(54) Fremgangsmåde til fremstilling af ved hjælp af en skumstofkerne afstivede fiberarmerede formlegeringer såsom vinger eller rotorblade med store længde- og breddedimensioner

1684-81

Fig. 1

1684-81

Til undgørelse af bekostelige lukkelige former ved fremstillingen af formlegeringer med store længde- og breddedimensioner og bestående af en ydre skal og en denne afstivede formkerne, og til opnåelse af en forløbende kontrol og mulighed for korrektioner under hele fremstillingsprocessen laminere og hævdne formlegeringen (10) skal (11) som to adskillige halvparter (10a og 10b) i hver sin åbne form, hvorfra de direkte i hver halvpart fremstilles og bearbejdes en skumkernehalvpart. Til slutt sammenklipes de med hver sin kernenhalvpart forsynede formlegeringehalvpart i et plan (21).
Opfindelsen angår en fremgangsmåde af den i krav l's
indledning angivne art. Der kendes metoder til frem-
stilling af vinger til svævefly m.m. d.v.s. til rela-
tivt små konstruktionselementer. Ved disse kendte me-
toder skal de anvendte forme være lukkelige, så at der
den konstruktionsopstår afpasningsproblemer, og desuden er
mMulighed for kontrol under fremstillingen.

De kendte metoder er alene på grund af det dårlige for-
hold mellem masse og stivhed uge til fremstilling
af store formegemer, f.eks. rotorblade til store vind-
energianlæg med mere.

De omtalte kendte konstruktioner og metoder er således
uanvendelige ved fremstilling af vinger eller rotorbla-
de med store flader, idet de hverken kan anvendes til
tilvejebringelse af bjælkekonsktruktioner eller til frem-
stilling af skalkonstruktioner med præfabrikeret skum-
stofkerne.

Ved bjælkekonstruktioner er massen ved en given stivhed
større end ved skalkonstruktioner, og formene skal på
grund af den tyndvæggede skals konturnøjagtighed kunne
lukkes, hvorved forbindelsen mellem bjælkerne og den
ydre skal tilvejebringes via små, vanskeligt kontrol-
lebare klæbeflader.

Skalkonstruktioner med præfabrikeret skumstofkerne har
i det foreliggende tilfælde følgende mangler:

Skumstofkernen kan på grund af sin størrelse og sin
bekostelige geometriske udformning ikke fremstilles
økonomisk, og en forbindelse af god kvalitet mellem
kernen og skallen kan kun opnås ved hjælp af "våd-i-
våd-metoden" med lukkelige forme.
Også denne kendte metode er på grund af den store mængde laminat og de bekostelige formværktøjer uanvendelig til det foreslåede formål, især fordi den samlede mængde laminat samtidigt skal være våd. Sammenklæbningen af en kerne med hærdede skaller kan ikke kontrolleres.

Også den kendte metode til fremstilling af skalkonstruktioner med ribber har alvorlige mangler, idet den færdige konstruktionsdels samlede masse øges for meget ved ribbemassen og massen af forbindelseselementerne mellem ribberne og skallen. Desuden er ribbernes indpasning mellem skallerne meget bekostelig. Desuden er en fuldstændig kontrol med sammenklæbningen ikke mulig.

Den foreliggende opfindelse har til formål at tilvejebringe en fremgangsmåde af den angivne art, der ikke er behæftet med de omtalte mangler ved de kendte metoder, og ved hjælp af hvilken der i særlige tilfælde kan fremstilles store vinger eller store rotorblade på en sådan måde, at man under fremstillingen forløbende kan kontrollere den indre struktur og korrigerere fejler. Dette opnås på overraskende enkel og tilforladelig måde ved de i kravene angivne foranstaltninger.

I det følgende forklares opfindelsen nærmere ved hjælp af tegningen, hvor

fig. 1 viser et partielt tværsnit i et efter fremgangsmåden ifølge opfindelsen fremstillet stort rotorblad,

fig. 2 perspektivisk og set fra oven en suge-tryk-side- skæl til fremstilling af det i fig. 1 viste rotorblad,

fig. 3 det i sideskallen anbragte rotorblads indre opbygning,
fig. 4 et partielt tværsnit i en skumstofkerne og bagkantskumstof med overmål,

fig. 5 et partielt tværsnit ifølge fig. 4 efter bearbejdning til færdiggørelse, og

fig. 6 partielle tværsnit i to rotorbladdele under disse sammenføjning.

I fig. 1 ses et i sin helhed med 10 betegnet formstoflegerede i form af et stort rotorblad, der er fremstillet efter fremgangsmåden ifølge opfindelsen på følgende måde:

10 først lamineres en ydre rotorbladsskal 11 som formlegerede bestående af to særskilte halvparter 10a og 10b af et fiberarmeret sammensat materiale, hvorefter skallen 11 varm- eller koldhærrdes, idet formlegerede med store flader fortrinsvis varmhærrdes på grund af den lange forarbejdningstid ved koldhæringen. Skallens nedre torsionshalvpart 10b har som vist i fig. 2 et ydre diagonallaminatlag og et tilsvarende indre lag 14 samt et mellem disse beliggende unidirektionallaminatlag 12 til optagelse af bøjningskræfterne hidrørende fra bøjning og fra centrifugalkraften. Unidirektionallaminatlaget 12, der strækker sig i bladets samlede længde, kan være fordelt over det samlede profilværsnit eller kan kun være indlamineret i bestemte områder. Disse områder er afhængige af den forventelige belastning henholdsvis de kræfter, der skal optages. Tykkelsen og beliggenheden er afhængige af de nødvendige masser, stivheden, styrken og tyngdepunkterne. Som oftest ønskes f.eks. i profilets bageste område, den såkaldte fane, en let struktur. Hertil foreslår opfindelsen en selvbaghrende sandwich-struktur. De foreslåede laminater kan som regel fremstilles efter håndlamineringsmetoden eller som såkaldte prepregs eller endog efter vakuumin-
jektionsmetoden.

