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GENETIC SYNTHESIS OF NEURAL NETWORKS

The invention hereof relates to a method for
using genetic type learning techniques in connection
with designing a variety of neural networks that are

5 optimized for specific applications.

Previous work in the design of neural networks
has revealed the difficulty in determining an
appropriate network structure and good values for the

parameters of the learning rules for specific
10 applications.

The genetic algorithm is an optimization method
based on statistical selection and recombination. The
method is inspired by natural selection. A few
researchers (Dolan & Dyer (1987), Dress & Knisely (1987)

15 Davis (1988), Montana and Davis (1989) and Whitley
(1988)) have applied generic algorithms in a limited
fashion to generate neural networks for specific
problems. For example, Davis and Montana (1988, 1989)
and Whitley (1988) use the genetic algorithm to adjust

20 weights given a fixed network structure.
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In the invention herein a general

representation of neural network architectures is linked

~ with the genetic learning strategy to create a flexible

environment for the design of custom neural networks. A
concept upon which the invention is based is the
representation of a network design as a "genetic
blueprint" wherein the recombination or mutation of
subsequently generated editions of such blueprints
result in different but related network architectures.

To illustrate the invention there is described
herein a system for the genetic synthesis of a
particular class of neural networks that we have
implemented. Our current implementation is restricted
to network structures without feedback connections and
incorporates the back propagation learning rule. The
invention can, however, be used for arbitrary network
models and learning rules.

The method herein involves the use of genetic
algorithm methods to design new neural networks. The
genetic algorithm (GA) is a robust function oétimization
method. 1Its use is indicated over gradient descent
techniques for problems fraught with local minima,
discontinuity, noise, or large numbers of dimensioné. a
useful feature of the GA is that it scales extremely

well, increasing dimensionality has comparatively little
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effect on performance. The first step in the
application of the GA to a function is the encoding of
the parameter Space as a string of (typically binary)
digits. Substrings in such a representation correspond
to parameters of the function being optimized. a
particular individual bit string (i.e. some choice of 1
of 0 for each position) represents a peint in the
parameter space of the function. The Ga considers a
population of such individuals. The population, in
conjunction with the value of the function for each
individual (generally referred to as "fitness"),
represents the state of the search for the optimal
string. The Ga progressesrby implicitly encoding
information about the function in the statistics of the
population and using that information to create new
individuals. The population is cyclically renewed
according to a reproductive plan. Each new "generation"
of the population is created by first sampling the
previous generation according to fitness; the method
used for differential selection is known to be a
near-optimal method of sampling the search space. Novel
strings are created by altering selected individuals
with genetic operators. Prominent among these is the
Crossover operator which synthesizes new strings by

splicing together segments of two sampled individuals.
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A main object of the invention is to provide a

new method as referred to above for designing optimized

-artificial neural networks.

Other objects and advantages of the invention
will become apparent from the following specification,
appended claims and attached drawings.

In the drawings:

Fig. 1 illustrates a multilayer neural network
of the type which may be designed for a specific purpose
in accordance with the method of the present invention;

Fig. 2 illustrates schematically how a
population of "blueprints" (designs for different neural
networks) is cyclically updated by the genetic algorithm
based on their fitness;

Fig. 3 shows schematically an example of a
three~-layer network which may be described by a bit
string representation in accordance with the invention;

Fig. 4 illustrates a bit string representation
which facilitates practicing the invention;

Fig. 5 illustrates the gross anatomy of a
network representation having areas or layers 0 to N;

Fig. 6 illustrates an arrangement of areas (or
layers) and projections extending therebetween;

Fig. 7 shows the spatial organization of

layers;
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Figs. 8 and 9 show examples of absolute and
relative addressing for specifying the target
destinations of projections which extend from one
layer to another layer;

Figs. 10 to 12 show illustrative examples
of the area specification substring of Fig. 4;

Figs. 13a, 13b and 13c show projection
features relating to connections between layers of
the network;

Figs. 14a, 14b and 14c show a schematic
example of a specific network structure generated by
the method herein at different levels of detail;

Fig. 15 shows the basic reproductive plan
used in experiments pursuant tot he method herein;

Figs. 16a, 16b and 16c show an example of
the operation of a genetic operator;

Fig. 17 shows the principle data structures
in a current implementation program with one
individual being shown parsed and instantiated; and

Figures 18 to 21 show performance curves
relating to the rate of learning of networks.

The method herein relates to the designing
of multilayer artificial neural networks of the
general type 10 shown in Fig. 1. The network 10 is
illustrated as having three layers (or areas) 12, 14
and 16 but could have more than three layers or as
few as one layer if desired. - Each of the layers has

computational units

SUBSTITUTE SHEET
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18 joined by connections 19 which have variable weights

associated therewith in accordance with the teaching of

- the prior art.

In this and other figure connections are shown
in the forwardly feeding direction. The invention is
not limited to this construction, however, and feedback
connections may also be accommodated, for example.

Also, the scope of the network design method
disclosed herein is not limited to the design of the
network shown in Fig. 1.

