PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

TREATY (PCT)

(51) International Patent Classification 6

GO6F 13/15 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/47074

22 October 1998 (22.10.98)

(21) International Application Number: PCT/US98/07595

(22) International Filing Date: 14 April 1998 (14.04.98)

(30) Priority Data:
08/839,593
08/862,025

UsS
Us

15 April 1997 (15.04.97)
22 May 1997 (22.05.97)

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventors: CABRERA, Luis, Felipe; 2009 Killarney Way, S.E.,
Bellevue, WA 98004 (US). KIMURA, Gary, D.; 11820 N.E.
43rd Place, Kirkland, WA 98033 (US).

(74) Agents: NYDEGGER, Rick et al; Workman, Nydegger &
Seeley, 1000 Eagle Gate Tower, 60 East South Temple, Salt
Lake City, UT 84111 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GHGMGWHUIDILISJPKEKGKPKRKZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: FILE SYSTEM PRIMITIVE ALLOWING REPROCESSING OF /0O REQUESTS BY MULTIPLE DRIVERS IN A LAYERED

DRIVER /O SYSTEM

(57) Abstract

The present invention provides a system and method
for interrupting the normal sequence of processing and
for allowing drivers (42, 44) that would not normally

process an /O request to intervene and assume control
for processing the I/O request. The present invention
adds a "reparse point" attribute (52) to a file or directory.
The reparse point attribute (52) preferably contains a tag
which identifies a particular driver (42) as the owner of the
reparse point (52) and a data value which can be used by
the owner driver (42) to store any information necessary
or useful in processing an I/O request. When a driver
(42) encounters a reparse point attribute (52), processing is
interrupted and the tag and value of the reparse point (52)
are extracted from the attribute. The tag and value are then
passed to the next higher level driver in the layered driver
system until one driver recognizes itself as the owner of
the reparse point. That driver then assumes responsibility
for completing the /O request.

n CLIERY
PROCESS
U U - USER NODE
| KERNEL MODE
U1 SERVICES
w—Lb 110 mARAGER
““1/ Y
22—~ LAYER 1 DRIVER
o I
u—Lb LAYER 2 DRIVER

REPARSE
POINT

T AT
wilkal

46—~ LAYER N DRIVER

[)

HARDWARE

56—

AL

AT
AU
AZ
BA
BB

BE
BF

BG
BJ

BR
BY
CA
CF

CG
CH
CI

CM
CN
cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE

58

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
[3//
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

1

FILE SYSTEM PRIMITIVE ALLOWING REPROCESSING
OF 1I/0 REQUESTS BY MULTIPLE DRIVERS IN A
LAYERED DRIVER I/0 SYSTEM

1. The Field of the Invention

The present invention relates to systems and methods for allowing multiple
drivers in an I/0 system to participate in processing an I/O request. More specifically,
the present invention allows one driver to interrupt the normal sequence of processing an
1/0 request in order to pass control to another driver for further processing of the I/O

request.

2. The Prior State of the Art

A functional computer system generally consists of three fundamental
components. The first component is the computer hardware. The computer hardware
includes such devices as a central processing unit (CPU), system memory such as RAM
or ROM, mass storage such as magnetic or optical disk storage, a keyboard or other input
device, and a display or other output device. Users of computer systems generally
interact with user or application programs. Such programs include the familiar word
processing applications, spread sheet applications, database applications, and so forth.
The final component of a modern, functional computer system is an operating system.
The computer operating system performs many functions such as allowing a user to
initiate execution of an application program. In addition, modern operating systems also
provide an interface between an application program and the computer system hardware.
Thus, while it was once commonplace for an application program to directly access
computer system hardware, modern operating systems provide standardized, consistent
interfaces that allow user applications to interface with or access computer hardware in
a standardized manner.

In order to provide a consistent interface between a process such as a user
application and a particular type of hardware device, there may be several software layers
between the actual hardware and the process. For example, a process may make a call
into the operating system. The operating system, in turn, may utilize the services
provided by a hardware driver layer. The hardware driver layer would then interface
directly with the hardware. A primary advantage of such a layered approach is that layers
may be added or replaced without creating a huge impact on the remaining layers. For
example, if a new hardware device is added to a system, a new driver may be added,
which allows the operating system to access the hardware. All these changes may take

place with minimal or no impact on existing application processes.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

2

When drivers are used to interface with hardware devices, the trend has
traditionally been to create monolithic drivers, which incorporate all functionality needed
to interface an operating system with a particular hardware device. More recently,
operating systems have been developed that use multiple drivers to perform various I/0
tasks. Examples of this are particularly prevalent when dealing with /O requests to disk
or other mass storage.

Data is typically stored on mass storage devices in a hierarchical fashion with
directories and files organized in a hierarchy resembling a tree structure. The location
of any file or directory is typically specified by a file path name. The path name typically
begins with a root or starting directory and names each subdirectory until the desired file
or directory is reached. For example, a file called "file.dat" may be stored in directory
"temp", which is a subdirectory of the root directory "root". Thus, the path name would
be /root/temp/file.dat. Resolving file names in a file system is typically a multistage
procedure. It generally begins with stage that decodes all of the named components that
needs to be successfully identified by the file system. The procedure then continues with
an iterative process of identifying, usually from left to right, the successive components
in the file name. The procedure finishes with the success or failure of each of these name
resolutions. Thus, in the example above, the path name would be broken down into
successive components and the resolution process would identify, in turn, the root
directory, the temp subdirectory, and the file file.dat.

Most UNIX systems allow several data managers to co-exist within one
installation. To achieve this, the hierarchical file name space is partitioned into sub-trees
of file and directory names. A dedicated data manager then administers each sub-tree.
When an I/O request is made, the name resolution process resolves the name to a
particular sub-tree and the 1/0 request may be handled by the data manager for that sub-
tree. The data manager may then call the built-in UNIX file system in order to perform
the actual storage and retrieval of data. Thus, the data managers act as a value added
component extending the capabilities of a particular file system.

When multiple data managers exist in a UNIX /O system, routing of the request
to the proper data manager is achieved through the mechanism of "mount points.” One
mount point is established in the name space to represent each of the sub-trees. During
the name resolution process, when a mount point is encountered, the UNIX 1/0 system
directs the request to the appropriate data manager in charge of administering the sub-tree
represented by the mount point. The appropriate data manager then continues with the

name resolution process.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

3

The standard UNIX file system also supports symbolic links. Symbolic links
represents a built-in case in which the procedure for resolving a name is begun afresh
using a second name. When a symbolic link is encountered, one file name is blindly
substituted for another and the name resolution process is begun anew with the
substituted name.

Prior art systems have thus utilized multiple data managers to manage different
parts of the address space. These data managers also were able to interact with the
standard file system in order to process an I/O request. The model used in prior art
systems, however, was relatively deterministic and could not be extended to cover
scenarios not envisioned by its designers. In other words, the interaction between a data
manager and the file system is relatively fixed with each performing a defined role.
Removing either the data manager or the file system and replacing them with another
component to perform some other function would be difficult. Similarly, attempting to
place another manager in the system to perform a function other than managing a sub-tree
would also be difficult, if not impossible, using existing driver models. It would,
therefore, be desirable to provide a method that allows multiple components to work
together to process an I/O request where the number of components is not fixed and may
be extended or modified arbitrarily to add new components handling functions not
envisioned when the sysfem was established. It would also be desirable to allow
replacement of any component without causing major disruption to the remaining
components. '

Another problem with the prior art is that although multiple data managers are
used, their participation in the name resolution process is limited to the name space over
which they have control. In other words, if multiple mount points are to be identified,
multiple data managers must be installed, each to handle a particular mount point. It
would be desirable to allow a single data manager to manage multiple mount points or
sub-trees of information.

Thus, what is needed is a mechanism to dynamically extend and reconfigure an
I/O system that uses a plurality of data managers or drivers to process I/O requests. It
would also be desirable to allow such reconfiguration an extension with minimal impact

on the other data managers or drivers within the system.

SUMMARY OF THE INVENTION
The foregoing problems in the prior state of the art have been successfully
overcome by the present invention, which is directed to a system and method for

interrupting the normal sequence of processing in an I/O system and transferring control

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

4

from one data manager or driver to another data manager or driver. The present invention
is particularly useful in an I/O system which uses a plurality of drivers or data managers
to perform various processing functions in fulfilling an I/O request.

In a system where a plurality of drivers or data managers cooperate to fill an /O
request, the drivers or data managers often have a layered relationship, with each driver
performing various types of functions to process the 1/O request. For example, an 1/0
system may comprise a file system driver layered on top of a device driver. When an [/O
request is received, the file system driver may perform certain functions, such as
resolving the file name and translating the file name to a particular location on the disk.
The particular location on the disk may then be passed to the device driver, which locates
the proper location on the disk and reads or writes the desired information. Other drivers
may also be layered either above or below the file system driver. For example, it may
be desirable to provide a redundant file system driver between the file system driver and
the device driver. The redundant file system driver may then perform data mirroring in
order to mirror data to multiple locations on a disk or in order to mirror data to multiple
disks.

In the traditional layered driver models, information is passed from one layer to
another with each layer performing its various tasks before passing the request on to
another layer. In some instances, it is extremely useful to be able to interrupt the normal
sequence of processing and to pass control for handling at least part of the 1/O request to
a different driver. For example, perhaps it is important to store certain files in a special
location. A driver may be developed that manages access to the files stored in the special
location. Thus, when the file system driver resolves the name to the special location, it
would be desirable to pass control of the 1/O request to the driver that handles that
information, rather than passing the I/0 request to the normal device driver.

The present invention allows interruption of the normal sequence of processing
and transferring of the I/O request to a particular driver. The method of the present
invention is dynamically extensible and a system can be configured to add or remove
drivers without disrupting operation of the other drivers. To accomplish this, a new
directory and file attribute is defined called a "reparse point" attribute. The reparse point
attribute is additive so that individual files and directories may either be reparse points
or not, depending on the status of the reparse point attribute.

A reparse point attribute preferably has both a tag and a data value. The tag is
used to identify the driver that is the "owner" of the reparse point. In general, the owner
of the reparse point is responsible for processing either all or part of an I/O request

involving the reparse point. The data value is data stored in the reparse point by the

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

5

owner. Thus, an owner may use the value of the reparse point to store any data that will
be necessary or helpful to complete a particular I/O request that involves the reparse
point.

