SANDING PAD FOR A SANDER, SUCH AS AN ECCENTRIC SANDER

The invention relates to a sanding pad (1) for a sander, such as an eccentric sander, which sanding pad comprises: - a disc-shaped body (2) with a rotation axis (R), wherein the disc-shaped body has a first and second side extending substantially radially from the rotation axis and a third peripheral side extending between the first and second side; and - a coupling (5) arranged on the first side, concentrically with the rotation axis, for coupling to a sander, - a disc-shaped flexible plate (10) which is arranged concentrically with the rotation axis and which lies with a first side against the second side of the disc-shaped body, wherein, the disc-shaped flexible plate extends beyond the peripheral side as seen in radial direction; and - attaching (11) means for attaching a sanding layer arranged on a second side of the disc-shaped flexible plate opposite the first side of the plate.
Sanding pad for a sander, such as an eccentric sander

The invention relates to a sanding pad for a sander, such as an eccentric sander, which sanding pad comprises:
- a disc-shaped body with a rotation axis, wherein the disc-shaped body has a first and second side extending substantially radially from the rotation axis and a third peripheral side extending between the first and second side; and
- a coupling arranged on the first side, concentrically with the rotation axis, for coupling to a sander.

Such sanding pads are connected to the motor of a sander with the coupling and can in this way be used for diverse sanding applications, such as for instance mechanical sanding of yachts. Although such sanding pads generally suffice for the relatively flat parts, these sanding pads are not suitable for use on curved surfaces because of the chance of damage, such as cuts, in these surfaces.

For this reason use is not made of the mechanical applications in sanding of curved surfaces, but such surfaces are still sanded manually, for instance using a flexible disc. Sanding curved surfaces in this way takes a great deal of time.

It is now an object of the invention to reduce or even obviate the above stated problems.

This object is achieved by means of a sanding pad according to the preamble, further comprising:
- a disc-shaped flexible plate which is arranged concentrically with the rotation axis and which lies with a first side against the second side of the disc-shaped body, wherein the disc-shaped flexible plate extends beyond the peripheral side as seen in radial direction; and
- attaching means for attaching a sanding layer
arranged on a second side of the disc-shaped flexible plate opposite the first side of the plate. The first side of the flexible plate lies here partially against the second side of the disc-shaped body, but an unattached part thereof extends beyond the peripheral side. A sanding layer can be arranged on the second side of the flexible plate by means of the attachment. When the unattached part of the flexible plate encounters a curvature in the surface to be sanded with the sanding layer, it will follow the curvature, this reducing the chance of damage to the surface during sanding with this sanding pad. The shape of the peripheral side determines here the maximum curvature of the flexible plate. The choice of material and dimensions of the flexible plate have to be adjusted to this curvature. Manual sanding is no longer necessary with this sanding pad, and the efficiency is thus increased.

The sanding pad according to the invention is also suitable for application in more complex curved surfaces because the unattached sides of the flexible plate can easily shape themselves to all curvatures around the disc-shaped body.

The flexible plate and the attaching means for attaching the sanding layer are mutually fixed in a suitable manner, and preferably by means of glueing. In a preferred embodiment of the sanding pad according to the invention the length of the part of the flexible plate which extends beyond the peripheral side as seen in radial direction is equal to or greater than the distance between the first side and the second side. Such a length of the unattached part of the flexible part guarantees that the unattached part has a sufficient surface area relative to the disc-shaped part, which can shape itself to curvatures in the surface and herein prevent damage to the surface to be sanded.
In another preferred embodiment of the sanding pad according to the invention the second side transposes smoothly into the peripheral side.

Smoothly is understood to mean here that the tangent of the second side to the edge and in radial direction is equal to the tangent of the peripheral side to the edge in radial direction. This forms a surface against which the flexible plate can lie in easy and stable manner in the case of maximum curvature during sanding of curved surfaces.

In a further preferred embodiment of the sanding pad according to the invention the peripheral side is partially torus-shaped adjacent to the second side, and the torus shape is coaxial with the rotation axis.

