing system
3, executes the steps commands, triggering in the unit 6, the
execution by means of the second execution part 2peu, of
each of the previously defined steps. For the implementation
of the principle of protection by temporal dissociation, the
unit 6 includes memorization means 15 and processing
means 16.

[0335] FIG. 50 illustrates an example of execution of a
vulnerable software 2v. In this example, appears, during the
execution of the vulnerable software 2v, in the data process-
ing system 3, at a certain time instant, the calculation of
7ZsF(X,Y) corresponding to the assignment to a variable Z,
of the result of an algorithmic processing represented by a
function F and using operands X and Y.

[0336] FIG. 51 illustrates an example of implementation
of'the invention for which the algorithmic processing chosen
in FIG. 50 is remoted in the unit 6. In this example, during
the execution in the data processing system 3 of the first
execution part 2pes of the protected software 2p and in the
presence of the unit 6, appear:

[0337] at time instant t,, the step 1, i.e. the execution of
a step command CE, triggering the transfer of data X
and Y from the data processing system 3 to the memo-
rization zones respectively x and y located in the
memorization means 15 of the unit 6, said step com-
mand CE; being represented by OUT(x, X), OUT(y,
Y),

[0338] at time instant t,, the step 2, i.e. the execution of
a step command CE,, triggering in the unit 6, the
execution by means of the second execution part 2peu,
of the function f, said function f being algorithmically
equivalent to the function F and said step command
CE, being represented by TRIG(f). More precisely, the
execution of the step command CE, leads to the execu-
tion of the function f which uses the contents of the
memorization zones X and y and returns its result to a
memorization zone z of the unit 6,

[0339] and at time instant t;, the step 3, i.e. the execu-
tion of a step command CE; triggering the transfer of
the result of the function f, contained in the memori-
zation zone 7 of the unit 6 to the data processing system

Dec. 20, 2007

3 so as to assign it to the variable Z, said step command
CE; being represented by IN(z).

[0340] In the illustrated example, the steps 1 to 3 are
executed successively. It should be observed that two
improvements can be effected:

[0341] The first improvement concerns the case where
several algorithmic processings are remoted in the unit
6 and at least the result of one algorithmic processing
is used by another algorithmic processing. In this case,
certain transfer steps can possibly be removed.

[0342] The second improvement aims at opting for a
pertinent sequence of the steps commands among the
set of sequences allowing the execution of the protected
software 2p. In this respect, it is preferable to chose a
sequence of the steps commands which temporally
dissociates the execution of the steps, by intercalating
between them, portions of code executed in the data
processing system 3 and including or not steps com-
mands used to determine other data.

[0343] FIGS. 52 and 53 illustrate the principle of such an
embodiment.

[0344] FIG. 52 shows an example of execution of a
vulnerable software 2v. In this example, appears, during the
execution of the vulnerable software 2v, in the data process-
ing system 3, the execution of two algorithmic processings
leading to the determination of Z and Z', such that ZssF (X,
Y) and Z’sF'(X', Y").

[0345] FIG. 53 illustrates an example of implementation
of the process according to the invention for which the two
algorithmic processings chosen in FIG. 52 are remoted in the
unit 6. According to such an example, during the execution
in the data processing system 3, of the first execution part
2pes of the protected software 2p, and in the presence of the
unit 6, appears, as explained above, the execution of steps
commands CE,, CE,, CE; corresponding to the determina-
tion of Z and of steps commands CE',, CE',, CE'; corre-
sponding to the determination of Z'. As illustrated, the steps
commands CE, to CE; are not executed consecutively inas-
much as steps commands CE'; to CE';, as well as other code
portions are intercalated. In the example, the following
sequence is thus carried out: CE,, portion of intercalated
code, CE,, portion of intercalated code, CE'|, portion of
intercalated code, CE',, portion of intercalated code, CE';,
portion of intercalated code, CE,.

[0346] 1t should be observed that, during the execution of
the protected software 2p, in the presence of the unit 6, each
time a step command contained in a portion of the first
execution part 2pes of the protected software 2p imposes it,
the corresponding step is executed in the unit 6. Thus, it
appears, that in the presence of the unit 6, said portion is
executed correctly and that, consequently, the protected
software 2p is completely functional.

[0347] FIG. 54 illustrates an example of an attempt of
execution of the protected software 2p, when the unit 6 is
missing. In this example, during the execution in the data
processing system 3 of the first execution part 2pes of the
protected software 2p:

[0348] at time instant t;, the execution of the step
command OUT(x, X), OUT(y, Y) cannot trigger the

US 2007/0294770 Al

transfer of data X and Y to the respective memorization
zones x and y taking into account the absence of the
unit 6,

[0349] at time instant t,, the execution of the step
command TRIG(f) cannot trigger the execution of the
function f, taking into account the absence of the unit
65

[0350] and at time instant t,, the execution of the step
command IN(z) cannot trigger the transfer of the result
of the function f; taking into account the absence of the
unit 6.

[0351] It therefore appears that in the absence of the unit
6, at least one request by a portion of the first execution part
2pes to trigger the execution of a step in the unit 6, cannot
be fulfilled correctly, so that at least said portion is not
executed correctly and that, consequently, the protected
software 2p is not completely functional.

[0352] According to another advantageous characteristic
of the invention, the protection process aims at implement-
ing a principle of protection called by <<elementary func-
tion>> a description of which is carried out in relation to
FIGS. 60 to 64.

[0353] For the implementation of the principle of protec-
tion by elementary functions, are defined:

[0354] a set of elementary functions whose elementary
functions are liable to be executed, by means of the
second execution part 2peu, in the unit 6, and possibly
to transfer data between the data processing system 3
and the unit 6,

[0355] and a set of elementary commands for said set of
elementary functions, said elementary commands
being liable to be executed in the data processing
system 3 and to trigger the execution in the unit 6, of
the corresponding elementary functions.

[0356] For the implementation of the principle of protec-
tion by elementary functions, are also constructed exploita-
tion means enabling to transform a blank unit 60 containing
memorization means 15 and processing means 16 into a unit
6 able to execute elementary functions, the execution of said
elementary functions being triggered by the execution in the
data processing system 3, of elementary commands.

[0357] For the implementation of the principle of protec-
tion by elementary functions, is also chosen, in the source of
the vulnerable software 2vs, at least one algorithmic pro-
cessing using at least one operand and returning at least one
result. Is also chosen at least one portion of the source of the
vulnerable software 2vs containing at least one chosen
algorithmic processing.

[0358] At least one chosen portion of the source of the
vulnerable software 2vs is then modified, so as to obtain the
source of the protected software 2ps. This modification is
such that, among others:

[0359] during the execution of the protected software
2p, at least one portion of the first execution part 2pes,
which is executed in the data processing system 3, takes
into account that the functionality of at least one chosen
algorithmic processing is executed in the unit 6,

13

Dec. 20, 2007

[0360] during the execution of the protected software
2p, the second execution part 2peu, which is executed
in the unit 6, executes at least the functionality of at
least one chosen algorithmic processing,

[0361] each chosen algorithmic processing is split so
that during the execution of the protected software 2p,
each chosen algorithmic processing is executed, by
means of the second execution part 2peu, using
elementary functions. Preferably, each chosen algorith-
mic processing is split into elementary functions fe,
(with n varying from 1 to N), namely:

[0362] possibly one or several elementary functions
enabling the placing of one or several operands at the
unit 6’s disposal,

[0363] elementary functions, some of which use the
operand(s) and in combination, execute the function-
ality of the chosen algorithmic processing, using said
operand(s),

[0364] and possibly one or several elementary func-
tions enabling the placing of the result of the chosen
algorithmic processing at the data processing system
3’s disposal by the unit 6,

[0365] and a sequence of the elementary commands is
chosen among the set of sequences allowing the execu-
tion of the protected software 2p.

[0366] The first execution part 2pes of the protected
software 2p, which is executed in the data processing system
3, executes elementary commands CFE (with n varying
from 1 to N), triggering in the unit 6, the execution by means
of the second execution part 2peu, of each of the previously
defined elementary functions fe_.

[0367] FIG. 60 illustrates an example of execution of a
vulnerable software 2v. In this example, appears, during the
execution of the vulnerable software 2v in the data process-
ing system 3, at a certain time instant, the calculation of
7ZsF(X,Y) corresponding to the assignment to a variable Z
of the result of an algorithmic processing represented by a
function F and using operands X and Y.

[0368] FIG. 61 illustrates an example of implementation
of'the invention for which the algorithmic processing chosen
in FIG. 60 is remoted in the unit 6. In this example, during
the execution in the data processing system 3 of the first
execution part 2pes of the protected software 2p and in the
presence of the unit 6, appear:

[0369] at time instants t;, t,, the execution of the
elementary commands CFE,, CFE, triggering in the
unit 6, the execution by means of the second execution
part 2peu, of the corresponding elementary functions
fe,, fe, which provide the transfer of data X, Y from the
data processing system 3 to memorization zones
respectively X, y located in the memorization means 15
of the unit 6, said elementary commands CFE,, CFE,
being represented respectively by OUT(x, X), OUT(y,
Y),

[0370] at time instants t; to ty_;, the execution of the
elementary commands CFE; to CFEy_,, triggering in
the unit 6, the execution by means of the second
execution part 2peu, of the corresponding elementary
functions fe; to fey_;, said elementary commands CFE,

US 2007/0294770 Al

to CFEy_, being represented, respectively, by
TRIG(fe;) to TRIG(fey_;). The series of elementary
functions fe, to fey_, executed in combination is algo-
rithmically equivalent to the function F. More precisely,
the execution of said elementary commands leads to the
execution in the unit 6, of the elementary functions fe,
to fey_; which use the contents of the memorization
zones X, y and return the result to a memorization zone
z of the unit 6,

[0371] and at time instant ty, the execution of the
elementary command CFE; triggering in the unit 6, the
execution by means of the second execution part 2peu,
of the elementary function fe,; providing the transfer of
the result of the algorithmic processing, contained in
the memorization zone z of the unit 6 to the data
processing system 3, so as to assign it to the variable Z,
said elementary command CFE; being represented by
IN(z).

[0372] In the illustrated example, the elementary com-
mands 1 to N are executed successively. It should be
observed that two improvements can be effected:

[0373] The first improvement concerns the case where
several algorithmic processings are remoted in the unit
6 and at least the result of one algorithmic processing
is used by another algorithmic processing. In this case,
some elementary commands used for the transfer, can
possibly be removed.

[0374] The second improvement aims at opting for a
pertinent sequence of the elementary commands among
the set of sequences allowing the execution of the
protected software 2p. In this respect, it is preferable to
choose a sequence of the elementary commands which
temporally dissociates the execution of the elementary
functions, by intercalating between them, portions of
code executed in the data processing system 3 and
including or not elementary commands used for the
determination of other data. FIGS. 62 and 63 illustrate
the principle of such an embodiment.

[0375] FIG. 62 shows an example of execution of a
vulnerable software 2v. In this example, appears during the
execution of the vulnerable software 2v, in the data process-
ing system 3, the execution of two algorithmic processings
leading to the determination of Z and Z', such that ZsF (X,
Y) and Z’sF(X', Y.

[0376] FIG. 63 illustrates an example of implementation
of the process according to the invention for which the two
algorithmic processing chosen in FIG. 62 are remoted in the
unit 6. According to such an example, during the execution
in the data processing system 3 of the first execution part
2pes of the protected software 2p and in the presence of the
unit 6, appear, as explained above, the execution of the
elementary commands CFE; to CFE corresponding to the
determination of Z and the execution of the elementary
commands CFE', to CFE',, corresponding to the determina-
tion of Z'. As illustrated, the elementary commands CFE, to
CFE,; are not executed consecutively, inasmuch as the
elementary commands CFE', to CFE',, as well as other
portions of code are intercalated. In the example, the fol-
lowing sequence is thus carried out: CFE,, portion of
intercalated code, CFE'|, CFE,, portion of intercalated code,
CFE',, CFE';, portion of intercalated code, CFE',, CFE;,
CFE,, ..., CFEy, CFE',.