In one embodiment comprising a plurality of layered drivers, when a reparse point
attribute is identified by a particular driver, the driver extracts the tag and the value of the
reparse point. The I/O request, along with the tag and value of the reparse point, is then
passed to other drivers until one identifies itself as the owner of the reparse point. The
owner then takes control and resumes processing the I/0 request. The owner of a reparse
point may completely process an I/O request, or may make use of other drivers in order
to completely process the I/O request. The owner may also make use of other computers
to completely process the I/O request.

Because each reparse point has both a tag and a value, the reparse point
mechanism provides an extremely flexible structure which may be used by any number
of drivers to achieve any number of functions. For example, control may be passed to
a hierarchical storage manager in order to manage data that is migrated from local storage
to archival storage automatically. As another example, control may be passed to a
distributed file manager which manages files stored on a plurality of different disk drives.
As yet another example, control may be passed to a secure file manager, which manages
files stored in a secure location or stored in an encrypted format. In essence, the present
invention facilitates interruption of the normal sequence of processing and transferring
of control to a different driver to handle special processing needs of special types of files
or directories. The mechanism provides a coherent methodology for extending the
capabilities of an 1/0 system to cover needs as they change over time.

The present invention is broad enough to extend the capabilities of an I/O system
beyond the standard 1/0 operations usually supported by an I/O system. A driver or
manager can be developed to cause a standard I/0 operation to result in actions that have
nothing to do with standard 1/O operations. For example, in a home automation context,
reparse points can be used to achieve any number of objectives. A reparse point can be
used to call the police or fire department. One possible implementation, for example,
may establish a reparse point and store the phone number of the police or fire department
as part of the reparse point. When the [/O system accesses the reparse point, the driver
that owns the reparse point would receive processing control as described above. The
owner could then retrieve the appropriate phone number, dial it through a modem or other
system, and send notification, information, speech, and so forth to the entity called. The
present invention can be used in any number of other situations to use a standard 1/O

operation to achieve a result having nothing to do with standard 1/O operations.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

6

Additional advantages of the invention will be set forth in the description which
follows, and in part will be obvious from the description, or may be learned by the
practice of the invention. The advantages of the invention may be realized and obtained
by means of the instruments and combinations particularly pointed out in the appended
claims. These and other features of the present invention will become more fully
apparent from the following description and appended claims, or may be learned by the

practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the above-recited and other advantages of the
invention are obtained, a more particular description of the invention briefly described
above will be rendered by reference to specific embodiments thereof which are illustrated
in the appended drawings. Understanding that these drawing depict only typical
embodiments of the invention and are not, therefore, to be considered to be limiting of
its scope, the invention will be described and explained with additional specificity and
detail through the use of the accompanying drawings in which:

Figure 1 is a diagram representing an 1/0 system employing layered drivers;

Figure 2 is a diagram illustrating transfer of control from one layered driver to
another layered driver when a reparse point attribute in encountered;

Figure 3 is a diagram illustrating the attributes of a file or directory suitable for
use with the present invention;

Figure 4 is a diagram illustrating the services provided by two layered drivers and
showing the general functionality incorporated into the drivers by the present invention;

Figure 5 is an example illustrating how the present invention may be utilized to
process an I/O request involving a reparse point;

Figure 6 is a diagram illustrating the directory structure of the example presented
in Figure 5;

Figure 7 is a diagram illustrating an example where another computer is used to
complete an I/O request; and

Figure 8 is a diagram illustrating how the present invention extends the capability

of an I/O system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is described below by using diagrams to illustrate either the

structure or processing of embodiments used to implement the system and method of the

present invention. Using the diagrams in this manner to present the invention should not

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

7

be construed as limiting of its scope. The present invention contemplates both methods
and systems for interrupting the normal sequence of processing in an 1/0 system and for
transferring control to another driver for further processing of the 1/O request.
Embodiments of the present invention may comprise a special purpose or general purpose
computer comprising standard computer hardware such as a central processing unit
(CPU) or other processing means for executing computer executable instructions,
computer readable media for storing executable instructions, a display or other output
means for displaying or outputting information, a keyboard or other input means for
inputting information, and so forth. Since the present invention is designed to transfer
control from one driver to another driver, embodiments within the scope of this invention
will generally have an I/O system that uses a plurality of drivers or data managers to
complete I/O requests. The present invention, however, is not otherwise constrained by
the type of I/O system that runs of the computer hardware.

Embodiments within the scope of the present invention also include computer
readable media having executable instructions. Such computer readable media can be
any available media which can be accessed by a general purpose or special purpose
computer. By way of example, and not limitation, such computer readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk
storage or other magneticA storage devices, or any other medium which can be used to
store the desired executable instructions and which can be accessed by a general purpose
or special purpose computer. Combinations of the above should also be included within
the scope of computer readable media. Executable instructions comprise, for example,
instructions and data which cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain function or group of functions.
Finally, embodiments within the scope of the present invention comprise a computer
readable medium having a plurality of data fields stored thereon that represent a data
structure.

In order to more fully understand the context of the present invention, reference
is now made to Figure 1, which illustrates a simplified diagram of the interaction between
a client process and an operating system having an I/O system that uses a plurality of
driver means for processing 1/0 requests. This diagram is representative, for example,
of the Microsoft Windows NT® operating system. The diagram of Figure I may also
represent any operating system which uses a plurality of driver means for processing /O
requests.

In Figure 1, client process 20 makes use of operating system services 22 to

perform I/O requests. This is typically achieved by client process 20, making a call to

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

8

an Application Program Interface (API) function provided by the operating system.
Calling the appropriate API function ultimately results in call to operating system
services 22. Such a call is illustrated by arrow 24.

In Figure 1, client process 20 is illustrated as operating in "user" mode and the
operating system services are illustrated as operating in "kernel" mode. Modem
operating systems typically provide a robust environment for various application
programs and intuitive user interfaces. Such operating systems normally have different
operating levels or "modes," depending on the level of sophistication of the operating
system and the security features that are implemented by the operating system. Normal
application programs typically run at the lowest priority and have a full complement of
security devices in place to prohibit interference with other applications, or with other
layers of the operating system. Hardware and other services provided by the operating
system are only accessed through controlled interfaces or mechanisms which limit the
ability of a user application or other process in the user mode to "crash" the system. This
lowest priority mode is typically referred to as user mode and is the mode that most
computer users are familiar with. Because of the close integration of drivers with their
associated hardware and because of the time critical nature of the tasks that many drivers
perform, drivers typically run in an operating system mode that has a much higher
priority and much lower security protection. This mode is generally referred to "kernel"
mode. Placing the drivers and other operating system services in the kernel mode allows
the operating system to run at a higher priority and perform many functions that would
not be possible from user mode.

When client process 20 calls operating system services 22 in order to perform an
1/0 request, the I/O request is passed to a first driver means for processing I/O requests.
In Figure 1, file system driver 26 and device driver 28 represent examples of driver
means for processing I/O requests. The passing of the I/O request to the first driver
means is illustrated in Figure 1, for example, by arrow 30. File system driver 26 will
then take the 1/0 request and generally perform partial processing of the I/O request
before passing the I/O request onto the next driver. In the context of this patent, "1/O
request” includes any type of 1/O operation supported by the I/O system. Note that this
may include much more than the normal file operations typically associated with an 1/O
system. The term may also include extended capabilities of the [/O system. Thus, the
term "1/0 request” should be given a broad interpretation.

As an example, suppose client process 20 wished to open a particular file on disk
and retrieve information from the file. The I/O request would pass from client process

20 to operating system services 22 and onto file system driver 26. File system driver 26

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

9

would then translate the I/0 request from a file name to a particular location on a disk.
The translation process may also include the number of data blocks that should be read
from or written to the disk at the particular location. This information can then be passed
to the next driver, as for example, device driver 28. The process of passing the
information required by device driver 28 is illustrated in Figure 1 by arrows 32 and 34.
Device driver 28 takes the location and number of data blocks to be read or written and
translates them to the appropriate control signals to retrieve the desired information from
or store the desired information to hardware device 36. The data retrieved may then be
passed from device driver 28 to file system driver 26 and ultimately back to client
process 20 as indicated by return arrows 38. Status information may be returned in the
same manner.

In Figure 1, /O requests are not passed directly between file system driver 26 and
device driver 28. Rather, the I/O requests are passed between the drivers via I/O manager
40. Tt is, however, not necessary to have an I/O manager in all implementations.
Embodiments may also exist where I/O requests are passed directly from one driver to
another.

One important concept to be gleaned from Figure 1 is that when I/O requests are
created by a client process, the sequence of processing in traditional systems remains
relatively fixed and unaltered. In other words, an I/O request of a particular type is
processed in exactly the same way every time an I/O request of that type is received. The
I/O request is passed first to one driver which may perform partial processing which then
forwards the 1/0 request to a second driver which may also perform partial processing
on the I/0 request. In general, this procedure is followed with each driver passing the /O
request on to a successive driver until the I/O request is ultimately processed. In prior
art systems, no provision is made for interrupting the normal sequence of processing and
returning control to either a previous driver or to a separate driver for the handling of
special types of I/O requests.

Referring next to Figure 2, a generalized diagram of a system embodying the
present invention is illustrated. Client process 20 again makes an I/O request that is
eventually forwarded to operating system services 22 as illustrated by arrow 24. The I/O
system of the present invention comprises a plurality of driver means for processing such
I/O requests. By way of example, and not limitation, in Figure 2, such driver means are
illustrated by layer 1 driver 42, layer 2 driver 44, and layer N driver 46.

Because 1/0 requests are passed from one driver means to another driver means,
embodiments within the scope of the present invention may comprise means for passing

an I/O request from one driver to another. By way of example, in Figure 2 such means

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

10

is illustrated by arrows 48 and 50, which illustrate I/O requests being passed directly
from one driver to another. Such means may also comprise an I/O manager, such as that
illustrated in Figure 1, which handles the transferring of I/O requests from one driver to
another.