Fig. 2 illustrates schematically how a
population of blueprints 20 (i.e. bit string designs for
different neural networks) are cyclically updated by a
genetic algorithm based on their fitness. The fitness
of a network is a combined measure of its worth on the
problem, which may taken into account learning speed,
accuracy and cost factors such as the size and
complexity of the networks.

The method begins with a population of randomly
generated bit strings 20. The actual number of such bit
strings is somewhat arbitrary but a population size of
30 to 100 seems empirically to be a good compromise
between computational load, learning rate and genetic

drift.
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NEURAL NETWORK LEARNING ALGORITHMS

Learning approaches for neural networks fall
into three general categories: unsupervised learning,
reinforcement learning, and supervised learning. 1In
unsupervised learning, the network receives no
evaluative feedback from the environment; instead it
develops internal models based on pProperties of received
inputs. 1In reinforcement learning, the environment
provides a weak evaluation signal. 1In supervised
learning the "desired output" for the nétwork is
pProvided along with every training input. Supervised
learning, specifically back propagation, is used to
illustrate the invention but in concept the invention
can be used with any learning approach.

The set of input-output examples that is used
for supervised learning is referred to as the training
set. The learning algorithm can be outlined as follows:
FOR EACH (training-input, desired-output) pair in the
Training-Set

o Apply the training-input to the—input of

the network.

o Calculate the output of the network.

o) IF the output of the network #

desired-output

o THEN modify network weights
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The entire loop through the training set,

referred to as an epoch, is eiecuted repeatedly. One or

. both of two termination criteria are usually used: there

can be a lower bound on the error over an epoch and/or a
limit on the number of epochs. Training a network in
this fashion is often very time consuming. Until better
learning techniques become available, it is best to plan
the training phase as an "off-line" activity. Once
trained, the network can be put to use. The
computational Qemands of such a network during the
operational phase can usually be satisfied with only
rudimentary hardware for many interesting applications.

The neural network learning approach which we
have currently implemented is the well-kngwn
backpropagation algorithm. (Werbos, 1974; Le Cun, 1986;
Parker, 1985; Rumelhart, Hinton & Williams, 1985).

The backpropagation algorithm is described in

Appendix B.

BLUEPRINT REPRESENTATIONS .

The invention herein is mainly directed to a
representation of the blueprint 20 that specifies both
the structure and the learning rule, the genetic
algorithm parameters that determine how the genetic

operators are used to construct meaningful and useful
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network structures, and the evaluation function that
determines the fitness of a network for a specific

application.

The development of a bit string representation
20 for the neural network architecture of a network 10
is a major problem with which the concept of the
invention is involved. Biological neural networks are
not yet understood well enough to provide clear
guidelines for synthetic networks and there are many

10 different ways to parameterize network organization and

operation.
The representation of blueprints or bit strings

20 for specialized neural networks should ideally be

able to capture all potentially "interesting" networks,
15 i.e., those capable of doing useful work, while
excluding flawed or meaningless network structures. It
is obviously advantageous to define the smallest
possible search space of network architectures that is
sure to include the best solution to a given problem.
20 An important implication of this goal in the Eontext of
the genetic algorithm is that the representation scheme
should be closed under the genetic operators. In other
words, the recombination or mutation of network
blueprints should always yield new, meaningful network
25 blueprints. There is a difficult trade off between

expressive power and the admission of flawed or

uninteresting structures.
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Fig. 3 shows schematically an example of how

each layer of a three-layer network may be described in

- accordance with the invention by a bit string

representation which comprises three substrings 17. The
format for a single substring 17 is shown in more detail
in Fig. 4.

The gross anatomy of a multilayer network
representation 20 having substring layers or areas 17
(Area 0 to Area N) is illustrated in Figure 5.
Conceptually, all of the parameters for a single network
are encoded in one long string of bits which is the
representation 20 of Figure 5. The patterned bars are
markers indicating the start and end of the individual
area or layer segments 17.

The term projection as used herein has
reference to the grouping or organization of the
connections 19 which extend between the computational
units 18 of the layers of the networks such as in the
network illustrations of Figs. 1 and 3.

In Fig. 1 the input connections to léyer 12
represent a single input projection and the output
connections extending outwardly from layer 16 represent
a single output projection. Likewise the connections 19
between layers 12 and 14 represent a single projection
and the connections 19 between the layers 14 and 16

represent a single projection.
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An example of a projection arrangement for a
particular network is shown in Fig. 6 with projections
22 to 28 being illustrated for layers or areas 31 to
35. Of interest is that layer 32 has two projections 24
and 25 extending respectively to layers 33 and 34. Also
of interest is the opposite arrangement wherein layer 35
receives projections 26 and 27 from layers 33 and 34
respectively.

Each of the projections is represented by three
lines which signify that each projection consists of a
predetermined or desired plurality of only the
connections 19 which extend between two particular
layers. ,

Referring to Fig. 4, it will be apparent that
an area or layer specification substring 17 as
illustrated in this figure is applicable to each one of
the layers 12, 14 and 16 of the network 10 of Fig. 1.

