

(12)

Oversættelse af europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **C 12 N 15/113 (2010.01)** **A 61 K 31/713 (2006.01)** **A 61 P 3/12 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2016-08-01**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2016-04-13**

(86) Europæisk ansøgning nr.: **11715243.9**

(86) Europæisk indleveringsdag: **2011-04-20**

(87) Den europæiske ansøgnings publiceringsdag: **2013-02-27**

(86) International ansøgning nr.: **EP2011056299**

(87) Internationalt publikationsnr.: **WO2011131707**

(30) Prioritet: **2010-04-23 US 327379 P** **2010-05-11 US 333398 P**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Arrowhead Research Corporation, 225 South Lake Avenue , Suite 1050, Pasadena, CA 91101, USA**

(72) Opfinder: **DE FOUGEROLLES, Antonin, Alnylam Pharmaceuticals Inc., 300 Third Street, Cambridge, Massachusetts 02142, USA**
DIENER, John, L., Novartis Institutes for BioMedical Research Inc., 100 Technology Square, Cambridge, Massachusetts 02139, USA
HICKMAN, Emma, Novartis Pharmaceuticals UK Limited, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, Storbritannien
HINKLE, Gregory, Alnylam Pharmaceuticals Inc., 300 Third Street, Cambridge, Massachusetts 02142, USA
MILSTEIN, Stuart, Alnylam Pharmaceuticals Inc., 300 Third Street, Cambridge, Massachusetts 02142, USA
PULICHINO, Anne-Marie, Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
SPRAGUE, Andrew, Alnylam Pharmaceuticals Inc., 300 Third Street, Cambridge, Massachusetts 02142, USA

(74) Fuldmægtig i Danmark: **Chas. Hude A/S, H.C. Andersens Boulevard 33, 1780 København V, Danmark**

(54) Benævnelse: **Organiske sammensætninger til behandling af beta-ENaC-relaterede sygdomme**

(56) Fremdragne publikationer:
EP-A1- 1 752 536
WO-A2-2008/152131
E. CACI ET AL: "Epithelial Sodium Channel Inhibition in Primary Human Bronchial Epithelia by Transfected siRNA", AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, vol. 40, no. 2, 1 January 2008 (2008-01-01), pages 211-216, XP55002460, ISSN: 1044-1549, DOI: 10.1165/rccm.2007-0456OC -& Emanuela Caci: "online supplement to Epithelial Sodium Channel Inhibition in Primary Human Bronchial Epithelia by Transfected siRNA", American Journal of Respiratory Cell and Molecular Biology, 21 August 2008 (2008-08-21), pages 1-5, XP55002463, Retrieved from the Internet: URL:<http://ajrcmb.atsjournals.org/cgi/data/40/2/211/DC1/1> [retrieved on 2011-07-11]

Fortsættes ...

DK/EP 2561077 T3

JERNIGAN NIKKI L ET AL: "Myogenic vasoconstriction in mouse renal interlobar arteries: role of endogenous beta and gammaENaC.", AMERICAN JOURNAL OF PHYSIOLOGY. RENAL PHYSIOLOGY DEC 2006 LNKD-PUBMED:16849693, vol. 291, no. 6, December 2006 (2006-12), pages F1184-F1191, XP002649088, ISSN: 1931-857X

DESCRIPTION

[0001] The mucosal surface between the environment and the body has many protective mechanisms. One form of defense is cleansing the surface with liquid. The quantity of liquid reflects the balance between epithelial liquid secretion (which often reflects anion secretion coupled with water and a cation counter-ion) and liquid absorption (which often reflects Na^+ absorption, coupled with water and counter anion). Many diseases of mucosal surfaces are caused by too little liquid, as caused by an imbalance between secretion (too little) and absorption (too much). One method to balance the liquid layer is to decrease Na^+ channelmediated liquid absorption.

[0002] Nonvoltage-gated, amiloride-sensitive sodium channels control fluid and electrolyte transport across epithelia in many organs. The apical membranes of many tight epithelia contain sodium channels that are primarily characterized by their high affinity to the diuretic blocker amiloride. These channels mediate the first step of active sodium reabsorption essential for the maintenance of body salt and water homeostasis. In vertebrates, the channels control reabsorption of sodium in the kidney, colon, lung and sweat glands; they also play a role in taste perception.

[0003] The rate-limiting step of Na^+ and liquid absorption is mediated by the epithelial sodium (Na^+) channel (ENaC). These sodium channels are heteromeric complexes consisting of 3 subunits: Alpha-ENaC, Beta-ENaC, and Gamma-ENaC.

[0004] Beta-ENaC (also known as SCNN1 B) encodes the beta subunit of this sodium channel, and mutations in and/or altered expression of this gene have been associated with several diseases (and/or associated with treatments of diseases), including cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension.

[0005] Caci et al. (2008) disclosed an siRNA approach to analyze the possibility of down-regulating ENaC function in bronchial epithelia and to examine the resulting effects on fluid transport. siRNA sequences complementary to each of the three ENaC subunits were been used to establish whether single subunit down-regulation is enough to reduce $\text{Na}(+)$ absorption.

[0006] EP 1 752 536 discloses pharmaceutical compositions comprising siRNAs wherein the sense and antisense strand have one mismatch within a 15 nt overlap with the sense and antisense strand defined by SEQ ID No. 151 below.

[0007] There exists the need for treatments related to Beta-ENaC-related diseases.

BRIEF SUMMARY OF THE INVENTION

[0008] Disclosed are RNAi agents to Beta-ENaC, which are useful in the treatment of Beta-ENaC-related diseases, such as cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension. Also disclosed is a method of treating a human subject having a pathological state mediated at least in part by alpha-ENaC expression, the method comprising the step of administering to the subject a therapeutically effective amount of a RNAi agent Beta-ENaC.

[0009] Disclosed are specific RNAi agents and methods that are useful in reducing Beta-ENaC levels in a subject, e.g., a mammal, such as a human. Specifically disclosed are double-stranded RNAi agents comprising at least 15 or more contiguous nucleotides of Beta-ENaC. In particular, disclosed are agents comprising sequences of 15 or more contiguous nucleotides differing by 0, 1, 2 or 3 from those of the RNAi agents provided, e.g., in Table 1. The RNAi agents particularly can comprise less than 30 nucleotides per strand, e.g., such as 18-23 nucleotides, and/or 19-21 nucleotides, and/or such as those provided, e.g., in Table 1.

[0010] The double-stranded RNAi agents can have blunt ends or overhangs of 1, 2, 3 or 4 nucleotides (i.e., 1-4 nt) from one or both 3' and/or 5' ends. The double-stranded RNAi agents can also optionally comprise one or two 3' caps and/or one or more modified nucleotides. Modified variants of sequences as disclosed herein include those that are otherwise identical but contain substitutions of a naturally occurring nucleotide for a corresponding modified nucleotide.

[0011] Further, the RNAi agent can either contain only naturally-occurring ribonucleotide subunits, or one or more modifications to the sugar, phosphate or base of one or more of the replacement nucleotide subunits, whether they comprise ribonucleotide subunits or deoxyribonucleotide subunits. Modified variants of the disclosed RNAi agents include RNAi agents with the same

sequence, but with one or more modifications to one or more of the sugar, phosphate or base of one or more of the nucleotide subunits. The modifications improve efficacy, stability and/or reduce immunogenicity of the RNAi agent. Disclosed is a double-stranded oligonucleotide comprising at least one non-natural nucleobase. The non-natural nucleobase can be difluorotolyl, nitroindolyl, nitropyrrolyl, or nitroimidazolyl. Only one of the two oligonucleotide strands can contain a non-natural nucleobase or both of the oligonucleotide strands can contain a non-natural nucleobase.

[0012] The RNAi agent(s) can optionally be attached to a ligand selected to improve one or more characteristic, such as, e.g., stability, distribution and/or cellular uptake of the agent, e.g., cholesterol or a derivative thereof. The RNAi agent(s) can be isolated or be part of a pharmaceutical composition used for the disclosed methods. Particularly, the pharmaceutical composition can be formulated for delivery to the lungs or nasal passage or formulated for parenteral administration. The pharmaceutical compositions can optionally comprise two or more RNAi agents, each one directed to the same or a different segment of the Beta-ENaC mRNA. Optionally, the pharmaceutical compositions can further comprise or be used in conjunction with any known treatment for any Beta-ENaC-related disease.

[0013] Methods are disclosed for reducing the level of Beta-ENaC mRNA in a cell, particularly in the case of a disease characterized by over-expression or hyper-activity of ENaC. Also disclosed is a method of treating a human subject having a pathological state mediated at least in part by Beta-ENaC expression, the method comprising the step of administering to the subject a therapeutically effective amount of a RNAi agent Beta-ENaC. Such methods comprise the step of administering one of the disclosed RNAi agents, as further described below. The disclosed methods utilize the cellular mechanisms involved in RNA interference to selectively degrade the target RNA in a cell and are comprised of the step of contacting a cell with one of the disclosed RNAi agents. Such methods can be performed directly on a cell or can be performed on a mammalian subject by administering to a subject one of the disclosed RNAi agents/pharmaceutical compositions. Reduction of target Beta-ENaC RNA in a cell results in a reduction in the amount of encoded Beta-ENaC protein produced. In an organism, this can result in reduction of epithelial potential difference, balanced fluid absorption and increased mucociliary clearance.

[0014] The methods and compositions disclosed, e.g., the methods and Beta-ENaC RNAi agent compositions, can be used with any dosage and/or formulation described herein, as well as with any route of administration described herein.

[0015] The details of one or more embodiments of the present disclosure are set forth in the accompanying drawings and the description below.

BRIEF DESCRIPTION OF THE FIGURES

[0016] Figures 1A-1B depict the ability of RNAi agents AD20807, AD20826, AD20832, AS20834, AD20848, and AD20861 to knock-down Beta-ENaC activity *in vivo*.

[0017] Figures 2A - 2C depict the *in vitro* effect of Beta-ENaC RNAi Agent AD20832 on ENaC channel functional activity in human bronchial epithelial cells.

DETAILED DESCRIPTION OF THE INVENTION

[0018] The present disclosure encompasses RNAi agents to Beta-ENaC, which are useful in treatment of Beta-ENaC-related diseases (e.g., diseases associated with mutations in and/or altered expression, level and/or activity of Beta-ENaC, and/or diseases treatable by modulating the expression, level and/or activity of Beta-ENaC), such as cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension.

[0019] Various embodiments of the present disclosure include: A RNAi agent comprising an antisense strand as described in the appended claims.

[0020] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent specific to Beta-ENaC (or any set of overlapping RNAi agents specific to Beta-ENaC) disclosed, e.g., in Table 1. Disclosed is a composition comprising a RNAi agent comprising a sense and an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the anti-sense strand of a RNAi agent from

any sequence disclosed herein. Disclosed is a composition comprising a RNAi agent comprising a first strand and a second strand, wherein the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the first strand, and the second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the second strand of any RNAi agent disclosed herein.

[0021] Particular duplexes include the following, wherein each duplex comprises a set of SEQ ID NOs, wherein the first SEQ ID NO corresponds to a first strand (e.g., a sense strand), and the second SEQ ID NO corresponds to a second strand (e.g., an anti-sense strand): AD-20805 (SEQ ID NOs. 111 and 112); AD-20806 (SEQ ID NOs. 113 and 114); AD-20807 (SEQ ID NOs. 115 and 116); AD-20808 (SEQ ID NOs. 117 and 118); AD-20809 (SEQ ID NOs. 119 and 120); AD-20810 (SEQ ID NOs. 121 and 122); AD-20811 (SEQ ID NOs. 123 and 124); AD-20812 (SEQ ID NOs. 125 and 126); AD-20813 (SEQ ID NOs. 127 and 128); AD-20814 (SEQ ID NOs. 129 and 130); AD-20815 (SEQ ID NOs. 131 and 132); AD-20816 (SEQ ID NOs. 133 and 134); AD-20817 (SEQ ID NOs. 135 and 136); AD-20818 (SEQ ID NOs. 137 and 138); AD-20819 (SEQ ID NOs. 139 and 140); AD-20820 (SEQ ID NOs. 141 and 142); AD-20821 (SEQ ID NOs. 143 and 144); AD-20822 (SEQ ID NOs. 145 and 146); AD-20823 (SEQ ID NOs. 147 and 148); AD-20824 (SEQ ID NOs. 149 and 150); AD-20825 (SEQ ID NOs. 151 and 152); AD-20826 (SEQ ID NOs. 153 and 154); AD-20827 (SEQ ID NOs. 155 and 156); AD-20828 (SEQ ID NOs. 157 and 158); AD-20829 (SEQ ID NOs. 159 and 160); AD-20830 (SEQ ID NOs. 161 and 162); AD-20831 (SEQ ID NOs. 163 and 164); AD-20832 (SEQ ID NOs. 165 and 166); AD-20833 (SEQ ID NOs. 167 and 168); AD-20834 (SEQ ID NOs. 169 and 170); AD-20835 (SEQ ID NOs. 171 and 172); AD-20836 (SEQ ID NOs. 173 and 174); AD-20837 (SEQ ID NOs. 175 and 176); AD-20838 (SEQ ID NOs. 177 and 178); AD-20839 (SEQ ID NOs. 179 and 180); AD-20840 (SEQ ID NOs. 181 and 182); AD-20841 (SEQ ID NOs. 183 and 184); AD-20842 (SEQ ID NOs. 185 and 186); AD-20843 (SEQ ID NOs. 187 and 188); AD-20844 (SEQ ID NOs. 189 and 190); AD-20845 (SEQ ID NOs. 191 and 192); AD-20846 (SEQ ID NOs. 193 and 194); AD-20847 (SEQ ID NOs. 195 and 196); AD-20848 (SEQ ID NOs. 197 and 198); AD-20849 (SEQ ID NOs. 199 and 200); AD-20850 (SEQ ID NOs. 201 and 202); AD-20851 (SEQ ID NOs. 203 and 204); AD-20852 (SEQ ID NOs. 205 and 206); AD-20861 (SEQ ID NOs. 207 and 208); AD-20862 (SEQ ID NOs. 209 and 210); AD-20863 (SEQ ID NOs. 211 and 212); AD-20864 (SEQ ID NOs. 213 and 214); AD-20865 (SEQ ID NOs. 215 and 216); AD-20866 (SEQ ID NOs. 217 and 218); and AD-20867 (SEQ ID NOs. 219 and 220), and modified variants thereof.

[0022] Disclosed are modified variants of particular duplexes, wherein each duplex comprises a set of SEQ ID NOs, wherein the first SEQ ID NO corresponds to a first strand (e.g., a sense strand), and the second SEQ ID NO corresponds to a second strand (e.g., an anti-sense strand) that are selected from the group consisting of: AD-20805 (SEQ ID NOs. 1 and 2); AD-20806 (SEQ ID NOs. 3 and 4); AD-20807 (SEQ ID NOs. 5 and 6); AD-20808 (SEQ ID NOs. 7 and 8); AD-20809 (SEQ ID NOs. 9 and 10); AD-20810 (SEQ ID NOs. 11 and 12); AD-20811 (SEQ ID NOs. 13 and 14); AD-20812 (SEQ ID NOs. 15 and 16); AD-20813 (SEQ ID NOs. 17 and 18); AD-20814 (SEQ ID NOs. 19 and 20); AD-20815 (SEQ ID NOs. 21 and 22); AD-20816 (SEQ ID NOs. 23 and 24); AD-20817 (SEQ ID NOs. 25 and 26); AD-20818 (SEQ ID NOs. 27 and 28); AD-20819 (SEQ ID NOs. 29 and 30); AD-20820 (SEQ ID NOs. 31 and 32); AD-20821 (SEQ ID NOs. 33 and 34); AD-20822 (SEQ ID NOs. 35 and 36); AD-20823 (SEQ ID NOs. 37 and 38); AD-20824 (SEQ ID NOs. 39 and 40); AD-20825 (SEQ ID NOs. 41 and 42); AD-20826 (SEQ ID NOs. 43 and 44); AD-20827 (SEQ ID NOs. 45 and 46); AD-20828 (SEQ ID NOs. 47 and 48); AD-20829 (SEQ ID NOs. 49 and 50); AD-20830 (SEQ ID NOs. 51 and 52); AD-20831 (SEQ ID NOs. 53 and 54); AD-20832 (SEQ ID NOs. 55 and 56); AD-20833 (SEQ ID NOs. 57 and 58); AD-20834 (SEQ ID NOs. 59 and 60); AD-20835 (SEQ ID NOs. 61 and 62); AD-20836 (SEQ ID NOs. 63 and 64); AD-20837 (SEQ ID NOs. 65 and 66); AD-20838 (SEQ ID NOs. 67 and 68); AD-20839 (SEQ ID NOs. 69 and 70); AD-20840 (SEQ ID NOs. 71 and 72); AD-20841 (SEQ ID NOs. 73 and 74); AD-20842 (SEQ ID NOs. 75 and 76); AD-20843 (SEQ ID NOs. 77 and 78); AD-20844 (SEQ ID NOs. 79 and 80); AD-20845 (SEQ ID NOs. 81 and 82); AD-20846 (SEQ ID NOs. 83 and 84); AD-20847 (SEQ ID NOs. 85 and 86); AD-20848 (SEQ ID NOs. 87 and 88); AD-20849 (SEQ ID NOs. 89 and 90); AD-20850 (SEQ ID NOs. 91 and 92); AD-20851 (SEQ ID NOs. 93 and 94); AD-20852 (SEQ ID NOs. 95 and 96); AD-20861 (SEQ ID NOs. 97 and 98); AD-20862 (SEQ ID NOs. 99 and 100); AD-20863 (SEQ ID NOs. 101 and 102); AD-20864 (SEQ ID NOs. 103 and 104); AD-20865 (SEQ ID NOs. 105 and 106); AD-20866 (SEQ ID NOs. 107 and 108); and AD-20867 (SEQ ID NOs. 109 and 110).