14

Dec. 20, 2007

[0377] 1t should be observed that, during the execution of
the protected software 2p, in the presence of the unit 6, each
time an elementary command contained in a portion of the
first execution part 2pes of the protected software 2p
imposes it, the corresponding elementary function is
executed in the unit 6. Thus, it appears, that in the presence
of the unit 6, said portion is executed correctly and that,
consequently, the protected software 2p is completely func-
tional.

[0378] FIG. 64 illustrates an example of an attempt of
execution of the protected software 2p, when the unit 6 is
missing. In this example, during the execution in the data
processing system 3, of the first execution part 2pes of the
protected software 2p, at every time instant, the execution of
an elementary command cannot trigger the execution of the
corresponding elementary function, because of the absence
of the unit 6. The value to assign to the variable Z cannot
therefore be determined correctly. It therefore appears, that
in the absence of the unit 6, at least one request by a portion
of the first execution part 2pes of the protected software 2p,
to trigger the execution of an elementary function in the unit
6 cannot be fulfilled correctly, so that at least said portion is
not executed correctly and that, consequently, the protected
software 2p is not completely functional.

[0379] According to another advantageous characteristic
of the invention, the protection process aims at implement-
ing a principle of protection, called by <<detection and
coercion>>, a description of which is carried out in relation
to FIGS. 70 to 74.

[0380] For the implementation of the principle of protec-
tion by detection and coercion, are defined:

[0381] at least one software execution characteristic
liable to be monitored at least in part in the unit 6,

[0382] at least one criterion to abide by for at least one
software execution characteristic,

[0383] detection means 17 to implement in the unit 6
and enabling to detect that at least one software execu-
tion characteristic does not abide by at least one asso-
ciated criterion,

[0384] and coercion means 18 to implement in the unit
6 and enabling to inform the data processing system 3
and/or modify the execution of a software, when at
least one criterion is not abided by.

[0385] For the implementation of the principle of protec-
tion by detection and coercion, are also constructed exploi-
tation means enabling to transform a blank unit 60 into a unit
6 implementing at least the detection means 17 and the
coercion means 18.

[0386] FIG. 70 illustrates the means necessary to the
implementation of this principle of protection by detection
and coercion. The unit 6 includes the detection means 17 and
the coercion means 18 belonging to the processing means
16. The coercion means 18 are informed by the detection
means 17 that a criterion has not been abided by.

[0387] More precisely, the detection means 17 use infor-
mation coming from the transfer means 13 and/or from the
memorization means 15 and/or from the processing means
16, so as to monitor one or several software execution

US 2007/0294770 Al

characteristics. For each software execution characteristic is
set at least one criterion to abide by.

[0388] In the case where it is detected that at least one
software execution characteristic does not abide by at least
one criterion, the detection means 17 inform the coercion
means 18 of it. Said coercion means 18 are adapted to
modify, in the appropriate way, the state of the unit 6.

[0389] For the implementation of the principle of protec-
tion by detection and coercion, are also chosen:

[0390] at least one software execution characteristic to
monitor, among the software execution characteristics
liable to be monitored,

[0391] at least one criterion to abide by for at least one
chosen software execution characteristic,

[0392] in the source of the vulnerable software 2vs, at
least one algorithmic processing for which at least one
software execution characteristic is to be monitored,

[0393] and in the source of the vulnerable software 2vs,
at least one portion containing at least one chosen
algorithmic processing.

[0394] At least one chosen portion of the source of the
vulnerable software 2vs is then modified, so as to obtain the
source of the protected software 2ps. This modification is
such that, during the execution of the protected software 2p,
among others:

[0395] at least one portion of the first execution part
2pes, which is executed in the data processing system
3, takes into account that at least one chosen software
execution characteristic is to be monitored, at least in
part in the unit 6,

[0396] and the second execution part 2peu, which is
executed in the unit 6, monitors at least in part, a chosen
software execution characteristic.

[0397] During the execution of the protected software 2p,
protected by this principle of protection by detection and
coercion, in the presence of the unit 6:

[0398] as long as all the criteria corresponding to all the
monitored execution characteristics of all the modified
portions of the protected software 2p are abided by, said
modified portions of the protected software 2p work
nominally, so that said protected software 2p works
nominally,

[0399] and if at least one of the criteria corresponding to
a monitored execution characteristic of a portion of the
protected software 2p is not abided by, the data pro-
cessing system 3 is informed of it and/or the function-
ing of the portion of the protected software 2p is
modified, so that the functioning of the protected soft-
ware 2p is modified.

[0400] Naturally, in the absence of the unit 6, at least one
request by a portion of the first execution part 2pes of the
protected software 2p to use the unit 6 cannot be fulfilled
correctly so that at least said portion is not executed cor-
rectly and that consequently the protected software 2p is not
completely functional.

[0401] For the implementation of the principle of protec-
tion by detection and coercion, two types of software
execution characteristics are used preferentially.

Dec. 20, 2007

[0402] The first type of software execution characteristic
corresponds to a variable of measurement of the execution
of a software and the second type corresponds to a profile of
usage of a software. Said two types of characteristics can be
used independently or in combination.

[0403] For the implementation of the principle of protec-
tion by detection and coercion using, as execution charac-
teristic, a variable of measurement of software execution,
are defined:

[0404] in the memorization means 15, the possibility to
memorize at least one variable of measurement used to
quantify the usage of at least one functionality of a
software,

[0405] in the detection means 17, the possibility to
monitor at least one threshold associated to each vari-
able of measurement,

[0406] and actualization means enabling to update each
variable of measurement depending on the usage of the
functionality to which it is associated.

[0407] Are also constructed exploitation means imple-
menting, in addition to the detection means 17 and the
coercion means 18, the actualization means.

[0408] Are also chosen, in the source of the vulnerable
software 2vs:

[0409] at least one functionality of the vulnerable soft-
ware 2v whose usage is liable to be monitored using a
variable of measurement,

[0410] at least one variable of measurement used to
quantify the usage of said functionality,

[0411] at least one threshold associated to the variable
of measurement corresponding to a limit of usage of
said functionality,

[0412] and at least one method of update of the variable
of measurement depending on the usage of said func-
tionality.

[0413] The source of the vulnerable software 2vs is then
modified, so as to obtain the source of the protected software
2ps, this modification being such that, during the execution
of the protected software 2p, the second execution 2peu:

[0414] actualizes the variable of measurement depend-
ing on the usage of said functionality,

[0415] and takes into account at least one threshold
crossing.

[0416] In other words, during the execution of the pro-
tected software 2p, the variable of measurement is updated
depending on the usage of said functionality, and when the
threshold is crossed, the detection means 17 inform of it the
coercion means 18 which make an adapted decision to
inform the data processing system 3 and/or to modify the
processings carried out by the processing means 16 enabling
to modify the functioning of the portion of the protected
software 2p, so that the functioning of the protected software
2p is modified.

[0417] For the implementation of a first preferred variant
embodiment of the principle of protection by detection and
coercion using, as characteristic, a variable of measurement,
are defined:

US 2007/0294770 Al

[0418] for at least one variable of measurement, several
associated thresholds,

[0419] and different coercion means corresponding to
each of said thresholds.

[0420] Are also chosen, in the source of the vulnerable
software 2vs:

[0421] at least one variable of measurement used to
quantify the usage of at least one functionality of the
software and to which must be associated several
thresholds corresponding to different limits of usage of
said functionalities,

[0422] and at least two thresholds associated to the
variable of measurement.

[0423] The source of the vulnerable software 2vs is then
modified, so as to obtain the source of the protected software
2ps, this modification being such that, during the execution
of'the protected software 2p, the second execution part 2peu:

[0424] actualizes the variable of measurement depend-
ing on the usage of said functionality,

[0425] and takes into account, differently, the crossing
of the various thresholds.

[0426] In other words, classically, during the execution of
the protected software 2p, when the first threshold is
crossed, the unit 6 informs the data processing system 3
enjoining the protected software 2p not to use said func-
tionality anymore. If the protected software 2p carries on
using said functionality, the second threshold will poten-
tially be crossed. In the case where the second threshold is
crossed, the coercion means 18 can make the chosen func-
tionality ineffective and/or make the protected software 2p
ineffective.

[0427] For the implementation of a second preferred vari-
ant embodiment of the principle of protection by detection
and coercion using, as characteristic, a variable of measure-
ment, are defined refilling means enabling to credit at least
one software functionality monitored by a variable of mea-
surement with at least one additional usage.

[0428] Are also constructed exploitation means imple-
menting, in addition to the detection means 17, the coercion
means 18 and the actualization means, the refilling means.

[0429] TIs also chosen, in the source of the vulnerable
software 2vs, at least one variable of measurement used to
limit the usage of at least one functionality of the software
and which must be able to be credited with at least one
additional usage.

[0430] The source of the vulnerable software 2vs is then
modified, so as to obtain the source of the protected software
2ps, this modification being such that, during a phase called
of refilling, at least one additional usage of at least one
functionality corresponding to a chosen variable of mea-
surement can be credited.

[0431] Is carried out, during the phase of refilling, the
reactualization of at least one chosen variable of measure-
ment and/or of at least one associated threshold, so as to
allow at least one additional usage of the corresponding
functionality. In other words, it is possible, during the phase
of refilling, to credit additional usages of at least one
functionality of the protected software 2p.

Dec. 20, 2007

[0432] For the implementation of the principle of protec-
tion by detection and coercion using, as characteristic, a
profile of software usage, is defined as criterion to abide by
for said profile of usage, at least one feature of software
execution.

[0433] Are also chosen, in the source of the vulnerable
software 2vs:

[0434]

[0435] and at least one feature of execution by which at
least one chosen profile of usage must abide.

at least one profile of usage to monitor,

[0436] The source of the vulnerable software 2vs is then
modified, so as to obtain the source of the protected software
2ps, this modification being such that, during the execution
of the protected software 2p, the second execution part 2peu
abides by all the chosen features of execution. In other
words, the unit 6 itself monitors the way the second execu-
tion part 2peu is executed and can inform the data processing
system 3 and/or modify the functioning of the protected
software 2p, in the case where at least one feature of
execution is not abided by.

[0437] During the execution of the protected software 2p,
protected by this principle, in the presence of the unit 6:

[0438] as long as all the features of execution of all the
modified portions of the protected software 2p are
abided by, said modified portions of the protected
software 2p work nominally, so that said protected
software 2p works nominally,

[0439] and if at least one feature of execution of a
portion of protected software 2p is not abided by, the
data processing system 3 is informed of it and/or the
functioning of the portion of the protected software 2p
is modified, so that the functioning of the protected
software 2p is modified.

[0440] The monitoring of different features of execution
can be considered, like for instance the monitoring of the
presence of instructions including a marker or the monitor-
ing of the execution chaining for at least one part of the
instructions.

[0441] For the implementation of the principle of protec-
tion by detection and coercion using as feature of execution
to abide by, the monitoring of the execution chaining for at
least one part of the instructions, are defined:

[0442] an instructions set, whose instructions are liable
to be executed in the unit 6,

[0443] a set of instructions commands for said instruc-
tions set, said instructions commands are liable to be
executed in the data processing system 3. The execu-
tion of each of said instructions commands in the data
processing system 3 triggers in the unit 6, the execution
of the corresponding instruction,

[0444] detection means 17 enabling to detect that the
chaining of the instructions does not correspond to the
expected one,

[0445] and coercion means 18 enabling to inform the
data processing system 3 and/or to modify the execu-
tion of a software when the chaining of the instructions
does not correspond to the expected one.

US 2007/0294770 Al

[0446] Are also constructed exploitation means enabling
the unit 6 to also execute the instructions of the instructions
set, the execution of said instructions being triggered by the
execution in the data processing system 3 of the instructions
commands.

[0447] TIs also chosen, in the source of the vulnerable
software 2vs, at least one algorithmic processing which must
be remoted in the unit 6 and for which the chaining of at least
one part of the instructions is to be monitored.