A bit string 20 is thus composed of one or more
segments or substrings 17, each of which represents a
layer or area and its efferent connectivity or
projections. Each segment is an area specification
substring 17 which consists of two parts:

| o An area parameter specification (APS)

which is of fixed length, and
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parameterizes the area or layer in terms
of its address, the number of units 18 in
it, and how they are organized.

o One or more projection specification
fields (PSFs), each of fixed length. Each
such field describes a connection from one
layer to another layer. As the number of
layers is not fixed in this architecture
(although bounded), the length of this
field will increase with the number of
projection specifiers required. a
projection (e.g., on the projections 22 to
28 in Fig. 6) is specified by the address
of the target area, the degree of
connectivity and the dimension of the
projection to the area; etc.

The fact that there may be any number of areas

17 motivates the use of markers with the bit string to

designate the start and end of APSs and the start of

PSFs. The markers enable a reader program to—parse any

well~formed string into a meaningful neural network

architecture. The same markers also allow a special
genetic crossover operator to discover new networks
without generating "nonsense strings". Markers are
considered "meta-structure": they serve as a framework

but don’t actually occupy any bits.
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Fig. 4 shows how the APS and PSF are structured
in our current representation. The portions of the bit
string representing individuail parameters are labeled
boxes in the figure. They are substrings consisting of
some fixed number of bits. Parameters described by an
interval scale (e.g. 0, 1, 2, 3, 4) are rendered using
Gray coding, thus allowing values that are close on the
underlying scale to be close in the bit string
representation (Bethke, 1980, Caruana & Schaffer, 1988).

In the APS, each area or layer has an
identification number that serves as a name. The name
need not be unique among the areas of a bit string. The
input and output areas have the fixed identifiers, 0 and
7 in the embodiment herein.

An area also has a size and a spatial
organization. The "total size" parameter determines how
many computational units 18 the area will have. It
ranges from 0 to 7, and is interpreted as the logarithm
(base 2) of the actual number of units; e.g., if total
size is 5, there are 32 units. The three "diﬁension
share" parameters, which are also base 2 logarithms,
impose a spatial organization on the units. The units
of areas may have 1, 2 or 3 dimensional rectilinear

extent, as illustrated in Fig. 7.
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The motivation for this organization comes from
the sort of perceptual problems to which neural networks
are apparently well suited. For example, an image
processing problem may best be served by square array,
while an acoustic interpretation problem might call
for vectors. The organization of the units in more
conventionél approaches is often left implicit. 1In the
invention herein dimensionality has definite
implications for the architecture of projections such as
the projection; 22 to 28 of Fig. 6.

The PSFs in an area’s segment of the bit string
determine where the outputs of units in that layer will
(attempt to) make efferent connections, and how. The
representation scheme does hot assume a simple pipeline
architecture, as is common. Fig. 6, for example, shows
a five-area network in which projectidns split from the
second area and rejoin in the fifth.

Each PSF indicates the identity of the target
area. There are currently two ways it can do this,
distinguished by the value of a binary addressing mode
parameter in each PSF. 1In the "Absolute" mode, the
PSF’s address parameter is taken to be the ID number of

the target area. Some examples of absolute addressing

are shown in Fig. 8.
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The "Relative" mode indicates that the address
bits hold the position of the target area in the bit
string relative to the current area. A relative address
of zero refers to the area immediately following the one
containing the projection; a relative address of n
refers to the nth area beyond this, if it exists.
Relative addresses indicating areas beyond the end of
the blueprint are taken to refer to the final area of
the blueprint-the output area. Some examples of
relative addressing are shown in Fig. 9.

The purpose of different addressing schemes is
to allow relationships between areas to develop, and be
sustained and generalized across generations through the
genetic algorithm’s reproductive plan. Specifically,
the addressing schemes are designed to help allow these
relationships to survive the Crossover operator, either
intact or with potentially useful modifications.
Absolute addressing allows a projection to indicate a
target no matter where that target winds up in the
chromosome of a new individual. Relative addiessing
helps areas that are close in the bit string to maintain
pProjections, even if their IDs change.

Referring to Figs. 10 to 12, the dimension
radii parameters (also base 2 logarithms) allow units in

an area to project only to a localized group of units in
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the target area. This feature allows the target units
to have localized receptive fields 29, which are both
common in biological neural networks and highly
desirable from a hardware implementation perspective.
Even within receptive fields 29, projections between one
area or layer and another do not necessarily imply full
factorial connectivity. The connection density
parameter for the projection may stipulate one of eight
degrees of connectivity between 30% and 100%.

At this point it may be well to mention that,

because of the magnitude of the numbers involved for the

units 18 and the connections 19, it is contemplated that
in a typical system the numbers will be represented by
their logarithms In Figs. 10 to 12 and 15 herein which
show examples of the substring 17, decoded numbers are
used by way of illustration to facilitate an
understanding of the concepts.

Projections include a set of weighted
connections. The weights are adjusted by a learning
rule during the training of the network. Parameters are
included in the PSF to control the learning rule for
adjusting the weights of the projection. The eta
parameter controls the learning rate in back propagation
and may take on one of 8 values between 0.1 and 12.8.

Eta need not remain constant throughout training. a
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Separate eta-slope parameter controls the rate of
exponential decay for eta as a function of the training
epoch.

An example of how this representation scheme
can be used to specify a 3-layer network is shown in
Fig. 3.