Fig. 2 illustrerer fremstillingsprocessen og sugetryksideskallens opbygning, idet bladets ydre skallag lægges på et formembord 100 og lamineres.

Fig. 3 viser opbygningen af et blads eller en vinges indre dele henholdsvis fremstillingen af den såkaldte skumstoffkerne. Også kernen fremstilles af to halvparter i hver sin halvpart af lamineringsformen 100.

Skumstoffkernens halvparter kan være sammensat af stangformede skumstoffelementer 15a, d.v.s. af plademateriale med en tykkelse på ca. 80 cm, der danner skiver og sammenklæbes. Skiverne svarer til de indlaminerede skalhalvparters indre kontur. Den nøjagtige kontur kan opnås ved indpasning, idet hver forudgående skumstoffskive eller hvert forudgående stangformede skumstoffelement 15a tjener som skabelon for en næste spalte, der fremkommer ved grov indpasning, og som lukkes ved hjælp af et opskummelt klæbemiddel. På denne måde fås en lukket skumstoffkerne, der kun skal bearbejdes i skilleplanet 21, fig. 4. Dette gælder for begge formlegemehalvparter 10a og 10b. De udragende skumstoffdele ved 15 og 17, fig. 4, skilles fra ved hjælp af et styret skæreorgan. De således bearbejdede vinge- eller bladhalvparter, d.v.s. overskallen 10a og underskallen 10b som formlegemehalvparter sammenklæbes ved deres fælles skilleplan 21.

Fremstillingsprocessen forløber således:

I lamineringsformen for den nedre formlegemehalvpart 10b, også kaldet underskallen, og i lamineringsformen for den øvre formlegemehalvpart 10a, også kaldet overskallen, fremstilles bladets ydre lamineringslag af
et sammensat fibermateriale i diagonallaminat, hvorefter laminatlaget 12 påføres i formlegemets samlede længde og enten over det samlede profilværsnit eller kun i delområder af dette. Dernæst indlægges i profilfanens område skumplader 13, der tilpasses, hvorefter det indre laminatlag 14 lamineres. Også dette lag 14 er et diagonallaminat og består af et sammensat fibermateriale. Vingens eller rotorbladets indre kernedel fremstilles for begge forhalvparters vedkommende efter samme metode:

skumstofbøjlken fremstilles af enkelte skumstofbøjlelementer 15a, hvis øvre kantflade rager op over det såkaldte skilleplan 21. Dernæst fastklæbes disse elementer som vist i fig. 3 på torsionsskallen 11, 12, 13, 14 eller indlægges, hvorefter endekantlaminatet 16 tilfræsøes i faneområdet.


Fig. 6 viser arbejdsstadiet umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. På alle i skilleplanet beliggende flader på delene 10a, 10b og 19 påføres et skumstofklæbemiddel, hvorefter de to formlegemehalvparter sammenføjes. Hårdningen under lamineringsprocesserne er omtalt i det foregående. Udhørde- og tørretiden ved klæbning er afhængig af det anvendte skumstofklæbemiddels beskaffenhed.
Til færdiggørelse af den fra formen fjernede vinge an-
bringes en næseforstærkning 25 og en endekantforstærk-
ing 26, jfr. fig. 1.

Fremgangsmåden ifølge opfindelsen tillader ikke blot
fremstilling af formlegemer med store flader, men med-
fører yderligere fordele, som f.eks. en homogen afstiv-
ning af skallen ved hjælp af skumstofkernen, muligheden
for at anvende et hvilket som helst egnet skumstofemne
med vilkårlige dimensioner, fremstilling i åbne forme
samt en fuldstændig kontrol under den samlede fremstil-
ingsproces og i forbindelse hermed muligheden for kor-
rektioner.

Patientkrav:

1. Fremgangsmåde til fremstilling af ved hjælp af en
skumstofkerne (15) afstivede, fiberarmerede formstof-
formlegemer (10) såsom vinger eller rotorblade med sto-
re længde- og brededimensioner i åbne forme, hvor form-
legemets (10) skal (11) lamineres og hærdes i to adskil-
te skalhalvparter (11a, 11b) af et lamineret fibermate-
riale, kendetegnet ved, at

a) skumstofkernen (15) fremstilles direkte i hver af
de to skalhalvparter (11a, 11b) ved, at den sammen-
sættes af på tværs af formlegemets længderetning
forløbende og sammenklæbte ribbeformede skumstof-
elementer (15a), og

b) formlegemehalvparterne (10a, 10b), der er fyldt med
skumstofkernen, planfræsies i deres skilleplaner (21)
og sammenlimes ved disse.

2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at skumstofkernens (15) materiale forbindes med
skalhalvparterne (lla, llb).

3. Fremgangsmåde ifølge krav 1 og 2, kende etegnet ved, at formlegemet (10) i sin samlede længde forsynes med et over det samlede profiltværsnit fordelt unidirektionallaminat (12).

4. Fremgangsmåde ifølge krav 1 og 2, kende etegnet ved, at formlegemet (10) i sin samlede længde, men kun i dele af profiltværsnittet forsynes med et unidirektionallaminat (12).

5. Fremgangsmåde ifølge krav 1 til 4, kende etegnet ved, at formlegemets (10) bageste profilområde udformes som selvbærende sandwichstruktur.

6. Fremgangsmåde ifølge krav 1-5, kende etegnet ved, at det fra formen fjernede formlegeme (10) forsynes med en næseforstærkning (25) og en endeantforstærkning (26).