[0448] The source of the vulnerable software 2vs is then
modified, so as to obtain the source of the vulnerable
software 2ps, this modification being such that, during the
execution of the protected software 2p:

[0449] the second execution part 2peu executes at least
the functionality of the chosen algorithmic processing,

[0450] the chosen algorithmic processing is split into
instructions,

[0451] the chaining by which at least some of the
instructions must abide during their execution in the
unit 6 is specified,

[0452] and the first execution part 2pes of the protected
software 2p executes instructions commands which
trigger the execution of the instructions in the unit 6.

[0453] During the execution of the protected software 2p,
protected by this principle, in the presence of the unit 6:

[0454] as long as the chaining of the instructions of all
the modified portions of the protected software 2p,
executed in the unit 6 corresponds to the expected one,
said modified portions of the protected software 2p
work nominally, so that said protected software 2p
works nominally,

[0455] and if the chaining of the instructions of a
portion of the protected software 2p executed in the
unit 6 does not correspond to the expected one, the data
processing system 3 is informed of it and/or the func-
tioning of the portion of protected software 2p is
modified, so that the functioning of the protected soft-
ware 2p is modified.

[0456] FIG. 71 illustrates an example of implementation
of the principle of protection by detection and coercion
using, as feature of execution to abide by the monitoring of
the execution chaining of a at least one part of the instruc-
tions, in the case where the expected chaining is abided by.

[0457] The first execution part 2pes of the protected
software 2p, executed in the data processing system 3,
executes instructions commands CI; triggering, in the unit 6
the execution of the instructions i, belonging to the instruc-
tions set. In said instructions set, at least some of the
instructions each include a part defining the functionality of
the instruction and a part enabling to verify the expected
chaining for the execution of the instructions. In this
example, the instructions commands CI, are represented by
TRIG(;) and the expected chaining for the execution of the
instructions is i, 1,,,, and i, ,. The execution in the unit 6,
of'the instruction i, gives the result a and the execution of the
instruction i, ,; gives the result b. The instruction i, , , uses as
operand, the results a and b of the instructions i, and i, ,, and
its execution gives the result c.

Dec. 20, 2007

[0458] Taking into account that said chaining of the
instructions executed in the unit 6 corresponds to the
expected one, it results in a normal or nominal functioning
of the protected software 2p.

[0459] FIG. 72 illustrates an example of implementation
of the principle of protection by detection and coercion
using, as feature of execution to abide by, the monitoring of
the execution chaining of at least one part of the instructions,
in the case where the expected chaining is not abided by.

[0460] According to this example, the expected chaining
for the execution of the instructions is still i, i,,, and i, ,.
However, the execution chaining is modified by the replace-
ment of the instruction i, with the instruction 1',, so that the
chaining actually executed is 1',, 1, , and i, ,. The execution
of'the instruction i', gives the result a, i.e. the same result that
the execution of the instruction i,. However, at the latest
during the execution of the instruction i,,,, the detection
means 17 detect that the instruction i', does not correspond
to the expected instruction to generate the result a used as
operand of the instruction i ,,. The detection means 17
inform of it the coercion means 18 which modify accord-
ingly, the functioning of the instruction i_,,, so that the
execution of the instruction 1, , , gives the result ¢' which can
be different than c. Naturally, if the execution of the instruc-
tion 1', gives a result a' different from the result a of the
instruction i, it is clear that the result of the instruction i, , ,
can also be different from c.

[0461] Inasmuch as the execution chaining of the instruc-
tions executed in the unit 6 does not correspond to the
expected one, a modification of the functioning of the
protected software 2p can therefore be obtained.

[0462] FIGS. 73 and 74 illustrates a preferred variant
embodiment of the principle of protection by detection and
coercion using, as feature of execution to abide by, the
monitoring of the execution chaining of at least one part of
the instructions. According to this preferred variant, is
defined an instructions set whose at least some instructions
work with registers and use at least one operand with the
intention of returning a result.

[0463] As illustrated in FIG. 73, are defined for at least
some of the instructions working with registers, a part PF
defining the functionality of the instruction and a part PE
defining the expected chaining for the execution of the
instructions. The part PF corresponds to the operation code
known by the Man of art. The part PE defining the expected
chaining, includes bits fields corresponding to:

[0464]

[0465] and for each operand k of the instruction, with k
varying from 1 to K, and K number of operands of the
instruction:

an identification field of the instruction CII,

[0466] a flag field CD,, indicating whether or not it is
appropriate to verify the origin of the operand k,

[0467] and an expected identification field CIP, of
the operand, indicating the expected identity of the
instruction which has generated the contents of the
operand k.

[0468] As illustrated in FIG. 74, the instructions set
includes V registers belonging to the processing means 16,

US 2007/0294770 Al

each register being named R, with v varying from 1 to V.
For each register R, are defined two fields, namely:

[0469] a functional field CF_, known by the Man of art
and enabling to store the result of the execution of the
instructions,

[0470] and a generated identification field CIG,
enabling to memorize the identity of the instruction
which has generated the contents of the functional field
CF,. Said generated identification field CIG, is auto-
matically updated with the contents of the identification
field of the instruction CII which has generated the
functional field CF,,. Said generated identification field
CIG, is neither accessible, nor modifiable by any of the
instructions and is solely used for the detection means
17.

[0471] During the execution of an instruction, the detec-
tion means 17 carry out for each operand k the following
operations:

[0472]

[0473] if the flag field CD, imposes it, the expected
identification field CIP, and the generated identification
field CIG, corresponding to the register used by the
operand k are both read,

the flag field CD,_is read,

[0474] the equality of the two fields CIP, and CIG, is
checked,
[0475] and if the equality is false, the detection means

17 consider that the execution chaining of the instruc-
tions is not abided by.

[0476] The coercion means 18 enable to modify the result
of the instructions when the detection means 17 has
informed them of an instructions chaining not abided by. A
preferred embodiment is carried out by modifying the func-
tional part PF of the instruction currently executed or the
functional part PF of subsequent instructions.

[0477] According to another advantageous characteristic
of the invention, the protection process aims at implement-
ing a principle of protection, called by <<renaming>> a
description of which is carried out in relation to FIGS. 80 to
85.

[0478] For the implementation of the principle of protec-
tion by renaming, are defined:

[0479] a set of dependent functions, whose dependent
functions are liable to be executed, by means of the
second execution part 2peu, in the unit 6, and possibly
to transfer data between the data processing system 3
and the unit 6, said set of dependent functions can be
finite or infinite,

[0480] a set of triggering commands for said dependent
functions, said triggering commands being liable to be
executed in the data processing system 3 and to trigger
in the unit 6, the execution of corresponding dependent
functions,

[0481] for each triggering command, an order corre-
sponding at least in part to the information transmitted
by the first execution part 2pes, to the second execution
part 2peu, so as to trigger the execution of the corre-

18

Dec. 20, 2007

sponding dependent function, said order having the
form of at least one argument of the triggering com-
mand,

[0482] a method of renaming of the orders designed to
be used during the modification of the vulnerable
software 2v, such a method enabling to rename the
orders so as to obtain triggering commands with
renamed orders enabling to conceal the identity of the
corresponding dependent functions,

[0483] and restoring means 20 designed to be used in
the unit 6 during the usage phase and enabling to
restore the initial order, from the renamed order, so as
to restore the dependent function to execute.

[0484] For the implementation of the principle of protec-
tion by renaming, are also constructed exploitation means
enabling to transform a blank unit 60 containing memori-
zation means 15 and processing means 16 into a unit 6
implementing at least the restoring means 20.

[0485] For the implementation of the principle of protec-
tion by renaming, are also chosen, in the source of the
vulnerable software 2vs:

[0486] at least one algorithmic processing using at least
one operand and returning at least one result,

[0487] and at least one portion of the source of the
vulnerable software 2vs, containing at least one chosen
algorithmic processing.

[0488] The source of the vulnerable software 2vs is then
modified, so as to obtain the source of the protected software
2ps. This modification is such that, among others:

[0489] during the execution of the protected software
2p, at least one portion of the first execution part 2pes,
which is executed in the data processing system 3, takes
into account that the functionality of at least one chosen
algorithmic processing is executed in the unit 6,

[0490] during the execution of the protected software
2p, the second execution part 2peu, which is executed
in the unit 6, executes at least the functionality of at
least one chosen algorithmic processing,

[0491] each chosen algorithmic processing is split so
that during the execution of the protected software 2p,
each chosen algorithmic processing is executed, by
means of the second execution part 2peu, using depen-
dent functions. Preferably, each chosen algorithmic
processing is split into dependent functions fd, (with n
varying from 1 to N), namely:

[0492] possibly one or several dependent functions
enabling the placing of one or several operands at the
unit 6’s disposal,

[0493] dependent functions, some of which use the
operand(s) and execute in combination the function-
ality of the chosen algorithmic processing, using said
operand(s),

[0494] and possibly, one or several dependent func-
tions enabling the placing by the unit 6, at the data
processing system 3’s disposal of the result of the
chosen algorithmic processing,

US 2007/0294770 Al

[0495] during the execution of the protected software
2p, the second execution part 2peu executes the depen-
dent functions fd,

[0496] during the execution of the protected software
2p, the dependent functions are triggered by triggering
commands with renamed orders,

[0497] and a sequence of the triggering commands is
chosen among the set of sequences allowing the execu-
tion of the protected software 2p.

[0498] The first execution part 2pes of the protected
software 2p, executed in the data processing system 3,
executes triggering commands with renamed orders trans-
ferring renamed orders to the unit 6, and triggering in the
unit 6 the restoring by means of the restoring means 20, of
the orders, and then the execution by means of the second
execution part 2peu, of each of the previously defined
dependent functions fd, .

[0499] In other words, the principle of protection by
renaming is carried out by renaming the orders of the
triggering commands, so as to obtain triggering commands
with renamed orders whose execution in the data processing
system 3, triggers in the unit 6, the execution of the
dependent functions which would have been triggered by the
triggering commands with not-renamed orders, without
however the examination of the protected software 2p
enabling to determine the identity of the executed dependent
functions.

[0500] FIG. 80 illustrates an example of execution of a
vulnerable software 2v. In this example, appears during the
execution of the vulnerable software 2v in the data process-
ing system 3, at a certain time instant, the calculation of
7ZsF(X,Y) corresponding to the assignment to a variable Z
of the result of an algorithmic processing represented by a
function F and using the operands X and Y.

[0501] FIGS. 81 and 82 illustrate an example of imple-
mentation of the invention.

[0502] FIG. 81 illustrates the partial implementation of the
invention. In this example, during the execution in the data
processing system 3 of the first execution part 2pes of the
protected software 2p and in the presence of the unit 6,
appear:

[0503] at time instants t;, t,, the execution of the
triggering commands CD,, CD, triggering in the unit 6,
the execution by means of the second execution part
2peu, of the corresponding dependent functions fd,, fd,
which provide the transfer of data X, Y from the data
processing system 3 to the memorization zones respec-
tively x, y located in the memorization means 15 of the
unit 6, said triggering commands CD,, CD, being
represented respectively by OUT(x, X), OUT(y, Y),

[0504] at time instants t; to ty_;, the execution of the
triggering commands CD; to CDy_,, triggering in the
unit 6, the execution by means of the second execution
part 2peu, of the corresponding dependent functions fd,
to fdy_,, said triggering commands CD; to CDy_,
being represented respectively, by TRIG(fd,) to TRIG-
(fdy_). The series of dependent functions fd; to fdy_;
executed in combination is algorithmically equivalent
to the function F. More precisely, the execution of said
triggering commands leads to the execution in the unit

Dec. 20, 2007

6, of the dependent functions fd; to fdy_, which use the
contents of the memorization zones X, y and return the
result in a memorization zone z of the unit 6,

[0505] and at time instant ty, the execution of a trig-
gering command CDy; triggering in the unit 6, the
execution by means of the second execution part 2peu,
of the dependent function fdy providing the transfer of
the result of the algorithmic processing contained in the
memorization zone z of the unit 6 to the data processing
system 3, so as to assign it to the variable Z, said
command being represented by IN(z).