Particular compositions

[0023] Disclosed is a composition comprising a RNAi agent comprising an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from any sequence (or overlapping set of sequences) disclosed in a table here (e.g., Table 1). Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from any sequence (or overlapping set of sequences) disclosed in a table here (e.g., Table 1). Disclosed is a composition comprising a RNAi agent comprising a sense and an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the anti-sense strand of a RNAi agent from any

sequence disclosed herein. Disclosed is a composition comprising a RNAi agent comprising a first strand and a second strand, wherein the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the first strand, and the second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the second strand of any RNAi agent disclosed herein. Particular duplexes include those specific duplexes provided above and as listed in any one or more of Table 1. Additional modified sequences (e.g., sequences comprising one or more modified base) of each of the compositions above are also contemplated.

[0024] Table A1, below, provides the SEQ ID NOs for the unmodified and an example modified sequence of the sense and an anti-sense strands of various RNAi agents to BetaENaC. The base composition of each is specific sequence represented by the SEQ ID NOs is provided in more detail in Table 1, and portions thereof are provided in Table 2.

Table A1. SEQ ID NOs for a first and a second strand (e.g., sense ("SS") and antisense ("AS") strand) for RNAi agents to Beta-ENaC

RNAi agent-duplex name		Modified sequence SEQ ID NO	Unmodified sequence SEQ ID NO
AD-20805	Sense	1	111
	Anti-Sense	2	112
AD-20806	Sense	3	113
	Anti-Sense	4	114
AD-20807	Sense	5	115
	Anti-Sense	6	116
AD-20808	Sense	7	117
	Anti-Sense	8	118
AD-20809	Sense	9	119
	Anti-Sense	10	120
AD-20810	Sense	11	121
	Anti-Sense	12	122
AD-20811	Sense	13	123
	Anti-Sense	14	124
AD-20812	Sense	15	125
	Anti-Sense	16	126
AD-20813	Sense	17	127
	Anti-Sense	18	128
AD-20814	Sense	19	129
	Anti-Sense	20	130
AD-20815	Sense	21	131
	Anti-Sense	22	132
AD-20816	Sense	23	133
	Anti-Sense	24	134
AD-20817	Sense	25	135
	Anti-Sense	26	136
AD-20818	Sense	27	137
	Anti-Sense	28	138
AD-20819	Sense	29	139
	Anti-Sense	30	140
AD-20820	Sense	31	141
	Anti-Sense	32	142
AD-20821	Sense	33	143
	Anti-Sense	34	144

RNAi agent-duplex name		Modified sequence SEQ ID NO	Unmodified sequence SEQ ID NO
AD-20822	Sense	35	145
	Anti-Sense	36	146
AD-20823	Sense	37	147
	Anti-Sense	38	148
AD-20824	Sense	39	149
	Anti-Sense	40	150
AD-20825	Sense	41	151
	Anti-Sense	42	152
AD-20826	Sense	43	153
	Anti-Sense	44	154
AD-20827	Sense	45	155
	Anti-Sense	46	156
AD-20828	Sense	47	157
	Anti-Sense	48	158
AD-20829	Sense	49	159
	Anti-Sense	50	160
AD-20830	Sense	51	161
	Anti-Sense	52	162
AD-20831	Sense	53	163
	Anti-Sense	54	164
AD-20832	Sense	55	165
	Anti-Sense	56	166
AD-20833	Sense	57	167
	Anti-Sense	58	168
AD-20834	Sense	59	169
	Anti-Sense	60	170
AD-20835	Sense	61	171
	Anti-Sense	62	172
AD-20836	Sense	63	173
	Anti-Sense	64	174
AD-20837	Sense	65	175
	Anti-Sense	66	176
AD-20838	Sense	67	177
	Anti-Sense	68	178
AD-20839	Sense	69	179
	Anti-Sense	70	180
AD-20840	Sense	71	181
	Anti-Sense	72	182
AD-20841	Sense	73	183
	Anti-Sense	74	184
AD-20842	Sense	75	185
	Anti-Sense	76	186

RNAi agent-duplex name		Modified sequence SEQ ID NO	Unmodified sequence SEQ ID NO
AD-20843	Sense	77	187
	Anti-Sense	78	188
AD-20844	Sense	79	189
	Anti-Sense	80	190
AD-20845	Sense	81	191
	Anti-Sense	82	192
AD-20846	Sense	83	193
	Anti-Sense	84	194
AD-20847	Sense	85	195
	Anti-Sense	86	196
AD-20848	Sense	87	197
	Anti-Sense	88	198
AD-20849	Sense	89	199
	Anti-Sense	90	200
AD-20850	Sense	91	201
	Anti-Sense	92	202
AD-20851	Sense	93	203
	Anti-Sense	94	204
AD-20852	Sense	95	205
	Anti-Sense	96	206
AD-20861	Sense	97	207
	Anti-Sense	98	208
AD-20862	Sense	99	209
	Anti-Sense	100	210
AD-20863	Sense	101	211
	Anti-Sense	102	212
AD-20864	Sense	103	213
	Anti-Sense	104	214
AD-20865	Sense	105	215
	Anti-Sense	106	216
AD-20866	Sense	107	217
	Anti-Sense	108	218
AD-20867	Sense	109	219
	Anti-Sense	110	220

[0025] For example, in Table A1, an exemplary modified sequence of RNAi agent AD-20805 is represented by SEQ ID NO: 1 (the sense strand) and SEQ ID NO: 2 (the anti-sense strand). The unmodified sequence of AD-20805 is represented by SEQ ID NO: 111 (the sense strand) and SEQ ID NO: 112 (the anti-sense strand). Thus, Table A1 presents the SEQ ID NO identifiers of a first and second strand of the unmodified sequence and at least one exemplary modified sequence for each of the various RNAi agents to Beta-ENaC.

An RNAi agent comprising an anti-sense strand described herein

[0026] Disclosed is a composition comprising a RNAi agent comprising an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the anti-sense strand of a RNAi agent to Beta-ENaC selected from those anti-sense strands in the specific duplexes provided herein and as listed, e.g., in Table 1.

[0027] In one embodiment, the composition further comprises a second RNAi agent to Beta-ENaC. In various embodiments, the second RNAi agent is physically separate from the first, or the two are physically connected (e.g., covalently linked or otherwise conjugated).

[0028] In one embodiment, the antisense strand is about 30 or fewer nt in length.

[0029] In one embodiment, the sense strand and the antisense strand form a duplex region of about 15 to about 30 nucleotide pairs in length.

[0030] In one embodiment, the antisense strand is about 15 to about 36 nt in length, including about 18 to about 30 nt in length, and further including about 19 to about 23 nt in length. In one embodiment, the antisense strand has at least the length selected from about 15 nt, about 16 nt, about 17 nt, about 18 nt, about 19 nt, about 20 nt, about 21 nt, about 22 nt, about 23 nt, about 24 nt, about 25 nt, about 26 nt, about 27 nt, about 28 nt, about 29 nt and about 30 nt.

[0031] In one embodiment, the RNAi agent comprises a modification that causes the RNAi agent to have increased stability in a biological sample or environment, e.g., blood serum or intestinal lavage fluid.

[0032] In one embodiment, the RNAi agent comprises at least one sugar backbone modification (e.g., phosphorothioate linkage) and/or at least one 2'-modified nucleotide. In one embodiment, all the pyrimidines are 2' O-methyl-modified nucleotides.

[0033] In one embodiment, the RNAi agent comprises: at least one 5'-uridine-adenine-3' (5'-ua-3') dinucleotide, wherein the uridine is a 2'-modified nucleotide; and/or at least one 5'-uridine-guanine-3' (5'-ug-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide; and/or at least one 5'-cytidine-adenine-3' (5'-ca-3') dinucleotide, wherein the 5'-cytidine is a 2'-modified nucleotide; and/or at least one 5'-uridine-uridine-3' (5'-uu-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide.

[0034] In one embodiment, the RNAi agent comprises a 2'-modification selected from the group consisting of: 2'-deoxy, 2'-deoxy-2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl (2'-O-MOE), 2'-O-aminopropyl (2'-O-AP), 2'-O-dimethylaminoethyl (2'-O-DMAOE), 2'-O-dimethylaminopropyl (2'-O-DMAP), 2'-O-dimethylaminoethoxyethyl (2'-O-DMAEOE), and 2'-O-N-methylacetamido (2'-O-NMA). In one embodiment, all the pyrimidines are 2' O-methyl-modified nucleotides.

[0035] In one embodiment, the RNAi agent comprises a blunt end.

[0036] In one embodiment, the RNAi agent comprises an overhang having 1 to 4 unpaired nucleotides.

[0037] In one embodiment, the RNAi agent comprises an overhang at the 3'-end of the antisense strand of the RNAi agent.

[0038] In one embodiment, the RNAi agent is ligated to one or more diagnostic compound, reporter group, cross-linking agent, nuclease-resistance conferring moiety, natural or unusual nucleobase, lipophilic molecule, cholesterol, lipid, lectin, steroid, uvaol, hecigenin, diosgenin, terpene, triterpene, sarsasapogenin, Friedelin, epifriedelanol-derivatized lithocholic acid, vitamin, carbohydrate, dextran, pullulan, chitin, chitosan, synthetic carbohydrate, oligo lactate 15-mer, natural polymer, low- or medium-molecular weight polymer, inulin, cyclodextrin, hyaluronic acid, protein, protein-binding agent, integrin-targeting molecule, polycationic, peptide, polyamine, peptide mimic, and/or transferrin.

[0039] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 60% at a concentration of 10 nM in H441 cells *in vitro*.

[0040] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 70% at a concentration of 10 nM in H441 cells *in vitro*.

[0041] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 80% at a concentration of 10 nM in H441 cells *in vitro*.

[0042] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 90% at a concentration of 10 nM in H441 cells *in vitro*.

[0043] In one embodiment, the RNAi has an EC50 of no more than about 0.1 nM.

[0044] In one embodiment, the RNAi has an EC50 of no more than about 0.01 nM.

[0045] In one embodiment, the RNAi has an EC50 of no more than about 0.001 nM.

A RNAi agent comprising a first and a second strand described herein

[0046] Disclosed is a composition comprising a RNAi agent comprising a first strand and a second strand, wherein the first strand and second strand comprise at least 15 contiguous nucleotides, each differing by 0, 1, 2, or 3 nucleotides from the first and second strand, respectively, of a RNAi agent to Beta-ENaC selected from the specific duplexes disclosed herein and listed, e.g., in Table 1.

[0047] In one embodiment, the composition further comprises a second RNAi agent to Beta-ENaC. In various embodiments, the second RNAi agent is physically separate from the first, or the two are physically connected (e.g., covalently linked or otherwise conjugated).

[0048] In one embodiment, the antisense strand is about 30 or fewer nt in length.

[0049] In one embodiment, the sense strand and the antisense strand form a duplex region of about 15 to about 30 nt pairs in length.

[0050] In one embodiment, the antisense strand is about 15 to about 36 nt in length, including about 18 to about 23 nt in length, and including about 19 to about 23 nt in length.

[0051] In one embodiment, the antisense strand has at least the length selected from about 15 nt, about 16 nt, about 17 nt, about 18 nt, about 19 nt, about 20 nt, about 21 nt, about 22 nt, about 23 nt, about 24 nt, about 25 nt, about 26 nt, about 27 nt, about 28 nt, about 29 nt and about 30 nt.

[0052] In one embodiment, the RNAi agent comprises a modification that causes the RNAi agent to have increased stability in a biological sample or environment, e.g., blood serum or intestinal lavage fluid.

[0053] In one embodiment, the RNAi agent comprises at least one sugar backbone modification (e.g., phosphorothioate linkage) and/or at least one 2'-modified nucleotide. In one embodiment, all the pyrimidines are 2' O-methyl-modified nucleotides.

[0054] In one embodiment, the RNAi agent comprises: at least one 5'-uridine-adenine-3' (5'-ua-3') dinucleotide, wherein the uridine is a 2'-modified nucleotide; and/or at least one 5'-uridine-guanine-3' (5'-ug-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide; and/or at least one 5'-cytidine-adenine-3' (5'-ca-3') dinucleotide, wherein the 5'-cytidine is a 2'-modified nucleotide; and/or at least one 5'-uridine-uridine-3' (5'-uu-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide.

[0055] In one embodiment, the RNAi agent comprises a 2'-modification selected from the group consisting of: 2'-deoxy, 2'-deoxy-2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl (2'-O-MOE), 2'-O-aminopropyl (2'-O-AP), 2'-O-dimethylaminoethyl (2'-O-DMAOE), 2'-O-dimethylaminopropyl (2'-O-DMAP), 2'-O-dimethylaminoethoxyethyl (2'-O-DMAEOE), and 2'-O-N-methylacetamido (2'-O-NMA).

[0056] In one embodiment, the RNAi agent comprises a blunt end.

[0057] In one embodiment, the RNAi agent comprises an overhang having 1 to 4 unpaired nucleotides.

[0058] In one embodiment, the RNAi agent comprises an overhang at the 3'-end of the antisense strand of the RNAi agent.

[0059] In one embodiment, the RNAi agent is ligated to one or more diagnostic compound, reporter group, cross-linking agent, nuclease-resistance conferring moiety, natural or unusual nucleobase, lipophilic molecule, cholesterol, lipid, lectin, steroid, uvaol, hecigenin, diosgenin, terpene, triterpene, sarsasapogenin, Friedelin, epifriedelanol-derivatized lithocholic acid, vitamin, carbohydrate, dextran, pullulan, chitin, chitosan, synthetic carbohydrate, oligo lactate 15-mer, natural polymer, low- or medium-molecular weight polymer, inulin, cyclodextrin, hyaluronic acid, protein, protein-binding agent, integrin-targeting molecule,

polycationic, peptide, polyamine, peptide mimic, and/or transferrin.

[0060] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 60% at a concentration of 10 nM in H441 cells *in vitro*.

[0061] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 70% at a concentration of 10 nM in H441 cells *in vitro*.

[0062] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 80% at a concentration of 10 nM in H441 cells *in vitro*.

[0063] In one embodiment, the RNAi agent is capable of inhibiting expression of the Beta-ENaC gene by at least about 90% at a concentration of 10 nM in H441 cells *in vitro*.

[0064] In one embodiment, the RNAi has an EC50 of no more than about 0.1 nM.

[0065] In one embodiment, the RNAi has an EC50 of no more than about 0.01 nM.

[0066] In one embodiment, the RNAi has an EC50 of no more than about 0.001 nM.

A method of treatment using a RNAi agent described herein

[0067] Disclosed is a method of treating a Beta-ENaC-related disease in an individual, comprising the step of administering to the individual a therapeutically effective amount of a composition comprising a RNAi agent comprising at least an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from the specific duplexes disclosed herein and as listed, e.g., in Table 1. Disclosed is such method, wherein the composition comprising a RNAi agent further comprises a sense strand, wherein the sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sense strand of a RNAi agent to Beta-ENaC selected from the specific duplexes disclosed herein and as listed, e.g., in Table 1.

[0068] In one embodiment, the Beta-ENaC-related disease is cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and/or obesity-associated hypertension.

[0069] In one embodiment, the Beta-ENaC-related disease is cystic fibrosis.

[0070] Disclosed is that the method further comprises the administration of an additional treatment. The additional treatment can be a therapeutically effective amount of a composition.

[0071] Disclosed is that the additional treatment is a method (or procedure).

[0072] Disclosed is that the additional treatment and the RNAi agent can be administered in any order, or can be administered simultaneously.

[0073] Disclosed is that the method further comprises the step of administering an additional treatment for cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and/or obesity-associated hypertension.

[0074] Disclosed is that the method further comprises the step of administering an additional treatment or therapy selected from the list of an additional antagonist to ENaC, a potassium-sparing diuretic, amiloride, triamterene, regulation of dietary salt intake, antibiotics, DNase therapy, albutrol, N-acetylcysteine, breathing therapy, percussive therapy, and aerobic exercise.