In Figure 2, I/O manager 40 forwards the I/O request received from client process
20 to layer 1 driver 42. Such an I/O request may be in the form of a function or service
that is called by the 1/O manager or any other mechanism which transfers the appropriate
information to the appropriate driver. In Microsoft Windows NT®, for example, a
message driven mechanism is used to communicate between the various drivers of the
I/O system. In this system, an I/O request results in the I/O manager creating an I/O
request packet (IRP) and sending the IRP to the appropriate driver. As the I/O requests
are processed and forwarded to other drivers, information may be added to the IRP and
the IRP passed to the next driver. In certain circumstances, the IRP may be modified or
"transmogrified" before being passed on to the next driver. In Microsoft Windows NT®,
the I/O manager is responsible for transferring IRPs between drivers. In other systems,
other mechanisms may be used. Such implementation details are considered to be design
choices and not critical to this invention.

Returning now to Figure 2, once layer 1 driver 42 has performed any required
processing, the 1/0 request is then passed to layer 2 driver 44, which performs any
required processing, and then forwards the I/O request on to the next driver. Note that
although Figure 2 illustrates each driver receiving the I/O request in turn, in some
embodiments it may be desirable to skip certain drivers so that only those drivers that
need to process the I/0 request actually handle the 1/0 request.

Because the present invention provides a system and method for interrupting the
normal sequence of processing and transferring control to a different driver, embodiments
in the present invention may comprise means for interrupting processing of an I/O
request. In Figure 2, such a means may be incorporated, for example, into layer N driver
46. In the present invention, the normal sequence of processing is interrupted when a
special type of file or directory is encountered during the processing of an 1/O request.
Such a special file or directory is called a "reparse point." As explained in greater detail
below, a reparse point is created by including a special reparse point attribute with a file
or directory. Such a special reparse point attribute may be recognized by a driver when
performing its I/O request. When the attribute is recognized, the normal sequence of
processing the I/O request is suspended and steps taken to complete processing of the /O
request. The steps involve transferring control for processing the I/O request to a

different driver in order to allow the driver to participate in the processing of the I/O

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

11

request for the special type of file or directory. Embodiments within the scope of the
present invention may thus comprise means for transferring control for processing an I/0
request from one driver to another. Any mechanism which transfers control from a driver
processing the I/O request to another driver when processing of the I/O request is
interrupted prematurely may be utilized. In Figure 2, such a mechanism is illustrated, for
example, by arrow 52, which shows control for processing the 1/O request being
transferred from layer N driver 46 to layer 1 driver 42 when a reparse point is
encountered during the processing of the I/O request. As explained in greater detail
below, the mechanism for transferring control from one driver to another may require
transferring certain information so that the driver assuming control can properly process
the reparse point. Thus, embodiments may also comprise means for passing reparse point
information and means for passing status information. These mechanisms are discussed
in greater detail below.

Once control is transferred from layer N driver 46 to layer 1 driver 42, layer 1
driver 42 must then properly process the reparse point in order to advance the processing
of the I/0 request. In certain situations and embodiments, the driver assuming control
when a reparse point is encountered may be able to completely process the 1/0 request
on its own.

In such situations, once the driver has completely processed the 1/0 request,
results and/or status information would be returned to the client process, as required.
Such a result may be indicated in Figure 2, for example, if layer 1 driver 42 returned the
results of the I/O request as indicated by arrow 50 out of layer 1 driver 42. On the other
hand, completely processing an I/0 request once a reparse point is encountered may also
require the assistance of other drivers. Thus, embodiments within the scope of this
invention may comprise means for creating a second I/O request to continue the
processing of the original I/0 request. In Figure 2, such a means may be incorporated,
for example, into layer 1 driver 42. Layer 1 driver 42 may create a second I/O request
from scratch or may, for example, transmogrify the original I/0 request and transfer the
I/O request to another driver. In Microsoft Windows NT®, for example, such a means
may be implemented by creating a new IRP and passing the IRP to the appropriate driver.
Such a means may also be implemented by transmogrifying an existing IRP and then
passing the IRP to the appropriate driver. In Figure 2, such a means is illustrated, for
example, by arrow 54, which can represent the created I/0 request being passed from
layer 1 driver 42 to layer 2 driver 44, and ultimately to layer N driver 46. As discussed

in conjunction with Figure 7 below, completely processing an 1/O request may also

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

12

require processing by other computers. Thus, means for creating a second I/O request
may also transfer 1/O requests to other computers.

Assuming layer 1 driver 42 has processed the appropriate reparse point and
created another 1/O request to finish processing the original I/O request, then layer N
driver 46 may receive the second I/O request and interface with hardware 56 as
appropriate to complete the original I/O request. The results may then be returned, as
illustrated by arrows 50 to I/O manager 40 and ultimately to client process 20 as
illustrated by arrow 58.

In summary, the present invention provides a system and method for interrupting
the normal sequence of processing an I/O request in order to allow a driver that would
not normally participate in the processing of the [/O request to intervene in the processing
of the I/0 request. As explained in greater detail below, such a mechanism can be
extremely useful for implementing certain special types of files or directories. The
present invention uses the mechanism of a reparse point attribute associated with either
a file or a directory to interrupt the normal sequence of processing and passing control
for processing the reparse point to a particular driver. This driver may complete the
processing of the I/O request, or may generate a secondary 1/O request in order to finish
processing the I/O request using other drivers. As will become more apparent in the
following discussion, such a mechanism provides a coherent way to extend the
capabilities of an existing I/O system to handle situations never envisioned when the I/O
system was first developed. Such flexibility provides an increased capability to support
advanced file and directory organizational structures as they evolve over time.

When it was originally developed, the UNIX operating system defined a new
simplified view of I/O. All data that is read or written is regarded as a simple stream of
bytes directed to virtual files, which are represented by file descriptors. A virtual file
refers to any source or destination for I/O that is treated as if it were a file. Similarly,
there is not a lot of distinction between files and directories. A directory was simply
viewed as a special type of file. Modern operating systems have expanded on this basic
concept where files and directories can be thought of a simply a collection of "attributes".
An attribute, at its most abstract level, is simply a data storage location. Different
attributes are used to identify different properties of a file or directory or are used to hold
different bits of information that allows the operating system and other processes that
must deal with the file or directory to know certain information about the file or
directory. For example, a file may contain a name attribute which allows processes to
identify the file, and a data attribute which is the data stored in the file. A file can have

any number of other attributes, such as security attributes indicating who can access the

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

13

file and in what manner, a time stamp attribute, attributes that identify which directory
the file is stored in, and so forth. Directories may contain similar sorts of attributes,
although directories do not typically contain a data attribute where a user can store a large
amount of data.

Referring now to Figure 3, a pictorial diagram of attributes for either a file or a
directory suitable for use with the present invention is illustrated. These attributes
represent a modified list of attributes used by the NTFS file system developed
specifically for Microsoft Windows NT®. The NTFS file system is described in greater
detail in Inside the Windows NT File System by Helen Custer, published by Microsoft
Press and incorporated herein by reference. In Figure 3, the attributes that make up a file
or directory may be divided into two fundamental groups. The first fundamental group,
illustrated generally as 60, represents attributes that are common to both files and
directories. The second fundamental group, illustrated generally 62, contains attributes
specific to a file (shown on the left) or a directory (shown on the right).

Within the group of attributes common to both a file and a directory is standard
information attribute 64, attribute list 66, name attribute 68, security descriptor attribute
70 and reparse point attribute 72. Standard information attribute 64 represents the
standard "MS-DOS" attributes such as read-only, read/write, hidden, and so forth for a
file, the time stamp of the file or directory, and how many directories point to the file.
Attribute list 66 is an attribute used by NTFS to identify the locations of additional
attributes that make up the file or directory should the file or directory take up more than
one storage record in the master file table. The master file table is the location where all
resident attributes of a file or directory are stored. Name attribute 68 is the name of the
file or directory. A file or directory may have multiple name attributes in NTFS, for
example, a long name, a short MS-DOS name, and so forth. Security descriptor attribute
70 contains the data structure used by Windows NT® to specify who owns the file or
directory and who can access it. These attributes are described in greater detail in Inside
the Windows NT File System.

Reparse point attribute 72 is a new attribute added by the present invention.
Reparse point 72 attribute identifies a particular file or directory as a reparse point
requiring special processing by a particular driver in the I/O system. The reparse point
preferably contains sufficient information to allow two objectives to be achieved. The
first objective is that the particular driver which should process the reparse point (the
reparse point's owner) must be able to be identified. In addition, for maximum flexibility,

it is preferable that the owner of the reparse point be ablie to store data with the reparse

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

14

point that can later be used by the owner to correctly process the reparse point. In one

embodiment, the reparse point attribute comprises:

Reparse Data
Point Tag Length Data
Flag

Because a reparse point is processed by a particular driver, embodiments within
the scope of this invention comprise means for identifying a particular driver as the driver
that should process at least part of an 1/O request involving the reparse point. Any
mechanism which identifies a particular driver as the owner of a reparse point can be
used for such a means. If the reparse point attribute has the structure illustrated in the
table above, such a means may comprise, for example, the tag value. In the reparse point
illustrated above, the tag is a data word that contains the ID of the owner of the reparse
point. It is preferred that the tags be assigned in a manner so that the same tag is always
associated with the same owner driver no matter which system the driver is installed on.
In other words, it is preferred that some mechanism exist that assigns a tag value to a
particular driver. For example, there may be a central repository or clearing house which
assigns blocks of tag values to various driver manufacturers. The driver manufacturers
can then assign tags to specific drivers. Any other mechanism that allows a tag value to
be associated with at most a single driver can also be used. Assigning tag values in this
way allows the same owner driver to process the same reparse points no matter which
system it is installed on. Alternatively, in some situations it may be possible to assign
local tag values in a dynamic way so that tag values are assigned by the system during
installation. However, several problems exist with such a method and, for that reason,
it is not generally preferred.

In the reparse point attribute illustrated in the table above, an optional reparse
point flag is illustrated. The reparse point flag is illustrated above to indicate that a
mechanism must exist to allow identification of files or directories that are reparse points.
Such an indication may be given, for example, by using a reparse point flag which
indicates a valid reparse point attribute. Alternatively, other mechanisms may also be
used. For example, one or more of the tag values may be reserved to indicate that a file
or directory is not a reparse point. Using such a mechanism it would be possible, for
example, to reserve tag 0 to indicate that a file or a directory was not a reparse point.