[0506] In this example, to completely implement the
invention, are chosen as orders, the first argument of the
triggering commands OUT and the argument of the trigger-
ing commands TRIG and IN. The orders chosen in this way
are renamed using the method of renaming of the orders. In
this manner, the orders of the triggering commands CD, to
CDy ie. x, y, fd;, fdy_;, Z are renamed so as to obtain
respectively R(x), R(y), R(fdy) . . ., R(fdy_,), R(z).

[0507] FIG. 82 illustrates the complete implementation of
the invention. In this example, during the execution in the
data processing system 3, of the first execution part 2pes of
the protected software 2p, and in the presence of the unit 6,
appear:

[0508] at time instants t,, t,, the execution of the
triggering commands with renamed orders CDCR;,
CDCR,, transferring to the unit 6, the renamed orders
R(x), R(y) as well as the data X, Y triggering in the unit
6 the restoring by means of the restoring means 20, of
the renamed orders to restore the orders i.e. the identity
of the memorization zones x, y, and then the execution
by means of the second execution part 2peu, of the
corresponding dependent functions fd,, fd, which pro-
vide the transfer of the data X, Y from the data
processing system 3 to the memorization zones respec-
tively x, y located in the memorization means 15 of the
unit 6, said triggering commands with renamed orders
CDCR,, CDCR, being represented respectively by
OUT (R(x), X), OUT (R(y), Y),

[0509] at time instants t; to ty_,, the execution of the
triggering commands with renamed orders CDCR; to
CDCRy_;, transferring to the unit 6, the renamed
orders R(fd;) to R(fdy_,), triggering in the unit 6 the
restoring by means of the restoring means 20, of the
orders, i.e. fd, to fdy_,, and then the execution by
means of the second execution part 2peu, of the depen-
dent functions fd, to fd_,, said triggering commands
with renamed orders CDCR; to CDCRy_; being rep-
resented respectively by TRIG (R(fd;y)) to TRIG
(R(fdy_,).

[0510] and at time instant ty, the execution of the
triggering command with renamed order CDCR trans-
ferring to the unit 6, the renamed order R(z) triggering
in the unit 6 the restoring by means of restoring means
20, of the order i.e. the identity of the memorization
zone 7z, and then the execution by means of the second
execution part 2peu, of the dependent function fdy
providing the transfer of the result of the algorithmic
processing contained in the memorization zone z of the
unit 6 to the data processing system 3, so as to assign
it to the variable Z, said triggering command with
renamed order CDCRy being represented by IN (R(z)).

US 2007/0294770 Al

[0511] Inthe illustrated example, the triggering commands
with renamed orders 1 to N are executed successively. It
should be observed that two improvements can be effected:

[0512] The first improvement concerns the case where
several algorithmic processings are remoted to the unit
6 and at least the result of one algorithmic processing
is used by another algorithmic processing. In this case,
some triggering commands with renamed orders used
for the transfer, can possibly be removed.

[0513] The second improvement aims at opting for a
pertinent sequence of the triggering commands with
renamed orders among the set of sequences allowing
the execution of the protected software 2p. In this
respect, it is preferable to choose a sequence of the
triggering commands with renamed orders which dis-
sociate temporally the execution of the dependent func-
tions, by intercalating, between them portions of code
executed in the data processing system 3 and including
or not triggering commands with renamed orders used
of the determination of other data. FIGS. 83 and 84
illustrate the principle of such an embodiment.

[0514] FIG. 83 shows an example of execution of a
vulnerable software 2v. In this example, appears, during the
execution of the vulnerable software 2v, in the data process-
ing system 3, the execution of two algorithmic processings
leading to the determination of Z and 7', such as ZsF(X,Y)
and Z’sF' X', Y".

[0515] FIG. 84 illustrates an example of implementation
of the process according to the invention for which the two
algorithmic proccesings chosen in FIG. 83 are remoted to
the unit 6. According to such an example, during the
execution in the data processing system 3 of the first
execution part 2pes of the protected software 2p and in the
presence of the unit 6, appear, as explained above, the
execution of the triggering commands with renamed orders
CDCR, to CDCRy; corresponding to the determination of Z
and the execution of the triggering commands with renamed
orders CDCR', to CDCR'}, corresponding to the determina-
tion of Z'. As illustrated, the triggering commands with
renamed orders CDCR, to CDCRy; are not executed con-
secutively, inasmuch as the triggering commands with
renamed orders CDCR', to CDCR',,; as well as other por-
tions of code are intercalated. In the example, the following
sequence is thus carried out: CDCR,, portion of intercalated
code, CDCR';, CDCR,, portion of intercalated code,
CDCR',, CDCR';, portion of intercalated code, CDCR',,
CDCR;, CDCR,, . . ., CDCRy, CDCR';,.

[0516] It should be observed that, during the execution of
a portion of the first execution part 2pes of the protected
software 2p, the triggering commands with renamed orders
executed in the data processing system 3, trigger in the unit
6 the restoring of the identity of the corresponding depen-
dent functions and then their execution. Thus, it appears that
in the presence of the unit 6, said portion is executed
correctly and that, consequently, the protected software 2p is
completely functional.

[0517] FIG. 85 illustrates an example of an attempt of
execution of the protected software 2p, when the unit 6 is
missing. In this example, during the execution in the data
processing system 3 of the first execution part 2pes of the
protected software 2p, at every time instant, the execution of

Dec. 20, 2007

a triggering command with renamed order can trigger nei-
ther the restoring of the order nor the execution of the
corresponding dependent function, because of the absence
of the unit 6. The value to assign to the variable Z cannot
therefore be determined correctly.

[0518] It therefore appears, that in the absence of the unit
6, at least one request by a portion of the first execution part
2pes of the protected software 2p, to trigger the restoring of
an order and the execution of a dependent function in the
unit 6 cannot be fulfilled correctly, so that at least said
portion is not executed correctly and that, consequently, the
protected software 2p is not completely functional.

[0519] Thanks to this principle of protection by renaming,
the examination in the protected software 2p of the trigger-
ing commands with renamed orders does not enable to
determine the identity of the dependent functions which
have to be executed in the unit 6. It should be observed that
the renaming of the orders is carried out during the modi-
fication of the vulnerable 2v to a protected software 2p.

[0520] According to a variant of the principle of protection
by renaming, is defined for at least one dependent function,
a family of dependent functions algorithmically equivalent
but triggered by different triggering commands with
renamed orders. According to this variant, for at least one
algorithmic processing using dependent functions, said algo-
rithmic processing is split into dependent functions which
for at least one of them is replaced with a dependent function
of'the same family instead of keeping several occurrences of
the same dependent function. To this end, triggering com-
mands with renamed orders are modified to take into
account the replacement of dependent functions with depen-
dent functions of the same family. In other words, two
dependent functions of the same family have different orders
and consequently different triggering commands with
renamed orders and, it is not possible, by examining the
protected software 2p, to discover that the dependent func-
tions called are algorithmically equivalent.

[0521] According to a first preferred embodiment of the
variant of the principle of protection by renaming, is defined
for at least one dependent function, a family of algorithmi-
cally equivalent dependent functions, by concatenating a
noise field to the information defining the functional part of
the dependent function to execute in the unit 6.

[0522] According to a second preferred embodiment of the
variant of the principle of protection by renaming, is defined
for at least one dependent function, a family of algorithmi-
cally equivalent dependent functions by using identification
fields.

[0523] According to a preferred variant embodiment of the
principle of protection by renaming, is defined as method of
renaming of the orders a ciphering method enabling to
cipher the orders to transform them into renamed orders.
Remember that the renaming of the orders is carried out
during the phase of protection P. For this preferred variant,
the restoring means 20 are means implementing a decipher-
ing method enabling to decipher the renamed orders and
thus to restore the identity of the dependent functions to
execute in the unit 6. Said restoring means are implemented
in the unit 6 and can be of software or hardware nature. Said
restoring means 20 are appealed to during the usage phase
U each time a triggering command with renamed order is

US 2007/0294770 Al

executed in the data processing system 3 with the intention
of triggering in the unit 6, the execution of a dependent
function.

[0524] According to another advantageous characteristic
of the invention, the protection process aims at implement-
ing a principle of protection called by <<conditional
branch>> a description of which is carried out in relation to
FIGS. 90 to 92.

[0525] For the implementation of the principle of protec-
tion by conditional branch, is chosen in the source of the
vulnerable software 2vs, at least one conditional branch BC.
Is also chosen at least one portion of the source of the
vulnerable software 2vs containing at least one chosen
conditional branch BC.

[0526] At least one chosen portion of the source of the
vulnerable software 2vs is then modified, so as to obtain the
source of the protected software 2ps. This modification is
such that, during the execution of the protected software 2p,
among others:

[0527] at least one portion of the first execution part
2pes, which is executed in the data processing system
3, takes into account that the functionality of at least
one chosen conditional branch BC is executed in the
unit 6,

[0528] and the second execution part 2peu, which is
executed in the unit 6, executes at least the functionality
of at least one chosen conditional branch BC and puts
at the data processing system 3’s disposal, a piece of
information enabling the first execution part 2pes, to
carry on its execution at the chosen spot.

[0529] The first execution part 2pes of the protected
software 2p, executed in the data processing system 3,
executes conditional branches commands, triggering in the
unit 6, the execution by means of the second execution part
2peu, of remoted conditional branches bc whose function-
ality is equivalent to the functionality of the chosen condi-
tional branches BC. For the implementation of the principle
of protection by conditional branch, the unit 6 includes
memorization means 15 and processing means 16.

[0530] FIG. 90 illustrates an example of execution of a
vulnerable software 2v. In this example, appears, during the
execution of the vulnerable software 2v in the data process-
ing system 3 at a certain time instant, a conditional branch
BC indicating to the vulnerable software 2v the spot where
to carry on its execution, i.e. one of the three possible spots
B,, B, or B;. It must be understood that the conditional
branch BC takes the decision to carry on the execution of the
software at spot B, B, or B;.

[0531] FIG. 91 illustrates an example of implementation
of the invention for which the conditional branch chosen to
be remoted to the unit 6, corresponds to the conditional
branch BC. In this example, during the execution in the data
processing system 3 of the first execution part 2pes of the
protected software 2p and in the presence of the unit 6,
appear:

[0532] at time instant t;, the execution of the condi-
tional branch command CBC, triggering in the unit 6,
the execution by means of the second execution part
2peu, of the remoted conditional branch bc algorithmi-

Dec. 20, 2007

cally equivalent to the conditional branch BC, said
conditional branch command CBC, being represented
by TRIG(bc),

[0533] and at time instant t,, the transfer from the unit
6 to the data processing system 3, of the information
enabling the first execution part 2pes, to carry on its
execution at the chosen spot, i.e. the spot B, B, or B;.

[0534] 1t should be observed that during the execution of
a portion of the first execution part 2pes of the protected
software 2p, the conditional branches commands executed
in the data processing system 3 trigger the execution of the
corresponding remoted conditional branches in the unit 6.
Thus, it appears, that in the presence of the unit 6, said
portion is executed correctly and that, consequently, the
protected software 2p is completely functional.

[0535] FIG. 92 illustrates an example of an attempt of
execution of the protected software 2p, when the unit 6 is
missing. In this example, during the execution in the data
processing system 3 of the first execution part 2pes of the
protected software 2p:

[0536] at time instant t,, the execution of the condi-
tional branch command CBC,, cannot trigger the
execution of the remoted conditional branch be, taking
into account the absence of the unit 6,

[0537] and at time instant t,, the transfer of the piece of
information enabling the first execution part 2pes to
carry on at the chosen spot fails taking into account the
absence of the unit 6.

[0538] It therefore appears that in the absence of the unit
6, at least one request by a portion of the first execution part
2pes to trigger the execution of a remoted conditional branch
in the unit 6, cannot be fulfilled correctly, so that at least said
portion is not executed correctly and that, consequently, the
protected software 2p is not completely functional.