[0075] Disclosed is that the composition comprises a second RNAi agent to Beta-ENaC. In various embodiments, the second RNAi agent is physically separate from the first, or the two are physically connected (e.g., covalently linked or otherwise conjugated).

[0076] Disclosed is that the method further comprises the step of administering an additional RNAi agent which comprises at

least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from the specific duplexes disclosed herein and as listed, e.g., in Table 1.

A method of inhibiting the expression of Beta-ENaC, using a RNAi agent disclosed herein

[0077] Disclosed is a method of inhibiting the expression of the Beta-ENaC gene in an individual, comprising the step of administering to the individual a therapeutically effective amount of a composition comprising a RNAi agent of the present disclosure. The RNAi agent can comprise at least an anti-sense strand, and/or comprises a sense and an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the anti-sense strand of a RNAi agent to Beta-ENaC selected from those specific duplex disclosed herein and as listed, e.g., in Table 1.

[0078] Various embodiments of this aspect of the invention are described below.

[0079] Disclosed is that the individual is afflicted with or susceptible to a Beta-ENaC-related disease.

[0080] Disclosed is that the Beta-ENaC-related disease is cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and/or obesity-associated hypertension.

[0081] Disclosed is that the Beta-ENaC-related disease is cystic fibrosis.

[0082] Disclosed is that the method further comprises the administration of an additional treatment. The additional treatment can be a therapeutically effective amount of a composition.

[0083] Disclosed is that the additional treatment is a method (or procedure).

[0084] Disclosed is that the additional treatment and the RNAi agent can be administered in any order or can be administered simultaneously.

[0085] Disclosed is that the method further comprises the step of administering an additional treatment for cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and/or obesity-associated hypertension.

[0086] Disclosed is that the method further comprises the step of administering an additional treatment or therapy selected from the list of an additional antagonist to ENaC, a potassium-sparing diuretic, amiloride, triamterene, regulation of dietary salt intake, antibiotics, DNase therapy, albutrol, N-acetylcysteine, breathing therapy, percussive therapy, and aerobic exercise.

[0087] Disclosed is that the composition comprises a second RNAi agent to Beta-ENaC. Disclosed is that the second RNAi agent can be physically separate from the first, or the two are physically connected (e.g., covalently linked or otherwise conjugated).

[0088] Disclosed is that the method can further comprise the step of administering an additional RNAi agent which comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from the specific duplexes disclosed herein and as listed, e.g., in Table 1.

Pharmaceutical formulations of a RNAi agent to Beta-ENaC

[0089] In one particular specific embodiment, the present disclosure relates to a composition comprising a RNAi agent as defined in the appended claims. The RNAi agent comprises a sense and an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides from the anti-sense strand of a RNAi agent to Beta-ENaC wherein the composition is in a pharmaceutically effective formulation.

[0090] In one embodiment, the present disclosure pertains to the use of a RNAi agent in the manufacture of a medicament for treatment of a Beta-ENaC-related disease, wherein the RNAi agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides from the antisense strand of a RNAi agent to Beta-ENaC of a specific duplex provided herein.

ENaC

[0091] By "ENaC" is meant the epithelial sodium channel, a membrane protein made of three different but homologous subunits (Alpha, Beta and Gamma).

[0092] ENaC is present in the apical membrane of epithelial cells of the distal nephron (cortical and medullary collecting tubule) and distal colon and in the airways and in the excretory ducts of several glands. ENaC is also expressed in placenta, brain and urinary bladder. It provides a controlled entry pathway for Na^+ from the lumen of these organs into the epithelial cells, and, together with the Na^+/K^+ -ATPase located in the basolateral membrane of the same cells, and is responsible for the active, vectorial transport of Na^+ from the external medium through the epithelial cells into the extracellular fluid and toward the blood. ENaC is located on the apical membrane facing the lumen, and allows movement of sodium from the lumen into the epithelial cell. The sodium reabsorbed via ENaC is then extruded from the epithelial cell back into the bloodstream by the Na^+/K^+ -ATPase. The reabsorption of sodium by the ENaC is accompanied by an osmotic uptake of water to maintain a constant extracellular Na^+ concentration. This changes blood volume and consequently affects blood pressure. Thus, ENaC plays an important role in electrolyte homeostasis and the control of blood volume and blood pressure. See, e.g., Saxena et al. 1998 Biochem. Biophys. Res. Comm. 252: 208-213.

[0093] ENaC has different functional roles in various organs in which it is expressed. In the kidney (collecting tubule), the modulated reabsorption of Na^+ through ENaC provides the primary mechanism of the regulation of urinary Na^+ excretion and thus allows the fine control of the whole organism Na^+ balance under the hormonal control of aldosterone. By its depolarizing effect on the apical membrane potential, the Na^+ channel also provides the driving force for tubular K^+ secretion.

[0094] Specific inhibitors of ENaC promote urinary Na^+ excretion and inhibit K^+ secretion; these drugs (including amiloride and triamterene), are therefore used as K^+ -sparing diuretics. ENaC has a similar functional role in the distal colon, preventing excessive Na^+ loss in the stools. In airways, an important role is the reabsorption of the fluid that fills the airways at birth, promoting the shift from fluid secretion (before birth) to fluid reabsorption (postnatal).

[0095] With the cystic fibrosis transmembrane conductance regulator, it also participates in the delicate regulation of the fluid balance in the airways that maintains a thin mucosal fluid film necessary for mucus clearance. In the excretory ducts of the salivary and sweat glands, the activity of ENaC tends to decrease the luminal Na^+ concentration, allowing the excretion of a less salty saliva and preventing major loss of Na^+ in the sweat fluid. See, for example, Hummler et al. 1999 Am. J. Physiol. Gastrointest. Liver Physiol. 276: 567-571 and references cited therein.

[0096] Alterations and mutations in the sequence and/or expression of ENaC can lead to over-expression or hyper-activity of ENaC. Providing RNAi agents of this disclosure restores balance to the modulated reabsorption of Na^+ by reducing the level of the Beta-ENaC.

Beta-ENaC

[0097] By "Beta-ENaC" is meant the gene or protein amiloride-sensitive sodium channel subunit beta (or any nucleic acid encoding this protein), also variously designated: sodium channel, nonvoltage-gated 1, beta; SCNN1B; bENaC; ENaCb; ENaC-beta; SCNEB, or β -ENaC. Additional identifiers include: OMIM: 600760; MGI: 104696; HomoloGene: 284; and GeneCards: SCNN1B. Additional information can be found: Human: Entrez 6338; Ensembl ENSG00000168447; UniProt P51168; RefSeq (mRNA) NM_000336; RefSeq (protein) NP_000327; Location (UCSC) Chr 16: 23.22 - 23.3 Mb. Mouse: Entrez 20277; Ensembl ENSMUSG00000030873; UniProt Q3TP51; RefSeq (mRNA) NM_011325 RefSeq (protein) NP_035455; Location (UCSC) Chr 7: 121.66 - 121.71 Mb.

[0098] The amino acid sequence of human Beta-ENaC is provided in Saxena et al. 1998 Biochem. Biophys. Res. Comm. 252: 208-213.

[0099] The functional domains of Beta-ENaC have been delineated. The protein has an intracellular N-terminal domain [amino

acids ("aa") 1 to 50], a first transmembrane domain (aa 51 to 71), an extracellular loop (aa 72 to 533), a second transmembrane domain (aa 534 to 553), and a C-terminal intracellular domain (aa 554 to 640).

[0100] The C-terminal intracellular domain contains two regions wherein mutations relate to Liddle's syndrome and other diseases: in the region from amino acid 564 to 595 and the "PY" motif [with the amino acid consensus sequence PPXY at aa (amino acids) 615 to 618]. See, e.g., Saxena et al. 1998.

[0101] The Beta-ENaC RNAi agent of the present disclosure can interact with a portion of the mRNA corresponding to a specific functional domain or domains of Beta-ENaC. In various embodiments, the RNAi agents herein specifically bind to Beta-ENaC mRNA, in a sequence corresponding to a functional domain, e.g., in the N-terminal intracellular domain, in the first transmembrane domain, in the extracellular loop, in the second transmembrane domain, or in the C-terminal intracellular domain, or, more specifically, in the region from amino acid 564 to 595, or in the PY motif (amino acids 615 to 618).

[0102] Disclosed are RNAi agents binding to the 5' or 3' UTR (i.e., untranslated region(s)).

[0103] Disclosed are RNAi agents binding to Beta-ENaC mRNA, but not in a sequence corresponding to a particular functional domain, e.g., not in the N-terminal intracellular domain, not in the first transmembrane domain, not in the extracellular loop, not in the second transmembrane domain, or not in the C-terminal intracellular domain, or, more specifically, not in the region from amino acid 564 to 595, or not in the PY motif (amino acids 615 to 618).

[0104] As disclosed, binding of a RNAi agent to a particular region of the Beta-ENaC mRNA leads to reduced expression, level and/or activity of Beta-ENaC.

[0105] The efficacy of a RNAi agent in reducing the level of Beta-ENaC can be measured directly, e.g., by measuring the levels of Beta-ENaC mRNA abundance or levels of the protein itself. Alternatively, the efficacy of the RNAi can be measured indirectly by measuring the level of any one or more of the known activities of Beta-ENaC or by measuring changes in the activities of pathway components downstream of Beta-ENaC.

[0106] The protein's chief activity is to form, along with Alpha-ENaC and Gamma-ENaC, and, possibly at times, Delta-ENaC, the sodium channel ENaC. Beta-ENaC, Gamma-ENaC and Delta-ENaC may also form a particular type of channel found in the pancreas, testes and ovaries. Beta-ENaC has also been shown to interact with WWP2 and NEDD4. See., e.g., McDonald et al. (2002). Am. J. Physiol. Renal Physiol. 283 (3): F431-6; Harvey et al. 2001. J. Biol. Chem. 276 (11): 8597-601; Farr et al. (2000). Biochem. J. 345 Pt 3: 503-9. The activity of Beta-ENaC can be measured, for example, by its ability to bind and form functional units with these other biological components. The efficacy of a RNAi agent can also be measured indirectly by measuring the amount of surface liquid on mucus membranes, and via histological studies of tissues expressing Beta-ENaC.

Beta-ENaC sequences in various species

[0107] A RNAi agent specific to Beta-ENaC can be designed such that the sequence thereof completely matches that of the mRNA corresponding to the human Beta-ENaC gene and the homologous gene from a test animal. Thus, the exact same RNAi agent can be used in both test animals (e.g., rat, mouse, cynomolgus monkey, etc.) and humans. The sequences for the various ENaC genes have been determined in many species, including humans, mouse, rat, bovine and chicken, as described in, inter alia, Garty et al. 1997 Physiol. Rev. 77: 359-396; and Ahn et al. 1999 Am. J. Physiol. 277:F121-F129.

[0108] The Beta-ENaC sequence in cynomolgus monkey (*Macaca fascicularis*, or "cyno") has been determined.

[0109] The alignment of the cyno Beta-ENaC mRNA (SEQ ID NO: 221) and human Beta-ENaC mRNA (SEQ ID NO: 222) sequences is shown below.

Cyno Beta-ENaC	-----	
Human Beta-ENaC	GTGCTTCCCCGCCCTGAACCTGCTCCCTCCAGTCGGTCTGCCCGCCT 50	
Cyno Beta-ENaC	-----	GGTACCCAGCTTGCT 15
Human Beta-ENaC	CCCCGGGTGCCCCAGTGTACCAACACTCGGCCGCCGCCAGCTTGGC 100	* *****
Cyno Beta-ENaC	TGTTCTTTTGCAAGAGCTACAATAAACCGCTCAACTTGGCAGATCAAT 65	
Human Beta-ENaC	GCGCACCGCCGCCCTCGCACCGCCGACAGCGCGCATCTCGTGTCCCC 150	* * * * *
Cyno Beta-ENaC	TCCCCGGGGATCCGA-ATTCCCCACCATGCCACGTGAAGAACATACCTGCTG 114	
Human Beta-ENaC	GCTCCCCGCCGCCGAGCAGGTGCCACTATGCCACGTGAAGAACATACCTGCTG 200	* * * * *
Cyno Beta-ENaC	AAAGTGCCTGACCGGCTGCAGAAAGGGCCCGGCTACACGTACAAGGAGCT 164	
Human Beta-ENaC	AAAGGGCCTGCATCGCTGCAGAAGGGCCCGGCTACACGTACAAGGAGCT 250	* * * * *
Cyno Beta-ENaC	GCTGGTGTGGTACTGCGATAACACCAACACCCACGGCCCCAAGCGTATCA 214	
Human Beta-ENaC	GCTGGTGTGGTACTGCGACAAACACCAACCCACGGCCCCAAGCGCATCA 300	* * * * *
Cyno Beta-ENaC	TCTGCGAGGGGCCCAAGAAAAGCCATGTGGTCTCTGCTCACCTGCTC 264	
Human Beta-ENaC	TCTGTAGGGGCCCAAGAAAAGCCATGTGGTCTCTGCTCACCTGCTC 350	* * * * *
Cyno Beta-ENaC	TTCACTGCTCTGCTGCGAGTGGGCATCTTCATCAGGACCTACTT 314	
Human Beta-ENaC	TTCGCGCCCTCGTCTGCGAGTGGGCATCTTCATCAGGACCTACTT 400	* * * * *
Cyno Beta-ENaC	GAGCTGGGAGGTAGCGCTCCCTCTCCGTTAGGCTCAAGAACATGGACT 364	
Human Beta-ENaC	GAGCTGGGAGGTAGCGCTCCCTCTCCGTTAGGCTCAAGAACATGGACT 450	* * * * *
Cyno Beta-ENaC	TCCCCGCCGTACCCATCTGCAATGCTAGCCCCCTCAAGTATCCAAAGCT 414	
Human Beta-ENaC	TCCCCGCCGTACCCATCTGCAATGCTAGCCCCCTCAAGTATCCAAAGCT 500	* * * * *
Cyno Beta-ENaC	AAGCAATTGCTGAAGGGACCTGGATGAGCTAGATGGAAGC1G1CCTGGAGAG 464	
Human Beta-ENaC	AAGCAATTGCTGAAGGGACCTGGATGAGCTAGATGGAAGC1G1CCTGGAGAG 550	* * * * *
Cyno Beta-ENaC	AATCCCTGGCTCTGAGCTAAGCCATGCCAATGCCACCAGGACCTGAACT 514	
Human Beta-ENaC	AATCCCTGGCTCTGAGCTAAGCCATGCCAATGCCACCAGGAACTGAACT 600	* * * * *
Cyno Beta-ENaC	CTTCCATCTGGAACACACACTACIAGTCTTATITATGAAAGGAAACCCC 564	
Human Beta-ENaC	CTTCCATCTGGAACACACACCCTCCTCTTATITATGAAAGGAAACCCC 650	* * * * *
Cyno Beta-ENaC	CACCAACCCATGGTCTCGATCTTGGAGATAACCAATGGCTTAAC 614	
Human Beta-ENaC	CACCAACCCATGGTCTCGATCTTGGAGACAACCAATGGCTTAAC 700	* * * * *
Cyno Beta-ENaC	AAACAGCTCAGCATCAGAAAAGATCTGTAATGCCATGGG1GCAAATGG 664	
Human Beta-ENaC	AAACAGCTCAGCATCAGAAAAGATCTGTAATGCCATGGG1GCAAATGG 750	* * * * *
Cyno Beta-ENaC	CCATGAGACTATGTAGCCCTAACGGGACCCAGTGCRCCTCCGGAACTTC 714	
Human Beta-ENaC	CCATGAGACTATGTAGCCCTAACAGGACCCAGTGTACCTCGGAACTTC 800	* * * * *
Cyno Beta-ENaC	ACCAGCGCTACCCAGGCAGTGACACAGTGGTACAGCTGCAGGCCACCAA 764	
Human Beta-ENaC	ACCAGCGCTACCCAGGCATTGACACAGTGGTACATCTCTGCAGGCCACCAA 850	* * * * *
Cyno Beta-ENaC	CATCITTCGCGCAGGTGCCGCAGCAGGAGCTGGTGAGAAGACTACCCG 814	
Human Beta-ENaC	CATCITTCGCGCAGGTGCCACAGCAGGAGCTAGTAGAGATGAGCTACCCG 900	* * * * *
Cyno Beta-ENaC	GCGAGCAGATGATCCCTGGCCTGCCCTGGAGCTGAGGCCCTGCAACTAC 864	
Human Beta-ENaC	GCGAGCAGATGATCCCTGGCCTGCCCTGGAGCTGAGGCCCTGCAACTAC 950	* * * * *
Cyno Beta-ENaC	CGGAACCTCACGGTCCATCTTACCCCTCACTATGGCAACTGTACATCTT 914	
Human Beta-ENaC	CGGAACCTCACGGTCCATCTTACCCCTCACTATGGCAACTGTACATCTT 1000	* * * * *
Cyno Beta-ENaC	CAACTGGGCATGACAGAGAAGGCACCTTCTCGGCCAACCTGGACCTG 964	
Human Beta-ENaC	CAACTGGGCATGACAGAGAAGGCACCTTCTCGGCCAACCTGGACCTG 1050	* * * * *
Cyno Beta-ENaC	AATTGGCCTGAAGTTGATCTGGACATAGGCCAGGAAGACTACGTCCCC 1014	
Human Beta-ENaC	AATTGGCCTGAAGTTGATCTGGACATAGGCCAGGAAGACTACGTCCCC 1100	* * * * *
Cyno Beta-ENaC	TTCCCTCGCGTCCACGGCTGGGCTCAGGCTGATGCTTCACGAGCAGGGCT 1064	
Human Beta-ENaC	TTCCCTCGCGTCCACGGCTGGGCTCAGGCTGATGCTTCACGAGCAGGGCT 1150	* * * * *
Cyno Beta-ENaC	ATACCCCTTCATCAGAGACGAGGGCATCTATGCCATGTCGGGACAGAGA 1114	
Human Beta-ENaC	ATACCCCTTCATCAGAGACGAGGGCATCTACGCCATGTCGGGACAGAGA 1200	* * * * *