The first and last areas or layers of the
network have a special status. The first, the input
area, represents the set of terminals that will be
"clamped" by the network’s environment, effectively the
input stimulus. The final.area is always the output
area, and has no projections.

A blueprint representation in BNF of the neural
network described herein is Appendix A at the end
hereof. 1It is anticipated that there will be future
modifications and additions to it.

Figs. 10 to 12 show three examples of
substrings 17 which illustrate the projection specifier
sections thereof relative to the radius and the
connection density parameters. These figureé show
examples of projections 21 from a layer or Area 1 to a
layer or Area 2. The projection in Fig. 10 is from a
one dimenéional area (Area 1) to a two dimensional area
(Area 2) and the projections in Figs. 11 and 12 are each
from a one dimensional area (Area 1) to another

dimensional area (Area 2).
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In Fig. 10 the illustrated projection is to an
8 by 4 projection array 29 of computational units 18
and, by convention, this array is deemed to have a
radius of 4 in the vertical direction and a radius of 2
in the horizontal direction. The object array 29 is
symmetrically arranged relative to the source unit 18a
in Area 1. As each unit within the boundary of the
projection array 19 is connected, the connection density
parameter is 100.

It will be understood that each of the
computational units 18 in Area 1 will in a similar
manner have connections to respective 8 x 4 projection
arrays of units in Area 2 which results in substantial
overlapping of projection arrays and a very dense
connection system.

In Fig. 11 the projections are to every other
one of a linear array of 20 units. The radius is 8
indicated but the connection density parameter is only
50 because only half of the units within the radius are

connected.
Fig. 12 is similar to Fig. 11 except that every
computational unit in the array is connected and thus
the connection density is 100.
Figs. 11 and 12 are simiiar to Fig. 10 relative
to the matter of having each unit in Area 1 connected to

a respective projection array of units in Area 2.
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Potential target units of a projection from
a given source unit are determined by radii along
three dimensions. Figures 13a, 13b and 13c are three
two-dimensional examples of this.
Figures 14a, 14b and l4c, taken together,
provide a schematic example of a specific network

structure generated by the method herein.

ADAPTING GENETIC ALGORITHMS

The version of the genetic algorithm used
in the method herein employs a reproductive plan
similar to that described by Holland (1975) as "type
R". The basic plan for generating each new
generation is given in Fig. 15. The sampling
algorithm is based on the stochastic universal
sampling scheme of Baker (1987). This is preferred
for its efficiency and lack of bias. Some of the
details are not shown by the diagram. A final step
was added to insure that the best individual from
generation i was always retained in generation i+1.

The genetic algorithm (GA) itself has a
number of parameters. Good values for these are
important to the efficient operation of the system.
These parameters include the population size, the
rates at which to apply the various genetic
operators, and other aspects of the synthetic

ecology.

SUBSTITUTE SHEET
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Two genetic operators have been used:
crossover and mutation. The crossover operator
effectively exchanges homologous segments from the
blueprints of two networks from the current generation
to create a blueprint for a network in the next
generation. 1In most applications of the genetic
algorithm, homologous segments are identifiable by
absolute positions in the bit string. For example, The
Nth bit will always be used to specify the same trait in
any individual, Because the representation herein
allows variable length strings, a modified two-point
crossover operator was employed that determined
hbmologous loci on two individuals by referring to the
string’s markers, discussed above. The decision to use
a two-point crossover as opposed to the more common
single-point version was mptivated by Booker’s (1987)
report that improved off-line performance could be
achieved this way.

The mutation operator was used at a low rate to
introduce or reintroduce alleles-alternate forms of the
same functional gene. Current applidations of the
genetic algorithm have demonstrated an effective
contribution from mutation at rates on the order of

1072 or less.
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Despite the fact that the bit string
representation was designed with closure under the
genetic operators in mind, it is still possible for
the GA to generate individuals that are prima facie
unacceptable. A blatant example would be a network
plant that had no pathway of projections from input
to output. Subtler problems arise from the
limitations of our simulation capability. 1In our
initial work we have limited recurrence; network
plans with feedback cannot be tolerated under simple
back propagation. Two strategies have been employed
for minimizing the burden of these misfits. First,
the reproductive plan culls individuals with fatal
abnormalities; individuals with fatal abnormalities;
individuals with no path from input to output area
compose the bulk of this group. Second, blueprints
with minor abnormalities are "purified" in their
network implementation, i.e. their defects are
excised.

Figures 16a, 16b and 16c show an example of
hqw the crossover operator can create new strings
with different values for fields than either of the
parents. Here it is assumed that the fields use a

simple binary encoding scheme.

SUBSTITUTE SHEET
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EVALUATION OF SYNTHESIZED NETWORKS

Suitable improvements over generations can only
be accomplished if the evaluation function used to
measure the fitness of a network is appropriate. a
measure of fitness is necessary for the GA to produce
better and better networks. It is helpful to envision
the algorithm as exploring the surface over the
blueprint representation space defined by this function
in an attempt to locate the highest peaks.