[0539] In the previous description in relation to FIGS. 90
to 92, the subject of the invention aims at remoting in the
unit 6, a conditional branch. Naturally, a preferred embodi-
ment of the invention can be carried out by remoting in the
unit 6, a series of conditional branches whose overall
functionality is equivalent to all the functionalities of the
conditional branches which have been remoted. The execu-
tion of the overall functionality of said series of remoted
conditional branches leads to the placing at the data pro-
cessing system 3’s disposal of a piece of information
enabling the first execution part 2pes of the protected
software 2p to carry on its execution at the chosen spot.

[0540] In the previous description in relation to FIGS. 40
to 92, six different principles of software protection have
been made explicit generally speaking independently of one
another. The protection process in accordance with the
invention, is implemented by using the principle of protec-
tion by variable, possibly combined with one or several
other principles of protection. In the case where the principle
of protection by variable is complemented by the imple-
mentation of at least another principle of protection, the
principle of protection by variable is advantageously
complemented by the principle of protection by temporal
dissociation and/or the principle of protection by elementary
functions.

US 2007/0294770 Al

[0541] And when the principle of protection by temporal
dissociation is also implemented, it can be complemented in
its turn by the principle of protection by elementary func-
tions and/or the principle of protection by conditional
branch.

[0542] And when the principle of protection by elemen-
tary functions is also implemented, it can be complemented
in its turn by the principle of protection by detection and
coercion and/or the principle of protection by renaming
and/or the principle of protection by conditional branch.

[0543] And when the principle of protection by detection
and coercion is also implemented, it can be complemented
in its turn by the principle of protection by renaming and/or
the principle of protection by conditional branch.

[0544] And when the principle of protection by renaming
is also implemented, it can be complemented in its turn by
the principle of protection by conditional branch.

[0545] According to the preferred variant embodiment, the
principle of protection by variable is complemented by the
principle of protection by temporal dissociation, comple-
mented by the principle of protection by elementary func-
tions, complemented by the principle of protection by detec-
tion and coercion, complemented by the principle of
protection by renaming, complemented by the principle of
protection by conditional branch.

[0546] In the case where a principle of protection is
applied, in complement to the principle of protection by
variable, its previously carried out description must include,
to take into account its combined implementation, the fol-
lowing modifications:

[0547] the notion of vulnerable software must be under-
stood as software vulnerable towards the principle of
protection being described. Thus, in the case where a
principle of protection has already been applied to the
vulnerable software, the expression “vulnerable soft-
ware” must be interpreted by the reader as the expres-
sion “software protected by the principle(s) of protec-
tion already applied™;

[0548] the notion of protected software must be under-
stood as software protected towards the principle of
protection being described. Thus, in the case where a
principle of protection has already been applied, the
expression “protected software” must be interpreted by
the reader as the expression “new version of the pro-
tected software”;

[0549] and the choice(s) made for the implementation
of the principle of protection being described must take
into account the choice(s) made for the implementation
of the principle(s) of protection already applied.

[0550] The rest of the description enables to have a better
understanding of the implementation of the protection pro-
cess in accordance with the invention. This protection pro-
cess according to the invention is composed, as shown more
precisely in FIG. 100:
[0551] first, of a protection phase P during which a
vulnerable software 2v is modified to become a pro-
tected software 2p,

0552] then, of a usage phase U during which the
ge p g
protected software 2p is used. During this usage phase
U:

Dec. 20, 2007

[0553] in the presence of the unit 6 and each time a
portion of the first execution part 2pes executed in
the data processing system 3 imposes it, an imposed
functionality is executed in the unit 6, so that said
portion is executed correctly and that, consequently,
the protected software 2p is completely functional,

[0554] in the absence of the unit 6 and in spite of the
request by a portion of the first execution part 2pes
to execute a functionality in the unit 6, said request
cannot be fulfilled correctly, so that at least said
portion is not executed correctly and that conse-
quently, the protected software 2p is not completely
functional,

[0555] and possibly of a phase of refilling R during
which is credited at least one additional usage of a
functionality protected by the implementation of the
second preferred variant embodiment of the principle
of protection by detection and coercion using as char-
acteristic, a variable of measurement.

[0556] The protection phase P can be split into two pro-
tection sub-phases P, and P,. The first one, called prior
protection sub-phase P, takes place independently of the
vulnerable software 2v to protect. The second one, called
subsequent protection sub-phase P, is dependent of the
vulnerable software 2v to protect. It should be observed that
the prior protection sub-phase P, and the subsequent pro-
tection sub-phase P, can be carried out advantageously by
two different persons or two different teams. For instance,
the prior protection sub-phase P, can be carried out by a
person or a company providing the development of software
protection systems, while the subsequent protection sub-
phase P, can be carried out by a person or a company
providing the development of software requiring to be
protected. Naturally, it is clear that the prior protection
sub-phase P, and the subsequent protection sub-phase P, can
also be carried out by the same person or team.

[0557] The prior protection sub-phase P, is composed of
several stages S|, . . ., S;; for each of which various tasks
or jobs are to be carried out.

[0558] The first stage of this prior protection sub-phase P,
is called “definitions stage S,,”. During this definitions stage
S

[0559]

[0560] the type of the unit 6, namely in particular a
memorizing unit or a processing and memorizing unit.
As an illustrative example, can be chosen as unit 6, a
chip card reader 8 and the chip card 7 associated to the
reader,

are chosen:

[0561] and the transfer means 12, 13 designed to be
implemented respectively in the data processing system
3 and in the unit 6, during the usage phase U and
capable of providing the transfer of data between the
data processing system 3 and the unit 6,

[0562] and in the case where the protection process
according to the invention implements the principle of
protection by elementary function, are also defined:

[0563] a set of elementary functions whose elementary
functions are liable to be executed in the unit 6,

US 2007/0294770 Al

[0564] and a set of elementary commands for said set of
elementary functions, said elementary commands
being liable to be executed in the data processing
system 3 and to trigger the execution in the unit 6, of
the elementary functions,

[0565] and in the case where the protection process
according to the invention implements the principle of
protection by detection and coercion, are also defined:

[0566] at least one software execution characteristic,
liable to be monitored at least in part in the unit 6,

[0567] at least one criterion to abide by for at least one
software execution characteristic,

[0568] detection means 17 to implement in the unit 6
and enabling to detect that at least one software execu-
tion characteristic does not abide by at least one asso-
ciated criterion,

[0569] and coercion means 18 to implement in the unit
6 and enabling to inform the data processing system 3
and/or modify the execution of a software, when at
least one criterion is not abided by,

[0570] and in the case where the protection process
according to the invention implements the principle of
protection by detection and coercion using as character-
istic a variable of measurement of the software execution,
are also defined:

[0571] as software execution characteristic liable to be
monitored, a variable of measurement of the usage of
a functionality of a software,

[0572] as criterion to abide by, at least one threshold
associated to each variable of measurement,

[0573] and actualization means enabling to update at
least one variable of measurement,

[0574] and in the case where the protection process
according to the invention also implements a first pre-
ferred variant embodiment of the principle of protection
by detection and coercion using as characteristic a vari-
able of measurement of the software execution, are also
defined:

[0575] for at least one variable of measurement, several
associated thresholds,

[0576] and different coercion means corresponding to
each of said thresholds,

[0577] and in the case where the protection process
according to the invention implements a second preferred
variant embodiment of the principle of protection by
detection and coercion using as characteristic a variable of
measurement of the software execution, are also defined
refilling means enabling to add at least one additional
usage to at least one software functionality monitored by
a variable of measurement,

[0578] and in the case where the protection process
according to the invention implements the principle of
protection by detection and coercion using as character-
istic a profile of software usage, are also defined:

[0579] as software execution characteristic liable to be
monitored, a profile of software usage,

Dec. 20, 2007

[0580] and as criterion to abide by, at least one feature
of software execution,

[0581] and in the case where the protection process
according to the invention implements the principle of
protection by detection and coercion using as feature of
execution to abide by, the monitoring of the execution
chaining, are also defined:

[0582] an instructions set whose instructions are liable
to be executed in the unit 6,

[0583] a set of instructions commands for said instruc-
tions set, said instructions commands being liable to be
executed in the data processing system 3 and to trigger
in the unit 6 the execution of the instructions,

[0584] as profile of usage, the chaining of the instruc-
tions,
[0585] as feature of execution, an expected chaining for

the execution of the instructions,

[0586] as detection means 17, means enabling to detect
that the chaining of the instructions does not corre-
spond to the expected one,

[0587] and as coercion means 18, means enabling to
inform the data processing system 3 and/or to modify
the functioning of the portion of protected software 2p
when the chaining of the instructions does not corre-
spond to the expected one,

[0588] and in the case where the protection process
according to the invention implements a preferred variant
embodiment of the principle of protection by detection
and coercion using as feature of execution to abide by, the
monitoring of the execution chaining, are also defined:

[0589] as instructions set, an instructions set whose at
least some instructions work with registers and use at
least one operand with the intention of returning a
result,

[0590] for at least some of the instructions working with
registers:

[0591] a part PF defining the functionality of the
instruction,

[0592] and a part defining the expected chaining for
the execution of the instructions and including bits
fields corresponding to:

[0593]
[0594]
[0595]

[0596] and an expected identification field CIP,
of the operand,

an identification field of the instruction CII,
and for each operand of the instruction:

a flag field CD,,

[0597] for each register belonging to the exploitation
means and used by the instructions set, a generated
identification field CIG, in which is automatically
memorized the identification of the last instruction
which has returned its result in said register,

[0598] as detection means 17, means enabling, during
the execution of an instruction, for each operand, when
the flag field CD,. imposes it, to check the equality of
the generated identification field CIG,, corresponding to

US 2007/0294770 Al

the register used by said operand, and the expected
identification field CIP, of the origin of said operand,

[0599] and as coercion means 18, means enabling to
modify the result of the instructions, if at least one of
the checked equalities is false.

[0600] and in the case where the protection process
according to the invention implements the principle of
protection by renaming, are also defined:

[0601] as a triggering command, an elementary com-
mand or an instruction command,

[0602] as a dependent function, an elementary function
or an instruction,

[0603] as an order, at least one argument for a triggering
command, corresponding at least in part to the infor-
mation transmitted by the data processing system 3 to
the unit 6, so as to trigger the execution of the corre-
sponding dependent function,

[0604] a method of renaming of the orders enabling to
rename the orders so as to obtain triggering commands
with renamed orders,

[0605] and restoring means 20 designed to be used in
the unit 6 during the usage phase U, and enabling to
restore the dependent function to execute, from the
renamed order,

[0606] and in the case where the protection process
according to the invention implements a variant of the
principle of protection by renaming, is also defined for at
least one dependent function, a family of dependent
functions algorithmically equivalent, but triggered by
triggering commands whose renamed orders are different,

[0607] and in the case where the protection process
according to the invention implements one of the pre-
ferred embodiments of the variant of the principle of
protection by renaming, are also defined for at least one
dependent function, a family of algorithmically equiva-
lent dependent functions:

[0608] by concatenating a field of noise to the informa-
tion defining the functional part of the dependent
function to execute in the unit 6,

[0609] or by using the identification field of the instruc-
tion CII and the expected identification fields CIP, of
the operands.

[0610] and in the case where the protection process
according to the invention implements a preferred variant
of the principle of protection by renaming, are also
defined:

[0611] as method of renaming of the orders, a ciphering
method to cipher the orders,

[0612] and as restoring means 20, means implementing
a deciphering method to decipher the renamed orders
and thus restore the identity of the dependent functions
to execute in the unit 6.

[0613] During the prior protection sub-phase P, the defi-
nitions stage S, is followed by a stage called “construction
stage S,,”. During such a stage S,,, are constructed the
transfer means 12, 13 and the exploitation means corre-
sponding to the definitions of the definitions stage S, ;.