The reparse point attribute illustrated above also contains an owner controlled
data field. The owner controlled data field represents a location where the owner of the

reparse point may place any type of data needed to properly process the reparse point.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

15

For example, if the owner deals with remote storage of various attributes of a file or
directory, then when certain attributes are stored remotely, the location of the remotely
stored attributes may be stored in the data field of the reparse point attribute.

In the reparse point attribute illustrated above, the data field is preceded by a data
length indicator. In this storage format, the length of the data field is stored to ascertain
how much data must be read to complete the data field. Alternatively, in some
embodiments it may be more efficient to store a data filed of a fixed length or a data field
that utilizes blocks of information chained together through pointers or links. Essentially,
any mechanism that identifies how much data must be read to complete the data field can
be utilized. Consideration should also be given to how much data may need to be stored
by an owner driver. Such considerations will influence how the data field is stored and
the maximum possible length of the data field.

Returning to Figure 3, consideration is now given to group 62, which illustrates
the differences between attributes used by a file and attributes used by a directory. A file
typically has one or more data attributes, illustrated in Figure 3 by data attribute 74. Data
attribute 74 represents a location where user controlled data may be stored. This is the
attribute where a user or a user process stores data. Although a user process may have
access to, and store data in, other attributes, these attributes are generally understood not
only by the user program, but also by other system resources, such as a driver. A driver,
however, generally does not understand or deal with the data stored in the data attribute.
Some file systems, such as the NTFS file system, may have more than one data attribute.

In addition to data attribute 74, a file may have other attributes, as indicated by
other attributes 76. Such attributes represent any other attributes that are stored with the
file. Some systems may allow user defined attributes in which case other attributes 76
may represent any number or type of attributes defined and stored by a user.

Attributes used by a directory may include, for example, index root attribute 78,
index allocation attribute 80, and bit map attribute 82. Although more information
regarding these attributes can be found in the Inside the Windows NT File System
reference, previously incorporated herein by reference, essentially index root attribute
78 contains indexes to the files contained by the directory, index allocation attribute 80
contains information regarding data block or "cluster" mappings, and bit map attribute
82 keeps track of which clusters are in use and which are free. Other attributes may also
be defined and stored as part of a directory, as indicated by the other attributes 84.

Although the above discussion has gone into some detail with regards to a
particular type of file or directory, such should be construed as exemplary only and not

as limiting the scope of this invention. The present invention will work with any type of

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

16

file or directory that has a reparse point attribute added to the existing attributes of the file
or directory. In the alternative, it may also be possible to co-opt or utilize an existing
attribute to store the reparse point attribute information and hence, equivalently, provide
a way to include a reparse point attribute without increasing the existing number of
attributes in the file or directory.

Turning now to Figure 4, a more detailed diagram of an I/O system comprising
a plurality of driver means for processing I/O requests is presented. The 1/O system
illustrated in Figure 4 may be an I/O system such as that utilized by Microsoft Windows
NT®. Other operating systems that use a plurality of driver means for processing I/O
requests may also have similar structures. The concepts discussed in conjunction with
Figure 4 may be implemented using any I/0 system that comprises a plurality of driver
means for processing 1/0 requests. Use of the structures illustrated in Figure 4 should
be considered as only one possible implementation, and should not limit the scope of the
present invention.

The embodiment illustrated in Figure 4 comprises a plurality of driver means for
processing I/O requests. In Figure 4, such driver means are illustrated, for example, by
driver A shown generally as 86 and driver B shown generally as 88. Embodiments
within the scope of this invention also comprise means for passing an I/O processing
request from one driver to another. By way of example, and not limitation, in Figure 4
such means is illustrated by I/O manager 90. I/O manager 90 is representative, for
example, of a manager that is responsible for transferring I/O requests among the
plurality of drivers used by an I/O system. As previously discussed, some embodiments
may not utilize an /O manager and may rely on direct communication between the
various drivers. In such embodiments, the means for passing an I/O processing request
from one driver to another would be the mechanism used by one driver to pass 1/0
requests directly to the other driver.

As illustrated in Figure 4, driver A 86 and driver B 88 provide a set of services
or routines that can be accessed by /O manager 90 to accomplish various functions. The
routines illustrated in Figure 4 represent a portion of the possible routines that a driver
operating under Microsoft Windows NT® may have. Details regarding the various
routines can be found in Chapter 8 of Inside Windows NT by Helen Custer, published by
Microsoft Press, the entirety of which is incorporated herein by reference.

Certain routines perform a similar function for both driver A 86 and driver B 88.
Although the exact details of the routines may be very different, the overall goal of the
routines is the same. Routines that perform a similar function for both driver A 86 and

driver B 88 include: initialization routine 92; start I/O routine 94; interrupt service

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

17

routine 96; deferred procedure call routine 98; cancel I/O routine 100; and unload routine
102. Although these routines are important to the operation of a driver under an
operating system such as Microsoft Windows NT®, they are not generally important for
purposes of this invention. However, the function of these routines are briefly
summarized below.

Both driver A 86 and driver B 88 have an initialization routine 92. Although the
initialization routines may be different for each driver, the initialization routine is
executed by the I/O manager when the I/O manager loads the driver into the operating
system. The routine performs whatever initialization is needed to allow the I/O manager
to use and access the driver. Start I/O routine 94 is used to initiate a data transfer to or
from a device. Interrupt service routine 96 is called when a device sends an interrupt for
a particular driver. Under Windows NT®, processing in an interrupt service routine is
kept to an absolute minimum in order to avoid blocking lower level interrupts
unnecessarily. Deferred procedure call routine 98 performs most of the processing
involved in handling a device interrupt after the interrupt service routine executes.
Cancel I/O routine 100 is called when an I/O operation is to be cancelled. Unload routine
102 releases system resources so that the I/O manager can remove the driver from
memory.

Drivers under Microsoft Windows NT® include a set of dispatch routines, such
as dispatch routines 104 of driver A 86 and dispatch routines 106 of driver B 88.
Dispatch routines are the main functions that a device driver provides. Some examples
are read or write functions and any other capabilities the device, file system, or network
the driver supports. When an I/O operation is processed by a driver, I/O manager 90 may
generate an I/O Request Packet (IRP) and calls a driver through one of the driver's
dispatch routines. Thus, an I/O request may be represented in Figure 4 by IRPs passed
among drivers or between the I/O manager and a driver.

When multiple drivers are used, one driver may perform partial processing of an
I/0 request before passing the 1/O request to a subsequent driver. Such a process is
illustrated in Figure 4 by IRP 108 passed to driver A 86, partially process by driver A as
indicated by IRP processing block 110, and passed to driver B 88 through IRP 112. Note
that IRP 108 and IRP 112 may be the same IRP. However, for clarity in identifying how
IRPs may flow between drivers, they are numbered separately in Figure 4. It may also
be possible to have an embodiment which creates a new IRP so that IRP 108 and IRP 112
are different.

When an I/0 request does not involve the processing of a file or directory that has

an associated reparse point attribute, a driver processes the I/O request in a normal

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

18

manner and returns the information associated with the I/O request in the normal manner.
For example, when IRP 112 is received by driver B 88, it can be processed in the normal
manner by IRP processing block 116. During the processing of an 1/0 request, driver B
88 may return status information and/or an IRP to previous drivers. This is illustrated in
Figure 4 by IRP 118 and status 120. Although not illustrated in Figure 4, IRP 118 and/or
status 120 may be passed back to driver A 86 after processing by driver B 88. This is all
part of the normal I/O processing and is explained in greater detail in Inside Windows NT,
previously incorporated by reference.

When IRPs are received by drivers, the I/O request represented by the IRP may
involve a file or directory that has an associated reparse point attribute. As previously
explained in conjunction with Figure 2, when an I/O request involving a file or directory
with an associated reparse point attribute is encountered, normal processing of the /O
request is interrupted and control is transferred to another driver. In order to accomplish
this process, embodiments within the scope of this invention comprise means for
interrupting processing of an I/O request. Such means may be any mechanism by which
a driver recognizes that an I/O request involves a file or directory with an associated
reparse point and prematurely terminates the processing of the I/O request so that control
may be transferred to another driver. In Figure 4, such means is illustrated, for example,
by reparse point detection block 114.

When reparse point detection block 114 identifies that the I/O request involves
a file or directory with an associated reparse point attribute, normal processing of the /O
request is terminated and steps are undertaken to transfer responsibility for processing the
I/0 request to the owner of the reparse point. In Figure 4, these steps are performed by
reparse point processing block 122.

Reparse point processing block 122 performs any preprocessing necessary to
transfer control from the current driver to the owner of the reparse point so that the owner
of the reparse point can continue to process the I/O request. If, for example, the reparse
point attribute contains a tag and a data field as previously discussed, then reparse point
processing block 122 may extract the tag and data field from the reparse point attribute
and prepare them for transfer to the owner of the reparse point. Thus, embodiments
within the scope of this invention may comprise means for passing reparse point
information to a driver. By way of example, and not limitation, in Figure 4 such means
is illustrated by reparse data 124. Reparse data 124 simply represents the reparse
information extracted by reparse point processing block 122. In some embodiments it
may also be possible to extract the reparse point attribute and pass it directly to the owner

of the reparse point. Essentially, any mechanism that allows the owner of the reparse

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

19

point to access the information stored in the reparse point attribute can be utilized as a
means for passing reparse point information to a driver. This includes passing a pointer
to a location where the reparse point information is stored or to the reparse point attribute
itself. In one embodiment, reparse data 124 is included in an IRP and passed to another
driver.

As described in greater detail below, when a driver examines reparse point
information, it is preferable that the driver be able to quickly identify that a reparse point
has been encountered. It may desirable, therefore, to pass status information indicating
that a reparse point has been encountered. Embodiments may therefore comprise means
for passing status information from one driver to another. In Figure 4, such means is
illustrated, for example, by status 126. Note that status 126 may be passed separately or
may be assembled with reparse data 124 into an IRP and passed as a unit. Similarly, the
status information may be placed in the IRP and a pointer or link to reparse data 124
placed in the IRP. As yet another example, status 126 may be passed and reparse data
124 may be passed in another IRP with some time delay between them.