The torus shape of the peripheral side has a primary radius from the centre of the pad to the centre of the circle of the torus shape. The circle of the torus shape has a secondary radius.

Because of the torus shape, a smooth transition between the second side and the peripheral side is obtained and the flexible plate is also curved uniformly around the disc-shaped body in the case of maximum curvature, which increases the stability of the sanding pad during use.

Because of the torus shape, when maximum curvature is reached the outer end of the flexible plate is here moreover substantially perpendicular to the part of the flexible plate extending under the second side of the disc-shaped body, whereby a wide range of curvatures can be sanded. The secondary radius of the torus shape is preferably equal to or greater than 8 millimetres.

Such a chosen secondary radius ensures sufficient space for the flexible plate to gradually shape itself all around the disc-shaped body when reaching a curvature in the surface for sanding, this in comparison to smaller values of the secondary radius, wherein the associated rapidly rising curvature can still cause damage.
In another preferred embodiment of the sanding pad according to the invention the disc-shaped body comprises a rigid core plate and a foam layer, wherein the coupling is arranged on the rigid core plate.

The rigid core plate provides here the necessary rigidity for mounting the coupling on the sanding pad and for transmitting the force of the motor of a sander to the sanding pad. The foam layer here increases the flexibility for shaping of the flexible plate when curvatures are encountered in the surface for treating.

The core plate is preferably embedded in the foam layer.

When the foam layer thus forms an upright edge lying all around the core plate, the flexible plate will not come into contact with the core plate when curved but only with the foam layer, whereby curving of the flexible plate is simplified.

In a preferred embodiment of the sanding pad according to the invention the attaching means comprise hook and loop fastening tape.

Hook and loop fastening tape (also known as velcro) is a versatile, inexpensive and suitable manner of attaching a sanding layer to the sanding pad. There is moreover the advantage that hook and loop fastening tape, also with a sanding layer attached thereto, adapts its shape easily when the flexible plate lying thereabove is curved when reaching a curvature in the surface for sanding.

In another preferred embodiment of the sanding pad according to the invention the part of the disc-shaped flexible plate extending beyond the peripheral side as seen in radial direction lies at least partially against a part of the peripheral wall during use.

The disc-shaped body here supports this part of the flexible plate with the peripheral side during sanding of curved surfaces.
Although sanding pads according to the invention are in this case described in respect of the sanding of surfaces, they can likewise be applied in similar manner in other fields, such as for instance in cleaning machines or polishing machines.

These and other aspects of the invention are elucidated with reference to the following figures.

Figure 1 shows a cross-section of a sanding pad according to the invention.

Figure 2 shows a top view of a sanding pad according to the invention.

Figures 1 and 2 show a sanding pad 1 according to the invention. Sanding pad 1 is constructed from a disc-shaped body 2, rotatable around a rotation axis R. A connecting screw 4 is arranged on disc-shaped body 2 on the first or upper side 3, concentrically with rotation axis R, by means of connecting plate 5. Connecting screw 4 can be fastened to a sander (not shown).

Disc-shaped body 2 is constructed from a foam layer 6 and core plate 7 arranged thereon concentrically with rotation axis R. Core plate 7 is embedded in foam layer 6, whereby an upright edge 8 is formed all around core plate 7. Foam layer 6 has a torus shape all around the underside 9 of disc-shaped body 2.

A flexible plate 10, which can curve around foam layer 6 when encountering a curvature in the surface for treating, is arranged on the second or underside 9 of disc-shaped body 2, concentrically with rotation axis R, using a glue layer (not shown). A layer of hook and loop fastening tape 11 is arranged on the underside of flexible plate 10 for attaching a sanding layer thereto.