Dec. 20, 2007

[0614] During this construction stage S,,, are therefore
carried out:

[0615] the construction of the transfer means 12, 13
enabling, during the usage phase U, the transfer of data
between the data processing system 3 and the unit 6,

[0616] and when the principle of protection by elemen-
tary functions is also implemented, the construction of
the exploitation means also enabling the unit 6, during
the usage phase U to execute the elementary functions
of the set of elementary functions,

[0617] and when the principle of protection by detection
and coercion is also implemented, the construction:

[0618] of the exploitation means enabling the unit 6,
during the usage phase U to also implement the
detection means 17 and the coercion means 18,

[0619] and possibly of the exploitation means
enabling the unit 6, during the usage phase U to also
implement the actualization means,

[0620] and possibly of the exploitation means
enabling the unit 6, during the usage phase U to also
implement the refilling means,

[0621] and possibly of the exploitation means also
enabling the unit 6, during the usage phase U to
execute the instructions of the instructions set,

[0622] and when the principle of protection by renam-
ing is also implemented, the construction of the exploi-
tation means enabling the unit 6, during the usage phase
U to also implement the restoring means.

[0623] The construction of the exploitation means is car-
ried out classically, through a program development unit and
taking into account the definitions intervened in the defini-
tions stages S;;. Such a unit is described in the rest of the
description in FIG. 110.

[0624] During the prior protection sub-phase P, the con-
struction stage S,, can be followed by a stage called “pre-
customization stage S;;”. During this pre-customization
stage S, ;, at least a part of the transfer means 13 and/or the
exploitation means are uploaded to at least one blank unit
60, with the intention of obtaining at least one pre-custom-
ized unit 66. It should be observed that part of the exploi-
tation means, once transferred to a pre-customized unit 66,
is no longer directly accessible outside said pre-customized
unit 66. The transfer of the exploitation means to a blank unit
60 can be carried out through an adapted pre-customization
unit, which is described in the rest of the description in FIG.
120. In the case of a pre-customized unit 66, constituted by
a chip card 7 and its reader 8, the pre-customization con-
cerns only the chip card 7.

[0625] During the prior protection sub-phase P,, after the
definitions stage S, and, possibly after the construction
stage S,,, a stage called “tools making stage S,,” can take
place. During this tools making stage S,, are made tools
enabling to help generate protected software or automate the
protection of software. Such tools enable:

US 2007/0294770 Al

[0626] to help choose or to choose automatically in the
vulnerable software 2v to protect:

[0627] the variable(s) liable to be remoted in the unit

[0628] the portion(s) liable to be modified,

[0629] and when the principle of protection by tem-
poral dissociation is also implemented, the algorith-
mic processing(s) liable to be split into steps remot-
able in the unit 6,

[0630] and when the principle of protection by
elementary functions is also implemented, the algo-
rithmic processing(s) liable to be split into elemen-
tary functions remotable in the unit 6,

[0631] and when the principle of protection by detec-
tion and coercion is also implemented, the execution
characteristic(s) to monitor and, possibly, the algo-
rithmic processing(s) liable to be split into instruc-
tions remotable in the unit 6,

[0632] and when the principle of protection by
renaming is also implemented, the algorithmic pro-
cessing(s) liable to be split into dependent functions
remotable in the unit 6 and for which the orders of
the triggering commands can be renamed,

[0633] and when the principle of protection by con-
ditional branch is also implemented, the conditional
branch(es) whose functionality is liable to be
remoted in the unit 6,

[0634] and, possibly, to help generate protected soft-
ware or to automate the protection of software.

[0635] These different tools can be carried out indepen-
dently or in combination and each tool can have various
forms, such as for instance pre-processor, assembler, com-
piler, etc.

[0636] The prior protection sub-phase P, is followed by a
subsequent protection sub-phase P, which depends on the
vulnerable software 2v to protect. This subsequent protec-
tion sub-phase P, is composed of several stages as well. The
first stage corresponding to the implementation of the prin-
ciple of protection by variable is called “creation stage S,,”.
During this creation stage S,,, the choices made during the
definition stage S, are used. With the aid of said choices and
possibly of tools constructed during the tools making stage
S,4, the protected software 2p is created:

[0637] by choosing in the source of the vulnerable
software 2vs:

[0638] at least one variable which, during the execu-
tion of the vulnerable software 2v, partially defines
the state of the latter,

[0639] and at least one portion containing at least one
chosen variable,

[0640] by producing a source of the protected software
2ps from the source of the vulnerable software 2vs, by
modifying at least one chosen portion of the source of
the vulnerable software 2vs, this modification being
such that during the execution of the protected software
2p, at least one chosen variable or at least one copy of

Dec. 20, 2007

chosen variable resides in the blank unit 60 which is
thus transformed into a unit 6,

[0641] and by producing a first object part 2pos of the
protected software 2p from the source of the protected
software 2ps, said first object part 2pos being such that
during the execution of the protected software 2p,
appears a first execution part 2pes which is executed in
the data processing system 3 and whose at least a
portion takes into account that at least a variable or at
least a copy of variable resides in the unit 6.

[0642] Naturally, the principle of protection by variable
according to the invention can be applied directly during the
development of a new software without requiring the prior
realization of a vulnerable software 2v. In this way, a
protected software 2p is obtained directly.

[0643] During the subsequent protection sub-phase P,,
and when at least another principle of protection is applied
in addition to the principle of protection by variable, a
“modification stage S,,” takes place. During this modifica-
tion stage S,,, the definitions intervened during the defini-
tions stage S,, are used. With the aid of said definitions and
possibly of tools constructed during the tools making stage
S,4, the protected software 2p is modified to allow the
implementation of the principles of protection according to
one of the arrangements herebefore defined.

[0644] When the principle of protection by temporal dis-
sociation is implemented, the protected software 2p is modi-
fied:

[0645] by choosing in the source of the protected soft-
ware 2ps:

[0646] at least one algorithmic processing which dur-
ing the execution of the protected software 2p, uses
at least one chosen variable, and enables to obtain at
least one result variable,

[0647] and at least one portion containing at least one
chosen algorithmic processing,

[0648] by modifying at least one chosen portion of the
source of the protected software 2ps, this modification
being such that:

[0649] during the execution of the protected software
2p the first execution part 2pes is executed in the data
processing system 3 and a second execution part
2peu is executed in the unit 6 which also includes
processing means 16,

[0650] at least the functionality of at least one chosen
algorithmic processing is executed by means of the
second execution part 2peu,

[0651] at least one chosen algorithmic processing is
split so that during the execution of the protected
software 2p, appear, by means of the second execu-
tion part 2peu, several distinct steps, namely:

[0652] the placing of at least one variable at the
unit 6°s disposal,

[0653] the carrying out in the unit 6, of the func-
tionality of the algorithmic processing on at least
said variable,

US 2007/0294770 Al

[0654] and possibly, the placing of at least one
result variable at the data processing system 3’s
disposal by the unit 6,

[0655] for at least one chosen algorithmic processing,
steps commands are defined so that during the execu-
tion of the protected software 2p, each step com-
mand is executed by the first execution part 2pes and
triggers in the unit 6, the execution by means of the
second execution part 2peu, of a step,

[0656] and a sequence of the steps commands is
chosen among the set of sequences allowing the
execution of the protected software 2p,

[0657]

[0658] the first object part 2pos of the protected
software 2p, said first object part 2pos being such
that during the execution of the protected software
2p, the steps commands are executed according to
the chosen sequence,

[0659] and a second object part 2pou of the protected
software 2p, said second object part 2pou being such
that, after upload to the blank unit 60 and during the
execution of the protected software 2p, appears the
second execution part 2peu by means of which the
steps triggered by the first execution part 2pes are
executed.

and by producing:

[0660] When the principle of protection by elementary
functions is implemented whereas the principle of protection
by temporal dissociation is not implemented, the protected
software 2p is modified:

[0661] by choosing in the source of the protected soft-
ware 2ps:

[0662] at least one algorithmic processing which dur-
ing the execution of the protected software 2p, uses
at least one chosen variable, and enables to obtain at
least one result variable,

[0663] and at least one portion containing at least one
chosen algorithmic processing,

[0664] by modifying at least one chosen portion of the
source of the protected software 2ps, this modification
being such that:

[0665] during the execution of the protected software
2p the first execution part 2pes is executed in the data
processing system 3 and a second execution part
2peu is executed in the unit 6,

[0666] at least the functionality of at least one chosen
algorithmic processing is executed by means of the
second execution part 2pe,

[0667] at least one chosen algorithmic processing is
split so that during the execution of the protected
software 2p, said algorithmic processing is executed
by means of the second execution part 2peu, using
elementary functions,

[0668] for at least one chosen algorithmic processing,
elementary commands are integrated to the source of
the protected software 2ps, so that during the execu-
tion of the protected software 2p, each elementary
command is executed by the first execution part 2pes

Dec. 20, 2007

and triggers in the unit 6, the execution by means of
the second execution part 2peu, of an elementary
function,

[0669] and a sequence of the elementary commands
is chosen among the set of sequences allowing the
execution of the protected software 2p,

[0670]

[0671] the first object part 2pos of the protected
software 2p, said first object part 2pos being such
that during the execution of the protected software
2p, the elementary commands are executed accord-
ing to the chosen sequence,

[0672] and a second object part 2pou of the protected
software 2p containing the exploitation means, said
second object part 2pou being such that, after upload
to the blank unit 60 and during the execution of the
protected software 2p, appears the second execution
part 2peu by means of which the elementary func-
tions triggered by the first execution part 2pes are
executed.

and by producing:

[0673] When the principles of protection by temporal
dissociation and by elementary functions are both imple-
mented, the protected software 2p is modified:

[0674] by choosing in the source of the protected soft-
ware 2ps, at least one step which during the execution
of the protected software 2p, carries out the function-
ality of an algorithmic processing,

[0675] by modifying at least one chosen portion of the
source of the protected software 2ps, this modification
being such that:

[0676] at least one chosen step is split so that during
the execution of the protected software 2p, said step
is executed by means of the second execution part
2peu, using elementary functions,

[0677] for at least one chosen step, elementary com-
mands are integrated to the source of the protected
software 2ps, so that during the execution of the
protected software 2p, each elementary command is
executed by the first execution part 2pes and triggers
in the unit 6, the execution by means of the second
execution part 2peu, of an elementary function,

[0678] and a sequence of the elementary commands
is chosen among the set of sequences allowing the
execution of the protected software 2p,

[0679]

[0680] the first object part 2pos of the protected
software 2p, said first object part 2pos being such
that during the execution of the protected software
2p, the elementary commands are executed accord-
ing to the chosen sequence,

[0681] and the second object part 2pou of the pro-
tected software 2p also containing the exploitation
means, said second object part 2pou being such that,
after upload to the unit 6 and during the execution of
the protected software 2p, appears the second execu-
tion part 2peu by means of which the elementary
functions triggered by the first execution part 2pes
are executed.

and by producing:

US 2007/0294770 Al

[0682] When the principle of protection by detection and
coercion is implemented, the protected software 2p is modi-
fied:

[0683] by choosing at least one software execution
characteristic to monitor, among the software execution
characteristics liable to be monitored,

[0684] by choosing at least one criterion to abide by for
at least one chosen software execution characteristic,

[0685] by choosing in the source of the protected soft-
ware 2ps, elementary functions for which at least one
chosen software execution characteristic is to be moni-
tored,

[0686] by modifying at least one chosen portion of the
source of the protected software 2ps, this modification
being such that during the execution of the protected
software 2p, at least one chosen execution character-
istic is monitored by means of the second execution
part 2peu, and the fact that a criterion is not abided by
leads to the data processing system 3 being informed
and/or to a modification of the execution of the pro-
tected software 2p,

[0687] and by producing the second object part 2pou of
the protected software 2p containing the exploitation
means also implementing the detection means 17 and
the coercion means 18, said second object part 2pou
being such that, after upload to the unit 6 and during the
execution of the protected software 2p, at least one
software execution characteristic is monitored and the
fact that a criterion is not abided by leads to the data
processing system 3 being informed and/or to a modi-
fication of the execution of the protected software 2p.