 Cyno Beta-ENaC CGTCCCAICGGGGTACTCGTGGACAAGCTTCAGCGCATGGGGAGCCCTAC 1164
 Human Beta-ENaC CGTCCCATCGGGGTACTCGTGGACAAGCTTCAGCGCATGGGGAGCCCTAC 1250

 Cyno Beta-ENaC ACCCCCGACCGACCTCAATGGCCTCCAGGCTCCCCCTCCAAAACCTCTACAG 1214
 Human Beta-ENaC AGCCCGTGCACCGTGAATGGTCTGAGGTCCCCGTCCAAAACCTCTACAG 1300

 Cyno Beta-ENaC TGACTACAACACGACCTACTCCATCCAGGCCGTCTCGCTCTGCTTC 1264
 Human Beta-ENaC TGACTACAACACGACCTACTCCATCCAGGCCGTCTCGCTCTGCTTC 1350

 Cyno Beta-ENaC AAGACCACAAIGATCCGTAGCTGCAAGTGTGGCACTACCTCTACCCACTG 1314
 Human Beta-ENaC AAGACCACAAIGATCCGTAACTGCAACTGTGGCACTACCTGTACCCACTG 1400

 Cyno Beta-ENaC CCCCCTGGGGAGAAAATACTGCAACAACCGGGACTTCCCAGACTGGGCCA 1364
 Human Beta-ENaC CCCCCTGGGGAGAAAATACTGCAACAACCGGGACTTCCCAGACTGGGCCA 1450

 Cyno Beta-ENaC TTGCTACTCAGATCTGCAGATGAGCGTGGCCAGAGAGAGACCTGCATTG 1414
 Human Beta-ENaC TTGCTACTCAGATCTACAGATGAGCGTGGCCAGAGAGAGACCTGCATTG 1500

 Cyno Beta-ENaC GCAATGTCACAAAGGAATCCATGCAATGACACCCAGTACAAGATGACTAATCTCC 1464
 Human Beta-ENaC GCAATGTCACAAAGGAGTCCTGCAATGACACCCAGTACAAGATGACCATCTCC 1550

 Cyno Beta-ENaC ATGGCTACTGGCCCTTCATGAGGCCCTCTGAGGACTGGATTTCCACCGTCTT 1514
 Human Beta-ENaC ATGGCTACTGGCCCTTCATGAGGCCCTCCACCGACTGGATTTCCACCGTCTT 1600

 Cyno Beta-ENaC GTCTCAGGASCGGGACCAAAGCACCATAATCACCCCTGAGCAGGAAGGGAA 1564
 Human Beta-ENaC GTCTCAGGAGGGGACCAAAGCACCATAATCACCCCTGAGCAGGAAGGGAA 1650

 Cyno Beta-ENaC TTGTCAAGCTAACATCTACTTCCAAGAATTAACTATCCACCATTTGAA 1614
 Human Beta-ENaC TTGTCAAGCTAACATCTACTTCCAAGAATTAACTATCGCACCATTTGAA 1700

 Cyno Beta-ENaC GAATCACCGAGCCAATAACCTCGCTGGCTGCTCTCAAATCTGGTGGCCA 1664
 Human Beta-ENaC GAATCACCGAGCCAATAACATCGCTGGCTGCTCTCGAAATCTGGTGGCCA 1750

 Cyno Beta-ENaC GTTTGGCTTCTGGATGGGGGCTCTGTGCTGTGGCTCATCGAGTTGGGG 1714
 Human Beta-ENaC GTTTGGCTTCTGGATGGGGGCTCTGTGCTGTGGCTCATCGAGTTGGGG 1800

 Cyno Beta-ENaC AGATCATCATGACTTTGTGAGCATCACCATCATCAAGCTGGTGGCCTTG 1764
 Human Beta-ENaC AGATCATCATGACTTTGTGAGCATCACCATCATCAAGCTGGTGGCCTTG 1850

 Cyno Beta-ENaC GCCAAGAGCCTCCGGCAGCGGGAGGCCAAGCCAGCTACTCCGGCCACC 1814
 Human Beta-ENaC GCCAAGAGCCTACGGCAGCGGGAGGCCAAGCCAGCTAGCTGGCCACC 1900

 Cyno Beta-ENaC GCCCACCGTGGCTGAGCTGGTGGAGGGCCACACCAACTTCGGCTACCCAGC 1864
 Human Beta-ENaC GCCCACCGTGGCCAGCTGGTGGAGGGCCACACCAACTTCGGCTACCCAGC 1950

Cyno Beta-ENaC	CTGACACGGCCCCCGCAGCCCCAACACCGGGCCTACCCCAGTGAGCAG 1914
Human Beta-ENaC	CTGACACGGCCCCCGCAGCCCCAACACTGGGCCTACCCCAGTGAGCAG 2000

Cyno Beta-ENaC	GCCCTGCCCATCCCGGGCACCCGCCCTCAACTATGACTCCCTGCGTCT 1964
Human Beta-ENaC	GCCCTGCCCATCCCGGGCACCCGCCCTCAACTATGACTCCCTGCGTCT 2050

Cyno Beta-ENaC	GCAGGCCACTGGACGTCATCGAGTCTGACAGTGAGGGTGTGACATCTAA- 2013
Human Beta-ENaC	GCAGGCCGTGGACGTCATCGAGTCTGACAGTGAGGGTGTGACATCTAAAC 2100

Cyno Beta-ENaC	--GCGGCCCTAG--AAATAGCTTGATCTGGTTA--CCACTAAACCA 2055
Human Beta-ENaC	CCTGCCCTGCCAACCCGGGGCTGAAACCTACTGAGCAGCCAAGACT 2150
	*** * *** *
Cyno Beta-ENaC	GC--CTCAAGAACAC-CCGAATGGAGTCTCT---AAGCTACATAATACC 2098
Human Beta-ENaC	GTGCCCCGAGGCCCTCACTGTATGGTCCCCCTCTCAAAGGGTCGGGAGG 2200
	* * * * * * * * * * * * * * *
Cyno Beta-ENaC	AACTTACACTTTACAAAATGTGTCCCCCAA-AATGTAGCCATTCTGATC 2147
Human Beta-ENaC	AGCTCTCCAGGCCAGGCTTGTCCTCAACAGAGAGGCCAGCGGCAAC 2250
	* * * * * * * * * * * * * *
Cyno Beta-ENaC	TGCTCCTAATAAAAAGAAAAGTTCTTCACATCTAAAAA 2197
Human Beta-ENaC	TGGTCCGTIACTGGCCAGGGCTCTGTAGAATCACGGTGCTGGTACAGGA 2300
	*** * * * * * * * * * * *
Cyno Beta-ENaC	AAAAAAAAAAAAAAACCCCCCCC--CCCCCCCCCTGCAAGAGATCTG 2245
Human Beta-ENaC	TGCAGGAATAATTGTATCTTCACCTGGTCTCACCTCGTCCTCACCTG 2350
	* * * * * * * * * * * * * *
Cyno Beta-ENaC	CTAGCTTGAGTATTCTATAGAGTCACCTAAACT----- 2280
Human Beta-ENaC	TCCTGATCCTGGTCTGAAGACCCCTCGGAACACCCCTCTGGTGGCAG 2400
	* * * * * * * * * * * *
Cyno Beta-ENaC	-----
Human Beta-ENaC	GCCACTTCCCCTCCAGTCCCAGTCTCCATCCACCCCAGAGAGGAACAGGC 2450

Cyno Beta-ENaC	-----
Human Beta-ENaC	GGGTGGGCCATGTGGTTCTCCTCCCTGGCTGGCTGGCTCTGGGC 2500

Cyno Beta-ENaC	-----
Human Beta-ENaC	AGGGGTGGAGAGATGGAAGGGCATCAGGTGTAGGGACCCCTGCCAAGT 2550

Cyno Beta-ENaC	-----
Human Beta-ENaC	GGCACCTGATTACTCTAGAAAAATAAAAGTAGAAAATCTGAGTCCA 2597

Cyno Beta-ENaC	(SEQ ID NO: 221)
Human Beta-ENaC	(SEQ ID NO: 222)

[0110] The start (ATG) and stop (TAA) codons of the cyno and human sequences are underlined. Nucleotides matching between the human and cyno sequences are marked with an asterisk (*).

[0111] Disclosed is that the Beta-ENaC RNAi agent comprises a sequence which is identical in the human, rat and cyno Beta-ENaC mRNAs. This sequence identity facilitates animal testing prior to human testing. Disclosed is that the Beta-ENaC RNAi agent comprises a sequence which is identical in the human, mouse and cyno Beta-ENaC mRNAs.

Additional disclosures of a RNAi agent to Beta-ENaC

[0112] Disclosed is that the Beta-ENaC RNAi agent comprises a sequence which does not match that of any other mRNA or gene. Disclosed is that the Beta-ENaC RNAi agent comprises a sequence which differs from all other known non-Beta-ENaC mRNAs or genes by at least 0, 1, 2 or 3 nucleotides.

[0113] Disclosed is that the Beta-ENaC RNAi agent is administered to a patient in need thereof (e.g., a patient suffering from cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension).

[0114] The patient can also be administered more than one RNAi agent specific to Beta-ENaC. Disclosed is that the Beta-ENaC RNAi agent(s) can optionally be administered along with one or more additional pharmaceutical agent appropriate for that disease. Disclosed is that the Beta-ENaC RNAi agent(s) can be optionally administered along with any other appropriate additional treatment, wherein the additional treatment can be a composition or a method.

[0115] In the case of cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis,

hypokalemia, and/or obesity-associated hypertension, the RNAi agent(s) and additional disease treatment(s) can be administered in any order, simultaneously or sequentially, or in one or multiple doses over time.

Definitions

[0116] For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below.

RNAi Agent

[0117] Disclosed is a Beta-ENaC RNAi agent or other composition comprising at least an antisense nucleic acid sequence complementary to a Beta-ENaC nucleic acid (or portion thereof), or a recombinant expression vector encoding the siRNA or composition comprising the antisense nucleic acid that can function as an RNAi as defined below. As used herein, an "antisense" nucleic acid comprises a nucleotide sequence complementary to a "sense" nucleic acid encoding the Beta-ENaC protein (e.g., complementary to the coding strand of a double-stranded DNA, complementary to an mRNA or complementary to the coding strand of a Beta-ENaC gene or nucleic acid).

[0118] As used herein, the term "RNAi agent to Beta-ENaC," "RNAi agent specific to Beta-ENaC," "iRNA agent to Beta-ENaC," "siRNA to Beta-ENaC," "Beta-ENaC siRNA" and the like refer to a siRNA (short inhibitory RNA), shRNA (short or small hairpin RNA), iRNA (interference RNA) agent, RNAi (RNA interference) agent, dsRNA (double-stranded RNA), microRNA, and the like, and refer to a composition which specifically targets, is specific to, and/or binds to a Beta-ENaC mRNA. As used herein, the term "antisense nucleic acid" or "composition comprising an anti-sense nucleic acid" and the like is broadly meant to encompass any composition comprising at least one nucleic acid strand which is anti-sense to its target; this includes, but is not limited to, any siRNA, shRNA, iRNA, dsRNA, microRNA, antisense oligonucleotide, and any other composition comprising an anti-sense nucleic acid. As used herein, the terms "iRNA" and "RNAi" refers to an agent that contains RNA (or a derivative thereof), and which mediates the targeted cleavage of another RNA transcript via an RNA-induced silencing complex (RISC) pathway. In one embodiment, the RNAi agent is an oligonucleotide composition that activates the RISC complex/pathway. In another embodiment, the RNAi agent comprises an antisense strand sequence (antisense oligonucleotide).

[0119] The RNAi agent(s) target (e.g., bind to, anneal to, etc.) the Beta-ENaC mRNA. The use of the RNAi agent specific to Beta-ENaC results in a decrease of Beta-ENaC activity, level and/or expression, e.g., a "knock-down" or "knock-out" of the target gene or target sequence. Particularly in the case of a disease state characterized by over-expression or hyper-activity of Beta-ENaC, administration of a RNAi agent to Beta-ENaC knocks down the Beta-ENaC target enough to restore a normal level of Beta-ENaC activity and/or a normal level of Na^+ reabsorption.

[0120] Disclosed is that the RNAi comprises a single strand (such as an shRNA, as described herein).

[0121] Disclosed is that one or both strands are nicked.

[0122] Disclosed is that a single-stranded RNAi agent oligonucleotide or polynucleotide can comprise the sense and/or antisense strand. See, e.g., Sioud 2005 J. Mol. Biol. 348:1079-1090, and references cited therein. Thus disclosed are RNAi agents with a single strand comprising either the sense or antisense strand of a RNAi agent described herein.

[0123] siRNAs that are particularly useful include those which can bind specifically to a region of the Beta-ENaC mRNA, and have one or more of the following qualities: binding in the coding segment of Beta-ENaC; binding at or near the junction of the 5' untranslated region and the start of the coding segment; binding at or near the translational start site of the mRNA; binding at, across or near junctions of exons and introns; little or no binding to the mRNAs or transcripts of other genes (little or no "off-target effects"); binding to the Beta-ENaC mRNA in or near a region or regions that is not double-stranded or a stem region, e.g., in a loop or single-stranded portion; eliciting little or no immunogenicity; binding in a segment of the Beta-ENaC mRNA sequence which is conserved among various animal species (including human, mouse, rat, cyno, etc.), as the presence of a conserved sequence facilitates testing using various laboratory animals; binding to double-stranded region(s) of the mRNA; binding to an AT-rich region (e.g., at least about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60% AT-rich); and/or lacking particular sequences known or suspected to decrease siRNA activity, e.g., the presence of a GG sequence at the 5' end, which may decrease separation of the double-stranded portion of the siRNA. Disclosed is that the RNAi agent specific to Beta-ENaC can be a double-stranded RNA having any one or more of these qualities.

[0124] The term "double-stranded RNA" or "dsRNA," as used herein, refers to a RNAi agent comprising a first and a second strand; e.g., a composition that includes an RNA molecule or complex of molecules having a hybridized duplex region (i.e., a region where the nucleotide bases from the first strand and the second strand are paired) that comprises two anti-parallel and substantially complementary nucleic acid strands, which will be referred to as having "sense" and "antisense" orientations with respect to a target RNA. The antisense strand, with respect to the mRNA target, is also called the "guide" strand, and the sense strand is also called the "passenger" strand. The passenger strand can include at least one or more of the following: one or more extra nucleotides (e.g., a bulge or 1 nt loop) compared to the other strand, a nick, a gap, etc., compared to the other strand. In various embodiments, the RNAi agent comprises a first strand and a second strand. In various embodiments, the first strand is the sense strand and the second strand is the anti-sense strand. In other embodiments, the first strand is the anti-sense strand, and the second strand is the sense strand.

