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(54) Graphics accelerator using parallel processed pixel patch to render line

(57) A graphics accelerator system which provides improved image rendering speed. In computers using sophisticated
image systems, the processor must be able to refer to graphical objects (such as lines, polygons, efc.) in the image space.
At some point, these graphical objects must be translated into a specification which can be used by a display driver (i.e. a
set of pixel values). This necessary translation step is called "rendering,” and presents a key performance bottleneck in
sophisticated graphics systems.

One key bottleneck in rendering is the memory bandwidth from the pixel processor into the display memory. To
improve this bandwidth, the pixel processor will access multiple contiguous pixels at a time, and process them in parallel.
Such a group of pixels is referred to as a "patch”. By providing a pixel processor with paralle! patch access to the memory
subsystem, higher rendering rates can be obtained. The disclosed innovations provide improved techniques for rendering
lines into a patch accessed memory subsystem. ) ) ’

A method somewhat like Bresenham's algorithm is used to access the appropriate patches for manipulation. Within
each accessed patch, the appropriate linear equation is solved to select the appropriate pixels. Thus, a line is first mapped
onto an appropriate patch of pixels, and then mapped onto the appropriate pixel.

The patches used are defined, within the overall geometry of the image, to have aligned corners. That is, within the
geometry of the image space, the patches make up an aligned rectangular grid, so that any two adjacent patches are
aligned horizontally or aligned vertically. Each stage of patch-to-patch stepping consists of one vertical step or one
horizontal step: diagonal movement is forbidden. With page mode memory access, this reduces access times.
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At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.
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Graphics Accelerator System with Line Drawing and Tracking Operations

Parallelized by Aligned Patches of Pixels

Cross References to Other Applications

Reference is made to the following earlier International patent

applications, which share some text and drawings in common with the

present application, and each of which is incorporated herein by

reference as if printed in full below:

Application No. PCT/GB90/01209, filed

"Data-Array Parallel Processing System";

Application No. PCT/GB90/01210, filed

"Data-Array Parallel Processing Systems";

Application No. PCT/GB90/01211, filed

"Data-Array Parallel-Access Memory Systems";

Application No. PCT/GB90/01212, filed

"Data-Array Processing and Memory Systems";

Application No. PCT/GB90/01213, filed

"Virtual Memory System";

Application No. PCT/GB90/01214, filed

"parallel Processing Systems";

Application No. PCT/GB90/01215, filed

"Data Processing and Memory Systems"; and

August

August

August

August

August

August

August

1990,

1990,

1990,

1990,

1990,

1990,

1990,

entitled

entitled

entitled

entitled

entitled

entitled

entitled
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Application No. PCT/GB90/01216, filed 3 August 1990, entitled

"Data-Array Processing System".

Reference is also made to the following concurrent United Kingdom
patent applications, which share some text and drawings in common with
the present application, and each of which is incorporated herein by

reference as if printed in full below:

Application No. GB -, Agents' reference N568-5, entitled
"Graphics Accelerator System with Polygon Traversal Operation

Parallelized by Aligned Patches of Pixels" (DPS-107);

Application No. GB -, Agents' reference N368-6, entitled
"Graphics Accelerator System with Highly Parallel Fill Area Set
Operations" (DPS-108);

Application No. GB «_, Agents' reference N568-7, entitled
"Graphics Accelerator System with Rapid Computation of Outlines" (DPS-—
109);

Application No. GB «_, Agents' reference N568-8, entitled
"Programmable Computer Graphics System with Parallelized Clipper
Operations™ (DPS-110);

Application No. GB «_» Agents' reference N568-9, entitled
"Computer Graphics System with Synchronization to a Band of Lines in
the Display Scan" (DPS-111); and

Application No. GB -, Agents’ reference N568-10, entitled
"Graphics Accelerator System with Line Drawing and Tracking Operations
Parallelized by Adaptively Shifted Pixel Patches (DPS-112)".
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BACKGROUND AND SUMMARY OF THE INVENTION

The present invention relates to computer systems with high-

performance graphics capabilities, and to subassemblies and methods for
use in such systems.

Modern computer systems tend to manipulate graphical objects as
high-level entities. For example, a circle may be described simply as having
a certain radius and a certain center point, or a straight line segment may
be described by listing its two endpoints. Such high-level descriptions are
a necessary basis for high-level geometric manipulations, and also have the
advantage of providing a compact format which does not consume memory
space unnecessarily.

By contrast, when an image containing graphical objects is to be
displayed, a very low-level description is needed. For example, in a
conventional CRT display, a "flying spot" is moved across the screen (one
line at a time), and the electron beams are switched on or off (or to a
desired level in between) as the flying spot passes each pixel. For example,
suppose that an image is to be displayed on a NEC SD™ monitor. This
particular monitor has a specified resolution of 1280x1024 pixels. (That is,
the screen has 1024 scan lines; and, across the width of the screen, there
are 1280 locations which can all have different displayed colors.) Thus,
there are a total of about 1.3 million pixels in this display. If this monitor
is to be used for a display of 16 colors, then four bits of information are
needed, for each pixel, each time the pixel is addressed. Thus, more than
5 million bits of data are needed to describe one screen on the display.

Other display technologies have similar pixel-by-pixel addressing
requirements. Thus, the data format actually used by the display is a pixel-
by-pixel description of the pixel attributes (color and/or gray level). At
some point, it is necessary to translate the high-level descriptions of graphic
objects into a low-level pixel-by-pixel description which can be used by a
display driver.

This process is called "rendering” or "drawing" the graphical objects,
and imposes a significant computational burden. For example, consider the
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simple case of drawing a straight line segment. The high-level description
of this object may be merely the locations of the two endpoints (x,, y,) and
(%» ¥,)- A straightforward way to compute a pixel-by-pixel representation
of this line would be:
1) solve for the line’s equation y = mx + b;
2) and repeatedly, for a series of x; starting with x;:
a) calculate y; = mx, + b,
b) calculate which available pixel row y; is vertically
closest to y,
¢) turn on pixel (x, ¥,), and
d) increment x; and repeat, until x, is reached.

This simple method is computationally intensive, and requires the use
of real-number arithmetic for each pixel. This makes it impracticable for
many applications.

The normal method for line-drawing is referred to as "Bresenham’s
algorithm." See Bresenham, "Algorithm for computer control of digital
plotter," 4 IBM Systems Journal 25 (1965), which is hereby incorporated by
reference. This method uses integer arithmetic to rapidly calculate the
individual pixels to be turned on. By carrying an error term, the average
slope of the line is followed exactly, without having to perform multiplies
at each pixel.

The rendering operation is often performed separately from the main
computations, by a separate processor. However, rendering operations can
still impose a large computational burden.

The disclosed hardware architecture provides a parallel-processing
graphics architecture, with a pixel processing unit which includes multiple
subprocessors operating in parallel. These subprocessors are configured for
parallel memory access to aligned patches of pixels (i.e. to groups of pixels
which are aligned in the image space).! However, there are substantial

difficulties in exploiting such an architecture for rendering. Since the

'In the presently preferred embodiment, the patches are squares of 4x4
pixels, but of course other patch sizes could be used.
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computations for each pixel depend on those for an adjacent pixel, it is
obviously impossible to perform such computations simultaneously.

The data rates required for control of a high-resolution display can be
substantial. For example, the NEC 5D™ monitor, as sold in the US in
1990, has a refresh rate of 60 Hz. Thus, each of the electron guns (one for
each primary color) illuminates each of the 1.3 million pixels 60 times per
second. If the color information is only 4 bits per pixel, the net data rate
is hundreds of millions of bits per second. For high-resolution displays, this
data rate is supplied from a dual-port frame memory, which can be
accessed independently by the processor and by the display driver. The
processor can access any randomly selected location in the frame memory
(to change the pixel-attribute values), and the display driver reads out the
pixel data, serially, at high speed, continually as needed.

Thus, if the display is unchanging, no demand is placed on the
rendering operations. Howevér, some common operations (such as
zooming or rotation) will require every object in the image space to be re-
rendered. Slow rendering will make the rotation or zoom appear jerky.

The present application discloses a new method for rendering lines in
a paralielized graphics-processing architecture. A sequential method, which
is somewhat analogous to Bresenham’s algorithm, is used to incrementally
identify the patches of pixels to be accessed for manipulation, together with
a starting and ending error term for each patch. The identified patches are
then retrieved, and the pixels of each patch are processed in parallel, using
an interpolation calculation to identify the correct pixels to be turned on.
This interpolation calculation is more time-consuming than Bresenham’s
algorithm; but since this calculation is performed by multiple processors in
paralle], it does not add unacceptable delay.
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BRIEF DESCRIPTION OF THE DRAWING

The present invention will be described with reference to the
accompanying drawings, which show important sample embodiments of the
invention and which are incorporated in the specification hereof by

reference, wherein:
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Figure 1 is a high-level schematic illustration of an innovative computer
system used in the presently preferred embodiment. Figures 2 and 3 are
illustrations of modified forms of the system of Figure 1.

Figure 4 is an illustration in greater detail of a renderer module
preferably employed in the systems of Figures 1 to 3.

Figure 5 is an illustration, in greater detail, of a front-end processor
board preferably employed in the systems of Figures 1 to 3.

Figure 6A and 6B show how patches of pixel data are made up.

Figures 7A and 7B show how pages of patch data, and groups or
"superpages” of page data are made up.

Figure 8 is a schematic illustration of a physical image memory and the
address lines therefor, as preferably used in the renderer of Figure 4.

Figure 9A is a 3-D representation of an aligned patch of data within
a single page in the image memory, and Figure 9B is a 2-D representation
of a page, showing the patch of Figure 9A.

Figure 10A is a 3-D representation of a non-aligned patch of data
within a single page in the image memory, and Figure 10B is a 2-D
representation of a page, showing the patch of Figure 10A.

Figure 11A is a 2-D representation of four pages in a virtual memory,
showing a non-aligned patch which crosses the page boundaries, and
including an enlargement of the circled part of the page boundary
intersection. Figure 11B is a 2-D representation of the physical memory,
illustrating locations of the four pages shown in Figure 11A. Figure 11C is
a 3-D representation of the non-aligned patch of Figure 11A. Figure 12 is
a truth table showing how page selection is made for patches which cross
page boundaries. Figure 13 shows two truth tables for selecting,
respectively, X and Y patch address incrementation.

Figure 14 is a schematic illustration in greater detail of part of the
renderer of Figure 4, and Figure 15 is a schematic illustration in greater
detail of an address translator of Figure 14. Figure 16 is an illustration of
the operation of a content-addressable memory used in the address
translator of Figure 15. Figure 17 is a schematic illustration in greater
detail of a read surface shifter used in the apparatus of Figure 14. Figure
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18 shows in greater detail an array of multiplexers forming part of the
surface shifter of Figure 17. Figure 19 illustrates the translation made by
the surface shifter of Figure 17. Figure 20 is an illustration of the
operation a least-recently-used superpage table which may be used with the
address translator of Figure 15. Figure 21 is a schematic diagram showing
a page fault table which may be used with the address translator of Figure
15.

Figure 22 is a schematic diagram of an exchange and grid processor
which, in the presently preferred embodiment, is part of the renderer of
Figure 4. Figure 23 is a flow diagram illustrating the operation of the
processors and a priority encoder of the grid processor of Figure 22.
Figure 24 is a table giving an example of the operation of the priority
encoder of Figure 22.

Figure 25 illustrates the correlation between aligned memory cells and
two levels of a patch in a 16-bit split patch system. Figures 26 and 27
show how pages of patch data, and superpages of page data are made up
in a 16-bit split patch system. Figures 28 and 29 correspond to Figures 26
and 27 respectively in an 8-bit split patch system. Figures 30A to 30C show
modifications of the address translator of Figure 15 used in the split patch
system. Figure 31 is a table to explain the operation of a funnel shifter
used in the circuit of Figure 30A. Figures 32 and 33 illustrate non-aligned
split patches in a 16-bit and an 8-bit patch system, respectively. Figure 34
shows a further modification of part of the address translator of Figure 15
used in the split patch system. Figures 35A and 35B illustrate the
operation of lookup tables in the circuit of Figure 34. Figures 36A and 36B
shows modifications of a near-page-edge table of Figure 15A used in the
split patch system. Figure 37 illustrates, in part, a modification to the
exchange and grid processor of Figure 22 used in the split patch system.

Figures 38 and 39 are tables which illustrate the operation of further
tables in a further modification of part of the address translator of Figure
15. Figure 40 shows the further modification to Figure 15. Figure 41
shows a modification to Figure 8 which is made in addition to the
modification shown in Figure 40.
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Figure 42 is a representation of the VRAM memory space, showing
how pages of data are rendered in one section of the memory and then
copied to another monitoring section of the memory.

Figure 43 shows a circuit for determining which pages need not be
copied from the rendering section to the monitoring section and to the
virtual memory. Figure 44 illustrates the setting and resetting of flags in a
table of the circuit of Figure 43.

Figure 45A to 45C are flow diagrams illustrating the copying operations
and Figure 45D shows the notation used in Figures 45A to 45C.

Figure 46 is a circuit diagram of a modification to the exchange of
Figure 22. Figure 47A to 47C are simplified forms of the circuit of Figure
46 when operating in three different modes.

Figure 48 shows a modification of the flow diagram at Figure 23.

Figure 49 is a schematic diagram of the processors and a microcode
memory, with one of the processors- shown in detail.

Figures 50A to 50D illustrate three images (Figs 50A to 50C) which are
processed to form a fourth image (Fig. 50D).

Figure 51 is a system diagram showing a page filing system.

Figure 52 shows how a line is mapped onto a sequence of patches of
pixels accessed by the renderer.

Figure 53 shows how, within each accessed patch, the correct pixels are

rendered.
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DESCRIPTION OF THE PREFERRED EMBODIMENTS

The hardware context of the claimed inventions will first be described

in detail, and then the innovative features will be described in further
detail.
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HARDWARE OVERVIEW

Figures 1 to 3 show three different hardware configurations of
computer systems embodying the invention. Referring firstly to Figure 1,
a host computer 10 has its own backplane in the form of a VME bus 12
which provides general purpose communications between various circuit
tgoards of the computer, such as processor, memory and disk controller
boards. To this known configuation, and within a standard housing 14 for
the computer 10, there is added a board on which is provided a renderer
16 and a video processor 18, a Futurebus+ 20, and a front-end board 22.
The renderer 16 is connected to the VME bus 12 and the Futurebus+ 20,
and also communicates with the video processor 18, which in turn drives
an external colour monitor 24 having a high-resolution of, for example,
1280 X 1024 pixels. The front-end board 22 is also connected to the
Futurebus+ 20 and can communicate with a selection of peripherals, which
are illustrated collectivély by the block 26. The configuration of Figure 1
is of use when the host computer 10 has a VME backplane 12 and there is
sufficient room in the computer housing 14 for the renderer 16, video
processor 18, Futurebus+ 20 and front-end board 22, and may be used, for

example, with a 'Sun Workstation'.

In the case where the computer housing 14 is physically too small,
or where the host computer 10 does not have a VME or Futurebus+
backplane, the configuration of Figure 2 may be employed. In Figure 2, a
separate housing 28 is used for the renderer 16, video processor 18, front-
end board 22 and Futurebus+ 20, as described above, together with a VME
bus 12 and a remote interface 30. In the host computer housing 14, a host
interface 32 is connected to the backplane 34 of the host computer 10,
which may be of VME, Qbus, Sbus, Multibus II, MCA, PC/AT, etc. format.
The host interface 32 and remote interface 30 are connected by an
asynchronous differential bus 36 which provides reliable communication
despite the physical separation of the host and remote interfaces. The
configuration of Figure 2 is appropriate when the host computer 10 is, for

example, an 'Apple Mackintosh', 'Sun Sparkstation', 1BM-PC', or Du Pont
Pixel Systems bRISC'.
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In the event that a host computer becomes available which has a
Futurebus+ backplane and sufficient space in its housing for the additional
components, then the configuration of Figure 3 may be employed. In
Figure 3, the renderer 16 and the front-end board 22 are directly

connected to the Futurebus+ backplane 20.

The general functions of the elements shown in Figures 1 to 3 will
now be described in more detail. The host computer 10 supplies data in
the form of control information, high level commands and parameters
therefor to the renderer 16 via the VME backplane (Figure 1), via the
backplane 34, host and remote interfaces 32, 30 and the VME bus 12
(Figure 2), or via the Futurebus+ backplane 20 (Figure 3). Some of this
data may be forwarded to the front-end board via the Futurebus+ 20
(Figures 1 and 2), or sent direct via the Futurebus+ backplane 20 (Figure

3) to the front-end board 22.

The Futurebus+ 20 serves to communicate between the renderer 16
and the front-end processor 22 and is used, in preference to a VME bus or
the like, in view of its high bit width of 128 bits and its high bandwidth of
about 500 to 800 Mbytes/s.

As will be decribed in greater detail below, the renderer 16
includes an imége memory, part of which is mapped to the monitor 24 by
the video processor 18, and the renderer serves to perform image
calculations and rendering, that is the drawing of polygons in the memory,
in accordance with the commands and parameter supplied by the host

computer 10 or the front-end board 22.

The front-end board 22 serves a number of functions. It includes a
large paging RAM, which also interfaces with external disk storage, to
provide a massive paging memory, and pages of image data can be
swapped between the paging RAM and the image memory of the renderer
16 via the Futurebus+ 20. The front-end board also has a powerful
floating-point processing section which can be used for graphics

transformation and shading operations. Furthermore, the front-end board
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may provide interfacing with peripherals such as a video camera or

recorder, monitor, MIDI audio, microphone, SCSI disk and RS 232.