When an 1/0 request involving a file or a directory with an associated reparse
point is identified, responsibility for processing the 1/0 request is transferred from one
driver to another. Embodiments within the scope of this invention therefore comprise
means for transferring control for processing an I/O request from one driver to another.
In the embodiment illustrated in Figure 4, such means may comprise, for example,
completion routine 128. Drivers written for the Windows NT® operating system may
comprise one or more completion routines which are called by the I/O manager after a
lower level driver finishes processing an IRP. For example, in an embodiment with a file
system driver and a device driver, the I/O manager may call a file system driver
completion routine after the device driver finishes transferring data to or from a file. The
completion routine may notify the file system driver about the operation's success,
failure, or cancellation, and allow the file system to perform clean-up operations. Thus,
during normal processing if driver B 88 receives IRP 112, completely processes it, and
returns IRP 118, 1/0 manager 90 may call a completion routine in block 128, which will
notify driver A 86 of the success or failure of the I/O operation and allow driver A 86 to
perform any clean-up processing.

Because I/0 manager 90 calls a completion routine when a lower level driver has
completed its processing, such a completion routine makes an ideal location to place a
mechanism to detect transfer of control for processing an 1/0 request involving a file or
directory with an associated reparse point attribute. Thus, completion routine 128 may

examine reparse data 124 and/or status 126 in order to identify whether driver A 86 is the

10

15

25

30

35

WO 98/47074 PCT/US98/07595

20

owner of the reparse point and should assume processing responsibilities of the 1/0
request.

However, before a driver assumes responsibility for processing an I/O request
involving a file or directory with an associated reparse point attribute, the driver must
ascertain whether it is the owner of the reparse point. Thus, embodiments within the
scope of this invention may comprise means for identifying whether reparse point
information received by a particular driver is owned by that driver. By way of example,
and not limitation, in Figure 4 such a means is illustrated by reparse point detection block
130. Reparse point detection block 130 examines reparse data 124 and/or status 126 to
identify whether driver A 86 is the owner of the reparse point. If driver A 86 is not the
owner of the reparse point, driver A 86 may perform any normal completion processing
that is necessary, as indicated by completion processing block 132, and pass reparse data
124 and/or status 126 onto I/O manager 90 for transfer to another driver.

If, on the other hand, reparse point detection block 130 identifies driver A 86 as
the owner of the reparse point, control passes to reparse point processing block 134 for
further processing of the I/0 request. Beyond assﬁming control for processing the 1/0
request, what happens when a driver identifies itself as the owner of a reparse point is
undefined by the invention. However, in general the driver will assume responsibility
for processing the I/O request and take steps to further completion of the I/O request. In
some embodiments, a driver that is the owner of the reparse point may be able to
completely finish processing the I/O request. In such an embodiment, after the driver has
finished the processing the I/0 request, the normal completion procedure is followed.
In the case of Microsoft Windows NT®, this will include passing any necessary
information in an IRP back to the I/O manager for further transfer. It may also include
calling the completion routine of any higher level drivers in order to allow them to
perform any necessary clean-up processing or in order to inform them of the status of the
[/O request.

In some embodiments, the driver that is the owner of the reparse point may not
be able to completely process the remainder of the I/O request by itself. In such an
embodiment, reparse point processing block 134 may generate an IRP that is then passed
to other drivers in order to further the processing of the I/0 request. Alternatively, an I/O
request can be generated and passed to another computer for further processing, as
discussed in conjunction with Figure 7. Embodiments within the scope of this invention
may therefore comprise means for creating a second 1/O request to continue processing
of the original 1/O request. Any mechanism which is utilized by the particular

embodiment to enlist the help of other drivers to complete the I/O request may be utilized

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

21

for such means. For example, in Figure 4 the means for creating a second I/O request is
illustrated by reparse point processing block 134 and IRP 136. IRP 136 may be passed
to another driver, as for example driver B 88 of Figure 4. Driver B 88 will then receive
IRP 136 and process it as any other IRP. When reparse point processing block 134
creates IRP 136, it may create the IRP from scratch or may take an existing IRP and
"transmogrify" the IRP. The process of transmogrification takes an existing IRP and
changes information in the IRP to create a modified or new IRP. The means for creating
a second I/0 request may be implemented differently in different systems. For example,
in a system where one driver directly calls another driver, the means for creating a second
[/O request may be the mechanism whereby information is assembled and passed to
another driver through the direct calling mechanism. Essentially, all that is required is to
create or modify an I/O request that is then passed to another driver for further
processing.

In order to illustrate the above process, reference is now made to Figures 5 and
6, which will be used to present a specific example of processing an I/O request involving
a directory with an associated reparse point attribute. Referring first to Figure 5, the
general structure of the I/0 system will be discussed. In Figure 5, client process 138
makes an I/O request to an I/O system comprising a plurality of driver means for
processing I/0 requests. Client process 138 makes a call to operating system services
140. I/O manager 142 receives the I/O request and coordinates the transfer of the I/O
request among the various driver means of the I/O system.

In Figure 5, a plurality of driver means for processing I/O requests are illustrated.
The driver means comprise symbolic links decoder 144, distributed file manager 146,
hierarchical file system manager 148, file system driver 150, and disk driver 152.
Symbolic links decoder 144 is responsible for decoding any symbolic links in an I/O
request. Distributed file system manager 146 manages the files distributed across several
physical volumes as if they were a single integrated volume. Hierarchical file system
manager 148 removes files that are accessed infrequently and stores them in a remote
location such as on tape. Hierarchical file system manager 148 is also responsible for
retrieving remotely stored files when they are needed. File system driver 150 is
responsible for translating a request for access to a file or a directory to a physical
location on a disk. Disk driver 152 is responsible for retrieving information from or
placing information on disk 154. The I/O system in Figure 5 thus uses a plurality of
drivers, each responsibie for a specific function or group of functions, to provide a robust

[/O environment.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

22

Turning now to Figure 6, the logical structure of two different disk volumes is
illustrated. Volume 1 has a root directory named C, illustrated in Figure 6 as 156.
Directory C contains a file named A, numbered 158, and a directory named B, numbered
160. As illustrated in Figure 6, file A 158 is a reparse point with a tag of 5 and some data
value. Directory B 160 contains a file named E 162 and a directory named D 164. As
illustrated in Figure 6, directory D 164 has an associated reparse point with a tag of
DFSM and a value of W. The tag of DFSM indicates that the reparse point is owned by
distributed file system manager 146. As will be illustrated in the example below, this tag
and value is used to create a mount point that grafts volume 2 in at directory D. This
mount point is illustrated in Figure 6 by arrow 166. Volume 2 has a root directory named
W 168. Directory W 168 contains directory X 170 and directory Y 172. Directory Y
contains file Z 174.

Returning now to Figure 5, suppose client process 138 created an I/O request
involving the path name C\B\D\Y\Z. Such an I/O request may involve reading or writing
data to file Z 174. The path name would be used by client process 138 to access file Z
174. Client process 138 sends this I/O request by calling services 140 as indicated by
arrow 176. I/0O manager 142 creates IRP 178 and passes IRP 178 to symbolic links
decoder 144. As in Figure 4, I/0O manager 142 is an example of means for passing an I/O
request from one driver to another.

In order to fill the I/O request initiated by client process 138, it will be necessary
to resolve the file pathname C\B\D\Y\Z. In general, name resolution is a multistage
process whereby the name is broken down into its constituent components and each
component is resolved, usually from left to right, with success or failure being
determined at each stage in the resolution process. When IRP 178 is passed to symbolic
links decoder 144 it will have the pathname that needs to be resolved as part of the IRP.
Depending on the exact implementation of symbolic links decoder 144, symbolic links
decoder 144 may scan the pathname in IRP 178 to ascertain whether any of the
constituent components of the pathname is a symbolic link. Other implementations are
also possible and the exact implementation will depend upon various design
considerations in the I/O system. In the example illustrated in Figure 6, there are no
symbolic links and so symbolic links decoder 144 would pass IRP 178 to distributed file
manager 146. As previously discussed, in Microsoft Windows NT®, such passing of the
IRP would be accomplished via I/0 manager 142.

IRP 178 is received by distributed file manager 146 which, as explained above,
is responsible for managing the file systems of multiple volumes and integrating them

into a single, logical file system. In this example, it is presumed that distributed file

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

23

manager 146 does not do much processing on IRP 178 at this stage of the resolution
process. Distributed file manager 146 may, for example, simply identify the first
component C as belonging to volume 1 as indicated in Figure 6. IRP 178 is then passed
to hierarchical file system manager 148. Again, it is presumed that hierarchical file
system manager 148 performs little or no processing on IRP 178 before passing it to file
system driver 150.

File system driver 150 then begins the name resolution process. Starting with
directory C 156 of Figure 6, file system driver 150 may translate directory C 156 into a
physical location on disk 154. This information would then be placed in IRP 178 and
passed to disk driver 152. Disk driver 152 would then access disk 154 and return
information in IRP 180 that allowed file system driver 150 to continue the resolution
process. This process may be repeated for each component of the pathname.

Referring now to Figure 6, file system driver 150 would begin at directory C 156,
proceed to directory B 160, advance to directory D 164. When directory D 164 was
retrieved from the disk, file system driver 150 would recognize directory D as having an
associated reparse point attribute. Means for interrupting processing of an I/O request
incorporated into file system driver 150, would then interrupt the normal sequence of
processing the I/O request. As explained in Figure 4 above, file system driver 150 may
extract reparse data from the reparse point attribute of directory D 164. Assuming the
reparse point attribute has a tag and a data value, as previously discussed, this
information would be extracted and returned to the next higher level driver. In Figure 5,
this is illustrated by reparse data 182. Reparse data 182 of Figure 5 represents yet another
example of means for passing reparse point information to a driver. In this case, the tag
is database and the value is W as indicated in Figure 6. In this example, tag DFSM
identifies distributed file system manager 146 as the owner of the reparse point.