[0125] The duplex region can be of any length that permits specific degradation of a desired target RNA through a RISC pathway, but will typically range from 15-30 bp in length. The duplex can be any length in this range, for example, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 bp and any sub-range therebetween, including, but not limited to 15-30 bp, 15-26 bp, 15-23 bp, 15-22 bp, 15-21 bp, 15-20 bp, 15-19 bp, 15-18 bp, 15-17 bp, 18-30 bp, 18-26 bp, 18-23 bp, 18-22 bp, 18-21 bp, 18-20 bp, 19-30 bp, 19-26 bp, 19-23 bp, 19-22 bp, 19-21 bp, 19-20 bp, 19 bp, 20-30 bp, 20-26 bp, 20-25 bp, 20-24 bp, 20-23 bp, 20-22 bp, 20-21 bp, 20 basepairs, 21-30 bp, 21-26 bp, 21-25 bp, 21-24 bp, 21-23 bp, 21-22 bp, 21 bp, 22 bp, or 23 bp. The dsRNAs generated in the cell by processing with Dicer and similar enzymes are generally in the range of about 19 to about 22 bp in length. One strand of the duplex region of a dsRNA comprises a sequence that is substantially complementary to a region of a target RNA. The two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary duplex region, or can be formed from two or more separate RNA molecules that hybridize to form the duplex. Where the duplex region is formed from two self-complementary regions of a single molecule, the molecule can have a duplex region separated by a single-stranded chain of nucleotides (herein referred to as a "hairpin loop", e.g., such as found in an shRNA construct) between the 3'-end of one strand and the 5'-end of the respective other strand forming the duplex structure. The hairpin loop can comprise at least one unpaired nucleotide; in some embodiments the hairpin loop can comprise at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides. Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. Where the two strands are connected covalently by a hairpin loop, the construct is generally referred to herein and in the art as a "shRNA". Where the two strands are connected covalently by means other than a hairpin loop, the connecting structure is referred to as a "linker."

RNA Interference

[0126] RNA interference (RNAi) is a post-transcriptional, targeted gene-silencing technique that uses double-stranded RNA (dsRNA) to degrade messenger RNA (mRNA) containing the same sequence as the dsRNA. The process of RNAi occurs when ribonuclease III (Dicer) cleaves the longer dsRNA into shorter fragments called siRNAs. siRNAs (small interfering RNAs) are typically about 21 to 23 nucleotides long and comprise about 19 base pair duplexes. The smaller RNA segments then mediate the degradation of the target mRNA. Dicer has also been implicated in the excision of 21- and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control. Hutvagner et al. 2001, *Science*, 293, 834. The RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single-stranded mRNA complementary to the antisense strand of the siRNA. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex.

[0127] In one aspect, an RNA interference agent includes a single-stranded RNA that interacts with a target RNA sequence to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double-stranded RNA introduced into plants and invertebrate cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al., *Genes Dev.* 2001, 15:485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3' overhangs (Bernstein, et al., (2001) *Nature* 409:363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling one of the now unpaired siRNA strands to act as a "guide" strand to guide target recognition (Nykanen, et al., (2001) *Cell* 107:309). Upon binding of the antisense guide strand to the appropriate target mRNA, one or more endonucleases within the RISC cleaves the target to induce silencing (Elbashir, et al., (2001) *Genes Dev.* 15:188). Thus, in one aspect the present disclosure relates to a single-stranded RNA that promotes the formation of a RISC complex to effect silencing of the target gene.

[0128] RNA interference has also been studied in a variety of systems. Work in *Drosophila* embryonic lysates (Elbashir et al.

2001 EMBO J. 20: 6877 and Tuschl et al. International PCT Publication No. WO 01/75164) has revealed certain requirements for siRNA length, structure, chemical composition, and sequence that are essential to mediate efficient RNAi activity in a variety of systems, including especially mammals. These studies have shown that 21-nucleotide siRNA duplexes are most active when containing 3'-terminal dinucleotide overhangs. Substitution of the 3'-terminal siRNA overhang nucleotides with 2'-deoxy nucleotides (2'-H) was tolerated. In addition, a 5'-phosphate on the target-complementary strand of a siRNA duplex is usually required for siRNA activity. Most importantly for therapeutic use, siRNA duplexes shorter than 50 bp or so do not activate the interferon response in mammalian cells. See, e.g., Tuschl et al., WO 01/752164.

[0129] The dsRNA molecules (RNAi agents) described herein are thus useful in RNA interference of Beta-ENaC.

Features of a RNAi Agent: Sense strand, Antisense Strand and (Optional) Overhangs

[0130] The disclosed RNAi agents comprise a first strand and a second strand, e.g., a sense strand and an antisense strand and, optionally, one or both ends of the duplex containing unpaired nucleotides referred to herein as overhangs.

[0131] The term "antisense strand" refers to the strand of a RNAi agent which includes a region that is substantially complementary to a target sequence. As used herein, the term "region of complementarity" refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches may be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5' and/or 3' terminus.

[0132] The term "sense strand," as used herein, refers to the strand of a RNAi agent that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.

[0133] The sequence of a gene may vary from individual to individual, especially at wobble positions within the coding segment, or in the untranslated region; individuals may also differ from each other in coding sequence, resulting in additional differences in mRNA. The sequence of the sense and antisense strands of the RNAi agent can thus be designed to correspond to that of an individual patient, if and where needed. RNAi agents can also be modified in sequence to reduce immunogenicity, binding to undesired mRNAs (e.g., "off-target effects") or to increase stability in the blood. These sequence variants are independent of chemical modification of the bases or 5' or 3' or other end-caps of the RNAi agents.

[0134] The RNAi agents can also have overhangs of 0, 1, or 2 overhangs; in the case of a 0 nt overhang, they are blunt-ended. A RNAi agent can have 0, 1 or 2 blunt ends. In a "blunt-ended RNAi agent" both strands terminate in a base-pair; thus a blunt-ended molecule lacks either 3' or 5' single-stranded nucleotide overhangs.

[0135] As used herein, the term "overhang" or "nucleotide overhang" refer to at least one unpaired nucleotide that protrudes from the end of at least one of the two strands of the duplex structure of a RNAi agent. For example, when a 3'-end of one strand of a dsRNA extends beyond the 5'-end of the other strand, or vice versa, the unpaired nucleotide(s) form the overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. An overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) may be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5' end, 3' end or both ends of either an antisense or sense strand of a dsRNA.

[0136] The RNAi agent can also optionally comprise a cap. The term "cap" and the like include a chemical moiety attached to the end of a double-stranded nucleotide duplex, but is used herein to exclude a chemical moiety that is a nucleotide or nucleoside. A "3' Cap" is attached at the 3' end of a nucleotide or oligonucleotide. A "5' Cap" is attached at the 5' end of a nucleotide or oligonucleotide. In one embodiment, 3' end caps are as disclosed in, for example, WO 2005/021749 and WO 2007/128477.

[0137] The present disclosure thus contemplates a RNAi agent specific to Beta-ENaC comprising an antisense strand (which may be contiguous or connected via a linker or loop) in a RNAi agent. An RNAi agent can comprise an antisense strand and a sense strand which together comprise a double-stranded or complementary region. It can also optionally comprise one or two overhangs and/or one or two caps. The RNAi agent is used to induce RNA interference of Beta-ENaC.

Target and complementary sequences

[0138] The RNAi agents disclosed target (e.g., specifically bind to, anneal to, etc.) the mRNA encoding the gene Beta-ENaC. The use of the RNAi agent specific to Beta-ENaC results in a decrease of Beta-ENaC activity, level and/or expression, e.g., a "knock-down" or "knock-out" of the target gene or target sequence. Particularly, in the case of a disease state characterized by over-expression or hyper-activity of Beta-ENaC, administration of a RNAi agent to Beta-ENaC knocks down the Beta-ENaC gene enough to restore a normal level of Beta-ENaC activity and/or a normal level of Na^+ reabsorption.

[0139] As used herein, "target sequence" or "target gene" refer to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene, e.g., a Beta-ENaC gene, including mRNA that is a product of RNA processing of a primary transcription product. The target portion of the sequence will be at least long enough to serve as a substrate for iRNA-directed cleavage at or near that portion. For example, the target sequence will generally be from 15-30 nt in length, including all sub-ranges therebetween. As non-limiting examples, the target sequence can be from 15-30 nt, 15-26 nt, 15-23 nt, 15-22 nt, 15-21 nt, 15-20 nt, 15-19 nt, 15-18 nt, 15-17 nt, 18-30 nt, 18-26 nt, 18-23 nt, 18-22 nt, 18-21 nt, 18-20 nt, 19-30 nt, 19-26 nt, 19-23 nt, 19-22 nt, 19-21 nt, 19-20 nt, 19 nt, 20-30 nt, 20-26 nt, 20-25 nt, 20-24 nt, 20-23 nt, 20-22 nt, 20-21 nt, 20 nt, 21-30 nt, 21-26 nt, 21-25 nt, 21-24 nt, 21-23 nt, or 21-22 nt, 21 nt, 22 nt, or 23 nt. The sense and antisense strands of the RNAi comprise a sequence complementary to that of the target nucleic acid, Beta-ENaC.

[0140] As used herein, and unless otherwise indicated, the term "complementary" refers to the ability of an oligonucleotide or polynucleotide comprising a first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising a second nucleotide sequence. Such conditions can, for example, be stringent, e.g., 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50°C or 70°C for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.

[0141] "Complementary" sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but are not limited to, G:U Wobble or Hoogstein base pairing.

[0142] The terms "complementary," "fully complementary" and "substantially complementary" herein may furthermore be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of a RNAi agent and a target sequence, as will be understood from the context of their use.

[0143] As used herein, a polynucleotide that is "substantially complementary to at least part of" a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding Beta-ENaC). For example, a polynucleotide is complementary to at least a part of a Beta-ENaC mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding Beta-ENaC.

[0144] Complementary sequences within a RNAi agent, e.g., within a dsRNA as described herein, include base-paired oligonucleotides or polynucleotides comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as "fully complementary" with respect to each other herein. However, where a first sequence is referred to as "substantially complementary" with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via a RISC pathway. However, where two oligonucleotides are designed to form, upon hybridization, one or more single-stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a duplex comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as "fully complementary" for the purposes described herein. The term overhang describes an unpaired nucleotide at the 3' or 5' end of a double-stranded nucleotide duplex, as described above. In one embodiment, the overhang is 0 to 4 nt long and is on the 3' end.

[0145] Thus, the RNAi agent disclosed is complimentary or substantially complimentary to a target sequence in the target Beta-ENaC and is double-stranded, comprising a sense and an antisense strand (which can be contiguous, linked via a loop, or

otherwise joined), where the double-stranded region can be 15 to 36 bp long (particularly for example, 19-22 bp or 19-23 bp long), and can furthermore optionally comprise a 3' or 5' overhang, and the RNAi agent can furthermore comprise a 3' cap. The RNAi agent mediates RNA interference, down-regulating or inhibiting the level, expression and/or activity of Beta-ENaC, and/or establishing or re-establishing an approximately normal level of ENaC and/or Beta-ENaC activity, or other biological function related to ENaC.

RNAi Agents Lowering Beta-ENaC Level, Expression And/Or Activity

[0146] RNAi agents for targeting Beta-ENaC include those which bind to a Beta-ENaC sequence provided herein and which work to reduce Beta-ENaC through a RNAi mechanism. Exemplary siRNAs to Beta-ENaC are provided, e.g., in Table 1.

[0147] The RNAi agents silence, inhibit the expression of, down-regulate the expression of, and/or suppress the expression of the Beta-ENaC gene, such that an approximately normal level of Beta-ENaC activity, expression and/or level and/or Na^+ reabsorption is achieved.

[0148] In addition, in various embodiments, depending on the disease condition and biological context, it is acceptable to use the RNAi agents of the present disclosure to establish a level of Beta-ENaC expression, activity and/or level which is below the normal level, or above the normal level.

[0149] Any method known in the art can be used to measure changes in Beta-ENaC activity, level and/or expression induced by a Beta-ENaC siRNA. Measurements can be performed at multiple timepoints, prior to, during and after administration of the siRNA, to determine the effect of the siRNA.

[0150] The terms "silence," "inhibit the expression of," "down-regulate the expression of," "suppress the expression of," and the like, in so far as they refer to a Beta-ENaC gene, herein refer to the at least partial suppression of the expression of a Beta-ENaC gene, as manifested by a reduction of the amount of Beta-ENaC mRNA which may be isolated from or detected in a first cell or group of cells in which a Beta-ENaC gene is transcribed and which has or have been treated such that the expression of a Beta-ENaC gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). The degree of inhibition is usually expressed in terms of

$$\frac{(\text{mRNA in control cells}) - (\text{mRNA in treated cells})}{(\text{mRNA in control cells})} \cdot 100\% \quad \text{Equation 1}$$

[0151] Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to Beta-ENaC gene expression, e.g., the amount of protein encoded by a Beta-ENaC gene, alteration in lung fluid levels or mucus levels, etc. In principle, Beta-ENaC gene silencing may be determined in any cell expressing Beta-ENaC, either constitutively or by genomic engineering, and by any appropriate assay. However, when a reference or control is needed in order to determine whether a given RNAi agent inhibits the expression of the Beta-ENaC gene by a certain degree and therefore is encompassed by the instant disclosure, the assays provided in the Examples below shall serve as such reference.

[0152] For example, in certain instances, expression of a Beta-ENaC gene is suppressed by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of a RNAi agent featured in the present disclosure. In some embodiments, a Beta-ENaC gene is suppressed by at least about 60%, 70%, or 80% by administration of a RNAi agent featured in the present disclosure. In some embodiments, a Beta-ENaC gene is suppressed by at least about 85%, 90%, or 95% or more by administration of a RNAi agent, as described herein.

[0153] The ability of a RNAi agent to suppress Beta-ENaC can be first tested *in vitro* (e.g., using test cells such as H441).

[0154] RNAi agents which can suppress Beta-ENaC *in vitro* can then be tested for immunostimulation using, for example, a PBMC (peripheral blood mononuclear cell) assay. RNAi agents can also be tested in animal tests. Test and control animals include those which over-express or under-express Beta-ENaC, as described in, for example, Hummer et al. 2005 J. Am. Soc. Nephrol. 16: 3160-3166; Randrianarison et al. 2007 Am. J. Physiol. Lung Cell. Mol. Physiol. 294: 409-416; Cao et al. 2006 Am. J. Physiol. Renal Physiol., and references cited therein. RNAi agents which suppress or alter the level, activity and/or expression of Beta-ENaC can be used in medicaments to treat various Beta-ENaC-related diseases.

[0155] By "lower" in the context of Beta-ENaC or a symptom of a Beta-ENaC-related disease is meant a statistically significant

decrease in such level. The decrease can be, for example, at least 10%, at least 20%, at least 30%, at least 40% or more. If, for a particular disease, or for an individual suffering from a particular disease, the levels or expression of Beta-ENaC are elevated, treatment with a Beta-ENaC RNAi agent of the present disclosure can particularly reduce the level or expression of Beta-ENaC to a level considered in the literature as within the range of normal for an individual without such disorder. The level or expression of Beta-ENaC can be measured by evaluation of mRNA (e.g., via Northern blots or PCR), or protein (e.g., Western blots). The effect of a RNAi agent on Beta-ENaC expression can be determined by measuring Beta-ENaC gene transcription rates (e.g., via Northern blots; or reverse transcriptase polymerase chain reaction or real-time polymerase chain reaction). RT-PCR has been used to show that mRNA levels of Beta-ENaC are high in kidney, pancreas and prostate, and medium in liver and spleen. Brauner-Osborne et al. 2001. *Biochim. Biophys. Acta* 1518: 237-248. Direct measurements can be made of levels of Beta-ENaC (which is expressed by the cell surface), e.g. by Western blots of tissues in which Beta-ENaC is expressed.

[0156] As used herein, "down-regulates" refers to any statistically significant decrease in a biological activity and/or expression of Beta-ENaC, including full blocking of the activity (i.e., complete inhibition) and/or expression. For example, "down-regulation" can refer to a decrease of at least about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 % in Beta-ENaC level, activity and/or expression.

[0157] As used herein, the term "inhibit" or "inhibiting" Beta-ENaC refers to any statistically significant decrease in biological level, activity and/or expression of Beta-ENaC, including full blocking of the activity and/or expression. For example, "inhibition" can refer to a decrease of at least about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 % in Beta-ENaC level, activity and/or expression. As used herein, the term "inhibit" similarly refers to a significant decrease in level, activity and/or expression, while referring to any other biological agent or composition.

[0158] By "level", it is meant that the Beta-ENaC RNAi agent can alter the level of Beta-ENaC, e.g., the level of Beta-ENaC mRNA or the level of Beta-ENaC protein, or the level of activity of Beta-ENaC.

[0159] Some diseases, such as cystic fibrosis, are characterized by excessive ENaC-mediated Na^+ absorption. In the case of a disease characterized by over-expression and/or hyper-activity of Beta-ENaC, administration of a RNAi agent to Beta-ENaC reduces the level, expression and/or activity of Beta-ENaC. However, excessively low levels of Beta-ENaC can also lead to impairment of lung fluid clearance and renal dysfunction. Randrianarison et al. 2007 *Am. J. Physiol. Lung Cell. Mol. Physiol.* 294: 409-416. Thus, administration of a RNAi agent to Beta-ENaC particularly establishes or re-establishes a normal or approximately normal level of Beta-ENaC activity, expression and/or level.