Overall, therefore, the renderer 16, video processor 18 and front-
end board 22 can accelerate pixel handling aspects of an application, and

also accelerate other computation intensive aspects of an application.

The renderer 16 and video processor 18 will now be described in
greater detail with reference to Figure 4, which shows the main elements

of the renderer 16 and the main data and address pathways.

The renderer 16 includes a 32-bit internal bus 300, a VME interface
301 which interfaces between the VME bus 12 (Figure 1) or the remote
interface 30 (Figure 2) and the internal bus 300, and a Futurebus+
interface 302 which interfaces between the Futurebus+ 20 and the
internal bus 300. Also connecting to the internal bus 300 are a control
processor 314 implemented by an Intel 88960i, an EPROM 303, 4 or 16
Mbyte of DRAM 304, a real time clock and an I/O block 306 including a
SCSI ports. The functions of the control processor 314 and the associated
DRAM 304 and EPROM 303 are (a) to boot-up and configure the systein;
(b) to provide resource allocation for local PRAM 318, 322 of address and
grid processors 310, 312 (described in detail below) to ensure that there is
no memory space collision; (c) to control the loading of microcode into
microcode memories 307, 308 (described below); (d) to run application
specific remote procedure calls (RPCs); and (e) to communicate via the
I/O block 306 with a diagnostics port of the host computer 10 to enable
diagnostics information to be displayed on the monitor 24. The DRAM
304 can also be used as a secondary image page store for the VRAM 700

described below.

The renderer 16 also includes an address processing section 309
comprising an address broadcast bus 311 to which are connected 64 kbyte
of global GRAM 316, a data/instruction cache 313 which also connects to
the internal bus 300, an internal bus address generator 315 which also

connects to the internal bus 300, an address processor 310 with 16 kbyte
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of local PRAM 318, and a sequencer 317 for the address processor 310
which receives microcode from a microcode memory 307. The address
processor 310 also connects to a virtual address bus 319. The main
purpose of the address processing section 309 is to generate virtual
addresses which are placed on the virtual address bus under contro!l of

microcode from the microcode memory 307.

Also included in the renderer 16 is an address translator 740
(described in further detail below) which receives the virtual addresses on
the virtual address bus 319 and translates them into physical addresses of
data in the video RAM 700, if the required data is present, or interrupts
the address processor 310 to cause the required data to be swapped in
from the paging RAM 304 or other page stores on the external buses, if
the required data is not present in the VRAM 700.

The renderer 16 furthermore includes a data processing section 321
which is somewhat similar to the address processing section 309 and
comprises a data broadcast bus 323, to which are connected 64 kbyte of
global GRAM 324, a diagnostics register 325 which also connects to the
internal bus 300 and which may be used instead of the I/O block 306 to
send diagnostics information to the host computer 10, an internal bus
address generator 327 which also connects to the internal bus 300, a grid
processar 312 having sixteen processors each with 8 kbyte of local PRAM
322, and a sequencer 329 for the grid processor 312 which receives
microcode from a microcode memory 308. The processors of the grid
processor 312 also connect to a data bus 331. The main purpose of the
data processing section 321 is to receive data on the data bus 331, process
the data under control of microcode from the microcode memory 308, and

to put the processed data back onto the data bus 331.

The physical VRAM 700 connects with the data bus 331 via an
exchange 326 which is described in detail below, but which has the main
purposes of shuffling the order of the sixteen pixels read from or written
to the VRAM 700 at one time, as desired, to enable any of the sixteen

processors in the grid processor 312 to read from or write to any of the
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sixteen addressed locations in the VRAM 700 and to enable any of the

sixteen processors to transfer pixel data to any other of the sixteen

processors.

The last main element of the renderer 16 is a bidirectional FIFO
332 connecting between the broadcast buses 311, 323 of the address and
data processing sections 309, 321, which enables virtual addresses to be

transferred directly between these two sections.

The front-end board 22 will now be described in greater detail with

reference to Figure 5.

The front-end board 22 has an internal bus 502 which
communicates with the Futurebus+ 20. A paging memory section 504 is
connected to the internal bus 502 and comprises a large paging RAM 506
of, for example, 4 to 256 Mbytes capacity which can be used in
conjunction with the DRAM 304 of the renderer, a paging memory control
processor 508, and connections to, for example, two external high speed
IPI-2 disk drives 510 (one of which is shown) each of which may have a
capacity of, for example, 4 Gbytes, and a data communication speed of 50
Mbytes/s, or two external SCSI drives. The paging RAM 506 enables an
extremely large amount of pixel data to be stored and to be available to
be paged into the renderer 32 as required, and the fast disk 510 enables
even more pixel data to be available ready to be transferred into the

paging RAM 506.

Floating point processing is provided by 1 to 4 Intel 80860
processors 516, each rated at 80 MFlops peak. The general purpose
processing power can be used on dedicated tasks such as geometric
pipeline processing, or to accelerate any part of an application which is
compute-intensive, such as floating point fast Fourier transforms. Each
of the floating point processors 516 has a 128KByte secondary cache

memory 518 in addition to its own internal primary cache memory.

The front-end board 22 may also, if desired, include a broadcast
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standard 24-bit frame grabber connected to the internal bus 502 and
having a video input 514 and output 516 for connection to video camera or

television-type monitor.

The front-end board 22 may also, if desired, include an
input/output processor 520 which provides interfacing with MIDI on line
522, SCSI disk on line 524, at least one mouse on line 526, RS232 on line
528, and audio signals on line 530 via a bi-directional digital/analogue

convertor 532.

VIDEO RAM AND ADDRESSING THEREOF

Now that an overview of the hardware of the whole system has
been set out, the image memory configuration will be described in more

detail.

As mentioned above, the VRAM has a of 16 Mbyte capacity. The
system is capable of operating with 32-bit pixels, and therefore the image
memory has a capacity of 16M x 8/32 = 4 Mpixels. As illustrated in
Figures 6A and 6B, pixels are arranged in 4 x 4 groups referred to as
'‘patches'. Figures 6A and 6B show, respectively, two-and one-dimensional
notations for designating a pixel in a patch, as will be used in the
following description. In turn, as illustrated in Figure 7A, the patches are
arranged in 32 x 32 groups referred to as 'pages'. Furthermore, as
illustrated in Figure 7B, the pages are arranged in 4 x 4 groups referred to
as 'superpages'. The VRAM therefore has a capacity of 4 Mpixels, or 256k
pétches, or 256 complete pages, or 16 complete superpages. However, not
all pages of a particular superpage need be stored in the memory at any
one time, and support is provided for pages from parts of up to 128
different superpages to be stored in the physical memory at the same

time.

The VRAM 700 and addressing lines therefor are shown
schematically in Figure 8. Each small cube 702 in Figure 8 represents a

32-bit pixel. The pixels are arranged in 512 pixel x 512 pixel banks B(0) -
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B(15) lying in the XY plane, and these pixel banks are 16 pixels deep (in

the P direction). A line of 16 pixels in the P direction provides an aligned

patch 704. The pixels in each bank are addressable as to X address by a

respective one of 16 9-bit X address lines AX(0) to AX(15) and are
addressable as to Y address by a respective one of 16 9-bit Y address lines
AY(0) to AY(15). The Y and X addresses are sequentially supplied on a
common set of 16 9-bit address lines A(0) to A(15), with the Y addresses
being supplied first and latched in a set of 16 9-bit Y latch groups 706-0 to
706-15 each receiving a row address strobe (RAS) signal on 1-bit line 708,
and the X addresses then being supplied and latched in a set of 16 9-bit X
latch groups, 707-0 to 707-15 each receiving a respective column address

strobe signal CAS(0) to CAS(15) on lines 709(0) to 709(15), respectively.

The memory for each XY bank of pixels (512 pixels x 512 pixels x 1
pixel) is implemented using eight video-RAM (VRAM) chips 710, each 256 K
(4-bit) nibbles. Each chip provides a one-eighth thick slice of each pixel
bank, whereby 8 x 16 = 128 chips are required. Each Y latch group and X
latch group comprises eight latches (shown in detail for Y latch group 706(1)
and X latch group 707(1) and a respective one of the X and Y latches is
provided on each VRAM chip 710.

In this specification, the banks of memory will sometimes be referred
to by the bank number B(0) to B(15) and at other times by a 2-dimensional

bank address (bx,by) with the correlation between the two being as follows:

Bank Number (bx,by) Bank Number  (bx,by)
B(0) (0,0 B(8) (0,2)
B(1) (1,0) B(9) (1,2)
B(2) (2,0) B(10) (2,2)
B(3) (3,0) B(11) (3,2)
B(4) (0,1) B(12) (0,3)
B(5) (1,1) B(13) (1,3)
B(6) (2,1) B(14) (2,3)

B(7 (3,1) B(15) (3,3)
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When a location in the memory 700 is to be accessed, a patch of 16
pixels is made available for reading or writing at one time. If the Y address
and X address for all of the VRAMs 710 is the same, then an "aligned" patch
of pixels (such as patch 704) will be accessed. However, it is desirable that
access can be made to patches of sixteen pixels which are not aligned, but
where various pixels in the patch to be accessed are derived from two or

four adjacent aligned patches.

It will be appreciated that access to an aligned patch in memory is
more straightforward than access to a non-aligned patch, because for an
aligned patch the (x,y) address of each pixel in the different XY planes of
memory as shown in Figure 8 is the same. Furthermore, the (x,y) address of
each pixel in the patch is equal to the bank address (bx,by) of the memory
cell from which that pixel is derived. Referring to Figures 9A and 9B, an
aligned patch "a" having a patch address (12, 16) in a page "A" having a page
address (8, 6) is shown, as an example. The pixels in the aligned patch all
have the same address in the sixteen XY banks of the memory, as
represented in Figure 9A, and when displayed would produce a 4 X 4 patch
of pixels offset from the page boundaries by an integral number of patches,
as represented in Figure 9B. In the particular example the absolute address
of the aligned patch in the memory would be (8 x 32 + 12, 6 x 32 + 16) =
(268, 208).

If, however, a patch "p" is non-aligned, and has a misalignment
(mx,my) = (2,1), for example, from the previously considered aligned patch
"a" at patch address (12, 16) in page A at page address (8, 6), then some of
the pixels of patch "p" will need to be derived from three other aligned
patches "b", "c" and "d" having patch addresses (12 + 1, 16), (12, 16 + 1) and
(12 + 1, 16 + 1), or (13, 16), (12, 17) and (13, 17) in page A at page address (8,
6). This situation is represented in Figures 10A and 10B. The absolute
address of these patches "b", "c" and "d" in the VRAM 700 are (269, 208),
(268, 209) and (269, 209); respectively.

A further problem which arises in accessing a non-aligned patch "p" is

that the (x,y) address of each pixel in the patch "p" does not correspond to
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the bank address (bx,by) in the memory from which that pixel is derived. In

the particular example, the following pixel derivations and translations are

required.
Address (x,y) of Aligned patch Bank address Translation
pixel in non-aligned (px,py) from (bx,by) from required from
patch "p" which pixel which pixel bank address
is derived is derived (bx,by) to
pixel address
(x,y) in
patch "p"
(0,0) a (12,16) (2,1) (-2,-1)
(1,0) a (12,16) (3,1) (-2,-1)
(2,0) b (13,16) (0,1) . (-2,-1) mod 4
(3,0) b (13,16) (1,1) (-2,-1) mod 4
(0,1) a (12,16) (2,2) (-2,-1)
(1,1) a (12,16) (3,2) (-2,-1)
(2,1) b (13,16) (0,2) (-2,-1) mod 4
(3,1) b (13,16) (1,2) (-2,-1) mod 4
(0,2) a (12,16) (2,3) (-2,-1)
(1,2) a (12,16) (3,3) (-2,-1)
(2,2) b (13,16) (0,3) (-2,-1) mod 4
(3,2) b (13,16) (1,3 (-2,~1) mod 4
(0,3) c (12,17) (2,0) (-2,-1) mod 4
(1,3) c(12,17) (3,0) (-2,-1) mod &4
(2,3) d (13,17) (0,0) (-2,-1) mod 4
(3,3) d (13,17) (1,0 (-2,-1) mod 4

From the right hand column above, it will be noted that the
translation from the bank address (bx,by) to the corresponding address in the
non-aligned patch is constant for a particular non-aligned patch and in
particular is equal to the negative of the misalignment (mx,my) of the non-
aligned patch "p" from the base aligned patch "a", all translations being in

modulus arithmetic with the modulus equal to the patch dimension.
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Yet another further complication arises with non-aligned patches,
and that is that the patch may extend across the boundary between two or
four pages. To provide flexibility, not all pages which make up an image and
which are contiguous in the virtual address space need to be stored in the
VRAM at one time, and pages are swapped between the paging memory and
the VRAM as required. This results in those pages making up an image
which are in the VRAM not necessarily being stored adjacent each other in
the VRAM, but possibly being scattered in non-contiguous areas of the
VRAM,

For example, Figure 11A represents four contiguous pages A, B, C, D
in the virtual address space. When these pages are swapped into the
physical memory 700, they may be scattered at, for example, page addresses
(8,6), (4,8), (12, 12) and (6,10) in the VRAM, as represented in Figure 11B.
Now, if it is desired to access a non-aligned patch "p" who base aligned
patch "a" in page A has an x or y patch address of 31, then the non-aligned
patch "p" may extend into page B, page C or pages B, C and D, depending on
the direction of the misalignment. In the example shown specifically in
Figure 11, the patch "p" to be accessed has a misalignment (mx,my) = 72,1)
relative to base aligned patch "a" having patch address (px,py) = (31,31) in
page A having page address {(8,6) in the VRAM. It will be appreciated that,
in addition to translating accessed pixels between their bank addresses
(bx,by) and the addresses (x,y) in the non-aligned patch as described above
with reference to Figure 10, it is also necessary to determine the various
pages B, C, D which are to be accessed in addition to the basic page A and
furthermore to determine the addresses in these other pages B, C, D of the
aligned patches to be accessed, it being noted in the example that although
the aligned patch "a" in page A has a patch address of (31,31), different
patch addresses need to be used in other the pages B, C, D, that is (0,31),
(31,0) and (0,0), respectively. The following table sets out, for each of the
pixels in the patch "p" to be accessed: the page and patch address of the
aligned patch from which that pixel is derived; the translation necessary
from the patch address of the basic patch "a" in page A to the patch address
of the patch from which the pixel is derived; the bank address from which

the pixel is derived; and the translation necessary from this latter address to
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the address of the pixel in the patch "p".

Address {x,y) Page and Translation Bank address Translation
of pixel in aligned patch necessary (bx,by) of necessary
non-aligned from which  from address of pixel from bank
patch "p" pixel is patch "a" to address
derived address (px,py) (bx,by) to
P/(px,py) of patch from pixel
which pixel is address
derived (x,y) in
patch "p"
(0,0) A/(31,31)a (0,0) (2,1) (-2,-1)
(1,0) A/(31,31)a (0,0) (3,1) (-2,-1)
(2,0 B/(0,31)b (1,0) mod 32 (0,1) (-2,-1) mod 4
(3,0) B/(0,31)b (1,0) mod 32 (1,1) (-2,-1) mod &
(©,1) A/(31,31)a (0,0) (2,2) (-2,-1)
(1,1) A/(31,31)a (0,0) (3,2) (-2,-1)
(2,1) B/(0,31)b (1,0) mod 32 (0,2) (-2,-1) mod &
(3,1) B/(0,31)b (1,0) mod 32 (1,2) (-2,-1) mod 4
(0,2) A/(31,31)a (0,0) (2,3) (-2,-1)
(1,2) A/(31,31)a (0,0) (3,3) (-2,-1)
(2,2) B/(0,31)b (1,0) mod 32 (0,3) (-2,-1) mod 4
(3,2) B/(0,31)b (1,0) mod 32 (1,3) (-2,-1) mod 4
(0,3) C/(31,0)c (0,1) mod 32 (2,0) (-2,-1) mod 4
(1,3) C/(31,0)c (0,1) mod 32 (3,0) (-2,-1) mod &
(2,3) D/(0,0)d (1,1) mod 32 (0,0) (-2,~1) mod 4
(3,3) D/(0,0)d (1,1) mod 32 (1,0 (-2,-1) mod 4

A representation of the locations of the pixels in the four aligned

patches is shown in Figure 11C.

In the example, the basic patch "a" has a patch address (px,py) of

(31,31) and the non-aligned patch "p" to be accessed has a misalignment (mx,
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my) of {2,1) relative to the basic patch "a". In the general case of a base
patch address (px, py), where 0<=px, py<=31, and a misalignment {mx, my),
where 0<=mx, my<=3, the table of Figure 12 sets out which page A, B, C or
D should be used when accessing a pixel at bank address (bx,by), where 0<=
bx,by<=3, in dependence up bx, by, mx, my, px and py, and the table of
Figure 13 sets out the X patch address px, or px + 1 mod 4, and the Y patch
address py, or py + 1 mod 4, which should be used in order to obtain the
address of the aligned patch a, b, c or d to be accessed, in dependence upon
bx, by, mx and my. The increment is calculated using modular arithmetic of
base 32. It is also to be noted that for all pixels where (mx, my) < > (0,0), a
translation of (-mx, -my) is required between the bank address {(bx,by) from
which the pixel is derived and the address (x,y) of the pixel in the non-

aligned patch "p".