Reparse point data 182 of Figure 5 is transferred to hierarchical file system
manager 148 as illustrated. A means for identifying whether reparse point information
received by hierarchical file system manager 148 is owned by that driver would then
identify whether reparse data 182 is owned by hierarchical file system manager 148.
Such a means may be implemented in the completion routine of hierarchical file system
manager 148 as previously discussed in conjunction with Figure 4. In this case,
hierarchical file system manager 148 would not be the owner of reparse point 164 of
Figure 6. After having identified that reparse data 182 is not owned by hierarchical file
system manager 148, hierarchical file system manager 148 would then forward reparse

data 182 to the next higher level driver illustrated in Figure 5.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

24

Distributed file system manager 146 receives reparse data 182 and identifies
whether reparse data 182 is owned by distributed file system manager 146. This is
accomplished via means for identifying whether reparse point information received by
distributed file system manager 146 is owned by that driver. Such a means may be
implemented in a completion routine as previously described in conjunction with Figure
4. In the example illustrated in Figure 6, distributed file system manager 146 wouild
examine reparse data 182 and recognize itself as the owner. Such may be accomplished
by means for identifying a particular driver as the driver that should process at least part
of the I/O request. As previously explained, an example of such means is the tag of
reparse data 182. In other words, distributed file system manager 146 may recognize
reparse data 182 as its own by matching the tag value of reparse data 182 with a tag value
owned by itself.

When a driver recognizes reparse data as owned by itself, that driver then assumes
responsibility for furthering the processing of that /O request. In order to further process
the I/O request, a driver will typically examine the data value of the reparse point
attribute and use information stored therein to prbcess the I/O request. In this case,
distributed file system manager 146 stores the target of the mount point in the data value.
Returning now to Figure 6 and examining the data value of the reparse point associated
with directory D 164, we find that the data value is W. This refers to directory W of
volume 2. Distributed file system manager 146 can examine the data value and from that
identify directory W of volume 2 as the target of the mount point. Distributed file system
manager 146 may then create an IRP that continues the resolution process beginning with
directory W of volume 2. In order to create a second IRP to continue the name resolution
process beginning with directory W of volume 2, distributed file system manager 146
may employ means for creating a second 1/O request to continue processing the original
I/O request. Such a means may be implemented as previously discussed in conjunction
with Figure 4. In order to identify how the name resolution process should proceed, it
would be extremely desirable for distributed file system manager 146 to be able to
identify how far the name resolution process had proceeded before the reparse point was
encountered. Thus, in some embodiments, it may be desirable to return the original
pathname and an offset to identify how far the resolution process had proceeded before
the reparse point was encountered. In this example, the pathname is C\B\D\Y\Z. The
offset would then point to directory D since that is where the reparse point was
encountered. In creating another IRP to continue the name resolution process, distributed
file system manager 146 may choose to strip off that portion of the name that had been

previously resolved and replace the reparse point D with the location where the resolution

WO 98/47074 PCT/US98/07595

10

15

20

25

30

35

25

process should continue, directory W 168 of Figure 6. In such a situation, the new
pathname would be W\Y\Z. Distributed file system manager 146 may then place this
information in IRP 184 and pass IRP 184 to hierarchical file system manager 148.

Hierarchical file system manager 148 would then forward IRP 184 to file system
driver 150. File system driver 150 would then continue the name resolution process
beginning with directory W 168 of Figure 6. The name resolution process would then
proceed through directory Y 172 until file Z 174 was reached. This process is illustrated
in Figure 5 by IRP 184 passed to disk driver 152 and IRP 186 return from disk driver
152. Note that the name resolution process may require several passes of IRP 184 and
186 between file system driver 150 and disk driver 152. Also note that IRP 186 may be
the same as IRP 184 and IRP 178 may be the same as IRP 180. They are numbered
differently in Figure 5 simply to indicate that disk driver 152 may modify the IRP by
placing the results of the I/O operation therein.

Once the desired I/O operation involving file Z 174 of Figure 6 had been
accomplished, and the resuits returned in IRP 186 to file system driver 150, file system
driver 150 would then pass IRP 186 back to hierarchical file system manager 148. As
illustrated in Figure 5, IRP 186 would then be successively passed through distributed
file system manager 146 and symbolic links decoder 144 until the result was ultimately
returned to client process 138 as indicated by arrow 188.

Referring next to Figure 7, an example is presented where an 1/0 request is sent
to a separate computer system for processing when a reparse point attribute is
encountered. In the embodiment illustrated in Figure 7, client process 190 is executing
on local computer 192. Local computer 192 is connected to remote computer 194 via a
network means for interconnecting computers. In Figure 7, such network means is
illustrated by network cards 196 and connection 198. /O system 200 of local computer
192 comprises a plurality of driver means for processing I/0 requests. In Figure 7, such
driver means is illustrated, for example, by symbolic links decoder 202, file system driver
204, and disk driver 206. 1/0 system 200 also comprises operating system services 208
and I/O manager 210. As in Figure 5, client process 190 makes calls to operating system
services 208. 1/0 manager 210 receives I/O requests and coordinates the transfer of I/O
requests among the various driver means of the I/O system. Alternatively, the various
driver means of the I/0 system may communicate directly with each other without using
an [/O manager or other device to coordinate transfer of information among the various
driver means.

In this example, client process 190 is presumed to make an I/O request that

involves a symbolic link which points to a file or directory located on a disk attached to

WO 98/47074 PCT/US98/07595

10

15

20

25

30

35

26

remote computer 194. For example, suppose client process 190 made an I/O request to
list the contents of a directory with a symbolic link to a directory located on disk 212
attached to remote computer 194. Such an I/0O request would be made, for example, by
client process 190 calling operating system services 208 as indicated by arrow 214. The
I/0 request would be passed to file system driver 204, which would utilize disk driver
206 to begin the name resolution process. Disk driver 206 will read information from
disk 216 using disk controller 218. The name resolution process will continue as
previously described, until the reparse point representing the symbolic link was
encountered. At this point, the reparse point information would be extracted and passed
to the other drivers until one recognized itself as the owner of the reparse point. In this
example, symbolic links decoder 202 would recognize itself as the owner of the reparse
point used to implement the symbolic link to remote computer 194.

When symbolic links decoder 202 recognizes itself as the owner of the reparse
point, symbolic links decoder 202 will assume responsibility for processing the I/0
request. In this example, symbolic links decoder 202 cannot fully process the I/O request
by itself because processing the I/O request requires retrieving the directory information
from remote computer 194. In such a situation, embodiments within the scope of this
invention may comprise means for sending an I/O request to a remotely connected
computer for processing. In the embodiment illustrated in Figure 7 where local computer
192 and remote computer 194 are connected by network means, a means for sending an
/O request to the remotely connected computer can be any mechanism which transfers
the I/0 request to remote computer 194 via the network and allows remote computer 194
to process and fill the I/0 request. For example, in Figure 7 the means for sending an I/O
request to the remotely connected computer may comprise redirector 220 and network
transport drivers 222. In the embodiment illustrated in Figure 7, redirector 220 provides
the facilities necessary for local computer 192 to access resources on other machines on
a network. Network transport drivers 222 provide the mechanism for transferring
information from local computer 192 to remote computer 194 via network card 196 and
connection 198. Other mechanisms may also be used to implement means for sending
an /O request to a remotely connected computer. In general, such means will comprise
a transport mechanism to transport the I/0 request from one computer to another. Such
a mechanism generally may include any type of connection between two computers such
as a dedicated link, a Local Area Network (LAN), Wide Area Network (WAN), phone
line, wireless, and so forth. In addition, such means may also comprise a mechanism for
taking the I/0 request from the /O system of one computer and delivering the I/O request

to the I/0O system of another computer. This may involve various types of software or

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

27

firmware programs or drivers. All that is needed for such means for sending a
mechanism to transport and deliver an I/O request in a format that can be processed by
a remote computer.

In the embodiment of Figure 7, when symbolic links decoder 202 realizes that an
1/0 request needs to be made from remote computer 194, symbolic links decoder 202 can
pass the I/O request to redirector 220 which uses network transport drivers 222 to transfer
the I/0 request via network card 196 and connection 198 to remote computer 194. In this
particular example, the I/O request would be for the directory contents of the directory
pointed to by the symbolic link.

An I/0 request received by remote computer 194 would be received by network
transport drivers 224 and passed to server file system 226. Server file system 226
communicates with redirector 220 in order to process and fill any 1/0 requests sent to
remote computer 194. In order to fill an I/O request, server file system 226 may utilize
drivers and hardware of remote computer 194 such as file system driver 228 and disk
controller 230. In the present example, server file system 226 will utilize file system
driver 228 to retrieve the appropriate directory contents from disk 212 and return the
directory contents to local computer 192. When the directory contents are returned,
symbolic links decoder 202 may then pass the directory contents back to client process
190. '

Although the embodiment illustrated in Figure 7 contains specific components
that perform communication between local computer 192 and remote computer 194, such
component should be considered exemplary in all respects. All that is needed for the
present invention is a mechanism whereby 1/0 requests are passed from a driver in the
local computer to a remote computer where the I/0 request is filled and appropriate
information returned. Any mechanism which accomplishes these functions appropriately
falls within the scope of the present invention.

In order that the full breadth of the invention may be appreciated, reference is now
made to Figure 8 which presents a top-level illustration of an embodiment which uses the
present invention to extend the capabilities of an I/O system. In general, an 1/O system
is used to send data to, or retrieve data from, a hardware device. Such a hardware device
may be a mass storage device, as previously discussed, or any other type of hardware
device including networks, such as that illustrated in Figure 7, or any other device that
may either be a source of data or a consumer of data. Indeed, even such devices as
keyboards or displays may be controlled by portions of an I/O system, depending on the
particular implementation and environment. In general, a client process sends an I/O

request to an I/O system to send data to a particular hardware device or retrieve data from

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

28

a particular hardware device. Additionally, the I/O system may alert a client process
when information is available from a hardware device. As previously explained, an I/O
request is intended to be interpreted broadly. An I/O request may thus comprise any
interaction between a client process and the 1/0O system, including requests that send data
into the I/0 system or that receive data from the I/O system.