[0160] By "normal" or "approximately normal" in terms of level, expression and/or activity, is meant at least: about 50%, about 60%, about 70%, about 80%, about 90%, and/or about 100%; and/or no more than: about 100%, about 120%, about 130%, about 140%, or about 150% of the level, expression or activity of Beta-ENaC in a healthy cell, tissue, or organ. This can be measured using, for example, lung or kidney homogenates, as described in Gambling et al. 2004 *Kidney Intl.* 65: 1774-1781. Particularly, administration of the appropriate amount of the appropriate Beta-ENaC RNAi agent restores Beta-ENaC level, activity and/or expression and/or Na^+ reabsorption levels to about 50% to about 150%, more particularly about 60% to about 140%, more particularly to about 70% to about 130%, more particularly to about 80% to about 120%, more particularly to about 90% to about 110%, and most particularly to about 100% of that of a healthy cell, tissue or organ. The level of Beta-ENaC activity can also be indirectly measured by lung fluid balance. Lung fluid balance can be estimated by calculating bloodless, wet-to-dry lung weight ratios, which reflect the amount of extra-vascular lung water. Randrianarison et al. 2007 *Am. J. Physiol. Lung Cell. Mol. Physiol.* 294: 409-416. The level of Beta-ENaC activity can also be indirectly measured by histological studies of the lung, particularly the bronchioles, alveolar ducts, alveolar epithelium, and blood vessels. Randrianarison et al. 2007; and Zhou et al. 2008 *Am. J. Resp. Crit. Care Med.* 178: 1245-1256. Administration of a Beta-ENaC RNAi to a patient with a Beta-ENaC-related disease thus particularly restores the level, activity, and/or expression of Beta-ENaC and the level of Na^+ reabsorption to an approximately normal level, as determined by direct measurements of Beta-ENaC mRNA or protein levels, or indirect determinations, such as analyses of histological samples or levels of lung fluid.

[0161] In addition, depending on the disease condition and biological context, it is acceptable to use the RNAi agents of the present disclosure to establish a level of Beta-ENaC expression, activity and/or level which is below the normal level, or above the normal level.

[0162] Various factors are known to alter the level of ENaC or, specifically, Beta-ENaC. Hormones that increase the physiological activity of ENaC include aldosterone, vasopressin and insulin. Beta-ENaC is specifically up-regulated by vasopressin and water restriction, as well as during sodium-bicarbonate loading in rats. These various factors can be used as controls in determining the effect of a RNAi agent on Beta-ENaC level.

Types of RNAi Agents and Modification Thereof

[0163] The use of RNAi agents or compositions comprising an antisense nucleic acid to down-modulate the expression of a particular protein in a cell is well known in the art. A RNAi agent comprises a sequence complementary to, and is capable of hydrogen binding to, the coding strand of another nucleic acid (e.g., an mRNA).

[0164] Antisense sequences complementary to an mRNA can be complementary to the coding region, the 5' or 3' untranslated region of the mRNA, and/or a region bridging the coding and untranslated regions, and/or portions thereof. Furthermore, a RNAi agent or a portion thereof can be complementary to a regulatory region of the gene encoding the mRNA, for instance a transcription or translation initiation sequence or regulatory element. Particularly, a RNAi agent or a portion thereof can be complementary to a region preceding or spanning the initiation codon on the coding strand or in the 3' untranslated region of an mRNA.

[0165] RNAi agent molecules can be designed according to the rules of Watson and Crick base pairing. The RNAi agent can be complementary to the entire coding region of Beta-ENaC mRNA, but more particularly is an oligonucleotide which is antisense to only a portion of the coding or non-coding region of Beta-ENaC mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of Beta-ENaC mRNA. An antisense oligonucleotide can be, for example, about 15, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45 or 50 nucleotides in length.

[0166] The RNAi agent may have modifications internally, or at one or both ends. The modifications at the ends can help stabilize the RNAi agent, protecting it from degradation by nucleases in the blood. The RNAi agents may optionally be directed to regions of the Beta-ENaC mRNA known or predicted to be near or at splice sites of the gene; e.g., exon-intron junctions (as described in, for example, Saxena et al. 1998).

[0167] The RNAi agents can also optionally be designed to anneal to known or predicted exposed and/or single-stranded regions of the mRNA (e.g., loops).

[0168] A RNAi agent can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, RNAi agent can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to decrease off-target effects, and/or increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

[0169] "G," "C," "A," "T" and "U" each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine and uracil as a base, respectively. However, the term "ribonucleotide" or "nucleotide" can also refer to a modified nucleotide or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of dsRNA featured in the present disclosure by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the present disclosure.

[0170] The skilled artisan will recognize that the term "RNA molecule" or "ribonucleic acid molecule" encompasses not only RNA molecules as expressed or found in nature (i.e., are naturally occurring), but also non-naturally occurring analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art. Strictly speaking, a "ribonucleoside" includes a nucleoside base and a ribose sugar, and a "ribonucleotide" is a ribonucleoside with one, two or three phosphate moieties. However, the terms "ribonucleoside" and "ribonucleotide" can be considered to be equivalent as used herein. The RNA can be modified in the nucleobase structure or in the ribose-phosphate backbone structure, e.g., as described herein below. However, the molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex. As non-limiting examples, an RNA molecule can also include at least one modified ribonucleoside, including but not limited to a 2'-O-methyl modified nucleotide, a nucleoside comprising a 5' phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, a 2'-deoxy-2'-fluoro modified nucleoside, a 2'-amino-modified nucleoside, 2'-alkyl-modified nucleoside, morpholino nucleoside, an unlocked ribonucleotide (e.g., an acyclic nucleotide monomer, as described in WO 2008/147824), a phosphoramidate or a non-natural

base comprising nucleoside, or any combination thereof. Alternatively, an RNA molecule can comprise at least two modified ribonucleosides, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20 or more, up to the entire length of the dsRNA molecule. The modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule. Modified RNAs are contemplated for use in compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA via a RISC pathway.

[0171] Examples of modified nucleotides which can be used to generate the RNAi agent include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

[0172] The present disclosure encompasses modified any modified variant of any RNAi agent disclosed herein. The modified variant contains the same sequence, but can be modified to contain modifications in the phosphate, sugar, base, nucleotide, etc. For example, the modified variant can contain one or more of the modified nucleotides listed herein, for example a C replaced by a 2'-modified C.

[0173] In one aspect, a modified ribonucleoside includes a deoxyribonucleoside. In such an instance, a RNAi agent can comprise one or more deoxynucleosides, including, for example, a deoxynucleoside overhang(s), or one or more deoxynucleosides within the double-stranded portion of a dsRNA. However, it is self-evident that under no circumstances is a double-stranded DNA molecule encompassed by the term "RNAi agent."

[0174] Replacing the 3'-terminal nucleotide overhanging segments of a 21-mer siRNA duplex having two-nucleotide 3'-overhangs with deoxyribonucleotides does not have an adverse effect on RNAi activity. Replacing up to four nucleotides on each end of the siRNA with deoxyribonucleotides has been well tolerated, whereas complete substitution with deoxyribonucleotides results in no RNAi activity. International PCT Publication No. WO 00/44914, and Beach et al. International PCT Publication No. WO 01/68836 preliminarily suggest that siRNA may include modifications to either the phosphate-sugar backbone or the nucleoside to include at least one of a nitrogen or sulfur heteroatom. Kreutzer et al. Canadian Patent Application No. 2,359,180, also describe certain chemical modifications for use in dsRNA constructs in order to counteract activation of double-stranded RNA-dependent protein kinase PKR, specifically 2'-amino or 2'-O-methyl nucleotides, and nucleotides containing a 2'-O or 4'-C methylene bridge. Additional 3'-terminal nucleotide overhangs include dT (deoxythymidine), 2'-O,4'-C-ethylene thymidine (eT), and 2-hydroxyethyl phosphate (hp).

[0175] Parrish et al. 2000 Molecular Cell 6: 1077-1087 tested certain chemical modifications targeting the unc-22 gene in *C. elegans* using long (>25 nt) siRNA transcripts. The authors describe the introduction of thiophosphate residues into these siRNA transcripts by incorporating thiophosphate nucleotide analogs with T7 and T3 RNA polymerase and observed that RNAs with two phosphorothioate modified bases also had substantial decreases in effectiveness as RNAi. Further, Parrish et al. reported that phosphorothioate modification of more than two residues greatly destabilized the RNAs *in vitro* such that interference activities could not be assayed. Id. at 1081. The authors also tested certain modifications at the 2'-position of the nucleotide sugar in the long siRNA transcripts and found that substituting deoxynucleotides for ribonucleotides produced a substantial decrease in interference activity, especially in the case of Uridine to Thymidine and/or Cytidine to deoxy-Cytidine substitutions. Id. In addition, the authors tested certain base modifications, including substituting, in sense and antisense strands of the siRNA, 4-thiouracil, 5-bromouracil, 5-iodouracil, and 3-(aminoallyl) uracil for uracil, and inosine for guanosine. Whereas 4-thiouracil and 5-bromouracil substitution appeared to be tolerated, Parrish reported that inosine produced a substantial decrease in interference activity when incorporated in either strand. Parrish also reported that incorporation of 5-iodouracil and 3-(aminoallyl)uracil in the antisense strand resulted in a substantial decrease in RNAi activity as well.

[0176] Those skilled in the art will appreciate that it is possible to synthesize and modify the siRNA as desired, using any conventional method known in the art (see Henschel et al. 2004 DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Research 32 (Web Server Issue): W113-W120). Further, it will be apparent to those skilled in the art that there are a variety of regulatory sequences (for example, constitutive or inducible promoters, tissue- specific promoters or functional fragments thereof, etc.) which are useful for the antisense oligonucleotide, siRNA, or shRNA expression construct/vector.

[0177] There are several examples in the art describing sugar, base, phosphate and backbone modifications that can be introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides are modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-O-allyl, 2'-H, nucleotide base modifications (for a review see Usman and Cedergren 1992 TIBS. 17: 34; Usman et al. 1994 Nucleic Acids Symp. Ser. 31: 163 ; Burgin et al. 1996 Biochemistry 35: 14090). Sugar modification of nucleic acid molecules are extensively described in the art.

[0178] Additional modifications and conjugations of RNAi agents have been described. Soutschek et al. 2004 Nature 432: 173-178 presented conjugation of cholesterol to the 3'-end of the sense strand of a siRNA molecule by means of a pyrrolidine linker, thereby generating a covalent and irreversible conjugate. Chemical modifications (including conjugation with other molecules) of RNAi agents may also be made to improve the *in vivo* pharmacokinetic retention time and efficiency.

[0179] The RNAi agent to Beta-ENaC can comprise at least one 5'-uridine-adenine-3' (5'-ua-3') dinucleotide, wherein the uridine is a 2'-modified nucleotide; at least one 5'-uridine-guanine-3' (5'-ug-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide; at least one 5'-cytidine-adenine-3' (5'-ca-3') dinucleotide, wherein the 5'-cytidine is a 2'-modified nucleotide; and/or at least one 5'-uridine-uridine-3' (5'-uu-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide.

[0180] The RNAi agent can comprise a 2'-modification selected from the group consisting of: 2'-deoxy, 2'-deoxy-2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl (2'-O-MOE), 2'-O-aminopropyl (2'-O-AP), 2'-O-dimethylaminoethyl (2'-O-DMAOE), 2'-O-dimethylaminopropyl (2'-O-DMAP), 2'-O-dimethylaminoethoxyethyl (2'-O-DMAEOE), and 2'-O-N-methylacetamido (2'-O-NMA).

[0181] Disclosed is that the RNAi comprises a gap or missing base. For example, the phosphate-sugar backbone may be present, but the base missing.

[0182] Disclosed is that the RNAi agent has a single-stranded nick (e.g., a break or missing bond in the backbone). In various embodiments, a single-stranded nick can be in either the sense or anti-sense strand, or both.

[0183] This nick can be, for example, in the sense strand, producing a small internally segmented interfering RNA, or siRNA, which may have less off-target effects than the corresponding RNAi agent without a nick.

[0184] The antisense nucleic acid or RNAi agent can also have an alternative backbone such as locked nucleic acids (LNA), Morpholinos, peptidic nucleic acids (PNA), threose nucleic acid (TNA), or glycol nucleic acid (GNA), and/or it can be labeled (e.g., radiolabeled or otherwise tagged).

[0185] One or both strands can comprise an alternative backbone

[0186] Disclosed is that the RNAi agent employed by the methods disclosed can include an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other. Gaultier et al. 1987 Nucleic Acids. Res. 15: 6625-6641.

[0187] The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. 1987 Nucleic Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. 1987 FEBS Lett. 215: 327-330).

[0188] Disclosed is a RNAi agent as ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes [e.g., hammerhead ribozymes (described in Haselhoff et al. 1988, Nature 334: 585-591)] can be used to catalytically cleave Beta-ENaC mRNA transcripts to thereby inhibit translation of Beta-ENaC mRNA.

[0189] Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of Beta-ENaC (e.g., the promoter and/or enhancers) to form triple helical structures that prevent transcription of the Beta-ENaC gene. See generally, Helene 1991 Anticancer Drug Des. 6(6): 569-84; Helene et al. 1992 Ann. N.Y. Acad. Sci. 660: 27-36 ; and Maher 1992, Bioassays 14(12): 807-15.

Production of RNAi Agents

[0190] The RNAi agent can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be in an antisense orientation to a target nucleic acid of interest). The RNAi agent can also be produced biologically using an expression vector into which a nucleic acid has been subcloned as an shRNA construct (i.e., RNA transcribed from the inserted nucleic acid will have a first region in an antisense orientation to a target nucleic acid of interest, a second region that comprises a loop or hinge, and a third region in a sense orientation to the target nucleic acid of interest, wherein the first and third regions of the transcript preferably hybridizes with itself, thereby forming a stem-and-loop structure).

[0191] Methods of producing RNAi agents are well-known in the art and available to persons of ordinary skill in the art.

[0192] Kits for synthesis of RNAi are commercially available from, e.g., New England Biolabs and Ambion.

Delivery of RNAi Agents

[0193] RNAi agents of the present disclosure can be delivered or introduced (e.g., to a cell *in vitro*, to a test animal, or to a human) by any means known in the art.

[0194] The RNAi agents of the present disclosure are typically administered to a subject or generated in situ such that they hybridize with cellular mRNA and/or genomic DNA encoding Beta-ENaC, and inhibit expression by inhibiting transcription and/or translation. An example of a route of administration of the RNAi agent includes direct injection at a tissue site. Alternatively, RNAi agents can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using vectors well known in the art and described in, for example, US20070111230. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

[0195] "Introducing into a cell," when referring to a RNAi agent, means facilitating or effecting uptake or absorption into the cell, as is understood by those skilled in the art. Absorption or uptake of a RNAi agent can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells *in vitro*; a RNAi agent may also be "introduced into a cell," wherein the cell is part of a living organism. In such an instance, introduction into the cell will include the delivery to the organism. For example, for *in vivo* delivery, a RNAi agent can be injected into a tissue site or administered systemically. *In vivo* delivery can also be by a beta-glucan delivery system, such as those described in U.S. Patent Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781. *In vitro* introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein or known in the art.

[0196] Delivery of RNAi agent to tissue is a problem both because the material must reach the target organ and must also enter the cytoplasm of target cells. RNA cannot penetrate cellular membranes, so systemic delivery of naked RNAi agent is unlikely to be successful. RNA is quickly degraded by RNase activity in serum. For these reasons, other mechanisms to deliver RNAi agent to target cells has been devised. Methods known in the art include but are not limited to: viral delivery (retrovirus, adenovirus, lentivirus, baculovirus, AAV); liposomes (Lipofectamine, cationic DOTAP, neutral DOPC) or nanoparticles (cationic polymer, PEI), bacterial delivery (tkRNAi), and also chemical modification (LNA) of siRNA to improve stability. Xia et al. 2002 Nat. Biotechnol. 20 and Devroe et al. 2002. BMC Biotechnol. 2 1:15, disclose incorporation of siRNA into a viral vector. Other systems for delivery of RNAi agents are contemplated and the RNAi agents of the present disclosure can be delivered by various methods yet to be found and/or approved by the FDA or other regulatory authorities. RNAi agents of the present disclosure can be delivered in a suitable pharmaceutical composition.

Pharmaceutical Compositions of RNAi Agents

[0197] As used here, a "pharmaceutical composition" comprises a pharmaceutically effective amount of one or more Beta-ENaC RNAi agent, a pharmaceutically acceptable carrier, and, optionally, an additional disease treatment which works synergistically with the RNAi agent. As used herein, "pharmacologically effective amount," "therapeutically effective amount" or simply "effective amount" refers to that amount of a RNAi agent effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective where there is at least a 10% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or

disorder is the amount necessary to effect at least a 10% reduction in that parameter. In this embodiment, a therapeutically effective amount of a RNAi agent targeting Beta-ENaC can reduce Beta-ENaC protein levels by at least 10%. In additional embodiments, a given clinical treatment is considered effective where there is at least a 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95% reduction in a measurable parameter associated with a disease or disorder, and the therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95% reduction, respectively, in that parameter.