Having described various addressing functions which it is required to
be performed, there now follows a description in greater detail of the

apparatus for performing these functions.

As described above with reference to Figure 4, the VRAM 700 is
addressed by the address processor 310 via the address translator 740,
communicates data with the grid processor 312 via the exchange 326 and
provides data to the video processor 34. A greater degree of detail of the

address translator, VRAM and exchange is shown in Figure 14.

The address translator 740 receives a 48-bit virtual address on bus
319 of a patch origin address. The translator determines whether the
re'quired page(s) to access the addressed patch are resident in the VRAM
physical memory 700. If not, a page or superpage fault is flagged on line
748, as will be described in detail below. However, if so, the address
translator determines the addresses in the sixteen XY banks of the physical
memory of the sixteen pixels making up the patch, and addresses the
memory 700 firstly with the Y addresses on the sixteen sets of 9-bit lines
A(0) to A(15) and then with the X addresses on these lines. The X and Y

addresses are generated under control of the X/Y select signal on line 713.



23

The exchange 326 includes a read surface shifter 742 and a write
surface shifter 744. Pixel data is transferred, during a read operation, from
the memory 700 to the read surface shifter 742 by a set of sixteen 32-bit
data lines D"(0) to D"(15), and, during a write operation, from the write
surface shifter 744 to the memory 700 by the same data lines D"(0) to
D"(15). The read and write surface shifters 742, 744 receive 4-bit address
data from the address translator on line 770, consisting of the least
significant two bits of the X and Y address data. This data represents the
misalignment {mx, my) of the accessed patch "p" from the basic aligned
patch "a". The purpose of the surface shifters is re-order the pixel data in
non-aligned patches, that is to apply the translation (~-mx, -my) when reading
and an opposite translation (mx, my) when writing. Pixel data to be written
is supplied by a crossbar 327 forming part of the exchange 326 to the write
surface shifter 744, and pixel data which has been read is supplied by the
read surface shifter 742 to the crossbar 327, on the 512-bit line 750 made up
of a set of 16 32-bit lines. The write surface shifter also receives on line
745 16-bit write enable signals WE(Q) - WE(15) from the crossbar 327 one for
each pixel, and the write surface shifter 744 re-organises these signals in
accordance with the misalignment (mx, my) of the patch "p" to be accessed
to provide the sixteen column write enable signals WE"(0) to WE"(15). Each
of these signals is then ANDed with a common CAS signal on line 709 to
form sixteen CAS signals CAS(0) to CAS(15), one for each of the sixteen
banks of memory. This enables masking of pixels within a patch during

writing, taking into account any misalignment of the patch.

The address translator 740 will now be described in more detail
primarily with reference to Figure 15. The translator 740 includes as shown,
a contents addressable memory (CAM) 754, a page address table 756, a near-
page-edge table 758, and X and Y incrementers 760X, 760Y. The translator
740 also includes sixteen sections 764(0) to 764(15), one for each output
address line A(0) to A(15), and thus for each memory bank B(0) to B(15).

The translator 740 receives a 48-bit virtual address of the origin (0,0)

pixel of a patch on the bus 319. It will therefore be appreciated that up to

248 (i.e. 281, 474, 976, 710, 656) different pixels can be addressed. Many
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formats of the 48-bit address can be employed, but the following example

will be considered in detail.

BITS IDENTITY
LSB 0,1 X misalignment {mx) of patch (p) to be accessed
relative to basic aligned patch (a)
2-6 X address (px) of aligned patch (a) in page A
7,8 X address of page A
9-15 X portion of superpage address
16,17 Y misalignment (my) of patch (p) to be accessed
relative to basic aligned patch (a)
18-22 Y address (py) of aligned patch (a) in page A
23,24 Y address of page A
25-31 Y portion of superpage address
MSB  32-47 Image ID portion of superpage address

The bits identifying the superpage (i.e. bits 9 to 15, 25 to 31 and 32 to
47) are supplied to the CAM 754. The CAM 754 is an associative memary
device which compares the incoming 30-bit word with all of the words held
in its memory array, and if a match occurs it ocutputs the location or address
in the memory of the matching value on line 767. The CAM 754 has a
capacity of 128 32-bit words. Thirty of these bits are used to store the
vi;tual address of a superpage which is registered in the CAM 754. Thus up
to 128 superpages can be registered in the CAM. One of the other bits is
used to flag any location in the CAM which is unused. The remaining bit is
spare. Figure 16 illustrates how the CAM 754 operates. Upon input of a 30-
bit superpage address, e.g. 01234569 (hex), this input value is compared
with each of the contents of the CAM. If a match is found and provided the
unused flag is not set, the address in the CAM of the match is output, e.g. 1
in the illustration. If no match is found with the contents at any of the 128
addresses of the CAM, then a superpage fault is flagged on line 748S, and

the required superpage is then set up in the CAM in the manner described in
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detail later.

Referring back to Figure 15, the 7-bit superpage identification output
from the CAM 754 on line 767 is used as part of an address for the page
address table 756, implemented by a 4k word x 16-bit SRAM. The remaining
5 bits of the address for the page table 756 are made up by: bits 7, 8, 23 and
24 of the virtual address which identify the page within a superpage; and an
X/Y select signal on line 713. The page table 756 has registered therein the
X and Y page addresses in the VRAM 700 of: a) the basic page A in which
the pixel to be accessed is located; b) the page B which is to the right of the
page A in the virtual address space; c) the page C which is above the page A
in the virtual address space; and d) the page D which is to the right of page
C and above page B in the virtual address space, and these addresses are
output on lines 771A to 771D, respectively. If these pages A to D are
required, but are not stored in the VRAM 700 and thus are not registered in
the page table 756, then a page fault is flagged on a line 748p (as described
below with reference to Figure 21) and the required page of data is then
swappe‘d into the VRAM 700 in the manner described in detail below.
However, if all of the pages A to D which may possibly need to be accessed
are stored, their addresses are made available on the lines 771A to 771D to
all of the sections 764(0) to 764(15), the Y or X addresses being output
depending on the state of the X/Y select signal on line 713.

Bits 2 to 6 and 18 to 22 of the virtual address are also supplied to
each of the sections 764(0) to 764(15) on lines 772X and 772Y. These denote
the patch address (px, py). The X and Y patch addresses together with bits
0,1, 16 and 17 of the virtual address (which indicate the misalignment mx,
my of the patch p to be accessed) are also supplied to the near-page-edge
table 758, implemented using combinatorial logic, which provides a 2-bit
output to the sections 764(0) to 764(15) on line 774, with one bit being high
only if the patch X address px is 31 and the X misalignment mx is greater
than zero and the other bit being high only if the patch Y address py is 31

and the Y misalignment my is greater than zero.

Furthermere, the X and Y patch addresses (px, py) are also supplied
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to the X and Y incrementers 760X, 760Y, and these incrementers supply the
incremented values px + 1, mod 32 and py + 1, mod 32, to each of the
sections 764(0) to 764(15) on lines 776X, 776Y.

The four bits 0,1, 16 and 17 giving the misalignment mx and my are
also supplied to the sections 764(0) to 764(15) on lines 770X, 770Y and are
also supplied to the surface shifters 742, 744 on line 770.

Each section 764(0) to 764(15) comprises: a page selection logic
circuit 778; X and Y increment select logic circuits 780X 780Y; X and Y 4:1
4-bit page address multiplexers 782X, 782Y; X and Y 2:1 5-bit patch address
multiplexers 784X, 784Y; and a 2:1 9-bit address selection multiplexer 786.

The page selection logic circuit 778 implemented using combinatorial
logic, provides a 2-bit signal to the page address multiplexers 782X,Y to
control which page address A, B, C or D to use. The page selection logic
circuit 778 performs this selection by being configured to act as a truth
table which corresponds to the table of Figure 12. The circuit 778 receives
the 2-bit signal on line 774 from the near-page-edge table 758 and this
determines which of the four columns of the table of Figure 12 to use. The
circuit 778 also receives the misalignment (mx, my) on lines 770X, 770V,
and this data in combination with which section 764(0) to 764(15) (and thus
which bx and by applies) determines which of the four rows in Figure 12 to
use. The X and Y page address multiplexers 782X, 782Y therefore supply
appropriate page address as four bits to complementary inputs of the X/Y

address selection multiplexer 786.

The increment selection logic circuits 780X, 780Y, which are
implemented using combinatorial logic, receive the respective X and Y
misalignments mx, my and provide respective 1-bit signals to control the
patch address multiplexers 784X, 784Y. The increment selection circuits
perform this selection by being configured to act as truth tables which
correspond to the upper and lower parts, respectively, of the table of Figure
13. It will be noted that selection depends upon the misalignment mx or my

in combination with the bx or by position of the memory bank (and thus
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which of the sections 764(0) to 764(15) is being considered). The X and Y
patch address multiplexers 784X, 784Y therefore output the appropriate 5-
bit patch addresses px or px + 1 (mod. 32) and py or py + 1 (mod. 32) which
are combined with the X and Y page addresses at the inputs to the X/Y
selection multiplexers 786. This latter multiplexer receives as its control
signal the X/Y selection signal on line 713 and therefore outputs the 9-bit X
or Y address appropriate to the particular section 764(0) to 764(15).

The address translator 740 therefore deals with the problems
described above of addressing pixels from different aligned patches a, b, ¢, d
in the memory 700 when a patch "p" to be accessed is misaligned, and of
addressing pixels from different pages A, B, C, D in the memory 700 when a

patch "p" to be accessed extends across the boundary of the basic page A.

It is still necessary also to perform a translation of the pixel positions
in the accessed patch of (-mx,-my) if reading, or (mx,my) if writing. This is
performed by the surface shifter 742 for reading and the surface shifter 744
for writing. The read surface shifter 742 will now be described with

reference to Figures 17 and 18.

The read surface shifter 742 comprises a pair of 4 x 4 32-bit barrel
shifters, 788X, 788Y. The X barrel shifter 788X has four banks 790X(0) to
790X(3) of multiplexers arranged in one direction, and the outputs of the X
barrel shifter 788X are connected to the inputs of the Y barrel shifter 788Y,
which has four banks 790Y(0) to 790Y(3) of multiplexers arranged in the
orthogonal direction. As control signals, the X and Y barrel shifters 788X,

Y receive the X and Y misalignments mx, my, respectively.

One of the banks of muliplexers 790X(0) is shown in greater detail in
Figure 18, and comprises four 32-bit 4:1 multiplexers 792(0) to 792(3). The
data from bank (0,0) is supplied to inputs 0, 3, 2 and 1, respectively, of the
multiplexers 792(0) to 792(3). The data from bank (1,0) is supplied to inputs
1, 0, 3 and 2, respectively, of the multiplexers 792(0) to 792(3). The data
from bank (2,0) is supplied to the inputs 2, 1, 0 and 3, respectively, of the
multiplexers 792(0) and 792(3). The remaining data from bank (3,0) is
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supplied to the remaining inputs 3, 2, 1, 0, respectively, of the multiplexers
792(0) to 792(3). The other banks of multiplexers 790X(1) to 790X(3) in the
X barrel shifter 788X are similarly connected, and the banks 790Y(0) to
790Y(3) in the Y barrel shifter 788Y are also similarly connected. It will
therefore be appreciated that the read surface shifter performs a
translation with wrap-around in the -X direction of mx positions and a
translation with wrap-around in the -Y direction of my positions as shown in

Figure 19.

As shown in the drawings, the write surface shifter 744 may be
provided by a separate circuit to the read surface shifter. In this case the
write surface shifter is configured similarly to the read surface shifter,
except that the inputs 1 and 3 to the multiplexers 792 in the barrel shifter
banks are transposed. This results in translations of +mx and +my in the X
and Y directions, rather than -mx and -my for the read surface shifter. The
part of the write surface shifter which operates on the write enable signals
WE(0) to WE(15) is identical to the part which operates on the data signals,
except-that the signals are 1-bit, rather than 32-bit.

As an alternative to employing separate circuits for the read and
write surface shifters 742, 744, a single circuit may be employed, with
appropriate data routing switches, and in this case translation provided by
the surface shifter may be switched between (-mx, -my) and (+mx, +my), in
dependence upon whether the memory is being read or written, as described

with reference to Figures 46 and 47.

As mentioned above, if a required superpage is not registered in the
CAM 754, then a superpage fault is flagged, on line 748S. This superpage
fault is used to interrupt the address processor 310, which is programmed to
perform a superpage interrupt routine as follows. Firstly, the address
processor checks whether the CAM 754 has any space available for a new
superpage to be registered. If not, the address processor selects a
registered superpage which is to be abandoned in the manner described
below and causes the, or each, page of that superpage which is stored in the

VRAM 700 to be copied to its appropriate location in the paging memory.
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The registration of that superpage is then cancelled from the CAM 754.
Secondly, the new superpage is registered in the CAM 754 at the, or one of

the, available locations.

In order to select which superpage to abandon, a determination is
made as to which is the least recently used (LRU) superpage which is
registered in the CAM 754. To do this, a 128 x 16-bit LRU table 802 is
provided, as illustrated in Figure 20. Each of the 128 addresses represents a
respective one of the superpages registered in the CAM 754. The 7-bit
superpage identification output from the CAM 754 on line 767 is used to
address the LRU table 802 each time the superpage identification changes,
as detected by the change detector 804. The change detector 804 also
serves to increment a 16-bit counter 806, and the content of the counter 806

is written to the addressed location in the LRU table 802.

Accordingly, for all of the registered superpages, the LRU table
contains an indication of the order in which those superpages were last used.
When registering a new superpage in the CAM 754, the address processor
310 checks the contents of the LRU table 802 to determine which superpage

has the lowest count and in that way decides which superpage to abandon.

As also mentioned above, if the required pages of the registered
superpage are not stored in the VRAM 700, a page fault is flagged, on line
748P. The page fault generator is shown in Figure 21, and comprises a page
fault table 794 constituted by a 2k x 4-bit SRAM, a set of three AND gates
796B, C, D and an OR gate 798. The page fault table 794 is addressed by
the 7-bit superpage identity code on line 767, and by the X and Y page
addresses on line 768X, Y. At each address, the page fault table 794
contains a &4-bit flag in which the bits denote whether the basic addressed
page A and the pages B, C and D, respectively, to the right, above, and to
the right and above, page A are stored in the VRAM 700. The page B flag is
ANDed by gate 796B with the bit of the near-page-edge signal on line 774
denoting whether the patch "p" to be accessed extends across the boundary
between pages A and B. Similarly, the page C flag is ANDed by gate 796C
with the bit of the near-page-edge signal on line 774 denoting whether the
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patch "p" to be accessed extends across the boundary between pages A and
C. Furthermore, the page D flag is ANDed by gate 796D with both bits of
the near-page-edge signal, which in combination dencte whether the patch
"p" to be accessed extends in page D abave page B and to the right of page
C. The outputs of the three AND gate 7968, C, D and the page A flag are
then ORed by the OR gate 798, the output of which provides the page fault
flag on line 748P.

From the above, it will be appreciated that a page fault is always
generated if the basic page A is not stored in the VRAM, but if page B, C or
D is not stored in the memary, a page fault will be generated in response
thereto only if the respective page B, C or D will be used, as indicated by

the two bits of the near-page-edge signal on line 774.

The page fault signal on line 748P is used to interrupt the address .
processor 310. The address processor then searches a table in its PRAM 3138
for a spare page address in the VRAM 700, causes the required page to be
swapped into the VRAM at the spare page address, and update the table in
its PRAM 318.

GRID PROCESSOR AND EXCHANGE

As described above with reference to Figure 4, in the operation of
the preferred embodiment, the exchange 326 and the VRAM 700
communicate in patches of sixteen pixels of data, each pixel having 32 bits.
Furthermore, the grid processor 312 has sixteen processors, each of which
processes pixel data and communicates with the exchange 326. Also, the
grid processor 312 and the address processor 310 can communicate address
data via the FIFO 332.

The exchange 326 includes a crossbar 377, and a logical
implementation of the crossbar 377 and ef the grid processor 312 is shown in
more detail in Figure 22. As shown, the crossbar 377 comprises sixteen 16:1
32-bit data multiplexers 602(0) to 602(15); sixteen 16:1 1-bit write enable
multiplexers 603(0) to 603(15); a 512-bit bidirectional FIFO 604 for pixel
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data; and a 16-bit bidirectional FIFO 605 for the write enable signals.
During a read operation, the 16 pixels of a 4 x 4 patch are supplied from the
VRAM 700 (Figure 8) via the read surface shifter 742 and via the FIFO 604
as data D(0) to D(15) to the sixteen inputs of each data multiplexer 602(0) to
602(15). During a write operation, the data multiplexers 602(0) to 602(15)
supply data D(0) to D(15) via the FIFO 604 and the write surface shifter 744
to the VRAM and the write enable multiplexers 603(0) to 603(15) supply
write enable signals WE(0) to WE(15) via the FIFO 605 to the write surface
shifter 744. The FIFOs 604, 605 and also the FIFO 332 are employed so that
the grid processor 312 does not need to be stalled to take account of
different access speeds of the VRAM 700 in dependence upon whether page-

mode of non-page-mode access is taking place.