In Figure 8, a general hardware device is illustrated by hardware device 232. As
illustrated in the examples previously given, in order to access a particular hardware
device, one or more drivers may be utilized by an I/O system. In Figure 8, the drivers
used to access hardware device 232 are illustrated by hardware access drivers 234.
Hardware access drivers 234 are yet another example of driver means for processing I/0
requests. Hardware access drivers 234 may be any number or type of drivers needed to
access hardware device 232. If hardware device 232 is a disk, for example, then
hardware access drivers 234 may be one or both of either a file system driver and a disk
driver. If hardware device 232 is a network device, then hardware access drivers 234
may be any number or type of drivers needed to access the network. Such’a situation
may occur, for example, if a mass storage device is accessed over a network.

In order to extend the capabilities of an I/O system and add additional
functionality not originally included into the I/O system, one or more extension drivers
may be added to process specific types of I/0 requests. In Figure 8, such specific types
of drivers are illustrated by extension driver 236. Extension driver 236 is yet another
example of driver means for processing I/0 requests. Extension driver 236 is typically
representative of a driver layer that will process reparse data in accordance with the
general principles previously illustrated in the examples above. As previously explained,
during normal I/0 operations extension driver 236 will not be part of the processing of
the 1/0 request. However, when a reparse point is encountered by hardware access
drivers 234, control is transferred to extension driver 236 in order to allow extension
driver 236 to intervene in processing the I/0 request.

As previously explained, when extension driver 236 assumes control, the
processing which takes place thereafter is undefined by the invention. The invention may
be used to perform any type of processing. In one example, a reparse point is established
in a home automation environment. When the reparse point is accessed, control is
transferred to an extension driver which then takes action appropriate to the reparse point.
For example, perhaps the telephone number of the fire department or police department
is stored as part of the reparse point information. When an I/O request is issued
involving the reparse point, control could then be transferred to a particular driver which

then extracts the phone number from the reparse point and dials the police or fire

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

29

department. After contact is made with the police or fire department, appropriate action
can be taken, such as sending synthesized speech or other audio information in order to
inform the police or fire department about a particular condition. In essence, when an I/O
system encounters a reparse point, and control is transferred to a particular extension
driver for processing, any actions may be taken thereafter, including actions that are not
normally associated with an I/O system or with files or other information stored on
storage devices.

When an extension driver, such as extension driver 236, assumes processing
responsibility for an I/O request, the extension driver may perform any processing. The
extension driver may, if appropriate, make use of other services or drivers to complete
its task. In Figure 8, such other drivers or services are illustrated by extension driver
services 238. Extension driver services 238 can be any other drivers or services,
including hardware devices, that extension driver 236 must utilize to complete its task.
Obviously, such functionality may be separate or may be incorporated directly into
extension driver 236, depending on the particular implementation and the design choices
made for that implementation.

Finally, it should be noted that information necessary or desirable to complete
processing of the 1/0 request can come from the reparse point, from the original I/O
request, or both. The original I/0 request, as well as the information in the reparse point,
is available to extension driver 236.

In summary, the present invention provides a mechanism for interrupting normal
processing of an I/0O request and for allowing a driver that would not normally participate
in the normal processing of the I/0 request to assume responsibility for processing the
I/O request. The method and system defined by the present invention is at once both
flexible and extensible. Since the present invention does not define the exact details of
processing the I/O request, but only a method for allowing intervention into the normal
sequence of processing, the present invention may be utilized to achieve a wide variety
of results. In essence, the mechanism allows special types of files or directories to be
defined and then turn control for processing I/O requests involving the special files or
directories over to a particular driver adapted for processing the I/O request involving the
special file or directory. Although the use described within this patent has been to
manage a distributed file system as if it were a single file system, the present invention
may also be useful in managing hierarchical storage, in managing secure or encrypted
files or directories, in managing new ways to access or organize files or directories other
than the hierarchical fashion typically used by modern computers, or any other use that

can be imagined or developed where a special type of file or directory is defined.

10

WO 98/47074 PCT/US98/07595

30

Furthermore, once control is turned over to a driver adapted for processing the I/O
request, the processing that occurs thereafter may have nothing to do with traditional 1/0
operations involving files or directories. The specialized driver may perform any
processing using any resources, drivers, or systems appropriate to the desired task.

The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

WO 98/47074 PCT/US98/07595

10

15

20

25

30

35

31

1. A method for interrupting the normal sequence of processing in an I/O
system that uses a plurality of driver means for processing I/O requests, said plurality of
driver means comprising a first driver means and a second driver means, said method
comprising the steps of:

receiving, by said first driver means, an I/O request to perform a
designated 1/0O operation; and
identifying, by said first driver means, whether said I/O request requires
at least partial processing by another driver means by identifying whether said I/O
request involves at least one of either a file or a directory with an associated
reparse point attribute;
if said at least one of either the file or the directory has an associated
reparse point attribute then said first driver means performing at least the
following steps:
extracting reparse point information associated with said at least
one of either the file or the directory; and
passing said extracted reparse point information to said second
driver means for processing.
i 2. A method for interrupting the normal sequence of processing as recited
in claim 1 further comprising the steps of:
receiving, by said second driver means, said extracted reparse
point information from said first driver means; and

using additional driver means to process said I/O request.

3. A method for interrupting the normal sequence of processing as recited
in claim 1 wherein said plurality of driver means comprises other driver means and
wherein said method further comprises the steps of:

receiving, by said second driver means, said extracted reparse
point information from said first driver means; and
sending, by said second driver means, an I/O request to said other

driver means.

4, A method for interrupting the normal sequence of processing as recited
in claim 1 wherein if said at least one of either the file or the directory has an associated
areparse point attribute then said first driver means further performs the step of sending

status information to said second driver means that indicates to said second driver means

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

32

that said at least one of either the file or the directory had an associated reparse point

attribute.

5. A method for interrupting the normal sequence of processing as recited
in claim 1 further comprising the step of passing extracted reparse point information
associated with said at least one of either the file or the directory to each of said plurality
of driver means, in turn, until one of said plurality of driver means identifies itself as the
owner of said extracted reparse point information and takes over processing of said 1/0

request.

6. A method for interrupting the normal sequence of processing as recited
in claim 1 wherein said extracted reparse point information comprises means for
identifying said second driver means as the driver that should process at least part of said
[/O request.

7. A method for interrupting the normal sequence of processing as recited
in claim 1 wherein said extracted reparse point information comprises stored data used

by said second driver means in processing at least part of said I/O request.

8. A method for interrupting the normal sequence of processing in an I/O
system that uses a plurality of layered drivers to access hardware devices and for passing
control from one of said plurality of layered drivers to another of said plurality of layered
drivers, said plurality of layered drivers comprising a first driver and other drivers in a
layered relationship to said first driver, said method comprising the steps of:

receiving, by said first driver, an I/O request; and

identifying, by said first driver, whether said I/O request involves at least
one of either a file or a directory with an associated reparse point attribute;

if said at least one of either the file or the directory has an associated
reparse point attribute then said first driver performing at least the following
steps:

extracting reparse point information associated with said at least
one of either the file or the directory; and

passing said extracted reparse point information to said other

drivers.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

33

9. A method for interrupting the normal sequence of processing as recited
in claim 8 further comprising the step of examining said extracted reparse point
information by each of said other drivers, in turn, until one of said other drivers
recognizes that it owns said extracted reparse point information, the one of said other
drivers that owns said extracted reparse point information then processing said extracted

reparse point information.

10. A method for interrupting the normal sequence of processing as recited
in claim 9 wherein said I/O request contains a path name including said at least one of
either the file or the directory and wherein the method further comprises the step of
passing information to said other drivers indicating the progress of said first driver in

resolving said path name before said reparse point attribute was encountered.

11. A method for interrupting the normal sequence of processing as recited
in claim 9 further comprising the step of information from said I/O request in addition

to extracted reparse point information when processing said I/O request.

12. A method for interrupting the normal sequence of processing in an /O
system that uses a plurality of driver means for processing 1/0 requests, said plurality of
driver means comprising a first driver means and a second driver means, said method
comprising the steps of:

said first driver means receiving an I/O request involving a reparse point
comprising information having a content and stored in a format that is
understandable by said second driver means;

said first driver means terminating processing of said I/O request when
said first driver means recognizes said I/O request involves a reparse point;

said first driver means transferring responsibility for processing said I/O
request to said second driver means;

said second driver means examining said information of said reparse point
and examing said I/O request in order to decide how said I/O request should be
processed; and

said second driver means processing said I/O request.

13. A computer-readable medium having computer-executable instructions
comprising:

first driver means for processing I/O requests in an I/O system;

10

15

20

25

30

WO 98/47074 PCT/US98/07595

34

second driver means for processing 1/0 requests in said I/O system;

said second driver means comprising means for interrupting processing
of an I/O request received by said second driver means before said second driver
means has fully completed the processing of said I/O request; and

means for transferring control for processing said I/O request from said
second driver means to said first driver means in order to allow said first driver

means to continue processing said I/O request.

14. A computer-readable medium as recited in claim 13 wherein said second
driver means comprises means for passing status information from said second driver
means to said first driver means indicating that a reparse point attribute associated with

at least one of either a file or a directory was encountered by said second driver means.

15. A computer-readable medium as recited in claim 13 wherein said second
driver means comprises means for passing reparse point information associated with at

least one of either a file or a directory to said first driver means.

16. A computer-readable medium as recited in claim 15 wherein said reparse
point information comprises a tag and a value, said tag indicating the ID of the driver
means that owns said reparse point information and said value comprising data needed

by said owner to process said reparse point information.

17. A computer-readable medium as recited in claim 13 wherein said first
driver means comprises means for identifying whether reparse point information received

by said first driver means is owned by said first driver means.

18. A computer-readable medium as recited in claim 17 wherein said means
for identifying examines a tag of said reparse point information in order to identify

whether said first driver means owns said reparse point information.

19. A computer-readable medium as recited in claim 13 wherein said first
driver means comprises means for creating a second I/0 request to continue processing

said I/0 request.

10

15

20

25

30

35

WO 98/47074 PCT/US98/07595

35

20. A computer-readable medium as recited in claim 19 further comprising
means for sending said second I/O request to a remotely connected computer for

processing.