[0198] The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. Agents included in drug formulations are described further herein.

[0199] The pharmaceutical compositions comprising a Beta-ENaC RNAi agent can be in solid form, for example, powders, granules, tablets, pills, gelcaps, gelatin capsules, liposomes, suppositories, chewable forms, or patches. The pharmaceutical compositions comprising a Beta-ENaC RNAi agent can also be presented in liquid form, for example, solutions, emulsions, suspensions, elixirs, or syrups. Appropriate liquid supports can be, for example, water, organic solvents such as polyol, such as glycerol or glycols, including propylene glycol and polyethylene glycol, or ethanol, Cremophor EL, or mixtures thereof, in varying proportions, in water. The compositions can comprise nano-sized amorphous or crystalline granules coated with albumin or a surfactant.

[0200] Appropriate supports can include, for example, antibacterial and antifungal agents, buffering agents, calcium phosphate, cellulose, methyl cellulose, chlorobutanol, cocoa butter, colorings, dextrin, emulsifiers, enteric coatings, flavorings, gelatin, isotonic agents, lecithin, magnesium stearate, perfuming agents, polyalcohols such as mannitol, injectable organic esters such as ethyl oleate, paraben, phenol sorbic acid, polyethylene glycol, polyvinylpyrrolidine, phosphate buffered saline (PBS), preserving agents, propylene glycol, sodium carboxymethylcellulose, sodium chloride, sorbitol, various sugars (including, but not limited to, sucrose, fructose, galactose, lactose and trehalose), starch, suppository wax, talc, vegetable oils, such as olive oil and corn oil, vitamins, wax, and/or wetting agents. For Beta-ENaC RNAi agents, a preferred support comprises dextran and water, e.g. 5% dextrose in water (D5W).

[0201] The biologically inert portion of the pharmaceutical composition can optionally be erodible, allowing timed release of the RNAi agent.

[0202] The pharmaceutical composition can comprise additional components which aid in delivery, stability, efficacy, or reduction of immunogenicity.

Pharmaceutical Composition Comprising a RNAi Agent to Beta-ENaC

[0203] Additional components of a pharmaceutical composition comprising a RNAi Agent to Beta-ENaC can be added to aid in delivery, stability, efficacy, or reduction of immunogenicity.

[0204] Liposomes have been used previously for drug delivery (e.g., delivery of a chemotherapeutic). Liposomes (e.g., cationic liposomes) are described in PCT publications WO02/100435A1, WO03/015757A1, and WO04029213A2; U.S. Pat. Nos. 5,962,016; 5,030,453; and 6,680,068; and U.S. Patent Application 2004/0208921. A process of making liposomes is also described in WO04/002453A1. Furthermore, neutral lipids have been incorporated into cationic liposomes (e.g., Farhood et al. 1995).

[0205] Cationic liposomes have been used to deliver RNAi agent to various cell types (Sioud and Sorensen 2003; U.S. Patent Application 2004/0204377; Duxbury et al., 2004; Donze and Picard, 2002).

[0206] Use of neutral liposomes disclosed in Miller et al. 1998, and U.S. Patent Application 2003/0012812.

[0207] As used herein, the term "SNALP" refers to a stable nucleic acid-lipid particle. A SNALP represents a vesicle of lipids coating a reduced aqueous interior comprising a nucleic acid such as an iRNA or a plasmid from which an iRNA is transcribed. SNALPs are described, e.g., in U.S. Patent Application Publication Nos. 20060240093, 20070135372, and in International Application No. WO 2009082817.

[0208] Chemical transfection using lipid-based, amine-based and polymer-based techniques, is disclosed in products from Ambion Inc., Austin, Tex.; and Novagen, EMD Biosciences, Inc, an Affiliate of Merck KGaA, Darmstadt, Germany); Ovcharenko D (2003) "Efficient delivery of siRNAs to human primary cells." Ambion TechNotes 10 (5): 15-16). Additionally, Song et al. (Nat Med. published online (Fete 10, 2003) doi: 10.1038/nm828) and others [Caplen et al. 2001 Proc. Natl. Acad. Sci. (USA), 98: 9742-9747; and McCaffrey et al. Nature 414: 34-39] disclose that liver cells can be efficiently transfected by injection of the siRNA into a mammal's circulatory system.

[0209] A variety of molecules have been used for cell-specific RNAi agent delivery. For example, the nucleic acid-condensing property of protamine has been combined with specific antibodies to deliver siRNAs. Song et al. 2005 Nat Biotech. 23: 709-717. The self-assembly PEGylated polycation polyethylenimine (PEI) has also been used to condense and protect siRNAs. Schiffelers et al. 2004 Nucl. Acids Res. 32: e149, 141-1 10.

[0210] The siRNA-containing nanoparticles were then successfully delivered to integrin-overexpressing tumor neovasculature. Hu-Liesková et al. 2005 Cancer Res. 65: 8984-8992.

[0211] The RNAi agents of the present disclosure can be delivered via, for example, Lipid nanoparticles (LNP); neutral liposomes (NL); polymer nanoparticles; double-stranded RNA binding motifs (dsRBMs); or via modification of the RNAi agent (e.g., covalent attachment to the dsRNA).

[0212] Lipid nanoparticles (LNP) are self-assembling cationic lipid based systems. These can comprise, for example, a neutral lipid (the liposome base); a cationic lipid (for siRNA loading); cholesterol (for stabilizing the liposomes); and PEG-lipid (for stabilizing the formulation, charge shielding and extended circulation in the bloodstream).

[0213] The cationic lipid can comprise, for example, a headgroup, a linker, a tail and a cholesterol tail. The LNP can have, for example, good tumor delivery, extended circulation in the blood, small particles (e.g., less than 100 nm), and stability in the tumor microenvironment (which has low pH and is hypoxic).

Neutral liposomes (NL) are non-cationic lipid based particles.

[0214] Polymer nanoparticles are self-assembling polymer-based particles.

[0215] Double-stranded RNA binding motifs (dsRBMs) are self-assembling RNA binding proteins, which will need modifications.

[0216] The RNAi agent to Beta-ENaC can be ligated to one or more diagnostic compound, reporter group, cross-linking agent, nuclease-resistance conferring moiety, natural or unusual nucleobase, lipophilic molecule, cholesterol, lipid, lectin, steroid, uvaol, hecigenin, diosgenin, terpene, triterpene, sarsasapogenin, Friedelin, epifriedelanol-derivatized lithocholic acid, vitamin, carbohydrate, dextran, pullulan, chitin, chitosan, synthetic carbohydrate, oligo lactate 15-mer, natural polymer, low- or medium-molecular weight polymer, inulin, cyclodextrin, hyaluronic acid, protein, protein-binding agent, integrin-targeting molecule, polycationic, peptide, polyamine, peptide mimic, and/or transferrin.

[0217] The RNAi agents of the present disclosure can be prepared in a pharmaceutical composition comprising various components appropriate for the particular method of administration of the RNAi agent.

Administration of a RNAi agent

[0218] The pharmaceutical composition comprising a Beta-ENaC can be administered by buccal, inhalation (including insufflation and deep inhalation), nasal, oral, parenteral, implant, injection or infusion via epidural, intra-arterial, intra-articular, intra-capsular, intracardiac, intra-cerebroventricular, intracranial, intradermal, intramuscular, intra-orbital, intraperitoneal, intra-spinal, intrasternal, intrathecal, intravenous, subarachnoid, sub-capsular, subcutaneous, sub-cuticular, transendothelial, transtracheal, transvascular, rectal, sublingual, topical, and/or vaginal routes. This may be by injection, infusion, dermal patch, or any other

method known in the art. The formulation can be powdered, nebulized, aerosolized, granulated or otherwise appropriately prepared for delivery. The administration, if liquid, may be slow or via bolus, though, under some circumstances known in the art, bolus injections may lead to loss of material through the kidneys.

[0219] The pharmaceutical compositions comprising a Beta-ENaC RNAi agent can be administered with medical devices known in the art. For example, in a particular embodiment, a RNAi agent can be administered with a needle-less hypodermic injection device, such as the devices disclosed in U.S. Patent Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824, or 4,596,556. Examples of well-known implants and modules useful in the present disclosure include: U.S. Patent No. 4,487,603, which discloses an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,486,194, which discloses a therapeutic device for administering medications through the skin; U.S. Patent No. 4,447,233, which discloses a medication infusion pump for delivering medication at a precise infusion rate; U.S. Patent No. 4,447,224, which discloses a variable flow implantable infusion apparatus for continuous drug delivery; U.S. Patent No. 4,439,196, which discloses an osmotic drug delivery system having multichamber compartments; and U.S. Patent No. 4,475,196, which discloses an osmotic drug delivery system. Many other such implants, delivery systems, and modules are known to those skilled in the art.

[0220] The pharmaceutical compositions comprising a RNAi agent can be formulated to ensure proper distribution *in vivo*. Administration of a RNAi agent to Beta-ENaC can be systemic (whole-body) or, particularly, targeted to tissues or organs that express (or over-express or demonstrate a hyper-activity of) Beta-ENaC, such as lung, kidney, colon, and glands. Methods for targeting these particular tissues or organs are described herein, and/or are known in the art. For example, they can be formulated in liposomes. For methods of manufacturing liposomes, see, e.g., U.S. Patents 4,522,811; 5,374,548; and 5,399,331. The liposomes may comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V.V. Ranade (1989) *J. Clin. Pharmacol.* 29: 685).

[0221] Example targeting moieties include folate or biotin (see, e.g., U.S. Patent 5,416,016 to Low et al.); mannosides (Umezawa et al., (1988) *Biochem. Biophys. Res. Commun.* 153: 1038); antibodies (P.G. Bloeman et al. (1995) *FEBS Lett.* 357: 140; M. Owais et al. (1995) *Antimicrob. Agents Chemother.* 39: 180); surfactant protein A receptor (Briscoe et al. (1995) *Am. J. Physiol.* 268: 134), different species of which may comprise the formulations of the present disclosures, as well as components of the invented molecules; p120 (Schreier et al. (1994) *J. Biol. Chem.* 269: 9090); see also K. Keinanen; M.L. Laukkanen (1994) *FEBS Lett.* 346: 123; J.J. Killion; I.J. Fidler (1994) *Immunomethods* 4: 273.

[0222] Disclosed are pharmaceutical compositions comprising one or more RNAi agents to Beta-ENaC, which can optionally comprise various modifications and/or additional components, for use in treatment of Beta-ENaC-related diseases.

Beta-ENaC-Related Diseases

[0223] The present disclosure encompasses RNAi agents to Beta-ENaC.

[0224] By "Beta-ENaC-related disease" is meant any disease related to a dysfunction in the level, expression and/or activity of Beta-ENaC, and/or any disease which can be treated and/or ameliorated by modulating the level, expression and/or activity of Beta-ENaC. In particular, it includes cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension.

[0225] By "cystic fibrosis" or "CF" is meant the common hereditary disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encodes a cAMP-dependent Cl- channel and regulates the ENaC. In CF airway epithelia, CFTR-mediated Cl- secretion is defective and ENaC-mediated Na⁺ absorption is increased. These ion transport defects in CF airways cause airway surface liquid (ASL) volume depletion, defective mucus clearance, and mucus adhesion, suggesting that ASL volume depletion is a key mechanism in the pathogenesis of CF lung disease. In experimental mice, airway-specific over-expression of Beta-ENaC demonstrates that accelerated Na⁺ transport alone is sufficient to produce ASL volume depletion and CF-like lung disease, including airway mucus obstruction, goblet cell metaplasia, chronic neutrophilic airway inflammation, impaired clearance of bacterial pathogens, and ultimately mortality. See Zhou et al. 2008, and references cited therein.

[0226] By "Liddle's syndrome" is meant an autosomal dominant hereditary form of hypertension, characterized by an early and severe hypertension, often accompanied by metabolic alkalosis and hypokalemia, all signs that are characteristic of an excess of aldosterone (Conn's syndrome).

[0227] The plasma levels of aldosterone are low, however. Thus, Liddle's syndrome is also called pseudoaldosteronism. This severe form of hypertension is responsive to treatment with a low-salt diet and Na^+ channel inhibitors (K^+ -sparing diuretics), suggesting a primary defective regulation of the ENaC. The disease is related to mutations in Gamma-ENaC, and also several mutations in Beta-ENaC (P615S, P616L, and Y618H in the "PY" motif which has a consensus sequence of PPXY; and also R564st, W574st, 579del32, Q589st, T592fr, A593fr, and R595fr, where "fr" is a frameshift, "del" is a deletion, and "st" is a premature stop codon).

[0228] These mutations cause an overexpression of the Na^+ channels that are hyperactive compared to the wild-type ENaC. The mutations also prevent the downregulation of the channel that normally occurs with a rise in intracellular Na^+ ; ENaC channels with the Liddle's mutation remain in a highly active state despite a high intracellular Na^+ concentration. Thus, the level and/or activity of a mutated ENaC with Liddle's Syndrome can be modulated by a siRNA to Beta-ENaC, or such a siRNA in combination with known treatments for Liddle's syndrome, such as a low-salt diet, and Na^+ channel inhibitors (K^+ -sparing diuretics).

[0229] For additional information on Beta-ENaC-related diseases, see, for example, Hummler et al. 1999. Am. J. Physiol. Gastrointest. Liver Physiol. 276: 567-571.

[0230] By "obesity-associated hypertension" is meant hypertension related or associated with obesity, and the like. Obesity is associated with hypertension. Multiple mechanisms have been proposed to explain this correlation, including (in the obese) increased sympathetic activity; increased activity of the renin-angiotensin-aldosterone system; increased cardiac output; and increased mechanical pressure from interstitial fat around organs, hyperinsulinemia, and/or insulin resistance. Sodium retention by the kidney could result from any of these mechanisms. In the connecting tubule and the collecting duct, sodium reabsorption occurs through the ENaC. Levels of Beta-ENaC were increased in the kidney in Zucker rats (a model animal for obesity).

[0231] Bickel et al. 2001 Am. J. Physiol. Renal Physiol. 281: 639-648. The relative increases in abundance of this and other sodium transporters, without decreases in the other sodium transporters, likely results in enhanced tubular sodium reabsorption. As a result, these alterations in renal sodium transporter abundance might play a role in the development and/or maintenance of elevated blood pressures in obese mammals, including humans.

[0232] By "pseudohypoaldosteronism type 1", "PHA1", "PHA-1" and the like is meant a heterologous clinical syndrome characterized by mineralocorticoid end organ resistance, i.e., urinary loss of Na^+ and reduced K^+ excretion despite an elevated level of aldosterone. A severe form of this syndrome is inherited as an autosomal recessive trait, resulting in sometimes lethal episodes of hyponatremia, hypotension, and hyperkalemia, and shows alteration of Na^+ transport in several organs, kidney, salivary glands, sweat glands, and colon. In several families showing this form of PHA-1, links to mutations in any one of the three ENaC subunits are found (including G37S in Beta-ENaC).

[0233] A less severe form of PHA-1 with an autosomal dominant mode of inheritance is symptomatic mostly during infancy and improves with age. See Hummler et al. 1999. Am. J. Physiol. Gastrointest. Liver Physiol. 276: 567-571.

[0234] RNAi agents to Beta-ENaC can be used to treat Beta-ENaC-related diseases, particularly those diseases associated with altered expression, activity and/or levels of Beta-ENaC.

Use of RNAi Agents for Treatment of Beta-ENaC-Related Diseases

[0235] The RNAi agents to Beta-ENaC described herein can be formulated into pharmaceutical compositions which can be administered to humans or non-human animals. These compositions can comprise one or more RNAi agents, and, optionally, additional treatments useful for treating Beta-ENaC-related diseases. They can be administered as part of an early/preventative treatment, and can be administered in a therapeutically-effective dosage. The pharmaceutical composition can comprise a pharmaceutical carrier and can be administered by any method known in the art. These various aspects of the present disclosure are described in additional detail below.

[0236] RNAi agents to Beta-ENaC can be administered to humans and non-human animals for treatment of Beta-ENaC-related diseases.

[0237] The compositions comprising a Beta-ENaC RNAi agent can be administered to non-human animals. For example, the compositions can be given to chickens, turkeys, livestock animals (such as sheep, pigs, horses, cattle, etc.), companion animals

(e.g., cats and dogs) and can have efficacy in treatment of cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension and similar diseases. In each case, the RNAi agent to Beta-ENaC would be selected to match the sequence of the Beta-ENaC of the genome of the animal, and to, particularly, contain at least 1 nt mismatch from all other genes in that animal's genome. The RNAi agents of the present disclosure can thus be used in treatment of Beta-ENaC-related diseases in humans and non-human animals.