Fach of the data multiplexers 602(0) to 602 (15) is associated with a
respective one of sixteen processors 606(0) to 606(15) and communicates .
therewith respective data signals D'(0) to D¥(15), which are logically 32 bits,
but which in practice may be implemented physically as 16 bits, with
appropriate multiplexing techniques. The data signals D'(0) to D'(15) are
also supplied to respective parts of the bus 331. Also, each of the write
enable multiplexers 603(0) to 603(15) is associated with a respective one of
the sixteen processors 606(0) to 606(15) to 606(15) which supply respective
1-bit write enable signals WE'(0) to WE'(15) to the write enable multiplexers.
Each processor 606(0) to 606(15) provides a logical control signal CO(0) to
CO(15) to control both its associated data multiplexer 602 and write enable
nultiplexer 603. Thus, during writing to the memory, any processor may
provide any respective one of the data signals by providing the number 0 to
15 of the required data signal as its control signal to ité data and write
enable multiplexers. Furthermore, during reading from the memory, any
processor may read any of the data signals by providing the number O to 15
of the required data signal to its data multiplexer. Thus, there is no
restriction on data being processable only relative to a particular processor,

and each processor can select and control the routing of its own data.

The crossbar 377 shown in Figure 22 is simplified for reasons of

clarity, and shows, for example, bi-directicnal multiplexers, which In
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practice are difficult to implement. A modified form of the exchange,

incorporating the crossbar and the surface shifters, is shown in Figure 46.

The exchange of Figure 46 comprises sixteen sections, of which one
typical section 324(i) is shown for simplicity. The data D'™i) from the
memory is supplied via a buffer BA(i) and register RA(i) to one input of a 2:1
multiplexer SA{i) acting as a two-way switch. The output of the switch
SA(i) is fed to an input i of the surface shifter 743 which performs surface
shifting for read and for write. The corresponding output i of the surface
shifter 743 is fed to one input of a multiplexer switch SB(i) and is also fed
back to the data D"(i) input via a register RB(i) and a tri-state buffer 3B{i).
The output of the switch SB(i) is input to a FIFO(i), the output of which
forms the other input of switch SA(i) and is also fed to one input of a further
switch SC(i). The set of sixteen data lines D(0) to D(15) connect the
exchange sections 326(0) to 326(l5) and the output of switch SC{i) is
connected to data line D(i). In the general case, the output of each switch

SC(0) to SC(15) is connected to the data line of the same number.

The sixteen inputs of a 16:1 multiplexer MUX(i) are connected to the
data lines D(0) to D(15), and the output of the multiplexer MUX{i) is
connected via a register RC(i) and a tri-state buffer BC(i) to the respective
processor PROC(i) via the data line D¥i). The output of the multiplexer
MUX(i) is also connected to the other input of switch SB(i). Furthermore,
the data line D'(i) from the processor PROC(i) is also connected via a buffer

BD(i) and a register RD(i) to the other input of the switch SC(i).

The control signal CO(i) for the multiplexer MUX(i) is provided by a
switch SD(i) which can select between a hardwired value i or the output of a

register RE(i) which receives its input from the output of the register RD(i).

Also, control signals CSB, CSC, CSD and CBC are supplied to the
multiplexer switches SB(0) to (15), the multiplexer switches SC(0) to (15),
the multiplexer switches SD(Q) to SD(15), the tri-state buffers BC(0) to (15)
from the microcode memory 308 (Figure 4) of the processing section 321.

Furthermore, control signals CSA, CBB and CSS derived from the ricrocode

s
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memory 307 of the address processing section 309 are supplied to the

multiplexer switches SA(0) to (15), the tristate buffers BB(0) to (15) and the
surface shifter 743.

The exchange 326 of Figure 46 is operable in three modes. In a read
mode, the processors PROC(0) to PROC(15) can read the memory; in a write
mode, they can write to the memory; and in a transfer mode, they can
transfer pixel data between each other. The values of the control signals

for these three modes are as follows:

CSA CsB CSsC CSsD cBB c8C CSS

READ 0 0 0 0/1 0 1 0
WRITE 1 1 1 0/1 1 0 1
TRANSFER X X 1 1 X 0/1 X

It should be noted that the control signal CSD can select between a
"straight-through" mode in which each multiplexer MUX(i) selects its input i
and thus data D(i), or a "processor-selection" mode in which it selects an

input j and thus data D(j) in accordance with the value j which the processor

has loaded into the register RE().

The effective configuration of a generalised one of the exchange
sections 326(i) of Figure 46 in the read mode is shown in Figure 47A. In this
configuration, the data path from the data line D"(i) is via the register RA()
to the surface shifter 743. In the read mode, the surface shifter applies a
shift of (-mx,-my) (mod. 4) to the data paths. From the surface shifter, the
data path continues via the FIFO(i) to the data line D(i). The multi-plexer
MUX(i) can select if CSD=0 the straight-through path in which its output is
(i), or if CSD=1 the processor selection path in which its output is o)
were j is the value loaded into the register RE(i). The output data passes via

the register RC(i) as data D¥(i) to the processor PROC(i).

The effective configuration of the exchange section 326(i) in the

write mode is shown in Figure 478. The data DXi) from the respective
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processor PROC(i) passes via the register RD(i) to the data line D(i). The
multiplexer MUX{i) can select, if CSD=0, the straight-through path in which
its output is D(i), or if CSD=1 the processor selection path in whicih its
output is D(j) where j is the value loaded into the register RE(i). The output
data passes via the FIFO(i) to the surface shifter 743. In the write mode,
the surface shifter applies a shift {+mx,+my) (mod. 4) to the data paths.
From the surface shifter, the data path continues via the register RB(i) as
data D'(i) to the VRAM 700.

It should be noted from Figures 46 and 478 that, in the write mode,
the write-enable signal follows the same path WEXi) to WE(i) to WZ'{i) as
the data signal path D'(i) to D(i) to D"(i). Thus these paths are logically 33
bits made up from 32 bits for the data signal and 1 bit for the write-enable

signal.

In the transfer mode, the effective configuration of the exchange
section 326(i) is as shown in Figure 47C. In this configuration the control
signal CSD to the switch SD(i) is set to 1 so that the multiplexer MUX()
receives as its control signal the value j loaded into the register RE(i).
There are four phases to a transfer. In the first phase the processors output
the values j of the data D(j) which they wish to receive as the lowest four
bits of their data lines, and these values j are clocked into the registers
RD(i). In the second phase , the processors output the data to be transferred
out, and this data is clocked into the registers RD(i), while the values j are
clocked out of the registers RD(i) and into the registers RE{i), thus setting
the multiplexers MUX(i) to receive the data on the respectively selected
lines D(j). In the third phase, the data in the registers RD(i) is clocked out
onto the lines D and each multiplexer MUX(i) receives and outputs the data
on respectively selected line D(j). In the fourth phase, the outputs of the
multiplexers are clocked into the registers RC(i) and the tristate buffers
BC(i) are enabled so that the processors can transfer in the data from the
buffers BC(i). Thus, each processor PROC(i) receives the data (j) from the
pracessor PROC(j) which was selected by the processor PROCIi) by its

output value j in the first phase.
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Referring back to Figure 22, the processors 606(0) are connected to
the data broadcast bus 323 and to a priority encoder 614 having 16 sections
and which is associated with the sequencer 329. The processors 606(0) to
606(15) communicate address data with the data broadcast bus 323 and the
FIFO 332 connects the data broadcast bus 323 with the address processor
310. The processors 606(0) to 606(15) can also supply respective
"unsatisfied" signals US(0) to US(15) and respective "X waiting" signals
XW(0) to XW(15) to the respective sections of the priority encoder and can
receive respective "process enable" sipnals EN(0) to EN(15) from the
respective sections of the priority encoder 614. Lastly, the priority encoder
614 has a sequencer enable (SE) output on line 618 to the sequencer 329
which controls the sequence of processing of a series of microcode

instructions by the processors 606.

The purpose of the priority encoder 614 is to provide high efficiency
in the accessing by the processors 606 of the memory 700. In order to do
this, the encoder 614 and processors perform the following process, which is
shown in the flow diagram of Figure 23. In Figure 23, the left-hand three
columns contain steps which are taken by the processors
606(0)....606(i).....606(15), or PROC(0)..... PROC(i).....PROC(15), in parallel
with each other, the right-hand column contains steps performed by the

priority encoder.

At the beginning of each m crocode instruction, there are a series of
initialisation steps 620 to 628. In steps 620 to 625, those processors which
require access to the memory set (1) their respective unsatified signals us
and reset (0) their X waiting signals XW, and those processors which do not
require access reset (0) their unsatisfied signals US and their X waiting
signals XW. In steps 626, 628, the priority encoder resets (0) the process

enable signals EN for all of the processors and also resets (0) the sequencer

enable signal SE.

After initialisation, the priority encoder 614 checks through the XW
signals, starting with XW(0) in step 630 to find any processor which is X

waiting, and if a match is found (step 632) at a processor, designated
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PROC(q), then the routine proceeds to step 640. If a match is not found,
however, in step 632, then the priority encoder checks through the US
signals, starting with US(0) in step 634 to find a processor which is
unsatisfied, and if a match is found (step 636) for a procsssor, designated
PROC(q), then the routine proceeds to step 640. If a match is not found,
however, in step 636, then this indicates that all processors are satisfied,
and accordingly the microcode program can proceed. Therefore, the

sequence enable signal SE is set in step 638, and the routine terminates.

In step 640, the process enable signal EN(q) for the selected processor
PROC(q) is set. In steps 642, each processor determines whether it is
unsatisfied, and if not exits the subroutine of steps 642 to 654. For any
processor which is unsatisfied, then in steps 644, that processor determines
whether it is the selected processor, and if so supplies, in step 645, to the
data broadcast bus 323 as (xq, yqg) the virtual address of the base pixel {0,0)
of the patch of pixel data which it wishes to process. This address is
supplied via the FIFO 332 to the address processor 310, which in response
accesses the appropriate locations in the memory 700, swapping in and out

pages of pixel data, if required, as described above.

Then, in steps 646, each unsatisfied processor determines whether
the y address yi of its required patch of pixel data is equal to the y address
yq of the patch which is being accessed. If not, then the processor exits the
subroutine of steps 642 to 654. If, however, yi = yq, then in step 648 the
processar determines whether the X address xi of its required patch of pixel
data is equal to the X address xq of the patch which is being accessed. If so,
then the processor resets (3) its unsatisfied signal tJS(i) and X waiting signal
XW(i) in step 650, and accesses the memory for read or write, as
appropriate, in step 652. The processor then exits the subroutine of steps
642 to 654. If, in step 648, xi<>xq then in step 654 the X waiting signal
XW(i) is set (1), and then the subroutine is exited.

Upon exit from the subroutine of steps 642 to 654 of all processors
PROC(0) to PROC(15), the routine proceeds to step 656, where the priority

encader resets (0) the process enable signal EN(q) for the selected processor.

n
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The routine then loops back to step 630.

It will be appreciated from the above that (A) the lowest numbered
processor (an arbitrary choice) which is unsatisfied is selected and given
access to the memory initially, together with any other processors which
require access to the same address as that selected processor. Then, (B) of
any remaining unsatisfied processors which require access to the same y
address as the selected processor, the lowest numbered processor is given
access, together with any other processors requiring the same address.
Then, (C) of any remaining unsatisfied processors which require access to
the same y address as the last satisfied processor, the lowest numbered
processor is given access, together with any other processors which require
access to the same address. Step C is repeated, if necessary, and then steps
A and B are repeated until all of the processors have been satisfied. The

next m crocode instruction sequence is then processed.

As example of the operation of the priority encoder and processors in
accessing the memory will now be described with reference to the table of
Figure 24. In the example, PROC(0) to (3) and (8) to (11) require access to
the patches having the base pixel X and Y addresses listed in column 660 of
the table, the addresses being in hexadecimal notation. Thus, after the
initialisation routine, US(0) to (3) and (8) to (11) are set to 1 and the other

US signals and the XW signals are reset to 0, as shown in column 662.

In the first loop of the main routine, PROC(0) is selected, i.e. g = 0,
and thus accesses the memory at (1234, 1234). Because PROC(1) requires
the same address, it also becomes satisfied, i.e. US(1) = 0, and accesses the
memory at (1234, 1234). Furthermore, because PROC(2) and PROC(10)
require the same Y address as PROC(0), they become X waiting, i.e. XW(2)
= XW(10) = 1. This is shown in column 664.

In the next loop of the main routine, PROC(2) is found to be X
waiting XW(2) = 1), and thus PROC(2) is selected, i.e. g = 2. Therefore
PROC(2) becomes satisfied, (US(2) = XW(2) = 0), as shown in column 666, and
accesses the memory at (1235, 1234).



38

In the next loop of the routine, PROC(10) is found to be X waiting
XW(18) = 1), and thus PROC(19) is selected, i.e. g = 10. Therefore PROC(10)
becomes satisfied, (US(10) = XW(10) = 0), as shown in column 668, and
accesses the memory at (1236, 1234).

In the next loop of the routine, no processor is found to be X waiting,
and PROC(3) is found to be the first completely unsatisfied processor, i.e.
Us(3) = 1, YS(3) = 0. Therefore PROC(3) is selected (g = 3), becomes
satisfied (US(3) = XW(3) = 0) and accesses the memory at (1235, 1235). Also
because PROC(11) has the same Y address as PROC(3), PROC(11) becomes

X waiting, i.e. XW(11) = 1, as shown in column 670.

In the next loop of the routine, PROC(11) is found to be the only X
waiting processor, (US(11) = XW(11) = 1). Therefore, PROC(11) is selected
(g = 11), becomes satisfied (US(11) = XW(11)= 0) and accesses the memary at
(1236, 1235), as shown in column 672.

In the next loop of the routine, PROC(8) is found to be the first
unsatisfied processor (US(8) = 1). Therefore, PROC(8) is selected (q = 8),
becomes satisfied, and accesses the memory at (1234, 1236). Furthermore,
because PROC(9) requires the same address, it also becomes satisfied (US(9)

= 0) and accesses the memary.

During the next loop of the routine, no processors are found to be
unsatisfied, and therefore the sequence enable signal SE is set and the next

microcode instruction is processed.

By using the priority encoder as described above, processors which
require access to the same patch can access that patch simultaneously.
Furthermore, when a plurality of processors require access to different
patches having the same Y address, their accesses are made immediately
one after the other, in "page mode". Therefore the address translator does
not need to re-latch the Y address(es) in the Y address latches 706(0) to (15)
(Figures 8 and 14) between such accesses. Thus, a considerable

improvement in performance is achieved as compared with a case where the
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processors PROC(0) to (15) access their required patches one at a time,

sequentially and without reference to any similarity between the addresses

to be accessed.

In the system described above, up to sixteen pixels in a patch are
processed in parallel by sixteen processors. Preferably, the system is also
arranged so that a group of patches, for example, up to 32 patches, are
processed in series in order to reduce pipeline start and finish overheads. In
this case, the method of operation may be modified, as compared with that
shown in Figure 23, in order to increase efficiency, by permitting any
processor requiring access to, say, a jth pixel in the group to request that
pixel without firstly waiting for all the other processors to complete access
to their (j-1)th pixels in the group. To do this, between steps 623 and 630 in
Figure 23, for each processor the step "set address of first required pixel in
group as (xi, yi)" is included for each processor PROC(i). Furthermore, steps
650 and 652 for each processor as shown in Figure 23 are replaced by the
steps shown in Figure 48. In step 682, the memory is accessed at address xi,
yi for the particular processor PROC(i). Then, in step 684, it is determined
whether or not the processor PROC(i) requires access to a further pixel in
the group, and if not in step 686, the unsatisfied flag US(i) and the X waiting
flag XW(i) are both reset to 0, similarly to step 650 in Figure 25. However,
if so in step 684, then in step 688 the processor PROC(i) sets the address of
the next required pixel as (xi, yi). Then, in step 690, it is determined
whether or not the new y address yi is equal to the Y address yq of the last
accessed pixel. If so, then in step 692, the X waiting flag XW(i) is set to 1,
whereas if not, then in step 694, the X waiting flag XW(i) is reset to 0.
Aftar steps 692 or 694, the routine proceeds to step 656 aé in Figure 23. It
will therefore be appreciated that, once any processor has accessed a pixel
in its series of required thirty-two pixels, it can immediately make itself
ready to access the next pixel in its series, irrespective of how many of
their required thirty-two pixels each of the other processors has accessed.
This therefore makes good use of the page mode accessing of the VRAM in
which a series of pixels with the same Y address are accessed without the

need to re-latch the Y address between each access.
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A problem which can arise with the maodification of Figure 48 is that
some of the processors can inordinately race ahead of others of the
processors in accessing their thirty-two pixels. For example, in the case
where the processors require access to many different Y addresses, it may
arise that PROC(0) accesses all of its thirty-two required pixels first, then
PROC(1) accesses its thirty-two pixels, and so on. In order to obviate this
problem, the following further modification may be made. Basically, access
is permitted with the .following order of priority: {a) of highest priority,
processors which require access in page-mode (i.e. with the same Y address
as the last access) are arbitrated for access; {b) of second priority,
processors which have progressed least through their series of thirty-two
accesses are arbitrated for access; and (c) of lowest priority there is
arbitrary selection of any processors still requiring access. This is achieved
by maintaining in a register file of each processor a respective local pointer
LP(i) indicating which of its 32 accesses it is waiting for, a common low
watermark pointer WM for all the processors, and a common high watermark
pointer HP for all the processors. Furthermore, the significance of each
unsatisfied flag US(i) is Figures 23 and 48 is modified so that US{i)=1 only if
LP(i)=WM and the pracessor PROC(i) is unsatisfied. The process of Figures
23 and 48 is then modified as follows. In the initialisation steps 622 to 625,
the additional steps are included of resetting to zero LP(i) and WM in the
register files of all processors, and setting HP to the number of accesses in
the series, usually 31. The step 642 in Figure 23 is replaced by
"LP(i)<>HP?". Furthermore, accompanying step 682 in Figure 48, where a
processor accesses the memory, it also increments it local pointer to
LP(i)+1. This then has the affect of dealing with priorities "a" and "b"
described above. In order to deal with the priority "c" abc-Jve, an additional
decision is included between steps 636 and 638 in Figure 23. If the low
watermark pointer WM is less than the high pointer HP, then the low
watermark pointer in each of the processor register files is incremented to
WM+1, and the process loops back to step 630. However, if WM=31 the
process proceeds to step 638. From the above, it will be appreciated that
the low watermark pointer is always less than or equal to the lowest local
pointer LP(i). When there is no page mode, only those processors whose

local pointer LP(i) is equal to the low watermark pointer ‘WM are initially
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involved in the access arbitration. If there are none, the watermark pointer

is incremented, unless it is equal to HP.