[0688] For the implementation of the principle of protec-
tion by detection and coercion using as characteristic a
variable of measurement of the software execution, the
protected software 2p is modified:

[0689] by choosing as software execution characteristic
to monitor, at least one variable of measurement of the
usage of at least one functionality of a software,

[0690] by choosing:

[0691] at least one functionality of the protected
software 2p whose usage is liable to be monitored
using a variable of measurement,

[0692] at least one variable of measurement used to
quantify the usage of said functionality,

[0693] at least one threshold associated to a chosen
variable of measurement corresponding to a limit of
usage of said functionality,

[0694] and at least one method of update of a chosen
variable of measurement depending on the usage of
said functionality, and by modifying at least one
chosen portion of the source of the protected soft-
ware 2ps, this modification being such that, during
the execution of the protected software 2p, the vari-
able of measurement is actualized by means of the
second execution part 2peu depending on the usage
of said functionality, and at least one threshold
crossing is taken into account.

Dec. 20, 2007

[0695] For the implementation of a first preferred variant
embodiment of the principle of protection by detection and
coercion using, as characteristic, a variable of measurement,
the protected software 2p is modified:

[0696] by choosing in the source of the protected soft-
ware 2ps, at least one chosen variable of measurement
to which must be associated several thresholds corre-
sponding to different limits of usage of the functional-
ity,

[0697] by choosing at least two thresholds associated to
the chosen variable of measurement,

[0698] and by modifying at least one chosen portion of
the source of the protected software 2ps, this modifi-
cation being such that, during the execution of the
protected software 2p, the crossings of the various
thresholds are taken into account differently, by means
of the second execution part 2peu.

[0699] For the implementation of a second preferred vari-
ant embodiment of the principle of protection by detection
and coercion using as characteristic, a variable of measure-
ment, the protected software 2p is modified:

[0700] by choosing in the source of the protected soft-
ware 2ps, at least one chosen variable of measurement
enabling to limit the usage of a functionality and which
must be able to be credited with at least one additional
usage,

[0701] and by modifying at least one chosen portion,
this modification being such that during a phase called
of refilling, at least one additional usage of at least one
functionality corresponding to a chosen variable of
measurement can be credited.

[0702] For the implementation of the principle of protec-
tion by detection and coercion using as characteristic, a
profile of software usage, the protected software 2p is
modified:

[0703] by choosing as software execution characteristic
to monitor at least one profile of software usage,

[0704] by choosing at least one feature of execution by
which at least one chosen profile of usage must abide,

[0705] and by modifying at least one chosen portion of
the source of the protected software 2ps, this modifi-
cation being such that, during the execution of the
protected software 2p, the second execution part 2peu
abides by all the chosen features of execution.

[0706] For the implementation of the principle of protec-
tion by detection and coercion using as feature of execution
to abide by, the monitoring of the execution chaining, the
protected software 2p is modified:

[0707] by modifying at least one chosen portion of the
source of the protected software 2ps:

[0708] by transforming the elementary functions into
instructions,

[0709] by specifying the chaining by which must
abide at least some of the instructions during their
execution in the unit 6,

US 2007/0294770 Al
28

[0710] and by transforming the elementary com-
mands into instructions commands corresponding to
the instructions used.

[0711] When the principle of protection by renaming is
implemented, the protected software 2p is modified:

[0712] by choosing in the source of the protected soft-
ware 2ps, triggering commands,

[0713] by modifying at least one chosen portion of the
source of the protected software 2ps by renaming the
orders of the chosen triggering commands, so as to
conceal the identity of the corresponding dependent
functions,

[0714] and by producing:

[0715] the first object part 2pos of the protected
software 2p, said first object part 2pos being such
that during the execution of the protected software
2p, the triggering commands with renamed orders
are executed,

[0716] and the second object part 2pou of the pro-
tected software 2p containing the exploitation means
also implementing the restoring means 20, said sec-
ond object part 2pou being such that, after upload to
the unit 6 and during the execution of the protected
software 2p, the identity of the dependent functions
whose execution is triggered by the first execution
part 2pes is restored by means of the second execu-
tion part 2peu, and the dependent functions are
executed by means of the second execution part
2peu.

[0717] For the implementation of a variant of the principle
of protection by renaming, the protected software 2p is
modified:

[0718] by choosing, in the source of the protected
software 2ps at least one triggering command with
renamed order,

[0719] and by modifying at least one chosen portion of
the source of the protected software 2ps by replacing at
least the renamed order of one chosen triggering com-
mand with renamed order, with another renamed order,
triggering a dependent function of the same family.

[0720] When the principle of protection by conditional
branch is implemented, the protected software 2p is modi-
fied:

[0721] by choosing, in the source of the protected
software 2ps, at least one conditional branch carried out
in at least one chosen algorithmic processing,

[0722] by modifying at least one chosen portion of the
source of the protected software 2ps, this modification
being such that during the execution of the protected
software 2p, the functionality of at least one chosen
conditional branch is executed, by means of the second
execution part 2peu, in the unit 6,

[0723] and by producing:

[0724] the first object part 2pos of the protected
software 2p, said first object part 2pos being such
that during the execution of the protected software

Dec. 20, 2007

2p, the functionality of at least one chosen condi-
tional branch is executed in the unit 6,

[0725] and the second object part 2pou of the pro-
tected software 2p, said second object part 2pou
being such that, after upload to the unit 6 and during
the execution of the protected software 2p, appears
the second execution part 2per by means of which
the functionality of at least one chosen conditional
branch is executed.

[0726] For the implementation of a preferred embodiment
of the principle of protection by conditional branch, the
protected software 2p is modified:

[0727] by choosing, in the source of the protected
software 2ps, at least one series of chosen conditional
branches,

[0728] by modifying at least one chosen portion of the
source of the protected software 2ps, this modification
being such that during the execution of the protected
software 2p, the overall functionality of at least one
chosen series of conditional branches is executed, by
means of the second execution part 2peu, in the unit 6,

[0729] and by producing:

[0730] the first object part 2pos of the protected
software 2p, said first object part 2pos being such
that during the execution of the protected software
2p, the functionality of at least one chosen series of
conditional branches is executed in the unit 6,

[0731] and the second object part 2pou of the pro-
tected software 2p, said second object part 2pou
being such that, after upload to the unit 6 and during
the execution of the protected software 2p, appears
the second execution part 2per by means of which
the overall functionality of at least one chosen series
of conditional branches is executed.

[0732] Naturally, the principles of protection according to
the invention can be applied directly during the development
of'a new software without requiring the prior carrying out of
intermediate protected pieces of software. In this way, the
creation stage S,; and the modification stage S,, can be
carried out concomitantly so as to obtain directly the pro-
tected software 2p.

[0733] During the subsequent protection sub-phase P,, in
the case where at least another principle of protection is used
in complement to the principle of protection by variable,
after the creation stage S,, of the protected software 2p, and
possibly after the modification stage S,,, a stage called
“customization stage S,,” takes place. During this customi-
zation stage S,;, the second object part 2pou possibly
containing the exploitation means is uploaded to at least one
blank unit 60, with the intention of obtaining at least one unit
6, or a part of the second object part 2pou possibly contain-
ing the exploitation means is uploaded to at least one
pre-customized unit 66, with the intention of obtaining at
least one unit 6. The uploading of this customization infor-
mation enables to make operational at least one unit 6. It
should be observed that part of said information, once
transferred to a unit 6, is not directly accessible outside said
unit 6. The transfer of the customization information to a
blank unit 60 or a pre-customized unit 66 can be carried out
through an adapted customization unit which is described in

US 2007/0294770 Al

the rest of the description in FIG. 150. In the case of a unit
6, constituted by a chip card 7 and its reader 8, the customi-
zation concerns only the chip card 7.

[0734] For the implementation of the protection phase P,
various technical means are described more precisely in
relation to FIGS. 110, 120, 130, 140 and 150.

[0735] FIG. 110 illustrates an embodiment of a system 25
enabling to implement the construction stage S,, which
takes into account the definitions intervened during the
definitions stage S,; and during which are constructed the
transfer means 12, 13 and possibly, the exploitation means
intended for the unit 6. Such a system 25 includes a program
development unit or workstation which has classically the
form of a computer comprising a system unit, a screen,
peripherals such as keyboard-mouse, and including, among
others, the following programs: file editors, assemblers,
pre-processors, compilers, interpreters, debuggers and link
editors.

[0736] FIG. 120 illustrates an embodiment of a pre-cus-
tomization unit 30 enabling to upload at least in part the
transfer means 13 and/or the exploitations means to at least
one blank unit 60 with the intention of obtaining a pre-
customized unit 66. Said pre-customization unit 30 includes
reading and writing means 31 enabling to electrically pre-
customize, a blank unit 60 so as to obtain a pre-customized
unit 66 to which the transfer means 13 and/or the exploita-
tions means have been uploaded. The pre-customization unit
30 can also include physical customization means 32 of the
blank unit 60 which can for instance, have the form of a
printer. In the case where the unit 6 is constituted by a chip
card 7 and its reader 8, the pre-customization generally
concerns only the chip card 7.

[0737] FIG. 130 illustrates an embodiment of a system 35
enabling to carry out the making of the tools enabling to help
generate protected software or to automate software protec-
tion. Such a system 35 includes a program development unit
or workstation which has classically the form of a computer
comprising a system unit, a screen, peripherals such as
keyboard-mouse, and including, among others, the follow-
ing programs: file editors, assemblers, pre-processors, com-
pilers, interpreters, debuggers and link editors.

[0738] FIG. 140 illustrates an embodiment of a system 40
enabling to create directly a protected software 2p or to
modify a vulnerable software 2v with the intention of
obtaining a protected software 2p. Such a system 40 includes
a program development unit or workstation which has
classically the form of a computer comprising a system unit,
a screen, peripherals such as keyboard-mouse, and includ-
ing, among others, the following programs: file editors,
assemblers, pre-processors, compilers, interpreters, debug-
gers and link editors, as well as tools enabling to help
generate protected software or to automate software protec-
tion.

[0739] FIG. 150 illustrates an embodiment of a customi-
zation unit 45 enabling to upload the second object part 2pou
to at least one blank unit 60 with the intention of obtaining
at least one unit 6 or to upload a part of the second object
part 2pou to at least one pre-customized unit 66 with the
intention of obtaining at least one unit 6. Said customization
unit 45 includes reading and writing means 46 enabling to
electrically customize, at least one blank unit 60 or at least

Dec. 20, 2007

one pre-customized unit 66, so as to obtain at least one unit
6. At the close of this customization, a unit 6 includes the
information necessary to the execution of the protected
software 2p. The customization unit 45 can also include
physical customization means 47 for at least one unit 6
which can for instance, have the form of a printer. In the case
where a unit 6 is constituted by a chip card 7 and its reader
8, the customization generally concerns only the chip card 7.

[0740] The protection process according to the invention
can be implemented with the following improvements:

[0741] Tt can be planned to use jointly several process-
ing and memorizing units between which is divided out
the second object part 2pou of the protected software
2p so that their joint use enables to execute the pro-
tected software 2p, the absence of at least one of said
processing and memorizing units preventing the usage
of the protected software 2p.

[0742] In the same way, after the pre-customization
stage S, and during customization stage S,;, the part
of the second object part 2pou necessary to transform
the pre-customized unit 66 into a unit 6 can be con-
tained in a processing and memorizing unit used by the
customization unit 45 so as to limit the access to said
part of the second object part 2pou. Naturally, said part
of the second object part 2pou can be divided out
between several processing and memorizing units so
that said part of the second object part 2pou is acces-
sible only during the joint use of said processing and
memorizing units.