21. A computer-readable medium having computer-executable instructions
comprising:

first driver means for processing I/O requests in an I/O system;

second driver means for processing I/0 requests in said I/O system;

means for passing an I/O request from said first driver means to said
second driver means;

said second driver means comprising means for interrupting processing
of said I/O request by said second driver means before said second driver means
has fully completed the processing of said 1/0 request; and

means for transferring control for processing said I/O request from said
second driver means to said first driver means in order to allow said first driver

means to continue processing said 1/0 request.

22. A computer-readable medium as recited in claim 21 wherein said second
driver means comprises means for passing status information from said second driver
means to said first driver means indicating that a reparse point attribute associated with

at least one of either a file or a directory was encountered by said second driver means.

23. A computer-readable medium as recited in claim 22 wherein said second
driver means comprises means for passing reparse point information extracted from said

reparse point attribute to said first driver means.

24. A computer-readable medium as recited in claim 23 wherein said reparse
point information comprises a tag and a value, said tag indicating the ID of the driver
means that owns said reparse point information and said value comprising data needed

by said owner to process said reparse point information.

25. A computer-readable medium as recited in claim 24 wherein said first
driver means comprises means for identifying whether said reparse point information

received by said first driver means is owned by said first driver means.

10

15

25

30

35

WO 98/47074 PCT/US98/07595

36

26. A computer-readable medium as recited in claim 25 wherein said means
for identifying examines said tag of said reparse point information in order to identify

whether said first driver means owns said reparse point information.

27. A computer-readable medium as recited in claim 25 wherein said first
driver means comprises means for creating a second 1/0 request to continue processing

said I/O request.

28. A computer-readable medium having computer-executable instructions
forming a driver means for processing I/O requests, said driver means adapted to form
part of an I/O system that uses a plurality of driver means to process 1/O requests, said
computer-executable instructions comprising:

means for interrupting normal processing of an 1/0O request
received by said driver means when a reparse point attribute associated
with at least one of either a file or a directory is encountered during
processing of said I/0 request; and

means for transferring processing of said I/O request from said
driver means to other of said plurality of driver means when said reparse

point attribute is encountered by said driver means.

29. A computer-readable medium as recited in claim 28 wherein said
computer-executable instructions comprises means for passing status information from
said driver means to said other of said plurality of driver means indicating that said

reparse point attribute was encountered.

30. A computer-readable medium as recited in claim 29 wherein said
computer-executable instructions comprises means for passing reparse point information

extracted from said reparse point attribute to said other of said plurality of driver means.

31. A computer-readable medium having a plurality of data fields stored
thereon and representing a data structure, comprising:

a first set of data fields stored within a first region of a range of storage addresses
allocated for storing said data structure, said first set of data fields being available to store
user data and said first set of data fields being accessible by a user to retrieve data stored

therein, said first set of data fields comprising:

WO 98/47074 PCT/US98/07595

37

a first data field stored within said first region containing data stored
therein by said user; and
a second set of data fields stored within a second region of a range of storage
addresses allocated for storing said data structure, said second set of data fields being
5 available to store various attributes of said data structure, said attributes being adapted
for access by a driver means for processing I/O requests associated with said data
structure, said second set of data fields comprising:
a second data field stored within said second region containing data
representing the name of the data structure; and
10 a third data field stored within said second region containing data
representing a reparse point attribute adapted for use by said driver means to

identify said data structure as requiring processing by other driver means.

WO 98/47074 PCT/US98/07595

118

38
USER MODE

KERNEL MODE

SERVICES

30 38
B—— fLE E;

SYSTEM

110
DRIVER g\:\:\MANAGER
) 0
/! 1
DEVICE A/D\

B—"" DRIVER \(/'
38 38

HARDWARE
DEVICE

<2

36

FIG. 1

WO 98/47074 PCT/US98/07595

218

USER MODE
KERNEL MODE
2 SERVICES
20— 110 MANAGER
48\/{ \'\50
42— LAYER 1 DRIVER
48*{ 50% li‘“ 52
44—— LAYER 2 DRIVER
REPARSE

POINT

s
el

46— LAYER N DRIVER

[)

56— HARDWARE

FIG. 2

WO 98/47074

PCT/US98/07595
318
S4——r STANDARD INFORMATION
G—T ATRIBVTELST 0
68—t NAUE
——r SECURITY DESCRIPTOR
”ﬂ 12—~ REPARSE POINT 1
) ‘ /62
DATA CNOEKROOT
CINDEK ALLOGATION 1"
_____________________________________ A
OTHER ATTRIBUTES OTHER ATTRIBUTES .
76J k84

FIG.

3

| 1 0 MANAGER

.~

(= -]

126 STATUS Ny
4l STATUS I STATUS
1l 16— STATUS_I REPARSE DATA 136 mp‘:l st 0| 1,
108— IR? i -t 12— RENRSE R? o M2 W {2
86 . ™43 i T
92\1\‘ [—r—_—'j [96) [r—'_T_.i lT_—__j 9 [98
DEFERRED DEFERRED
INIT. | DISPATCH(START 10 ”‘Jg,{i,’}gg‘ noceDURE (conpLemonl cuncee ol untoan | | T |oispaTchlsTART 1o msTEERWET PROCEDURE | GANCEL 110 | UNLOAD
ROUTINE [ROUTINES| ROUTINE | SERNGE | ™Gy ™ “poure”| ROUTIE | ROUTINE | | ROUTINE |ROUTINES| ROUTINE | gy | CLL | ROUTHE | ROUTINE
0 | 9 RUTHNE | 128 | 100 | 102 9 | 106 | % aouThE | 100 | 102
4 _________ 98/4_______&_0@153_6 _____________ DRIVER B —
| | [126~ 14 ' 118 sl 1200
| | [N 126
| 1 gt ST |136\ e [L U Jl S]!, "
[w | | [Renunse T (. wepE 111
| \ | q-H L [
| @« | | - < > | >
108 "2
E i i A Anfm i i RJPARSE ,Lm
REPARSE REPARSE
i | I X Ll o IS l
u L a0 lb PONT =) PO I 16| oo | |
i OGS 1 P90 gesemon| s 1 PROESSHE) mocesvg)
I "o l _ et
| | ICOMPLET‘ON 1 | POINT |
| ROUTINE | | ROUTINE 1 ROUTINE |

VYLOLY/86 OM

$65L0/86S(1/1LDd

WO 98/47074 PCT/US98/07595

CLIENT
PROCESS

USER MODE

188 KERNEL MODE
SERVICES a0
| 10 MANAGER ~f142
18—t IRP IRP =186
SYMBOLIC LINKS DECODER 144
18—+ IRP IRP F~—186
DISTRIBUTED FILE SYSTEM NANAGER 146

Vi e 2 SR

178—1 IRP ~182 | RP ~184 | IRP T-186

IRP
74 it
HIERARCHICAL FILE SYSTEM MANAGER 148
V. REPARSE DATA]_ Ve SR
178—+ IRP RP 1821 rp 184 | IRP {186
73 '
FILE SYSTEM DRIVER 150
2
IRp 184 IRP 180
178 IRP IRP T 186
73
DISK DRIVER 15
>

e

FIG. 5

WO 98/47074

PCT/US98/07595

618

INIOd 38YVd3Y

4| X

A40L03410

Z NN

vhv\\

9 "Ol4

—

\
\
\

g_\/

INIOd 354Vd3 R
313 ENE
190103410 | X R0103810 | X
LT X 3HVN
w’ N
INIOd 358Vd34
\\
R0103410 | X S
T W INWN [«————
¢ IMOA

. EIT
830 "9V
INI0d 354Va3Y | ¥ INI0d 358Va3Y
3113 3 ¥
R0103410 | X FI0LOUIT
CED _ 3 3NN
i -
INVA
I
N ERER INI0d 354Va3Y | X
| 313 HE
__ NI0LOTHIG | ¥ RI0L034I0
| : :
S ET ¥ .u@
_ B
INI0d 358Vd3
3113
R0LO3UI0 | X
o 9 :INN

L IWNT0A

WO 98/47074

PCT/US98/07595
718
REMOTE COMPUTER ——194
USER MODE
KERNEL MODE
1/0 SYSTEM | SERVER 14—1226
"FILE SYSTEM" 08
FILE v A\
208—— SYSTEM NETWORK NETWORK |
DRIVER TRANSPORT CARD
: DRIVERS oy
230—7pISK CONTROLLER

198 —t

12

LOCAL COMPUTER
- P%‘Eggs "
" USER MODE
KERNEL MODE
208—F \
21| | SERVICES REDIRECTOR NETWORK
C110 MANAGER ; CARD '
o[stuBoLe e ponr T2
202+ Lmis DECOTDER DRIVERS
FILE SYSTEN N
I
206 DISK DRIVER
I
218—TDISK CONTROLLER

ﬂk

A

DISK

216

FIG. T

WO 98/47074 PCT/US98/07595

818

—L EXTENSION L\ N EXTENSION ~—238
DRIVER S A DRIVER SERVICES
4

s3i—L_ HARDWARE ACCESS
DRIVER(S)

L HARDWARE

232 DEVICE

FIG. 8

INTERNATIONAL SEARCH REPORT

Intemational application No.
PCT/US98/07595

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 13/15
US CL :395/825,681

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed

U.S. : 395/825,681; 364/280, 282.3,282.1; 707/1/200

by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS, SPI, MAYA

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

search terms: device driver, branching, calling, spawning, pareat/child, application

X
12-50

US 5,175,855 A (PUTNAM et al) 29 December 1992, Col 2 Lines

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,P US 5,680,618 A (FREUND) 21 October 1997, Col 4 Lines 30-62 | 1-31

1-31

D Further documents are listed in the continuation of Box C.

D See patent family annex.

hd Special categories of cited documents:

*A" document defining the general state of the art which is not considered
to be of particular relevance

B earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

*or document referring to an oral disclosure, use, exhibition or other
means

"pr document published prior to the international filing date but later than

the priority date claimed

T iater document published afier the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

document of particular relovance; the claimed invention cannot be
idered novel or idered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the documant is
combined with one or more other such d ts, such bi

being obvious to a person skilied in the art

document member of the same patent family

Date of the actual completion of the intemational search

30 JUNE 1998

Date of mallnﬁ 4 % lljl Gm g%search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

TRomas C. Lee

Teleghone No. (703) 305-9700

Form PCT/ISA/210 (second sheet)(July 1992)%

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