SPLIT-LEVEL PATCHES

It will be noted from the above that the memory is capable of
storing pixel data of 32 bits and that the grid processor is capable of
processing pixel data logically of at least 32 bits. In some applications,
pixel data having a resolution as great as 32 bits is not needed, and all
that may be required is 16-bit or 8-bit pixel data. In such cases it is
possible to use only 16 or 8 bits of the 32 bits available for each pixel. but
this would then result in the VRAM not being used to its full capacity, and
pages of pixel data would need to be swapped between the VRAM and the

paging memory more often than is necessary.

It may therefore be considered expedient to split the whole image
memory into two for 16-bit data, orifour for 8-bit data, and thus overlay
whole pages of data one on top of another. This would make available the
whole capacity of the VRAM, but would suffer from the disadvantage that
severe complications would arise when swapping, for example, just one
page of 16-bit or 8-bit data between the VRAM and page memory,
because it would be necessary to select only half or a quarter of the
stored data for transfer from the VRAM to the paging memory, and it
would be necessary to mask off half or three-quarters of the VRAM when

transferring a page of data from the paging memory to the VRAM.

There now follows a description of an arrangement which avoids

these problems associated with transfer of 16-bit or 8-bit data between

the VRAM and paging memories.

In essence, the data is overlaid so that at no single address for each

of the 128 VRAMSs 710 does there exist data for mare than one page. This
is achieved by overlaying the 8- or 16-bit pixel data in units of a pixel, or

more preferably units of a patch, as described below.
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Referring to Figure 25, an aligned set of memory cells C(0) to
C(127), one from each VRAM chip, and each 4 bits wide, is shown. In the
32-bit arrangement described above, these cells form an aligned patch of

4 x 4 pixels.

In the 16-bit patch-overlay modification, these cells form two
layers L(0), {{1) of a 8 x 4 patch. L(Q) is provided by C(0) to {3), C(8) to
(11), C(16) to (19).... =(120) to (123). L(1) is provided by the remaining
cells C(4) to (7), C(12) to (15), C(20) to (27).... C(124) to (127). When the
image represented by the two layers of the patch is to be displayed, layer
L(0) is displayed immediately to the left of the layer L{1), as shawn in
Figure 25.

In the 8-bit patch-overlay modification the cells form four layers
L(0) to (3) of 16 pixel x &4 pixel patch. The layers are provided by the cells

as follows:

-Layer L(0) : C(0), C(1), C(8), C(9) ....C(120), C(121)
Layer L(1) : C(2), C(3), C(10), C(11) .... C(122), C(123)
Layer L(2) : C(4), C(5), C(12), C(13) ... C(124), C(125)
Layer L(3) : C(6), C(7), C{14), C(15) .... C(126), C{127)

When the image represented by the four layers of a patch is to be
displayed, the layers are displayed left to right in the order L(0), L(1),
L(2), L(3).

A different address format needs to be employed when using 16-bit
and 8-bit overlayed patches as compared with that used for the more

straight forward 32-bit case, and is given in the table below:
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BITS OF VIRTUAL ADDRESS
32.bit mode 16-bit mode 8-bit mode

X misalignment 0,1 g,1 0,1
Level - 2 2,3

X patch address 2-6 3-7 4-8
X page address 7,8 8 -

X portion of superpage address 9-15 9-15 9-15
Y misalignment 16,17 16,17 16,17
Y patch address 18-22 18-22 18-22
Y page address 23,24 23,24 23,24
Y portion of superpage address 25-31 25-31 25-31

Image ID portion of superpage
address 32-47 32-47 32-47

It will be noted that, between the different modes, there is no
change of identity of the sixteen bits representing the image ID (32-47),
the sixteen bits representing the Y address (16-31), the seven bits
representing the X portion of the superpage address (9-15), and the two X
misalignment bits (0,1). The X patch address is, however, represented by
bits 2-6 for 32-bit mode, by bits 3-7 for 16-bit mode, and by bits 4-8 for
8-bit mode. This makes available bit 2 in the 16-bit mode, and the two
bits 2 and 3 in the 8-bit mode, to provide the level data, and leaves only
one bit 8 in the 16-bit mode, and no bits in the 8-bit mode, for the X page

address.

The patch and page arrangements and the address notations used
for them are represented in Figures 26-29. Figure 26 shows the
arrangement of patches in a single 16-bit page, and Figure 27 shows the
arrangement of 8 pages in one complete 16-bit superpage. Figure 28
shows the arrangement of patches in a single 8-bit page, and Figure 29

shows the arrangement of 4 pages in one complete 8-bit superpage.

A number of complications arise when dealing with 16- or 8-bit



44

data. Firstly, it is necessary to ensure that the X bits of the address are
used in the proper manner. In order to do this, the supply of data from
the virtual address bus 319 to the page table 756, near page edge table
758 and X patch address incrementor 760X as shown in Figure 15A is
modified as shown in Figure 30A. As before, the page Y bits, 23,24 are
fed directly to the page table 756 and the patch Y bits, 18-22 are fed
directly to the patch Y address multiplexers 784Y, etc. However, the X
bits 2-8 (which form the page and patch X addresses in the 32-bit version)
are input to a funnel shifter 812, The shift provided by the funnel shiftzsr
is controlled by a mode select signal MS on line 814 which is generated by
a separate circuit in response to image header information provided prior
to an image or graphics processing operation and which indicates whether
the pixel data is 32-, 16- or 8-bit. The funnel shifter provides a page X
address of up to two bits, a 5-bit patch X address, and the level data L of
up to two bits. The relationship between the inputs to and outputs from
the funnel shifter 812 is shown in the table of Figure 31, and it will be
noted that it corresponds to the required shifting derivable from the table

set out above.

The next complication arises due to the need to present the 16- or
8-bit pixels to the grid processor during reading such that the appropriate
16 or 8 bits of each pixel will be processed and not the remaining
irrelevant 16 or 24 bits. This complication is overcome by supplying,
during a read operation, all 32 bits from a location in the memory to the
grid processor, together with shift data ZSFT in response to which the
grid processor shifts the read pixel data by an amount corresponding to
the ZSFT data, and then processes predetermined bits of the shift data,
e.g. bits 0-15 for 16-bit processing, or bits 0-7 for 8-bit processing.

A further complication arises due to the possibility of a read
patch of data not being aligned with the patch level boundaries. This
complication is overcome in a somewhat similar manner to that described
above with respect to 32-bit patches not being aligned with the patch
boundaries in the memory. To illustrate the above, reference is made to

Figure 32, which shows a 16-bit patch p in which the base pixel is in level
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L = 1 of base patch a at (12,16) and is misaligned (mx,my) = (2,1). The
address of the patch p in its respective page would therefore be (px,py) =
(12,16); L = 1; (mx,my) = (2,1). It will be seen that, because patch p has a
non-zero x misalignment, mx>0, part of the patch is at the other level L =
0, and furthermore because both mx>0 and the level of the base pixel is 1,
part of the patch p is in another aligned patch b having patch address
(13,16). Furthermore, because also the y misalignment my>0, the patch p
also extends into aligned patches ¢ and d at patch addresses (12,17) and
{13,17) respectively and at levels 1 and 0, respectively. The
determination of the further aligned patch addresses b, c, d is performed
by the patch x and y address multiplexers 784 X,Y and the patchy address
increment select tables 780 Y described above with reference to Figure
15 and by a modified form of the patch X address increment select table
780X which is responsive to the level data L and the mode select signal
MS in addition to the X misalignment mx, as shown in Figure 30B. The
modified table 780X provides a 1l-bit output to the X patch address
multiplexer 784X in accordance with the truth table set out in Figure

30C.

The amount of shifting ZSFT required for each pixel in the grid
processor so that each pixel occupies bits 0-15 in 16-bit mode and bits 0-7
in 3-bit mode at the grid processor is determined as follows. It will be
appreciated from viewing the 16-bit example of Figure 32, that the pixels
labelled 6, 7, 10, 11, 14, 15, 2 and 3 will require ZSFT of 16 bits and that
the pixels labelled 4, 5, 8, 9, 12, 13, 0 and 1 require zero ZSFT. This is
specific to the case where the x misalignment mx = 2 and the base level is
1. It will be appreciated that for the general case of a mi-salignment mx,
where 0< = mx < = 3 and a level L = 0 or 1, the required ZSFT for a pixel
at an X location x relative to the base pixel of the patch p will be 0 bits if
mx + x < 4andL =0, orif mx + x >3 and L = 1, and will be 16 bits if mx +

x>3andL=0,orifmx+x<4andL =1.

As a further illustration, reference is made to Figure 33, which
shows an 8-bit patch p which has an address in its respective page of

(px,py) = (12,16); L = 1; (mx,my) = (2,1). In this case, the pixels labelled 6,
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7, 10, 11, 14, 15, 2 and 3 require a ZSFT of 8 bits, and the pixels labelled
4,5,8,9,12, 13, 0 and 1 require a ZSFT of 16 bits. In the general case of
a misalignment mx, where 0<=mx<=3, and a level L where 0<=L<=3, the
required ZSFT for a pixel at an X location x relative to the base pixel of
the patch will be zero bits if mx + x <4andL =0, orif mx + x >3 and L =
3; will be 8 bits if mx + x <4 and L = 1 or if mx + x >3 and L = 0; will be 16
bits if mx + x <4 and L = 2; or if mx + x >3 and L = 1; and will be 24 bits if
xmx+x<4andL =3, ifif mx+x>3and L = 2.

In order to provide the required ZSFT value for each pixel, the
circuit of Figure 15 includes the addition shown in Figure 34, in addition
to being modified as described above with reference to Figures 30 and 31.
The level value L. and also the bits 0,1 of the vitual address for the
misalignment mx are supplied as addresses to four ZSFT tables 318 a to d
implemented using combinational logic. The ZSFT tables 818 also receive
the mode select signal MS on line 814 and have three sections for 32-, 16~
and 8-bit operation which are selected in dependence upon the MS signal.
The ZSFT table 818a supplies the ZSFT values ZSFT(0), (4), (8), (12)
corresponding to data D(0), (4), (8), (12) supplied from the read surface
shifter 742 to the exchange 326; ZSFT table 818b supplies ZSFT (1), (5),
(9), (13) for data D(1), (5), (9), (13); ZSFT table 818c supplies ZSFT (2), (6),
(10), {14) for data D(2), (6), (10), (14); and ZSFT table 818d supplies ZSFT
(3), (D, (11), (15) for data D(3), (7), (11) and (15). It will therefore be
appreciated that the four ZSFT tables 818a to d correspond to pixels
having X addresses of x = 0, x = 1, x = 2 and x = 3, respectively, in the

patch p relative to the base pixel of the patch p.

The table set out in Figure 35A defines the values of Z5FT stored
in the ZSFT tables 818a to d for different input misalignments mx, levels
L and modes (8-, 16- or 32-bit) and in dependence upon the x value for the
particular ZSFT table. As a further example, Figure 358 sets out the
values of ZSFT for the particular ZSFT table 818b (x = 1) for all possible
values of mx, L and mode. In these tables, the Z5FT values of 0, 1, 2, 3

represent a required shift of 0, 8, 16 and 24 bits respectively.
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A further complication which arises when dealing with 8 or 16 bit
data is that the X near-page-edge signal no longer needs to be dependent
solely upon whether or not 4px + mx >124, but is also dependent upon the
mode selected and the level data L. The X near-page-edge signal is set
only if the highest X patch address is designated (i.e. px = 31), and if the
highest level data is designated (i.e. L = 1 in 16-bit mode, or L = 3 in 8-bit
mode), and if the misalignment mx is non-zero. Accordingly, the near-
page-edge table 758 shown in Figure 15A is modified as shown in Figure
36A so as to receive the mode select signal MS on line 814 and the level
signal L, in addition to the patch address (px,py) and the misalignment
{mx,my). The modified table 758 of Figure 36A produces X and Y values
NPEx and NPEy of the 2-bit NPE signal as shown by the table set out in
Figure 368.

As described above, during reading, ZSFT data ZSFT(0) to (15) is
supplied to the crossbar 327 with the pixel data D(0) to (15). Also, as
described earlier with respect to Figure 22, each processor PROC(0) to
(15) is. capable of reading any of the data D(0) to (15). It is therefore
necessary to ensure that the ZSFT data appropriate to the selected pixel
data is supplied each processor. Figure 37 shows a modification to the
crossbar 377 and part of the grid processor arrangement of Figure 22 for a
generalised processor PROC(i) where 0<=i<=15. The modified arrange-
ment is similar to the arrangement of Figure 15 except in the following
respects. Firstly, a 16 x 2-bit ZSFT FIFO 678 is provided to receive
ZSFT(0) to (15). The output of the ZSFT FIFO 678 is supplied to each of
sixteen 16:1 2-bit multiplexers 680(0) to 680(15). The 2-bit outputs of the
ZSFT multiplexers 680(0) to 680(15) are supplied to the respective
processors PROC(0) to PROC(15) as signals ZSFTY(0) to (15). The ZSFT
muliplexers are controlled by the same logical control signals CO(0) to
CO(15) as the associated data and write enable multiplexers. It will
therefore be appreciated that each processor receives the appropriate
ZSFT data for the pixel data which is selects and can then shift the
received pixel data by 0, 8, 16 or 24 bits in dependence upon the value 0,
1, 2 or 3 of the received ZSFT data so that the received pixel data then
always occupies the first 8 bits of the processor's input register in 8-bit
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mode, or the first 16 bits of the input register in 16-bit made.

It will be appreciated that the arrangement of the multiplexers
and FIFOs shown in Figure 37 may be modified in a similar manner to the
modification of Figure 22 which is described above with reference to

Figures 46 and 47.

A further complication which arises when dealing with 16-bit or
B-bit pixel data is that, during writing to the memory 700, only the
appropriate 16 or 8 bits should be written, and the remaining 16 or 24
should not be overwritten. For example, referring to Figure 32, during
writing of the patch p as shown, the memory cells which are to store the
16-bit pixels labelled 6, 7, 10, 11, 14, 15, 2 and 3 need to have bits 156 to
31 written, with writing of bits 0 to 15 disabled, and the memory cells
which are to store the pixels labelled 4, 5, 8, 9, 12, 13, 0 and 1 need to
have bits 0 to 15 written, with bits 16 to 31 being disabled. As a further
example, referring to Figure 33, the memory cells which are to store the
8-bit pixels labelled 6, 7, 10, 11, 14, 15, 2 and 3 need to have bits 8 to 15
written, with bits 0 to 7 and 16 to 31 being disabled, and the memory cells
which are to store the pixels labelled 4, 5, 8, 9, 12, 13, 0 and 1 need to
have bits 16 to 23 written with bits 0 to 15 and 24 to 31 disabled.

In order to deal with this complication, the circuit of Figure 40 is
employed, which provides partial write enable signals PWEa to PWEd for
the memory banks having x addresses of bx = 0, 1, 2 and 3, respectively.
The circuit of Figure 40 comprises four PWE tables 822a to d for the
values bx = 0 to 3, respectively. Each PWE table 822 is provided with the
bits 0,1 of the virtual address on bus 319 indicating the X misaligniment
mx, the value L from the circuit 820 of Figure 30, and the mode select MS
signal on line 814. The PWE tables contain the data as set out in Figure
38 and therefore a table having a particular value of bx can provide the 4-

bit value PWE in dependence upon the input values of mx, L and MS.