In accordance with the requirements of the
evaluation function stated above, we have initially
formulated the evaluation function as a weighted sum of
the performance metrics, Pij. The evaluation function,

F(i), for individual i can be expressed as:

F(A) = a4 p5 (1)
j=

The coefficients aj may be adjusted by the
user to reflect the desired character of the network.
Metrics that have been considered thus far include
performance factors such as observed learning speed and
the performance of the network on noisy inputs, and cost
factors such as the size of the network, and the number
of connections formed. We have adopted a melange of

different performance and cost factors since performance

3



WO 90/11568

10

15

20

25

PCT/US90/00828

-23-
criteria vary from application to application. Because

the relative weight on each factor can be modified, the

- network structure can be tuned for different

optimization criteria. For example, if one of our goals
is to synthesize networks that are computationally
efficient, the size metrics might be given negative
weights. On the other hand, if accuracy and noise
tolerance is more crucial, then the performance on noisy

input patterns would be given a higher weight.

EVALUATION OF GA PERFORMANCE

In order to make conclusions about the-
performance of the genetic algorithm (as opposed to the
networks themselves) in discovering useful
architectures, we require some standard to compare it
against. This is difficult since there seems to be no
published data directly relevant to the problem. Our
approach is to run a control study in which network
blueprints are generated at random, evaluated, and the
best retained. This is effected by simply "turning off"
the genetic operators of Crossover and mutation. Random
search is an oft employed benchmark of performance that

other search algorithms must exceed to demonstrate their

value.
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DATA STRUCTURES

The major data structures in a current
implementation of the invention are objects that are
created and linked together at run time. The most
prominent object is the "experiment" which maintains the
current population, the history of performance over
generations, as well as various control and interface
parameters. The performance history is a list of
records, one per generation, noting, among other things,
on-line, off-line, average and best scores. The
population comprises the individuals of the current
generation as shown in Fig. 17.

Each individual has an associated blueprint,
which is stored as a bundle of bit vectors [bit vectors
are one-dimensional arrays in which each element
occupies one bit in the machine’s memory].

The bit vectors are of two types, areas (APS)
and projections (PSF), as indicated by the BNF. The
structure of each type is defined by a Lisp form,
indicating the names of each field, and how mény bits it
should occupy. For example, the projection
specification is defined as:

(def~bit-vector PROJECTION~SPEC
(radius=-1 3)
(radius=-2 3)
(radius-3 3)
(connection-density 3)
(target-address 3)
(address-mode 1)

(initial-eta 3)
(eta-slope 3) )
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This form automatically defines the accessors
needed to extract the value for each parameter from any
given bit vector. The accessors transparently effect
the gray coding and decoding fields. Most of the
integral values of fields are interpreted throﬁgh lookup
tables; for example, an eta table translates the values
0...7 to etas from 0.1 to 12.8.

Genetic operators such as crossover and
mutation directly modify this bit vector blueprint,
which is considered the master plan for the individual.
Pieces of it are actually shared with its offspring.

The bit vectors are not directly useful in running an
actual neural network, however. For this, the
individual must be parsed, purified, and instantiated.

When an individual is parsed, the bit string
form of the blueprint is translated into a network of
nodes-an area node for each area, and a projection node
for each projection. Parsing works out the inter-area
addressing done by projections, and the nodes carry
parameter values interpreted from the associaéed bit
vectors. The network, or parsed blueprint, is
associated with the object representing individual.

A parsed blueprint may have defects that
prevent a meaningful interpretation as a neural
network. For example, it might contain projections with

no valid target, or projections indicating feedback
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circuits, which are prohibited in the current
implementation. Rather than discarding slightly
imperfect individuals, an attempt is made to patch them
after parsing. The patching step is called
purification. The purifier removes dangling nodes and
cuts circuits in an attempt to create a viable
individual while making as few changes as possible.
Following parsing and purification, aﬁ
individual is instantiated. Instantiation involves
allocating and-initializing vectors for units, weight
matrices, mask matrices, threshold vectors, and other
numerical storage. References to these data objects are

kept in the nodes of the individual’s parsed blueprint.

THE EVALUATION PROCESS

The purpose of the parse/purify/instantiate
sequence is to set the stage for the evaluation of the
individual, i.e. the computation of a score. The score
is a weighted sum of a set of performance metrics. The
weights may be set by the user at run time. '

Some of these metrics are immediate
consequences of instantiation, e.g. number of weights,
number of units, number of areas, and average fan-out.

Other metrics depend on the individual network’s

performance on a given problem (such as digit
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recognition). Examples of such metrics are: the
learning rate of the network, its final performance on
the training set, its performance on non-degraded inputs
and on novel inputs, and its performance after
temporarily mullifying a random sample of either the

weights or units of the network.

RESULTS, ANALYSIS AND DISCUSSION

Despite the restricted scope of initial
experiments, the method herein has produced reasonable
networks, and has achieved significant improvements over
the chance structures in its initial generation. 1In

most cases, the networks produced have been structurally

fairly simple.

PERFORMANCE CRITERIA

There are several common ways to loog at the
changes in population performance over time in genetic
optimization systems, and most of our charts include
four. Because our reproductive plan goes thréugh
separate phases of reproduction and evaluation, the data

points are actually recorded at the end of each

generation.
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Define S; to be the score of the ith
individual generated. The best function indicates the
pérformance of the best individual discovered by the Ga
up to a given time, i.e.'