In an advantageous embodiment the flexible plate is made of polycarbonate and the dimensions are as follows. Disc-shaped body 2 has a height Y_1 of 15 millimetres. The height Y_2 of upright edge 8 is here 3 millimetres.
height Y_3 of flexible plate 10 is 0.480 millimetres. The diameter X_1 of coupling plate 5 is 45 millimetres. The diameter X_2 of core plate 7 is 99 millimetres. The diameter X_3 of foam layer 6 is 105 millimetres. The diameter X_4 of flexible plate 10 and the hook and loop fastening tape 11 fixed thereto is 148 millimetres. The width X_5 of edge 8 is 3 millimetres.

In addition to giving an example of an advantageous embodiment, the dimensions described here also give an indication of advantageous ratios of these dimensions.

If it is desired here to increase the diameter, and thereby the surface of the flexible plate with attaching means, it will generally also be desired for a good operation to increase the dimensions of the sanding pad perpendicularly of this surface.
Claims

1. Sanding pad for a sander, such as an eccentric sander, which sanding pad comprises:
 - a disc-shaped body with a rotation axis,
 wherein the disc-shaped body has a first and second side extending substantially radially from the rotation axis and a third peripheral side extending between the first and second side; and
 - a coupling arranged on the first side, concentrically with the rotation axis, for coupling to a sander characterized by
 - a disc-shaped flexible plate which is arranged concentrically with the rotation axis and which lies with a first side against the second side of the disc-shaped body, wherein the disc-shaped flexible plate extends beyond the peripheral side as seen in radial direction; and
 - attaching means for attaching a sanding layer arranged on a second side of the disc-shaped flexible plate opposite the first side of the plate.

2. Sanding pad as claimed in claim 1, wherein the length of the part of the flexible plate which extends beyond the peripheral side as seen in radial direction is equal to or greater than the distance between the first side and the second side.

3. Sanding pad as claimed in claim 1 or 2, wherein the second side transposes smoothly into the peripheral side.

4. Sanding pad as claimed in claim 3, wherein the peripheral side is partially torus-shaped adjacent to the second side and wherein the torus shape is coaxial with the rotation axis.

5. Sanding pad as claimed in claim 3 or 4, wherein the secondary radius of the torus shape is equal to or greater than 8 millimetres.
6. Sanding pad as claimed in any of the foregoing claims, wherein the disc-shaped body comprises a rigid core plate and a foam layer, wherein the coupling is arranged on the rigid core plate.

7. Sanding pad as claimed in claim 6, wherein the core plate is embedded in the foam layer.

8. Sanding pad as claimed in any of the foregoing claims, wherein the attaching means comprise hook and loop fastening tape.

9. Sanding pad as claimed in any of the foregoing claims, wherein the part of the disc-shaped flexible plate extending beyond the peripheral side as seen in radial direction lies at least partially against a part of the peripheral wall during use.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B24D9/08

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B24D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 1 786 320 A (STRATFORD HERBERT R) 23 December 1930 (1930-12-23) figures 1,2,5</td>
<td>1-3,8,9</td>
</tr>
<tr>
<td>Y</td>
<td>GB 490 287 A (STRATMORE COMPANY) 8 August 1938 (1938-08-08) figures 1-4</td>
<td>4-7</td>
</tr>
<tr>
<td>Y</td>
<td>US 2 359 608 A (BAUR RAYMOND H) 3 October 1944 (1944-10-03) figures 2,3,4</td>
<td>4-7</td>
</tr>
<tr>
<td>X</td>
<td>US 2 439 751 A (0LSEN GUSTAV A) 13 April 1948 (1948-04-13) figures 1,2,3</td>
<td>1-3,8,9</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents :

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another cited or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

19 January 2017

Date of mailing of the international search report

31/01/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

De Backer, Tom

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2014/165394 Al (3M INNOVATIVE PROPERTIES CO [US])</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>figures 2, 3, 6, 13-14</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>US 1786320 A</td>
<td>23-12-1930</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 490287 A</td>
<td>08-08-1938</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2359608 A</td>
<td>03-10-1944</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2439751 A</td>
<td>13-04-1948</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2014165394 A</td>
<td>09-10-2014</td>
<td>CN 105189044 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2981392 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014200883 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201446409 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 201602102 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014165394 A</td>
</tr>
</tbody>
</table>