In addition to adding the circuit of Figure 40, the connections to
the X latch groups 707(0) to (15) (see Figures 8 and 14) are modified as
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shown in Figure 41. The column address strobe CAS signal is still ANDed
with the write enable signals WE"(0) to (15) to produce the signals CAS(0)
to (15) and the addresses A(0) to (15) are also applied to respective groups
707(0) to 707(15) of X latches. The various bits of the partial write enable
signals PWE(a) to (d) are connected to write enable inputs of the X latches

for the cells 0 to 127 as follows:

PWE bits Cells
PWE(a) bit 0 0, 1, 32, 33, 64, 65, 96, 97
bit 1 2,3, 34, 35, 66, 67, 98, 99
bit 2 4,5, 36, 37, 68, 69, 100, 101
bit 3 6,7, 38, 39, 70, 71, 102, 103
PWE(b) bit 0 8,9, 40, 41, 72, 73, 104, 105
bit 1 10, 11, 42, 43, 74, 75, 106, 107
bit 2 12, 13, 44, 45, 76, 77, 108, 109
bit 3 14, 15, 46, 47, 78, 79, 110, 111
PWE(c), bit 0 16, 17, 48, 49, 80, 81, 112, 113
bit 1 18, 19, 50, 51, 82, 83, 114, 115
bit 2 20, 21, 52, 53, 84, 85, 116, 117
bit 3 22, 23, 54, 55, 86, 87, 118, 119
PWE(d) bit 0 24, 25, 56, 57, 88, 89, 120, 121
bit 1 26, 27, 58, 59, 90, 91, 122, 123
bit 2 28, 29, 60, 61, 92, 93, 124, 125
bit 3 30, 31, 62, 63, 94, 95, 126, 127

It will therefore be appreciated that, during writing in the 8-bit or
16-bit mode, only the relevant memory cells are write enabled, and the

remaining cells are disabled.

It will be recalled that, in 8-bit mode, the data is processed as the
first 8 bits of their 32-bit capacity by the processors, and in 16-bit mode
as the first 16 bits. Therefore, in order to ensure that, upon writing, the
processors can write to bits 8 to 31 of the memory in 8-bit mode, or bits

16 to 31 of the memory in 16-bit mode, prior to writing, each processor
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which is to write duplicates, in 8-bit mode, the pixel data of locations 0 to
7 in its output register at bit locations 8 to 15, 16 to 23 and 24 to 31 of
the output register, and duplicates, in 16-bit mode, the pixel data of bit
locations 16 to 31. Accordingly, when the enabled bits of the pixel data

are written to the memory, the complete data for the pixel is written.

FLAGGING OF MODIFIED PAGES

Referring to Figure 42, it is convenient that a predetermined
section 830 of the VRAM 700 is always mapped to the monitor 40, and for
simplicity the section will be considered between page addresses (0,0} and
(7,7) giving a total mapped area of 8 x 8 x 31 x 31 x 4 x 4 = 1 Mpixel. It is
also convenient that images are rendered in another section of the VRAM
700, and for simplicity the section 832 between pages addresses (8,8) and
(15,15) will be considered. Then, periodically, the data of the rendering
section 832 is copied to the monitoring section, for display on the
monitor. It will be appreciated that the data for some pixels may not
change between one copying operation and the next, and indeed it can
arise .that no pixel data changes between two successive copying
operations. If these unchanged pixels are unnecessarily copied from the
rendering section to the monitoring section, then the performance of

system is impaired.

In order to overcome this problem, it may be considered expedient
to flag each pixel which is modified during a rendering operation and to
copy only those pixels which have been flagged. However, this would
require an inordinate amount of memory to store the fiags and would
require an excessive amount of flag setting, testing and resetting, which
would degrade the system performance. In the arrangement described
below, therefore, pages which have been changed, or dirtied, in a
rendering operation are flagged, and only the flagged dirty pages are

copied to the monitoring section of the memory.

It will furthermore be appreciated that, if a page of pixel data is

copied from the paging memory to the VRAM, and that if that page is not
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modified, or dirtied, in the VRAM, then there is no need to copy that page
of data back to the paging memory when the time comes to replace that
page in the VRAM with a different page from the paging memary.
Accordingly, in the arrangement described in detail below, a flag is set
when a page is dirtied in any rendering operation while it is in the VRAM,
and when the page is to be replaced, it is copied back to the paging

memory only if the flag is set.

It should be noted that pixel data in the VRAM is processed in
patches and that a non-aligned patch may extend across a page boundary.
Therefore the arrangement described below also includes for each page,
dirty flags for the pages B, C and D, as shown in Figure 11, to the right,
above and the right and above, of the page A in question. It should be
noted that if page A has a virtual page address (PX,PY) then pages B, C
and D have virtual page addresses (PX + 1, PY), (PX, PY + 1) and (PX + 1,
PY + 1), respectively.

Referring to Figure 43, a dirty-page table 834 is provided by a 2K
SRAM which is addressed by the 7-bit superpage identification on line 767
from the CAM 754, and the 2-bit page X address and 2-bit page Y address
from the virtual address bus 314 on lines 768X,Y. The eight data bits at

each location in the table 834 are assigned as follows:
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bit 7 Page A dirty swap dsA
bit 6 Page B dirty swap dsB
bit 5 Page C dirty swap dsC
bit 4 Page D dirty swap dsD
bit 3 Page A dirty render drA
bit 2 Page B dirty render drB
bit 1 Page C dirty render drC
bit O Page D dirty render drD

Bits 0 to 2 and 4 to 6 of the dirty page data are supplied to
respective OR gates 836 (0) to (2) and 836 (4) to (6). At gates 836 (6) and
(2), the signals dsB and drB3 are ORed with the near-page-edge X signal
NPEX. At gates 836 (5) and (1), dsC and drC are ORed with the near-
page-edge Y signal NPEY, and at gates 836 (4) and (0), the signals dsD and

drD are ORed with an ANDed form of the near page edge X and VY signals

on line 774. The six bits output from the OR gates, together with a pair
of high bits, representing the new signals dsA and drA, are then passed via
a register 838 for writing back into the dirty page table 834 under control
of a dil:ty pages write-enable signal DWE on line 840. The 8-bit data line
of the dirty page table 834 is also multiplexed onto the 48-bit virtual
address bus 319, and the address processor is operable (a) to reset the
appropriate dirty swap bits and set the appropriate dirty render bits when
a new page is swapped from the paging memaory to the VRAM, (b) to set
the appropriate dirty swap bits and dirty render bits for a page when
rendering operation is carried out on that page, (c) to test the appropriate
dirty swap bits for a page when that page is to be replaced by a different
page in the VRAM, and (d) to test the appropriate dirty render bits for a
page when that page is to be copied from the rendering section to the

monitoring section of the VRAM and to reset the dirty render bits,

An example of the operation of the dirty page arrangement will now
be described with reference to Figures _42 and 43, the table of Figure 44
and the flow diagrams of Figure 45. Suppose that 4 pages P, Q, R, S of
pixel data at (X,Y) page addresses (0,0), (1,0), (2,0), (3,0) in the same

superpage are copied into the VRAM at contiguous page addresses (8,8),
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(8,9), (8,10), (8,11), and that the superpage has an identification code of 25
in the CAM 754, Suppose also that the rendering section 832 between
page addresses (8,8) and (15,15) in the VRAM is copied over to the
monitoring section 830 between pages addresses (0,0) and (7,7) in the
memory. Suppose also that three rendering operations are carried out in
the rendering section, the first rendering operation affecting page Q, the
sgcond operation affecting page P and including a misaligned patch whicih
extends into page Q, and the third operation affecting pages Q and S; the

pages P to S then being replaced by four other pages.

The dirty page data i‘or pages P to S will be located at addresses 400
(= 25 x 16 + 0 + 0), 401, 402 and 403 in the dirty page table 840. Referring
to Figures 44 and 45A, when page P is copied from the paging memory
into the VRAM, it is treated as page A for the purposes of Figure 45A. In
step 842 bit 7 (dsA) of the dirty flag for page A is reset and bit 3 (drA) of
the dirty flag for page A is set. In step 844, the address processor 310
determines whether there is a page B' stored in the physical memory, that
is the page to the left of page A. If so, in step 846, bit 6 (dsB) and bit 2
(drB) of the dirty flag for page B' are reset and set respectively. Similar
steps 8h48, 850 and 852, 854 are carried out for pages C' and D', that is
pages below and to the left and below of page A in the paging memory.
Then, in step 856, page A is copied from the paging memory of the VRAM.
The process of Figure 45A is then repeated for pages Q,R & S. It will
therefore be appreciated that the dirty flags for pages P to S attain the

state as shown in column 902 of Figure 44.

The monitoring section 830 of the VRAM is then to be updated, the
address processor 310 carries out the process shown in Figure 45B. In the
loop of steps 858 and 860, all of the pages of the rendering section which
may possibly need to be copied are selected one-by-one. In step 862, bit 3
(drA) of the selected page (A) is tested, and if set page A is copied to the
monitoring section in step 864, and in step 866 bit 3 (drA) for page A, bit
2 (drB) for page B' to the left of page A, bit 1 (drC) for page C' below
page A and bit 0 (drD) for page D' to the left and below page A are reset.
In step 868, bit 2 (drB) of page A is tested, and if set page B relative to
page A is copied to the monitoring section in step 870, and in step 872 bit
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2 (drB) of page A and bit 3 (drA) for page B to the right of page A, bit O
(drD) for page C' below page A, and bit 1 (drC) for page E below and to
the right of page A are reset. Somewhat similar steps 874 to 884 are
performed for bits 1 and O (drC, drD), as shown in Figure 45B, and if set
the respective page C or D is copied to the monitoring section and various
bits are reset as shown. It will therefore be appreciated that when this
process is carried out with the dirty flags in the state as shown in column
902 of Figure 44, all four pages P to S are copied to the monitoring
section of the VRAM, and the dirty flags attain the states as shown in

column 904,

In the first rendering operation, page Q only is modified, and it will
therefore be appreciated that the cicuit of Figure 43 serves to set bit 7
(dsA) and bit 3 (drA) for page Q, as shown in column 906 of Figure 44.

The monitoring section of the VRAM is again updated in
accordance with the process of Figure 45B. The only dirty render flag bit
set is drA for page Q, and therefore only page Q is copied, and the bit drA

for page Q is reset, as shown in column 908.

In the second rendering operation, page P is modified, and also a
misaligned patch in page P modifies page Q. As a result, bits 7, 6, 3 and 2
(dsA, dsB, drA, drB) of the page P dirty flag are set, as shown in column
910. Because bits drA and drB for page P are set, pages P and Q are
copied to the monitoring section by the process of Figure 458, and bits 3

and 2 (drA, drB) for page P are then reset, as shown in column 912.

In the third rendering operation, pages Q and S are modified. As a
result, bits 7 and 3 (dsA, drA) of the page S flag are set; bit 3 (drA) of the
page Q flag is set, and bit 7 (dsA) of the page Q flag remains set, as shown
in column 914. Because bits 3 (drA) of pages Q and S are set, pages QQ and
S are copied to the monitoring section of the VRAM, and these bits are

then reset, as shown in column 916.

When the pages P to S are to be replaced, the address processor

performs the process of Figure 45C for each selected page to be replaced.
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In step 886, a copy flag is reset. Then in step 888, it is determined
whether bit 7 (dsA) for page A is set, and if so in step 889 that bit is reset
and the copy flag is set. Steps 888 and 889 are then repeated as steps 890
to 895 for bits 6, 5 and 4 (dsB, dsC, dsD) respectively of the dirty page
flags for pages B', C' and D' relative to page A. Then in steps 896 and
897, if the copy flag has been set, page A is copied to the paging memory.

Referring back to column 916 of Figure 44, it will be appreciated
that as a result of performing the process of Figure 45C for page P, this
page is copied to the paging memory because dsA is set for page P (step
888). This is then reset (step 889). Page Q is copied to the paging
memory because dsA is set for page Q (step 888). Even if it were not,
page Q would be copied because dsB is set for page P (step 890). The flag
bits dsA for page Q and dsB for page P are also reset (steps 889 and 891).
Page R is not copied because none of dsA for page R (step 888), dsB for
page Q (step 890), and dsC and dsD for the pages below, and below and to
the left, of page R (step 892 and 894) are set. Page S is copied because
dsA is set for page S (step 888). This bit is then reset (step 889).
Accordingly, pages P, R and S are copied back to paging memory, and the

flags attain the status shown in column 918 of Figure 44,

CONDITIONAL PROCESSING

The processors 606(0) to (15) of the grid processor 312 described
above are arranged basically as a SIMD array, SIMD standing for 'Single
Instruction - Multiple Data' and meaning that all of the processors receive
the same instruction and apply it to their own particular data elements.
This can be an efficient and simple way of obtaining good performance
from a parallel-processing machine, but it does assume that all of the
data elements need exactly the same instruction sequence. However, the
processors are preferably arranged, as described below, to be able to deal

with conditional instructions. Further detail of such an arrangement is

shown in Figure 49,

Figure 49 shows three of the processors PROC 0, PROC i and
PROC 15, with PROC i being shown in greater detail, their PRAMs 322(0),
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(i), (15), the microcode memory 308 and the processing section broadcast
bus 323. The microcode memory 308 supplies microcode instructions of
about 90 bits to each respective instruction decode logic (IDL) circuit 100
in each of the processors. The same microcode instruction is supplied to
each processor. The instruction decode logic is provided by a gate array
which decodes the 90 bit instruction to provide about 140 control bits to
various elements in the respective processor including an arithmetic logic
unit ALU 102, a 32-bit pixel accumulator (pa) 104, a 1-bit condition
accumulator (ca) 106 and a status select circuit 108 which is provided by a
gate array. The ALU 102 connects with the data bus D' via the exchange
326 to the VRAM 700, the pa 104 and a stack of pixel registers p0 to pn in
the PRAM 322, The main data paths for pixel data are from the data bus
D' to the ALU 102 and the pa 104; from the pa 104 to the ALU 102, the
data bus D' and selected pixel registers p0 to pn; from the ALU 102 to the
data bus D' and the pa 104; and from selected pixel registers p0 to pn to
the ALU 102, Various status bits are output from the ALU 102 to the
status select circuit 108, such as a "negative" bit, a "zero" bit and an
"overflow" bit. Some of these status bits are also fed out externally.
Also, external status bits such as the EN flag (see Figures 22, 23) are fed
in to the status select circuit 108. Under control of the IDL 103, the
status select circuit 108 can select a respective status bit and output it to
the ca 106. The ca 106 is associated with a stack of condition registers c0
to cn in the PRAM 322, The ca 106 also connects to the IDL 100 and
provides the write enable output WE' of the processor. The main paths far
condition and status bits are: from the ALU 102 to the status select
circuit 108 and to the external outputs; from the external inputs to the
status select circuit 108; from the status select circuit 108 to the ca 106;
from the ca 106 to the condition stack registers c0 to cn, the write enable
output WE' and the ALU 102; and from the condition stack registers c0 to
cn to the ca 106.

The 1l-bit input from the ca 106 to the IDL 100 is important. This
input condition bit enables the IDL 100 to modify the control outputs from
the IDL 100 in dependence upon the value of the condition bit, and
accordingly the arrangement provides direct support for microcode

instructions from the microcode memory 308 to the IDL 100 which in

72
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high-level language would be represented by, for example, if (condition)
then (operation X) else (operation Y). As an example, reference is made
to Figures 50A to 50D. Suppose that the VRAM 700 contains three
images: image A of Figure 50A which in this simple example is a
rectangle of horizontal lines; image B of Figure 50B which is a rectangle
of vertical lines; and image C of Figure 50C which is a mask in which the
upper-left and lower-right corners are black (say pixel values of 0) and the
rémainder is white (say pixel values of (232.1). In the example, it is
desired to combine images A and B using image C as a mask to form an
output image D such that image A appears where the mask image Cis
black and image B appears where the mask image C is white. The process
performed by the processors under control of the microcode instructions
from the microcode memory 308 to perform this operation can be

considered, using high-level pseudo-language, to be as follows:

1, For each patch (x,y) in the rectangle:

2. If pixel in rectangle, ca = 1, else ca = 0Z.
3. c0 =ca

4, pa = A(x,y)

5. p0 = pa

6. pa = B(x,y)

7. pl = pa

8. pa = C(x,y)

9. ca = zero-status (pa)

10. If ca = 1 then pa = p0 else pa = pl
1]. ca =c0

12. D(x,y) = pa

13. Next patch

In the above, steps 1 and 13 set up a loop for each patch (x,y)
having its origin in the rectangle. For each patch, each processor PROC O
to PROC 15 will process a different pixel in the patch. In step 2 a test is
made to determine whether the particular processor's pixel in the patch is
in the rectangle, and if so the ca 106 is set, otherwise it is reset. This
value of ca will form the write-enable signal WE'. In step 3, this value

which is stored in the ca 106 is put onto the condition stack in c0 and an
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associated condition stack pointer is modified accordingly. In step 4, the
value of the processor's pixel in the current selected patch in image A is
loaded into the pa 104, and in step 5 is transferred to the p0 register.
Similarly in step 6, the value of the processor's pixel in the current
selected patch in image B is loaded into the pa 104, and in step 7 is
transferred to the pl register. In step 8, the value of the processor's pixel
in the current selected patch in the mask image C is loaded into the pa
lb&, and then in step 9 the zero status bit of the ALU 102 is selected by
the status select circuit 108 and is loaded into the eca 106. Thus, if the
pixel in the mask image is black, the ca 106 value becomes 1, and if it is
white, the ca 106 value becomes 0. The next step 10 is a conditional
instruction "If ca = 1 then pa = p0 else pa = pl". The IDL 100 madifies
this instruction in dependence upon the value in the ca 106 so that it
becomes simply "pa = p0" or "pa = pl" and the modified instruction is used
by the processor. In step 11, the signal which was put onto the condition
stack at c0 in step 3 is pulled off the stack and placed in the ca 106 in
order to constitute the write enable signal WE' and the condition stack
pointer is modified accordingly. Lastly, in step 12, the pixel value in the
pa 104 is transferred out to the image D at the appropriate pixel position

for the processor in the current selected patch.

As a result of the above operations carried out by the processors on
the pixels of all of the patches in the rectangle, an image D is formed as

shown in Figure 50D.