5 Best (i) = Max [Sj, j=1,...,1]
The off-line GA performance is the mean of the

best

individual’s scores found up to a give time:

10
; 1
Off-line (i) = = I Best(j)
i =1
An alternative is the on-line performance.
This is simply the mean of all individuals scores
15 evaluated so far. At the end of time i, this. would be:
1 i
On-line(i) = = % Sj
i j=1
20 Another interesting function is the éverage
score for all of the individuals in a given generation.
If G; is the set of individuals in the ith generation,
then:
25 Average(i) = L L s,

J

le [ 5 .
1 jeGi
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On-line performance is perhaps most relevant to
systems that must interact with a real-time Process,
whereas off-line performance is more relevant to systenms
that are concerned only with finding the best and not
how much it costs to 1look. For example, if one were
picking horses, it would be important to take into
consideration all of the poor bets as well as the
winners, motivating interest in on-line performance. If
one were optimizing a function, the only concern might
be about the quality of the best point tested,
motivating off-line performance. Noting that the "Best™
and "Offline" functions are isotone by definition they
can only increase or remain constant over the course of

.
an experiment, and cannot decrease.

EXPERIMENT 1
Application: Digit Recognition

Optimization Criterion: Area under léarning
curve
Population Size: 30
Generations: 60
‘The average performance of the network population
increased eight-fold from the first to the sixtieth
generation. The network learned to criterion in 4s

epochs.
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Since only one factor was being directly
optimized, others such as the number of weights were
free to vary. The network had 1481 weights. A network
which had exactly one weight connecting each input with
5 each output would have only a third as many weights.
Such networks were also produced, and these learned
perfectly as well, but took more than twice as long.
The performance of this experiment for this 60
generation experiment is summarized by Fig. 18.

10 In the initial generations, hidden-layer
structures were present. It was not obviou§ to us that
this problenm is linearly separable until the experiment
started producing two-layer structures that were
learning perfectly. Since hidden layers are not needed

15 for this problem, and since learning rates in general
degrade as hidden layers are added to a network
(although this degradation is much less severe with the
modified back-propagation rule we are using [Samad,
1988] than with the original rule), towards the end of

20 the simulation multiple-layer structures were‘rare.

' In order to evaluate the performance of the GA
in discovering better networks, the digit recognition
problem was repeated with the GA disabled. To achieve
this, random individuals were generated where crossover

25 or mutation would have been applied. Again, scores were
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based exclusively on the area under the learning curve.
The results of this experiment are charted in Fig. 19.

While the random Search and GA experiments
started with a very similar populations in generation o,
the performance of the two algorithms soon diverged. In
particular, average and on-line performances of the
random search algorithm were conspicuously inferior to
the GA. This is to be expected if the GA is successful
in retaining some of the better characteristics from one
generation to the next; the random seérch procedure is
confined to picking "losers" at a fairly constant rate.
The off-line performance is arguably a more interesting
comparison for this problem between the GA and random
search. Figure 20 shows off-line performances extracted
from Figs. 18 and 19.

Once again, the GA performance dominates random
search for the duration of the experiment. It could be
argued that the gap is not a large one but, as stated,
the scores are normalized. The best network discovered
(by chance) after 60 generations took 67 epoché to learn
the problem while the best network discovered by the Ga
learned the problem in 40 epochs. Further, it seems
likely that we will be able to improve the performance
of the GA through altered representation and better
parameter values, while there is no latitude for

improvement in the performance of the random search
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brocedure. Finally, a caveat: we are running with a
relatively small population, and our experiments have
been limited to few generations-all of these results

should therefore be interpreted with caution.

EXPERIMENT 2

Application: Digit Recognition

Optimization Criteria: Average fan-out and

percent correct

Population Size: 30

Generations: 20

In this experiment, the criteria were the
average fan-out and percentage correct, equally weighted
(0.5). Learning rate was not given any direct influence
on the score. The percentage of correct digit
identifications after training was determined by
presenting each of the ten digits to the trained network
and scoring a "Hit" if the output unit with maximal
value corresponded to the correct digit. The average
fan-out is defined as the ratio of the number of weights
to number of units; this metric is normalized and
inverted, so that a large ratio of weights to units will
detract from an individual’s score. The question posed
by this experiment is, can the system improve

performance by limiting fan-out? It is a potentially
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.interesting question to designers of neural network
hardware, since high fan-outs are difficult to engineer
in silicon. [Average fan-out is an approximation of an
even more interesting quantity-maximal fan-out.] our
initial results are shown in Fig. 21.

The average fan-out in this experiment was
157/48 = 3,27, This can be contrasted with the network
shown for Experiment 1, which has an average fan-out
that is almost an order of magnitude higher.

Learning was quite slow. In fact, the above
network did not learn to within the error threshold that
was prespecified as a termination criterion for
training. (Learning to within the error threshold is
not necessary to achieve perfect hit rates.) The
connectivity structure of the network uses large
receptive fields but low connection density. From a
hardware implementation perspective, it would be better
to optimize for small receptive fields and such an

experiment is contemplated.