What is claimed is:

1. A method to protect, using at least one blank unit (60)
including memorization means (15), a vulnerable software
(2v) against its unauthorized usage, said vulnerable software
(2v) being produced from a source (2vs) and working on a
data processing system (3), said protection process compris-
ing:

during a protection phase (P):
creating a protected software (2p):

by choosing in the source of the vulnerable software
(2vs):

at least one variable which, during the execution
of'the vulnerable software (2v), partially defines
the state of the latter,

and at least one portion containing at least one
chosen variable,

by producing a source of the protected software (2ps)
from the source of the vulnerable software (2vs),
by modifying at least one chosen portion of the
source of the vulnerable software (2vs), this modi-
fication being such that during the execution of the
protected software (2p), at least one chosen vari-
able or at least one copy of chosen variable resides
in the blank unit (60) which is thus transformed
into a unit (6), and

by producing a first object part (2pos) of the pro-
tected software (2p) from the source of the pro-
tected software (2ps), said first object part (2pos)
being such that during the execution of the pro-
tected software (2p), appears a first execution part

US 2007/0294770 Al

(2pes) which is executed in the data processing
system (3) and whose at least a portion takes into
account that at least a variable or at least a copy of
variable resides in the unit (6), and

during a usage phase (U) during which the protected
software (2p) is executed:

in the presence of the unit (6), each time a portion of the
first execution part (2pes) imposes it, using a vari-
able or a copy of variable residing in the unit (6), so
that said portion is executed correctly and that,
consequently, the protected software (2p) is com-
pletely functional, and

in the absence of the unit (6), in spite of the request by
a portion of the first execution part (2pes) to use a
variable or a copy of variable residing in the unit (6),
not being able to fulfill said request correctly, so that
at least said portion is not executed correctly and
that, consequently the protected software (2p) is not
completely functional, wherein said at least one
blank unit (60) includes only the memorization
means (15).

2. A method to protect software comprising:

storing a first portion of the software on a first unit,
wherein the first unit comprises a memory and a
processor;

storing a second portion of the software on a second unit,
wherein the second unit comprises a secure processor
and a secure memory, wherein the second portion of the
software is secret, and wherein the first and second
portions of the software form a single program; and

executing the single formed program by utilizing the first
and second portions of the software,

wherein the secret second portion of the software com-
prises at least two computing operations and at least
one variable, and

wherein portions of the at least two computing operations
are interleaved with each other for transmission from
the second unit to the first unit and vise versa, and

wherein the first unit requests the at least one variable
from the second unit during the execution of the single
formed program.

3. The method of claim 2, wherein portions of the second
portion of the software are executed by the secure processor
and the first portion of the software is executed by the
processor of the first unit.

4. The method of claim 3, wherein:

the at least two computing operations stored of the second
portion of the software comprise a first computing
operation and a second computing operation,

the first computing operation which uses a first chosen
variable to obtain a first result variable,

the second computing operation which uses a second
chosen variable to obtain a second result, and

during the execution of the program by the secure pro-
cessor:

Dec. 20, 2007

performing a first variable movement by moving the
first chosen variable from the first unit into the
second unit,

performing a second variable movement by moving the
second chosen variable from the first unit into the
second unit,

performing a first result movement by moving the first
result variable from the second unit into the first unit,
and

performing a second result movement by moving the
second result variable from the second unit into the
first unit,

each of said first and second variable movements, said
first and second computing operations, and said first
and second result movements comprise an operation,

the first variable movement, the first result movement, and
the first computing operation comprise a first set of
operations and the second variable movement, the
second result movement and the second computing
operation comprises a second set of operations, and

at least one operation of one of the sets is interleaved with

the operations of the other set.

5. The method according to claim 2, wherein the second
unit is a chip medium configured to attach and detach to the
first unit.

6. The method according to claim 2, wherein the proces-
sor of the second unit is a coprocessor of the processor of the
first unit.

7. The method according to claim 2, wherein the second
unit is a token.

8. The method according to claim 2, wherein, when the
second unit is missing, the program cannot be executed
correctly and the software is not completely functional.

9. The method according to claim 2, wherein, when the at
least one variable is not provided by the second unit upon
request, the program is not executed correctly.

10. The method according to claim 2, wherein the at least
two computing operations are elementary functions.

11. The method according to claim 2, further comprising:

storing elementary functions that are to be executed in the
second unit; and

providing commands from the first unit provides to the
second unit to trigger execution of a respective elemen-
tary function.

12. The method according to claim 2, further comprising:

defining instructions set in which instructions work with
registers and use at least one operand for returning a
result,

wherein at least some of the instructions comprise:
a part defining functionality of the instruction,

a part defining expected chaining for execution of the
instruction and comprising bits fields corresponding
to an identification field of the instruction, wherein
each of the at least one operand comprises: a flag
field and an expected identification field,

wherein, for each register used by the instructions set,
providing a generated identification field in which the

US 2007/0294770 Al

identification of the last instruction which has returned
its result in a respective register is automatically memo-
rized,

wherein, during the execution of an instruction, for each
operand, when required by the flag field, checking the
equality of the generated identification field corre-
sponding to the register used by said operand, and the
expected identification field of the origin of said oper-
and, and modifying the result of the instructions, if at
least one of the checked equalities is false.

13. The method according to claim 2, further comprising
selecting a part of the software to form the second portion
during operation of creating the protected program.

14. A system to protect software comprising:

a first unit comprising a memory and a processor and
which stories a first portion of the software; and

a second unit comprising a secure processor and a secure
memory and which stores a second portion of the
software,

wherein the second portion of the software is secret,

wherein the first and second portions of the software form
a single program,

wherein the processor executes the single formed program
utilizing the second unit,

wherein the secret second portion of the software com-
prises at least two computing operations and at least
one variable, and

wherein portions of the at least two computing operations
are interleaved with each other for transmission from
the second unit to the first unit and vise versa, and

wherein the first unit requests the at least one variable
from the second unit during the execution of the single
formed program.

15. A method to protect, using at least one blank unit (60)
including at least memorization means (15), a vulnerable
software (2v) against its unauthorized usage, said vulnerable
software (2v) being produced from a source (2vs) and
working on a data processing system (3), said protection
process comprising:

during a protection phase (P):
creating a protected software (2p):

by choosing in the source of the vulnerable software
(2vs):

at least one variable which, during the execution
of'the vulnerable software (2v), partially defines
the state of the latter, and

at least one portion containing at least one chosen
variable,

by producing a source of the protected software (2ps)
from the source of the vulnerable software (2vs), by
modifying at least one chosen portion of the source
of the vulnerable software (2vs), this modification
being such that during the execution of the protected
software (2p), at least one chosen variable or at least
one copy of chosen variable resides in the blank unit
(60) which is thus transformed into a unit (6), and

Dec. 20, 2007

by producing a first object part (2pos) of the protected
software (2p) from the source of the protected soft-
ware (2ps), said first object part (2pos) being such
that during the execution of the protected software
(2p), appears a first execution part (2pes) which is
executed in the data processing system (3) and
whose at least a portion takes into account that at
least a variable or at least a copy of variable resides
in the unit (6), and

during a usage phase (U) during which the protected
software (2p) is executed:

in the presence of the unit (6), each time a portion of the
first execution part (2pes) imposes it, using a vari-
able or a copy of variable residing in the unit (6), so
that said portion is executed correctly and that,
consequently, the protected software (2p) is com-
pletely functional, and

in the absence of the unit (6), in spite of the request by
a portion of the first execution part (2pes) to use a
variable or a copy of variable residing in the unit (6),
not being able to fulfill said request correctly, so that
at least said portion is not executed correctly and
that, consequently the protected software (2p) is not
completely functional.

wherein during the protection phase (P):
defining:

a set of elementary functions whose elementary
functions are liable to be executed in the unit (6)
which also includes processing means (16), and

a set of elementary commands for said set of elemen-
tary functions, said elementary commands being
liable to be executed in the data processing system
(3) and to trigger the execution in the unit (6), of
the elementary functions,

constructing exploitation means enabling to trans-
form the blank unit (60) into the unit (6) able to
execute the elementary functions of said set, the
execution of said elementary functions being trig-
gered by the execution in the data processing
system (3), of elementary commands,

modifying the protected software (2p):

by choosing in the source of the protected soft-
ware (2ps): at least one algorithmic processing
which during the execution of the protected
software (2p), uses at least one chosen variable,
and enables to obtain at least one result vari-
able, and at least one portion containing at least
one chosen algorithmic processing,

by modifying at least one chosen portion of the
source of the protected software (2ps), this modi-
fication being such that:

during the execution of the protected software (2p)
the first execution part (2pes) is executed in the
data processing system (3) and a second execu-
tion part (2peu) is executed in the unit (6),

at least the functionality of at least one chosen
algorithmic processing is executed by means of
the second execution part (2peu),

US 2007/0294770 Al

said at least one chosen algorithmic processing is
executed by means of the second execution part
(2peu), using elementary functions of the set of
elementary functions,

for at least one chosen algorithmic processing,
elementary commands are integrated to the
source of the protected software (2ps), so that
during the execution of the protected software
(2p), each elementary command is executed by
the first execution part (2pes) and triggers in the
unit (6), the execution by means of the second
execution part (2peu), of a corresponding
elementary function of the set of elementary
functions, and

a sequence of the elementary commands is chosen
among the set of sequences allowing the execution
of the protected software (2p), and

by producing:

the first object part (2pos) of the protected software
(2p), said first object part (2pos) being such that
during the execution of the protected software (2p),
the elementary commands are executed according to
the chosen sequence, and

a second object part (2pou) independent of the pro-
tected software (2p) containing the exploitation
means, said second object part (2pou) being such
that, after upload to the blank unit (60) and during
the execution of the protected software (2p), appears
the second execution part (2peu) by means of which
the elementary functions triggered by the first execu-
tion part (2pes) are executed, and

uploading the second object part (2pou) to the blank
unit (60), with the intention of obtaining the unit (6),
and

wherein during the usage phase (U):

in the presence of the unit (6) and each time an
elementary command contained in a portion of the
first execution part (2pes) imposes it, executing the
corresponding elementary function in the unit (6), so
that said portion is executed correctly and that,
consequently, the protected software (2p) is com-
pletely functional, and

in the absence of the unit (6), in spite of the request by
a portion of the first execution part (2pes), to trigger
the execution of an elementary function in the unit
(6), not being able to fulfill said request correctly, so
that at least said portion is not executed correctly and
that, consequently, the protected software (2p) is not
completely functional.

32

Dec. 20, 2007

information transmitted by the data processing
system (3) to the unit (6), so as to trigger the
execution of the corresponding dependent func-
tion,

a method of renaming of the orders enabling to
rename the orders so as to obtain triggering com-
mands with renamed orders, and

restoring means (20) designed to be used in the unit
(6) during the usage phase (U), and enabling to
restore the dependent function to execute, from
the renamed order,

constructing exploitation means enabling the unit (6) to
also implement the restoring means, and

modifying the protected software (2p):

by choosing in the source of the protected software
(2ps), triggering commands,

by modifying at least one chosen portion of the source
of the protected software (2ps) by renaming the
orders of the chosen triggering commands, so as to
conceal the identity of the corresponding dependent
functions, and

by producing:

the first object part (2pos) of the protected software
(2p), said first object part (2pos) being such that
during the execution of the protected software
(2p), the triggering commands with renamed
orders are executed, and

the second object part (2pou) of the protected soft-
ware (2p) containing the exploitation means also
implementing the restoring means (20), said sec-
ond object part (2pou) being such that, after
upload to the unit (6) and during the execution of
the protected software (2p), the identity of the
dependent functions whose execution is triggered
by the first execution part (2pes) is restored by
means of the second execution part (2peu), and the
dependent functions are executed by means of the
second execution part (2peu), and

during the usage phase (U):

in the presence of the unit (6) and each time a triggering
command with renamed order, contained in a portion
of'the first execution part (2pes) imposes it, restoring
in the unit (6), the identity of the corresponding
dependent function and executing it, so that said
portion is executed correctly and that, consequently,
the protected software (2p) is completely functional,

16. The method according to claim 15, further compris- and
ng: in the absence of the unit (6), in spite of the request by

during the protection phase (P): a portion of the first execution part (2pes), to trigger

defining:
as a triggering command, an elementary command,
as a dependent function, an elementary function,

as an order, at least one argument for a triggering
command, corresponding at least in part to the

the execution of a dependent function in the unit (6),
not being able to fulfill said request correctly, so that
at least said portion is not executed correctly and
that, consequently, the protected software (2p) is not
completely functional.