In the above simple example, the condition stack ¢0 to cn was used
simply to store the initially generated value which will form the write
enable signal, and only one register in the stack was empldoyed. By virtue
of the provision of more than one register in the condition stack, nesting

of the conditional instructions is permitted.

PAGE FILING SYSTEM

As described above, pages of data can be swapped between the
VRAM 700, on the one hand, and the paging memory comprising the
DRAM 304 (Figure 4), and the paging RAM 504 and fast disk 510 {Figure

af
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5), on the other hand. There now follows a description of how pages are
handled as between the VRAM and the paging memory, with reference to

the system diagram of Figure 51.

The total system is based on a distributing operating system
denoted by the triangle 200. Part of this system constitutes a host page
manager module 202 running on the processor 10 of the host computer.
Another part constitutes a front-end page manager module 204 running on
the 1960 control processor 508 of the front-end board 22 and handling the
paging RAM 504 and fast disk 510. A further part constitutes a renderer
page manager module 206 running on the i960 control processor 314 of the
renderer board 16 and handling the VRAM 700 and the DRAM 304. Each
of these page manager modules 202, 204, 206 can make a request R to any
other module for a page P of image data specified by the virtual page
address (VPA) consisting of the following bits of the virtual address:

32-47 Image ID component
25-31 Y superpage component
23,24 Y page component

9-15 X superpage component
7,8 X page component

In response, the module to which a request R is made determines
whether it is responsible for the requested page, and if so it transfers the
page of data P and responsibility therefor to the requesting module, but if

not it indicates to the requesting module that it is not responsible for the

requested page.

To give two examples of how the filing system would be used,
suppose that the page fault table 794 (Figure 21) of the renderer has
generated a page fault in respect of a particular page, this page fault is
handled by the renderer page manager module 206, Firstly, the module
206 checks with itself whether the required page is stored in the renderer
DRAM 304, and if so swaps the page of data into the VRAM 700. If not,
the module 206 checks with ine front-end page manager module 204

whether it is responsible for the page, and, if so, the page of data is



60

swapped from the RAM 506 or disk 510, as appropriate, into the VRAM
700. If the front-end module 204 is not responsible, the renderer module
206 asks the host module 202 for the page of data, which is then swapped
into the VRAM 700. As another example, suppose that the system is to be
closed down and a complete image is to be saved to disk 510. Such saving
of an image is handled by the front-end module 204. For each page in the
image the module 204 firstly checks with itself whether it is responsible
for that page. If it is and the page is already stored on the disk 510, it
stays there, and if the page in question is stored in the front-end RAM 506
the data of that page is copied to the disk 510. If the module 204 is not
responsible, it checks with the renderer module 206 whether the renderer
module has responsibility for the page, and, if so, the page of data is
copied from the VRAM 700 or DRAM 304 of the renderer to the disk 510.
If not, the front-end module 204 requests the page in question from the

host module 202, and the page of data is transferred to the disk 510.

In order to keep track of the pages for which they are responsible,
the front-end module 204 and the renderer module 206 each maintain a
table 208, 210 containing a list of the virtual page addresses of the pages,
and aga-inst each address an indication of the location of that page. For
example, the location data in the front-end table 208 would comprise an
indication of whether the page is in the RAM 506 or on the disk 510. If in
the RAM 506, the physical address of that page in the RAM would be
included, and if on the disk 510, an indication of the location on the disk
would be included. The location data for each virtual page address in the
renderer table 210 may contain an indication of whether the page is in the
DRAM 304 or the VRAM 700 and the physical address of the page in the
respective memory. In the case of a page in the VRAM 700, the physical
address of the page need not necessarily be kept in the table 210, because
this address can be determined by the module 206 from the CAM 754 and
the page table 756 (Figure 15A) of the address translator 740, and indeed
it 1 not necessary for the table 210 to include the virtual page address of
the pages in the VRAM 700, because the module can check whether a page
is present by referring to the CAM 754 and page table 756 and testing

whether or not a page fault is generated.



61

An important feature of the filing system, in the preferred
embodiment, is that the host page manager module 202 is not responsible
for the storage of whole pages of data. The host module 202 is used when
an image is initially created. The image is specified by the host processor
10 as being of a particular dimension, size, bit width (see Figures 25 to 41)
and background colour. In response, the system software 200 allocates to
that image the next available image ID (bits 32 to 47 of the virtual
address). Until any rendering operations or copying operations are carried
out on the image, the colour of every pixel in the new image is the
background colour, and the host module 202 therefore merely sets up a
table 212 containing the virtual page address of the or each page required
in the new image, and against the or each page address the table 212
contains the 32-bit background colour of the image. There is no need for
this 32-bit word of data for the page to be expanded into a full page of
data, for example 16k words, until the page is transferred to the control
of one of the other modules 204, 206. Accordingly, when one of the other
modules requests a page from the host module 202, the host module 202
determines from its table 212 the 32-bit background colour of that page,
and then repeatedly sends that 32-bit word to the requesting module, once

for each pixel in the page.

In the above description, it is assumed that only one of the modules
202, 204, 206 has responsibility for any given page at any given time and
that when a page of data is transferred from one module to another, the
sending module cancels the entry for that page from its table 212, 208,
210 and that the receiving module makes an entry in its table for the
page. It will be appreciated that the dirty page-swap scheme described
with reference to Figures 42 to 45 above will not be effective if the filing
system operates in this way, because when, for example, a page is
swapped from the disk 510 to the VRAM 700, the entry for that page is
cancelled from the table 208 of the front-end module 204, and so even if
the page is not dirtied in the VRAM 700, it would be necessary to swap all
of the data-elements of the page back to the disk 510.

The filing system described above may be modified so that it waorks

in conjunction with the dirty page-swap scheme, by including against each
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virtual page address in each table 208, 210, 212 a bit indicating whether
that page is current. The operation of each module 202, 204, 206 is then
modified so that when a module has responsibility for a page, the current
bit is set to 1 and when responsibility is transferred to a different module
the current bit is reset to zero. Furthermore, when a page which has not
be dirtied is to be swapped out of the VRAM 700, the renderer module 206
polls the other modules 202, 204 to check which has an entry in its table
fo;‘ the page with the current bit reset, and instructs that module to set
the current bit, obviating the need to copy all of the data-elements for

that page from the renderer module to the other module.

In the above arrangement, a single word representing the image
background colour is stored for each new image. Rather than storing a
single word, a few words may be stored, for example as a patch, and
representing, for example, a pattern which is to be repeated in the new

image.

MODIFICATIONS AND DEVELOPMENTS

Although preferred embodiments of the invention have been
described above, it will be appreciated that many modifications and
developments may be made within the scope of the invention. To take a
few examples, the non-split-level patches, pages and superpages described
above are two-dimensional and have a pixel resolution of 32-bits, a patch
size of 4 pixels x & pixels, a page size of 32 patches x 32 patches, and a
superpage size of 4 pages x 4 pages. It will be appreciated that the
system may be configured so as to operate for example with one- or
three-dimensional patches, and/or pages and/or superpages, with patches,
pages and superpages of different sizes, and with different pixel
resolutions.  Furthermore, the system may be arranged to operate
selectably in different configurations through appropriate use of funnel
shifters, switches and the like. In the above description, examples of
specific sizes of the memories have been given, but it will be appreciated
that other sizes may be used. In the split'level pateh system, division into
two and four in the X direction has been illustrated, but it will be

appreciated that other divisors may alternatively or selectably be



63

employed, that division in other directions may alternatively or selectably
be employed, and that division on a pixel basis rather than a patch basis
may alternatively or selectably be employed. The dirty page facility
described above deals with copying between the rendering section and
monitoring section of the VRAM and also with swapping between the
VRAM and the paging memory, but it will be appreciated that either of
these two features may be employed without the other. In the page filing
S)"-stern, the page manager modules are run on specific processors, but it
will be appreciated that each page manager module may be run on

different processors, and that the modules may be combined.
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Line Tracking and Line Drawing
Figure 52 shows how a line is mapped onto a sequence of patches

52004, 5200B, etc. As shown in the code below, this step is performed by
a calculation which carries a cumulated running error value from patch to
patch.

This calculation has some superficial resemblance to Bresenham’s

"algorithm. However, it should be noted that the successive patches, in the

presently preferred embodiment, are separated by a relative displacement
which is purely vertical or purely horizontal. Thus, if the line runs out of
the top of one patch, the next patch accessed will be directly above the
preceding patch. This ensures that sufficient patch accesses will be
performed that no pixels are missed.

As shown below, the error measure is preferably scaled up, to avoid
any necessity for performing repeated divide operations. However, for
clarity, this scaling factor will be ignored in the following explanation.

The example shown illustrates an example with a line slope slightly less
than 45°. The starting remainder, at the left side of patch 52004, is
equivalent about to 1.5 pixels. By performing a simple addition (as in
Bresenham’s algorithm), it is found that the next remainder term would be
about 4.5 pixels. Thus, the next patch selected (patch 5200B) is vertically
aligned with patch 5200A. The initial remainder for patch 5200B is about
—2.5 pixel, and the remainder at the end of patch 5200B is about 0.5 pixels.
The initial remainder for patch 5200C is about 0.5 pixel, and the remainder
at the end of patch 5200C would be about 4.4 pixels. Thus, again, a
vertical move is made, to patch 5200D (which is only partly shown).

It should be noted that the individual pixel positions are ignored in this
computation. That is, the 16 individual pixels of patch 5200A are shown
in Figure 52 merely to help identify the relative positioning of the patches.

Figure 53 shows how, within each accessed patch, the correct pixels are
rendered. Two linear equations are solved to define the "top" and "bottom"
of the range permissible for drawing the line. The error term carried in
from the patch-by-patch tracking algorithm defines the entry point for these
two line-drawing borders. Each of the 16 pixel positions (x,y,) in the
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accessed patch is rendered if and only if it falls within these two linear
equations. This procedure is somewhat computationally intensive, but is
preferably performed in parallel (by the multiple grid processors).

The following source code, in the C language, provides a specific
example of use of some of the innovative teachings herein as presently

contemplated, in combination with the hardware architecture described

‘above. (Note that this source code, in its present version, simulates the

operation of the complete hardware system. Thus, this version of the
source code can be used with other systems as well.) However, of course,
a large variety of other implementations could be used instead. Note also
that, in the following example, much of the code is simply taken up by a
test to determine which quadrant and octant current patch is in.

/* s ok ke sfe 3k ok b sk 3 3k o 2k 3 3k 3k ok ok 3 ok s e o e ok 3k 3 o 2k 3 ok ke ok ke ok ok ok ok 3k ok K */

/* NAME : pipline2.c */
/* This component simulates drawing to the pipre screen. */
/* **4‘**************************************/

/* "InClude" Commands *********************/
#include <sys/types.h>
#include <pixrect/pixrect_hs.h>
#include <stdio.h>
#include <math.h>
#include "lib.h"

/* "Deﬁne" Commands **********************/
#define OCT0 45 O
#define OCT45_90 1
#define OCT90_135 2
#define OCT135_180 3
#define OCT180_225 4



10

15

20

25

30

DPS-106 66

#define OCT225_2705
#define OCT270 3156
#define OCT315_360 7
#define QUADO 90 0
#define QUAD90_180

#define QUADI180 270

#define X_MAJOR
#define Y_MAJOR

1
2
“#define QUAD270 360 3
0
1

/* DeClarations **************************/

static INT Quadrant,Octant,Major;
static INT color[16] =

.. {255,255,255,255,

....... 255,255,255,255,

....... 255,255,255,255,

....... 255,255,255,255 };

static_ IMAGE screen;

main()

{
. POINT . startend;

. double angle;

- A

..... POINT size;
..... sizex = 800; size.y = 800;
..... screen = create_image(&size,0);
-}
. startx = 250;
. starty = 250;

. for(angle = 0.0; angle < 20; angle += 0.05)

- q
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startx = (250 + S*angle) + 4800 * sin(angle) / (angle + 20);
start.y = (250 + 5*angle) + 4000 * cos(angle) / (angle + 20);
end.x = (200 + 5*angle) + 2000 * sin(angle + 2) / (angle + 20);
endy = (200 + S5*angle) + 3400 * cos(angle + 2) / (angle + 20);
DrawLine(screen,&start,&end);

.....
.....
-----
.....

DrawLine(image,start,end)
IMAGE image;
POINT  *start;
POINT *end;
{
.. POINT delta; ,
/* First find the quadrant delta x delta y etc. */
. deltax = end->x - start->x;
. delta.y = end->y - start->y;
.. if(deltax < 0)
o q
..... if(delta.y < 0)

....... Quadrant = QUAD180_270;

....... if(-deltax > -delta.y)

{Octant = OCT180_225; Major = X_MAJOR;}
....... else

{Octant = OCT225_270; Major = Y_MAIJOR;}

..........

..... }

..... else

..... {

....... Quadrant = QUAD90_180;
....... if(-deltax > delta.y) .

{Octant = OCT135_180; Major = X_MAJOR;}

....... else
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.......... {Octant = OCT90_135; Major = Y_MAJOR;}
..... }
.}
. else
- A
..... if(delta.y < 0)
..... {
....... Quadrant = QUAD270 360;
....... if(deltax > -delta.y)
.......... {Octant = OCT315_360; Major = X MAJOR;}
....... else
.......... {Octant = OCT270_315; Major = Y_MAJOR;}
..... }
..... else
..... {
....... Quadrant = QUADO_90;
....... if(deltax < delta.y)
.......... {Octant = OCT45_90; Major = Y_MAJOR;}
..... .. else
.......... {Octant = OCT0_45; Major = X MAJOR;}
..... }
-}

. . switch(Octant)
o q
..... case OCTO 45 :

BOOL mask[4][4];
POINT addr;

INT error;

INT proc_error[4][4];
INT lin_end[4][4];
INT xy;

[* for Bresenham'’s algorithm */
/* for line end */
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/* Initialize the address used by the address processor */
/¥ to access the framestore. */

....... addrx = start->x;

....... addr.y = start->y;

/* Initialize the Bresenham’s error for each processor in */
/* the array. */

....... for(y=0; y<4; y++)

----------

for(x=0; x<4; x++)

.. proc_errorfy][x] =

....... deltax *y * 2 - deltay *x * 2;

/* Initialize the linear equation used to find the end */
/* of the line in the grid array. */

....... for(y=0; y<4; y++)

..........

----------

..........

..........

..........

----------

----------

for(x=0; x<4; x++)

.. lin_end[y][x] = deltax - x;

/* Process patches until the end is reached. */

/* Calculate the mask required and the end flag too. */
for(y=0; y<4; y++)

.. for(x=0; x<4; x++)

oA
/* Test for the end && top && bottom of the line */
..... if((lin_end[y][x] > 0) &&
........ (proc_errorfy][x] - deltax <= 0) &&
........ (proc_error[y][x] + deltax > 0))
........ mask[y][x] = TRUE;
..... else mask[y][x] = FALSE;
..} '
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.......... if(lin_end[3][3] < 0) break;

/* Now use a modified tracking algorithm */
.......... error = proc_error[0][0] + 7 * deltax - 8 * delta.y;

.......... if(error > 0)

............ addrx += 4;
............ for(y=0; y<4; y++)
............... for(x=0; x<4; x++)

10 oo proc_error[y][x] -= 8 * delta.y;
.................. lin_end[y][x] -= 4;

s addry += 4;

............ for(y=0; y<4; y++)
............... for(x=0; x<4; x++)
.................. proc_errorfy][x] += 8 * deltax;

...... . BOOL mask[4][4];
....... POINT addr;
....... INT error;
....... INT proc_error[4][4];
30 /* for Bresenham’s algorithm */
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....... INT lin_end[4][4};
[* for line end */
....... INT xy;
/* Initialize the address used by the address processor */
5 /* to access the framestore. */

....... addr.x = start->x;
e addr.y = start->y;
/* Initialize the Bresenham error for each processor in */
/* the array. */
10 ....... for(y=0; y<4; y++)
.......... for(x=0; x<4; x++)
............ proc_error[yl[x] =
............... deltax *y * 2 - deltay * x * 2;
/* Initialize the linear equation used to find the end */
15 [* of the line in the grid array. */
....... for(y=0; y<4; y++)
.......... for(x=0; x<4; x++)
TR lin_end[y][x] = deltay - y;

/* Process patches until the end is reached. */

20 ....... for(;;) {

/* Calculate the mask required and the end flag too. */
....... for(y=0; y<4; y++)
.......... for(x=0; x<4; x++)

25 /* Test for the end && top && bottom of the line */
............ if((lin_end[y][x] > 0) &&
............... (proc_error[y][x] - deltay <= 0) &&
...... e.e.v.... (proc_error[y][x] + deltay > 0))
............... mask[y][x] = TRUE;
30 ... else mask[y][x] = FALSE;
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....... if(lin_end[3][3] < 0) break;

....... error = proc_error[0][0] + 8 * deltax - 7 * delta.y;

/* Now use a modified tracking algorithm */

....... if(error > 0)

i addrx += 4;

.......... for(y=0; y<4; y++)

for(x=0; x<4; x++)

.......... addry += 4;
.......... for(y=0; y<4; y++)

............

------------

-----

.....

............

............