METRIC FOR LEARNING RATE

The metric chosen for learning rate requires
Some explanation. Because of limited computational
resources, we cannot hope to train all networks until
they achieve perfect accuracy on a given problem, or for

that matter to any non-zero predetermined criterion. In
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Some cases, a network may require a hundred epochs while

in others a million may be insufficient. oOur compromise

- is to employ two criteria for halting the learning

phase. Learning is halted under the first criterion

- when rms error during the previous epoch was lower than

a given threshold. The learning phase is terminated
under the second criterion after é fixed number of
epochs has been counted; this threshold is set by the
experimenter according to the problem, but it is
typically between 100 to 5000 epochs. We nonetheless
wish to compare all individuals on the same learning
rate scale even though their training may have lasted
different numbers of epochs and resulted in different
final levels of accuracy. Our approximation is to
integrate the rms error curve over the learning phase
for each individual. This "area under the learning
curve" provides a rank that corresponds closely to our
intuition about learning rate scales. Lower numbers

imply better performance.
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Appendix a

Syntax for Blueprint Representation in BNP:

<bluepnnt-spec>::a <input-spec> <middle-spec> <output-spec>
<input-spec> ::» <area-spec> <projection-spec>

5 <middle-spec> ::a empty | <segment> | <middle-spec> <segment>

<output-spec> := carea-marker><area-id> <dimension-subfield>

carea-spec> :m  <area-markers<ares-id> <dimension-subfield>
<leammg-rule-spec>

<Projection-spec> ::» <projection-marker> <projection-spec-fieid> |
10 <projection-spec> i
<projection-marker> <projection-spec-fields
<egment> s carea-spec> <projection-spec>
<area-marker> := empty
<area-id> :=» <binary-digits>
15 <dimension-subfield> == <total-size> <dim-spec> <dim-spec>
<dim-spec>
<learning-rule-spac> = <eta-initial-vajue> <slope-of-changing-eta>
<projection-marker> :s empty
<projection-spec-field> ::» <radii-of<connectivity> <connection-density>

<larget-address> <target-address-mode>
20 ' <leaming-rule-spec>

<binarydigits> ::» <binarydigit> | <binary-digits> <binary-digit>
<upper-bound> =  <binary-digit> <binary-digit> <binary-digit>
<dim-spec> =  <binary-digit> <binary-digit> <binary-digit>
25 <eta-initial-value> :»  <binary-digit> <binary-digit> <binary-digit>
<siope-of-changing-eta> := <binary-digit> <binary-digit> <binary-digit>

<radii-of<connectivity> == <radius-of<connection> <radius-of-connection>
<radius-of-connection>

<radius-of-<connectioro ::» <binary-digit> <binarydigi> _<binary-digit>
30 <connection-density> := <binary-digit> <binary-digit> <binary-digit>
<target-address> :=  <binary-digit> <binary-digit> <binary-digit>
<target-address-mode> := <binary-digit>
<binary<digit> = 011
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APPENDIX B

Backpropagation

Neural networks are constructed from two
5 primitive elements: processing units and (directed)
connections between units. The processing units are
individually quite simple, but they are richly
interconnected. Each connection typically has a
real-valued weight associated with it, and this weight
10 indicates the effect the value of the unit at the source
of the connection has on the unit at its destination.

The output of a unit is some function of the weighted

sum of its inputs:

15
oj=f(§ W;504-05) , (1)
Where o5 is the output of unit j, Wiy is the

weight from unit i to unit j, and ej is the

20 "threshold" or bias weight for unit j. The quantity
iwijoi- ej) is usually referred to as the net
input to unit j, symbolized netj. The form of Eg. (1)
that is usually employed with back-propagation is the
sigmoid function:

25 f(x) = __1 (2)
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In most backpropagation networks, the units are
arranged in layers and the hetworks are constrained to
be acyclic. It can be shown that such "multi-layer
feed-forward" networks can realize any mapping from a
5 multi-dimensional continuous input space to a
multi-dimensional continous output space with
arbitrarily high accuracy (Hecht-Nielsen, 1987;
Lippmann, 1987; Lapedes & Farber, 1988).

The rule used to modify the weights is:
10

This is the standard backpropagation learning
rule. Here Wiy is the weight from unit i to unit j,
15 ©; is the output of unit i, n is a constant that
determines the learning rate, and 5j is the error
term for unit j. 85 is defined differently for
units in the output area and for units in "hidden"
areas. For output units,
20

= X4 ~0 .
Sj oj(tjoy

where oj' is the derivative of 04 with respect to

25 its net input (for the activation function of Eq. (2)

7

this quantity is oj(l-oj)) and tj is the target
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value (the "desired output") for unit j. For hidden

units, the target value is not known and the error term

- 1s computed from the error terms of the next "higher"

layer:

§ =o0o’'sw §

3 Jkjkk
We have incorporated two extensions to most
uses of backpropagation in our current implementation.
First, we use a recently discovered improvement of Eq

(3) (samad, 1988):

Awij= n(oi+ ai)aj

This equation uses the anticipated value of the
source unit of a weight instead of the current computed
value. 1In some cases, orders of magnitude faster
learning is achieved.

Second, we allow the value of n to dgprease as
learning proceeds. That is, 7 is now a variable,

and the learning rule actually used is:

A i< r;t(oi + & )Sj
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where n¢ is the value of n at the tth

iteration through the training set. at the end of each

iteration, 5 is changed according to the following

formula:

Meyy = ”slope 7 t

where 5 slope is a parameter that determines the

rate of decay of 5. It has been experimentally
observed that using a high value of n initially and
then gradually decreasing it results in significantly
faster learning than using a constant 5. Both n

slope and the initial value of g (ny) are

given by the projection specification in the blueprint.
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It is claimed:

1. A method for synthesizing designs for -

“neural networks which involves the use of a selected

learning algorithm and a particular subject to be
learned, comprising the steps of:

A. devising a bit string parametric
representation of a neural network architecture having
relevant parameters,

B. generating a first generation of network
blueprints based on said representation which jointly
include a range of values for each of said parameters,

C. generating respective neural network
architectures based on the current generation of said
blueprints,

D. training each of said network architectures
presently defined in step C via said selected learning
algorithm and said subject matter,

E. testing each of said network architectures
presently defined in step C with test patterns
corresponding to said subject matter for testiﬁg the
receptiveness of each of said network architectures
presently defined in step C to the affect of said
training.

F. performing an evaluation for each of said
network models presently defined in step C after said
testing thereof relative to performance and cost factors
of interest and assigning a scére thereto representing

the results of said evaluation,
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G. selecting candidates from said network

architectures Presently identified in step C in

~accordance with some rationale and applying at least one

operator thereto to product a new generation of network
blueprints which shall be identified as the current
generation of network blueprints based on said
representation, and

H. returning to step C ang continuing the

process.

2. A method according to claim 1 wherein said

operator is a genetic operator.

3. A method for synthesizing designs for
neural networks each of which comprise,

a plurality of computational units, a plurality
of hierarchically arranged layer areas including input
and output layer areas and 2ero or more hidden layer
areas therebetween, each of said layer areas being
defined by a number of said units, connecting ﬁeans
connecting source groups of said units in said layer
areas other than said output layer area with object
groups of said units in said layer areas other than said
input layer area, said connecting means being grouped in
sets deemed projections with each of said projections
extending from one of said layer areas to another of

said layer areas,
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said method comprising the steps of:

A. providing a substring format for specifying

~ each of said layer areas with said format having one

first type part deemed a layer area parameter specifier
and at least one second type part for each of said
projections deemed a projection specifier,

said first type part comprising a layer area
identifying address section, a total size section
denoting the corresponding number of said units thereof,
and a dimension section denoting the configuratioh
formed by said units,

each said second type part being dedicated to
one of said projections deemed a subject projection,
said second part type comprising a target address
section for identifying one of said layer areas deemed a
target layer area to which said subject projection is
directed, a mode of address section for said subject
projection, a dimension section for -denoting the
configuration of an object field for said subject
projection in said target layer area, a conneétion
density section for denoting the connectivity of said
subject projection to said object field, and at least
one learning rule parameter section.

B. devising a bit string parametric
representation of a neural network architecture based on

said substring format and having relevant parameters,
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C. generating a first generation of network

blueprints based on said representation which jointly

- include a range of values for each of said parameters,

D. generating respective neural network
architectures based on the current generation of said
blueprints,

E. training each of said network architectures
presently defined in step D via said selected learning
algorithm and said subject matter,

F. testing each of saigd network architectures
presently defined in step D with test patterns
corresponding to said subject matter for testing the
receptiveness of each of said netwqu models presently
defined in step D to the affect of said training,

G. performing an evaluation for each of said
network architectures Presently defined in step D after
said testing thereof relative to performance and cost
factors of interest ang assigning a score thereto
representing the results of said evaluation.

H. selécting candidates from said nétwork
architectures presently identified in step D in
accordance with some rationale and applying at least one
genetic operator thereto to pProduce a new generation of
network blueprints which shall be identified as the
current generation of network blueprints based on said

representation, and
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I. returning to step D and continuing the

Process.

10

15

20

25
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: RANDOMLY SELECTED
F 1g. 164 (CROSSOVER POINTS)

STRNGA|1 /0[O0 |1 |{1]|1]1]1

N\ A__ J
Y Y
FIELD 1: FIELD 2:
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F.lg 1 6 B CRCiSSOVER POI*NTS
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N A J
Y Y

FIELD 1: FIELD 2:
VALUE = 4 VALUE = 4

Fig. 16C new stRine
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Fig. 18
PERFORMANCE IN THE DIGIT RECOGNITION PROBLEM. SCORES DEPENDED
ONLY ON THE RATE OF LEARNING (UNDER THE LEARNING CURVE)
DIGIT RECOGNITION — RANDOM SEARCH
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OFF—-LINE PERFORMANCE: GA & RANDOM SEARCH
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Fig. 20
OFF—LINE PERFORMANCE ON THE DIGIT RECOGNITION PROBLEM,
COMPARING THE GA AND RANDOM SEARCH.
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