............

for(x=0; x<4; x++)

BOOL mask[4][4];
POINT addr;
INT error;

?
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............ INT proc_error[4][4];
[* for Bresenham
............ INT lin_end[4][4];
/* for line end
............ INT xy;
/* Initialize the address used by the address processor
/* to access the framestore.
............ addrx = start->x-3;
............ addr.y = start->y;
/* Initialize the Bresenham error for each processor in
[* the array.
............ for(y=0; y<4; y++)
............... for(x=0; x<4; x++)
.......... proc_error{y}[x] =
............ deltax *y * 2 - deltay * (x-3) * 2;
/* Initialize the linear equation used to find the end
/* of the line in the grid array.
............ for(y=0; y<4; y++)
............... for(x=0; x<4; x++)
.......... lin_end[y][x] = delta.y - y;
/* Process patches until the end is reached.
............ for(;) {
/* Calculate the mask required and the end flag too.
...... . for(y=0; y<4; y++)

----------

for(x=0; x<4; x++)

*/

*

*/
*/

*

*/
*/

*

*
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[* Test for the end && top && bottom of the line */

............ if((lin_end[y][x] > 0) &&
............... (proc_error[y][x] - deltay <= 0) &&
............... (proc_error[y][x] + delta.y > 0))
............... mask[y][x] = TRUE;
............ else mask[y][x] = FALSE;

.....

-----

. .

patch_write(screen,color,mask,&addr);
if(lin_end[3][3] < 0) break;

/* Now use a modified tracking algorithm */

error = proc_error[0][3] + 8 * deltax + 7 * delta.y;
if(error < 0)

addrx -= 4;
for(y=0; y<4; y++)

cevessaneans for(x=0; x<4; x++)
............... proc_errorfy][x] += 8 * delta.y;

.....

.....

addry += 4;
for(y=0; y<4; y++)

............ for(x=0; x<4; x++)

............... proc_error[y][x] += 8 * deltax;
............... lin_end[y][x] -= 4;

-----

.....
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..... case OCT135_180 :
.......... {
............ BOOL mask[4][4];
............ POINT addr;
............ INT error;
............ INT proc_error[4][4];
/* for bresenhams al */
............ INT lin_end[4][4];
/* for line end */
............ INT xy;
/* Initialize the address used by the address processor */
/* to access the framestore. */
............ addrx = start->x-3;
............ addr.y = start->y;
/* Initialize the bresenhams error for each processor in */
/¥ the array. */
............ for(y=0; y<4; y++)
............... for(x=0; x<4; x++)
.......... proc_error[yl[x] =

............

.......... lin_end[y}[x]

-----

............

deltax *y * 2 - deltay * (x-3) * 2;

/* Initialize the linear equation used to find the end */

/* of the line in the grid array. */

for(y=0; y<4; y++)
.. for(x=0; x<4; x++)

= . deltax + x - 3;

/* Process patches until the end is reached. */
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.......
-----

.......
.......
.......
.......
.......
.......
.......
.....

-----

-------
.......
.......
.......
ooooooo
-------
.......
.....
.......
.....
--------
.......
-------
.......
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/* Calculate the mask required and the end flag too. */
for(y=0; y<4; y++)

... for(x=0; x<4; x++)

[* Test for the end && top && bottom of the line */

..... if((lin_end[y][x] > 0) &&

........ (proc_errorfy][x] + deltax <= 0) &&
........ (proc_errorfy][x] - deltax > 0))
........ maskl[y][x] = TRUE;

..... else mask[y][x] = FALSE,;

patch_write(screen,color,mask,&addr);
if(lin_end[0][0] < 0) break;

/* Now use a modified tracking algorithm */
error = proc_error[0][3] + 7 * deltax + 8 * delta.y;
if(error < 0)

... addrx -= 4;
... for(y=0; y<4; y++)
..... for(x=0; x<4; x++)
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.......... addry += 4,
.......... for(y=0; y<4; y++)
............ for(x=0; x<4; x++)
....... proc_errorfy][x] += 8 * delta.x;
............ }
.......... }
....... }
..... break;
..... case OCT180 225 :
.......... {
............ BOOL mask[4][4];
............ POINT addr;
............ INT error;
............ INT proc_error[4]{4];
/* for bresenhams al */

............ INT lin_end[4][4];

‘ /* for line end */
............ INT xy;

-----

/* Initialize the address used by the address processor */

............ addrx = s
............ addry = s

.....

[* to access the framestore. */
tart->x-3;
tart->y-3;

/* Initialize the bresenhams error for each processor in */

e for(y=0; y

[* the array. */
<4; y++)

............... for(x=0; x<4; x++)

.................. pro

--------------------

-----

c_error[y]x] =
deltax * (y-3) * 2 - deltay * (x-3) * 2;
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[* Initialize the linear equation used to find the end */
[* of the line in the grid array. */
for(y=0; y<4; y++)
.. for(x=0; x<4; x++)

.......... lin_end[y][x] = - deltax + x - 3;

-----

............

.....

/* Process patches until the end is reached. */

for(;;) {

/* Calculate the mask required and the end flag too. */

....... for(y=0; y<4; y++)
.......... for(x=0; x<4; x++)

............

.............

-------------

.............

............

[* Test for the end && top && bottom of the line */
if((lin_end[y][x] > 0) &&
. . (proc_errorfy][x] + deltax <= 0) &&
. . (proc_error{y][x] - delta.x > 0))
.. mask[y][x] = TRUE;
else maskl[y][x] = FALSE;

....... patch_write(screen,color,mask,&addr);
....... if(lin_end[0][0] < 0) break;

/* Now use a modified tracking algorithm */

....... error = proc_error[3][3] - 7 * deltax + 8 * delta.y;
....... if(error > 0)

.......... addrx -= 4;
.......... for(y=0; y<4; y++)

------------

for(x=0; x<4; x++)
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.......... addry -= 4;
.......... for(y=0; y<4; y++)

------------

------------

............

------------

------------

oooooooooooo

------------

for(x=0; x<4; x++)

BOOL mask[4][4];
POINT addr;

INT error;

INT proc_error[4]{4];

INT lin_end[4][4];

/* for bresenhams al */

/* for line end */

/* Initialize the address used by the address processor */

addrx = start->x-3;
addry = start->y-3;

/* to access the framestore. */
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/¥ Initialize the bresenhams error for each processor in %/
/* the array. */
... for(y=0; y<4; y++)
....... for(x=0; x<4; x++)
.. proc_errorfy][x] =
.... deltax * (y-3) * 2 - delta.y * (x-3) * 2;

/* Initialize the linear equation used to find the end */
/* of the line in the grid array. */

..... for(y=0; y<4; y++)
........ for(x=0; x<4; x++)
... lin_end[y][x] = - delta.y + y - 3;

[* Process patches until the end is reached. */

/* Calculate the mask required and the end flag too. */
for(y=0; y<4; y++)

. .. for(x=0; x<4; x++)

/* Test for the end && top && bottom of the line */

..... if((lin_end[y][x] > 0) &&

....... (proc_error[y][x] + deltay <= 0) &&
....... (proc_error[y][x] - delta.y > 0))
....... mask[y][x] = TRUE;

. ... else mask[y][x] = FALSE;

patch_write(screen,color,mask,&addr);
if(lin_end[0][0] < 0) break;
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/* Now use a modified tracking algorithm */

....... error = proc_error[3][3] - 8 * deltax + 7 * delta.y;
....... if(error > 0)

e addrx -= 4;
.......... for(y=0; y<4; y++)

-----

for(x=0; x<4; x++)

.......... addr.y -= 4;
.......... for(y=0; y<4; y++)

------------

------------

for(x=0; x<4; x++)
{ ]

BOOL mask[4][4];
POINT addr;
INT error;
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.. INT proc_error[4][4];

/* for bresenhams al */

.. INT lin_end[4][4];

/* for line end */

/* Initialize the address used by the address processor */
[¥* to access the framestore. */

.. addrx = start->x;
.. addry = start->y-3;

/¥ Initialize the bresenhams error for each processor in */
[* the array. */

.. for(y=0; y<4; y++)
..... for(x=0; x<4; x++)

proc_errorfy][x] =

.. deltax * (y-3) * 2 - deltay * x * 2;

/* Initialize the linear equation used to find the end */
[* of the line in the grid array. */

.. for(y=0; y<4; y++)
..... for(x=0; x<4; x++)

lin_end[y][x] = - delta.y + y - 3;

/* Process patches until the end is reached. */

/* Calculate the mask required and the end flag too. */

....... for(y=0; y<4; y++)

----------

for(x=0; x<4; x++)



10

15

20

25

30

DPS-106 83

/* Test for the end && top && bottom of the line */
............ if((lin_end[y][x] > 0) &&
............... (proc_error[y][x] + deltay <= 0) &&
............... (proc_error[y][x] - delta.y > 0))
............... mask[y][x] = TRUE;
[ else mask[y][x] = FALSE;

....... patch_write(screen,color,mask,&addr);
....... if(lin_end[0][0] < 0) break;

/* Now use a modified tracking algorithm */
....... error = proc_error[3][0] - 8 * deltax - 7 * delta.y;
....... if(error < 0)

.......... addrx += 4;
.......... for(y=0; y<4; y++) -
..... ..., for(x=0; x<4; x++)

.......... addr.y -= 4;
.......... for(y=0; y<4; y++)
............ for(x=0; x<4; x++)
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....... BOOL mask[4][4];
....... POINT addr;
....... INT error;
....... INT proc_error[4][4];
/* for Bresenham */
....... INT lin_end[4][4];
[* for line end */

/* Initialize the address used by the address processor */
/* to access the framestore. */

Further Modifications and Variations

It will be recognized by those skilled in the art that the innovative
concepts disclosed in the present application can be applied in a wide
variety of contexts. Moreover, the preferred implementation can be
modified in a tremendous variety of ways. Accordingly, it should be
understood that the modifications and variations suggested below and
above are merely illustrative. These examples may help to show some of
the scope of the inventive concepts, but these examples do not nearly
exhaust the full scope of variations in the disclosed novel concepts.

Of course, the disclosed method and system ideas can be

implemented in a great variety of hardware architectures, and the particular
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architecture described does not necessarily delimit any of the points of
invention.

In particular, although the preferred architecture uses 4x4 patches
of pixels, other patch sizes can optionally be used instead. The patch size
does not have to be square, although that is convenient.

Moreover, the disclosed innovations may be particularly

‘advantageous with larger patch sizes. In general, the introduction of

massively parallel architectures for supercomputing applications has been
retarded primarily by the difficulties of software organization, not by the
hardware cost. The innovations disclosed herein may be particularly
advantageous in exploiting more highly parallel graphics architectures (e.g.

arrays of 16x16 processors). '

It will also be noted, by those skilled in the art, that a number of the
ideas set forth herein are not applicable only to manipulating of two-
dimensional data sets, but can also be directly applied to manipulation of
three-dimensional data sets.

As will be recognized by those skilled in the art, the innovative
concepts described in the present application can be modified and varied
over a tremendous range of applications, and accordingly their scope is not
limited by any of the specific examples set forth herein.
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CLAIMS - 2863-106PCT
What is claimed is:

1.A computer system, comprising:

10

15

20

25

30

a display providing a large number of selectably visible pixels;

at least one central processing unit which manipulates graphical objects
in an image space containing at least as many pixels as the
number of pixels in said display;

an image memory, containing at least as many addressible pixel data
locations as the number of pixels in said display;

a display driver, which can access said pixel data locations in said image
memory and drive said display, in accordance therewith, to
produce a viewable image corresponding to the data stored in at
least some pixel data locations in said image memory; and

a pixel processing unit, connected to receive data which defines
positions of graphical objects from said central processing unit,
and accordingly to write pixel data into said image memory;

wherein said pixel processing unit is connected for parallel access to
said image memory, such that said pixel processing unit normally
reads or writes data for a plurality of pixel locations,
corresponding to a patch of pixels which are contiguous in said
image space, in each single access to said image memory;

and wherein said central processing unit is operable to command a line
to be drawn between two specified endpoints, and in response
thereto said pixel processing unit:

incrementally selects the appropriate pixel patches for manipulation,
by a method wherein a cumulative error term is carried
forward from one patch to the next;

accesses locations in said image memory corresponding to
successively selected patches of pixels, and performs an
interpolation operation to determine which pixels of each
respective patch are part of said line, and selectively writes
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incrementally selects pixel patches for manipulation, by a method
wherein a cumulative error term from one patch is used to
select the succeeding patch; and

accesses locations in said image memory corresponding to
5 successively selected patches of pixels, and performs an
interpolation operation to determine which pixels of each
respective patch are part of said line, and selectively writes
corresponding data, for the thus-deterﬁlined pixels of said

respective patch, into said image memory;
10 and wherein said display driver produces an image on said display
which at least partially includes the pixels rendered by said pixel

processing unit.

3.A computer system, comprising:

a display providing a large number of selectably visible pixels;

15 at least one central processing unit which manipulates graphical objects
in an image space containing at least as many pixels as the
number of pixels in said display;

an image memory, containing at least as many addressible pixel data
locations as the number of pixels in said display;

20 a display driver, which can access said pixel data locations in said image
memory and drive said display, in accordance therewith, to
produce a viewable image corresponding to the data stored in at
least some pixel data locations in said image memory; and

a pixel processing unit, connected to receive data which defines

25 positions of graphical objects from said central processing unit,

and accordingly to write pixel data into said image memory;
wherein said pixel processing unit is connected for parallel access to

said image memory, such that said pixel processing unit normally

reads or writes data for a plurality of pixel locations,

30 corresponding to a patch of pixels which are contiguous in said

image space, in each single access to said image memory;
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corresponding data, for the thus-determined pixels of said

respective patch, into said image memory;
wherein any two sequentially selected ones of said patches of pixels
adjoin, in said image space, along an entire side of each

5 patch;
and wherein said display driver produces an image on said display
which at least partially includes the pixels rendered by said pixel
processing unit.

2. A computer system, comprising:

10 a display providing a large number of selectably visible pixels;

at ]east one central processing unit which manipulates graphical objects
in an image space containing at least as many pixels as the
number of pixels in said display;

an image memory, containing at least as many addressible pixel data

15 locations as the number of pixels in said display;

a display driver, which can access said pixel data locations in said image
memory and drive said display, in accordance therewith, to
produce a viewable image corresponding to the data stored in at
least some pixel data locations in said image memory; and

20 a pixel processing unit, connected to receive data which defines
positions of graphical objects from said central processing unit,
and accordingly to write pixel data into said image memory;

wherein said pixel processing unit is connected for parallel access to
said image memory, such that said pixel processing unit normally

25 reads or writes data for a plurality of pixel locations,
corresponding to a patch of pixels which are contiguous in said

~ image space, in each single access to said image memory;
and-wherein said central processing unit is operable to command a line
to be drawn between two specified endpoints, and in response

30 thereto said pixel processing unit:
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and wherein said central processing unit is operable to command a line
to be drawn between two specified endpoints, and in response
thereto said pixel processing unit: R
incrementally selects the appropriate pixel patches for manipulation,
5 and performs a further operation in parallel to determine
which pixels of each fespective patch are part of said line,
and selectively writes corresponding data, for pixels of said

respective patch, into said image memory;
wherein any two sequentially selected ones of said patches of pixels
10 adjoin, in said image space, along an entire side of each

patch; )

and wherein said display driver produces an image on said display
which at least partially includes the pixels rendered by said pixel

processing unit.

15 4. The system of Claim 1, wherein said pixel processing unit is integrated

together with said central processing unit in a shared hermetically

- sealed package.

5. The system of Claim 1, wherein said pixel processing unit is integrated

together with said central processing unit as a single integrated

20 circuit.

6. The system of Claim 1, wherein said pixel processing unit and said

central processing unit are combined as a single processor.

7. The system of Claim 1, wherein said pixel processing unit comprises

multiple subprocessors executing a substantially common instruction

25 stream in parallel.
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8. The system of Claim 1, wherein said image memory is independently

accessible through a first port and a second port, and said first port
is connected to provide paralle] access for said pixel processing unit,
and said second port is connected to provide high-speed

synchronous serial access for said display driver.

0. The system of Claim 1, wherein said image memory contains a number

of pixel locations which is greater than the number of viewable
pixels in said display.

10. The system of Claim 1, wherein said pixel processing unit includes at

least 4 separate subprocessors which are operable in parallel on
separate respective pixels.

11. The system of Claim 1, further comprising means for storing at least

part of the contents of said image memory in a nonvolatile medium,
and means for retrieving stored information from said nonvolatile
medium to be displayed by said display driver.

12. The system of Claim 1, further comprising means for storing at least

part of the contents of said image memory in a portable nonvolatile
medium, and means for retrieving stored information from said

nonvolatile medium to be displayed by said display driver.

13. The system of Claim 1, further comprising means for encoding and

transmitting at least part of the contents of said image memory over
a communications channel, and means for receiving and decoding
signals from said communications channel to be displayed by said
display driver.
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14. The system of Claim 1, wherein said pixel processing unit, prior to

accessing data for a first one of said patches of pixels, selects first
and second orthogonal directions, in accordance with the slope of
said line, such that the positional offset of each said subsequent
patch in said second direction cannot be greater than the positional

offset thereof in said first direction.

15. The system of Claim 1, wherein said pixel processing unit comprises

at least one address processor, and a plurality of pixel data
processors; said pixel data processors being configured and
connected to be operable in parallel, in response to a common
instruction stream, upon respective data bits corresponding to
respective pixels of a common patch of pixels selected by said

address processor.

16. The system of Claim 1, wherein said image space includes more than

(2" pixels.

17. The system of Claim 1, wherein said image space includes more than

2? pixels.
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