[0238] As used herein in the context of Beta-ENaC expression, the terms "treat," "treatment," and the like, refer to relief from or alleviation of pathological processes mediated by Beta-ENaC expression. In the context of the present disclosure insofar as it relates to any of the other conditions recited herein below (other than pathological processes mediated by Beta-ENaC expression), the terms "treat," "treatment," and the like mean to relieve or alleviate at least one symptom associated with such condition, or to slow or reverse the progression or anticipated progression of such condition, such as slowing the progression of a lipid disorder, such as atherosclerosis.

[0239] By "treatment" is also meant prophylaxis, therapy, cure, or any other change in a patient's condition indicating improvement or absence of degradation of physical condition. By "treatment" is meant treatment of Beta-ENaC-related disease (e.g., cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension), or any appropriate treatment of any other ailment the patient has. As used herein, the terms "treatment" and "treat" refer to both prophylactic and preventative treatment and curative or disease-modifying treatment, including treatment of patients at risk of contracting a disease or suspected of having a disease, as well as patients already ill or diagnosed as suffering from a condition. The terms "treatment" and "treat" also refer to the maintenance and/or promotion of health in an individual not suffering from a disease but who may be susceptible to developing an unhealthy condition, such as nitrogen imbalance or muscle loss. In one embodiment, "treatment" does not encompass prevention of a disease state. Thus, the present disclosure is useful for suppressing expression of the Beta-ENaC gene and/or treating a Beta-ENaC-related disease in an individual afflicted by a Beta-ENaC-related disease, or an individual susceptible to a Beta-ENaC-related disease. An individual "afflicted" by a Beta-ENaC-related disease has demonstrated detectable symptoms characteristics of the disease, or had otherwise been shown clinically to have been exposed to or to carry Beta-ENaC-related disease pathogens or markers. As non-limiting examples, an individual afflicted by a Beta-ENaC-related disease can show outward symptoms; or can show no outward symptoms but can be shown with a clinical test to carry protein markers associated with a Beta-ENaC-related disease, or proteins or genetic material associated with a pathogen in the blood.

[0240] Early treatment of some Beta-ENaC-related diseases may be more efficacious if administered early rather than later. Preventative early administration of amiloride (an ENaC inhibitor) was useful in treating CF model mice, while later administration was not. Similarly, early intervention with antimicrobial agents in CF was more effective than treatment after infection was established. Zhou et al. 2008. Thus, in one particular embodiment, the RNAi agent to Beta-ENaC is administered early, prior to disease manifestation, and/or as a preventative agent, rather than administered after disease establishment.

[0241] Treatments of Beta-ENaC-related diseases can comprise various treatments, comprising a Beta ENaC RNAi agent, and optionally further comprising an additional treatment, which can be a method (or procedure), or an additional composition (e.g., an agent or additional RNAi agent).

Dosages and Effective Amounts of RNAi Agents

[0242] The RNAi agents of the present disclosure are administered in a dosage of a therapeutically effective amount to a patient in need thereof.

[0243] An "effective amount" or a "therapeutically effective amount" is an amount that treats a disease or medical condition of an individual, or, more generally, provides a nutritional, physiological or medical benefit to an individual. As used herein, the phrases "therapeutically effective amount" and "prophylactically effective amount" refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of pathological processes mediated by Beta-ENaC expression or an overt symptom of pathological processes mediated by Beta-ENaC expression. The specific amount that is therapeutically effective can be readily determined by an ordinary medical practitioner, and may vary depending on factors known in the art, such as, for example, the type of pathological processes mediated by Beta-ENaC expression, the patient's history and age, the stage of pathological processes mediated by Beta-ENaC expression, and the administration of other agents that inhibit pathological processes mediated by Beta-ENaC expression.

[0244] The patient can be at least about 1, 3, 6, or 9 months, or 1, 5, 10, 20, 30, 40, 50, 55, 60, 65, 70, or 75 years of age. The

patient can be no more than about 1, 3, 6, or 9 months, or 1, 5, 10, 20, 30, 40, 50, 55, 60, 65, 70, 75, 80, 90, or 100 years of age. The patient can have a body weight of at least about 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380 or 400 lbs. The patient can have a body weight of no more than about 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380 or 400 lbs.

[0245] The dosage [measuring only the active ingredient(s)] can be at least about 1, 5, 10, 25, 50, 100, 200, 250, 300, 250, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 ng, 1, 5, 10, 25, 50, 100, 200, 250, 300, 250, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 micrograms, 1, 5, 10, 25, 50, 100, 200, 250, 300, 250, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 mg. The dosage can be no more than about 10, 25, 50, 100, 200, 250, 300, 250, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 mg. The dosage can be administered at least more than once a day, daily, more than once a weekly, weekly, bi-weekly, monthly, and/or every 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months, or a combination thereof.

[0246] The dosage can be correlated to the body weight or body surface area of the individual. The actual dosage level can be varied to obtain an amount of active agent which is effective for a particular patient, composition and mode of administration, without being toxic to the patient. The selected dose will depend on a variety of pharmacokinetic factors, including the activity of the particular RNAi agent employed, the route of administration, the rate of excretion of the RNAi agent, the duration of the treatment, other drugs, compounds and/or materials used in combination with the RNAi agent, the age, sex, weight, condition, general health and prior medical history of the patient, and like factors well known in the medical arts. A physician or veterinarian having ordinary skill in the art can readily determine the effective amount of the RNAi agent required. A suitable dose will be that amount which is the lowest dose effective to produce a therapeutic effect, or a dose low enough to produce a therapeutic effect without causing side effects.

[0247] In addition to a therapeutically-effective dosage of one or more RNAi agents to Beta-ENaC, the pharmaceutical compositions of the present disclosure can comprise or be used in conjunction with an additional disease treatment which works synergistically with the RNAi agent. For example, the pharmaceutical composition can comprise an additional antagonist to ENaC, such as potassium-sparing diuretics, amiloride and triamterene. Additional treatments can be administered along with the pharmaceutical composition, including, as a non-limiting example, regulation of dietary salt intake. When used to treat cystic fibrosis, the pharmaceutical composition can be used in conjunction with various medicaments and therapies known in the art, including, but not limited to, antibiotics, DNase therapy, albutrol, N-acetylcysteine, breathing therapy, percussive therapy, aerobic exercise, and various medicaments and therapies to treat ailments associated with cystic fibrosis (e.g., diarrhea, osteoporosis, diabetes, bleeding, etc.).

Additional Disclosures of RNAi Agents to Beta-ENaC

[0248] The present disclosure comprises a RNAi agent comprising a sense strand and an antisense strand as defined in the appended claims.

[0249] The RNAi agent to Beta-ENaC does not comprise a sequence of any Beta-ENaC RNAi agent disclosed in the patent or scientific literature, e.g., U.S. Patent App. No. 60/346,069 (PCT/US02/41850), and Hyde et al. 2009, The 23rd North American Cystic Fibrosis Conference, Minneapolis, October 14-17, 2009; or that available as sc-42418 (and related products) from Santa Cruz Biotechnology, Santa Cruz, CA.

Specific Embodiments of RNAi Agents to Beta-ENaC

[0250] Various specific embodiments of a RNAi agent to Beta-ENaC are disclosed herein.

[0251] A mismatch is defined herein as a difference between the base sequence or length when two sequences are maximally aligned and compared. A mismatch is defined as a position wherein the base of one sequence does not match the base of the other sequence. Thus, a mismatch is counted, for example, if a position in one sequence has a particular base (e.g., A), and the corresponding position on the other sequence has a different base (e.g., G).

[0252] A mismatch is also counted, e.g., if a position in one sequence has a base (e.g., A), and the corresponding position on the other sequence has no base (e.g., that position is an abasic nucleotide which comprises a phosphate-sugar backbone but no base). A single-stranded nick in either sequence (or in the sense or antisense strand) is not counted as mismatch. Thus, as a

non-limiting example, no mismatch would be counted if one sequence comprises the sequence AG, but the other sequence comprises the sequence AG with a single-stranded nick between the A and the G. A base modification is also not considered a mismatch. Thus, if one sequence comprises a C, and the other sequence comprises a modified C (e.g., 2'-modification) at the same position, no mismatch would be counted.

[0253] Disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20807 (SEQ ID NOs: 5 and 6, or SEQ ID NOs:115 and 116).

[0254] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20807.

[0255] Disclosed is that the siRNA comprises AD-20807.

[0256] Disclosed is that the siRNA has a sequence consisting of that of AD-20807.

[0257] Disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20826 (SEQ ID NOs: 43 and 44, or SEQ ID NOs:153 and 154).

[0258] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20826.

[0259] Disclosed is that the siRNA comprises AD-20826.

[0260] Disclosed is that the siRNA has a sequence consisting of that of AD-20626.

[0261] Disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20832, which comprises SEQ ID NOs: 55 and 56, or SEQ ID NOs:165 and 166.

[0262] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20832.

[0263] Disclosed is that the siRNA comprises AD-20832.

[0264] Disclosed is that the siRNA has a sequence consisting of that of AD-20832.

[0265] In one particular embodiment, the present disclosure comprises a RNAi agent comprising a antisense strand comprising at least 15 contiguous from the antisense strand of: AD-20834, which comprises SEQ ID NOs:169 and 170.

[0266] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20834.

[0267] Disclosed is that the siRNA comprises AD-20834.

[0268] Disclosed is that the siRNA has a sequence consisting of that of AD-20834.

[0269] Disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20848, which comprises SEQ ID NOs: 87 and 88, or SEQ ID NOs:197 and 198.

[0270] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20848.

[0271] Disclosed is that the siRNA comprises AD-20848.

[0272] Disclosed is that the siRNA has a sequence consisting of that of AD-20848.

[0273] Disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20861, which comprises SEQ ID NOs: 97 and 98, or SEQ ID NOs:207 and 208.

[0274] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20861.

[0275] Disclosed is that the siRNA comprises AD-20861.

[0276] Disclosed is that the siRNA has a sequence consisting of that of AD-20861.

[0277] Disclosed is a RNAi agent demonstrating at least about 80% knockdown (no more than about 20% residual gene activity) of the Beta-ENaC gene at an *in vitro* concentration of 10 nM in H441 cells.

[0278] Thus, disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; or AD-20834.

[0279] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; or AD-20834.

[0280] Disclosed is that the siRNA comprises AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; or AD-20834.

[0281] Disclosed is that the siRNA has a sequence consisting of that of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; or AD-20834.

[0282] Disclosed is a RNAi agent demonstrating at least about 70% knockdown (no more than about 30% residual gene activity) of the Beta-ENaC gene at an *in vitro* concentration of 10 nM in H441 cells.

[0283] Thus, disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; or AD-20867.

[0284] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; or AD-20867.

[0285] Disclosed is that the siRNA comprises AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; or AD-20867.

[0286] Disclosed is that the siRNA has a sequence consisting of that of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; or AD-20867.

[0287] Disclosed is a RNAi agent demonstrating at least about 60% knockdown (no more than about 40% residual gene activity) of the Beta-ENaC gene at an *in vitro* concentration of 10 nM in H441 cells.

[0288] Thus, disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20805; AD-20805; AD-20831; AD-20862; AD-20808; or AD-20827.

[0289] The siRNA can also further comprise a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20805; AD-20831; AD-20862; AD-20808; or AD-20827.

[0290] The siRNA can comprise AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20805; AD-20831; AD-20862; AD-20808; or AD-20827.

[0291] The siRNA can have a sequence consisting of that of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-

20823; AD-20805; AD-20831; AD-20862; AD-20808; or AD-20827.

[0292] Disclosed is a RNAi agent demonstrating at least about 50% knockdown (no more than about 50% residual gene activity) of the Beta-ENaC gene at an in vitro concentration of 10 nM in H441 cells.

[0293] disclosed is a RNAi agent comprising a antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20805; AD-20831; AD-20862; AD-20808; AD-20827; AD-20828; AD-20812; AD-20836; or AD-20822.

[0294] Disclosed is that the siRNA also further comprises a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20805; AD-20831; AD-20862; AD-20808; AD-20827; AD-20828; AD-20812; AD-20836; or AD-20822.

[0295] Disclosed is that the siRNA comprises AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20805; AD-20831; AD-20862; AD-20808; AD-20827; AD-20828; AD-20812; AD-20836; or AD-20822.

[0296] Disclosed is that the siRNA has a sequence consisting of that of AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834; AD-20806; AD-20851; AD-20865; AD-20811; AD-20819; AD-20839; AD-20835; AD-20825; AD-20867; AD-20813; AD-20823; AD-20813; AD-20823; AD-20805; AD-20831; AD-20862; AD-20808; AD-20827; AD-20828; AD-20812; AD-20836; or AD-20822.

Various Embodiments of a RNAi Agent to Beta-ENaC

[0297] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20805.

[0298] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20806.

[0299] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20807.

[0300] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20808.

[0301] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20809.

[0302] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20810.

[0303] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20811.

[0304] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20812.

[0348] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20864.

[0349] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20865.

[0350] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20866.

[0351] Disclosed is a RNAi agent comprising a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand and/or an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of AD-20867.

Various Embodiments of a RNAi Agent to Beta-ENaC

[0352] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20805, which comprises SEQ ID NOs. 111 - 112, and modified variants thereof.

[0353] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20806, which comprises SEQ ID NOs. 113 - 114, and modified variants thereof.

[0354] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20807, which comprises SEQ ID NOs. 115 - 116, and modified variants thereof.

[0355] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20808, which comprises SEQ ID NOs. 117 - 118, and modified variants thereof.

[0356] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20809, which comprises SEQ ID NOs. 119 - 120, and modified variants thereof.

[0357] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20810, which comprises SEQ ID NOs. 121 - 122, and modified variants thereof.

[0358] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20811, which comprises SEQ ID NOs. 123 - 124, and modified variants thereof.

[0359] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20812, which comprises SEQ ID NOs. 125 - 126, and modified variants thereof.

[0360] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20813, which comprises SEQ ID NOs. 127 - 128, and modified variants thereof.

[0361] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of:

[0405] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20866, which comprises SEQ ID NOs. 217 - 218, and modified variants thereof.

[0406] Disclosed is a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of: AD-20867, which comprises SEQ ID NOs. 219 - 220, and modified variants thereof.

Various Embodiments of a RNAi Agent to Beta-ENaC

[0407] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20805, which comprises SEQ ID NOs. 111 and 112.

[0408] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20806, which comprises SEQ ID NOs. 113 and 114.

[0409] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20807, which comprises SEQ ID NOs. 115 and 116.

[0410] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20808, which comprises SEQ ID NOs. 117 and 118.

[0411] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20809, which comprises SEQ ID NOs. 119 and 120.

[0412] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20810, which comprises SEQ ID NOs. 121 and 122.

[0413] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20811, which comprises SEQ ID NOs. 123 and 124.

[0414] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20812, which comprises SEQ ID NOs. 125 and 126.

[0415] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20813, which comprises SEQ ID NOs. 127 and 128.

[0416] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20814, which comprises SEQ ID NOs. 129 and 130.

[0417] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0 nucleotides from the antisense strand of: AD-20815, which comprises SEQ ID NOs. 131 and 132.

[0418] Disclosed is a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at

[0504] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20847, which comprises SEQ ID NOs. 85 and 86.

[0505] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20848, which comprises SEQ ID NOs. 87 and 88.

[0506] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20849, which comprises SEQ ID NOs. 89 and 90.

[0507] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20850, which comprises SEQ ID NOs. 91 and 92.

[0508] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20851, which comprises SEQ ID NOs. 93 and 94.

[0509] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20852, which comprises SEQ ID NOs. 95 and 96.

[0510] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20861, which comprises SEQ ID NOs. 97 and 98.

[0511] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20862, which comprises SEQ ID NOs. 99 and 100.

[0512] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20863, which comprises SEQ ID NOs. 101 and 102.

[0513] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20864, which comprises SEQ ID NOs. 103 and 104.

[0514] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20865, which comprises SEQ ID NOs. 105 and 106.

[0515] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20866, which comprises SEQ ID NOs. 107 and 108.

[0516] Disclosed is that the composition comprises a modified variant of a RNAi agent, wherein the variant comprises a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense sequence of: AD-20867, which comprises SEQ ID NOs. 109 and 110.

Various disclosures a RNAi Agent to Beta-ENaC

[0517] Disclosed is AD-20805 (SEQ ID NOs: 1 and 2, or SEQ ID NOs: 111 and 112).

[0518] Disclosed is AD-20806 (SEQ ID NOs: 3 and 4, or SEQ ID NOs: 113 and 114).

[0519] Disclosed is AD-20807 (SEQ ID NOs: 5 and 6, or SEQ ID NOs: 115 and 116).

[0520] Disclosed is AD-20808 (SEQ ID NOs: 7 and 8, or SEQ ID NOs: 117 and 118).

[0521] Disclosed is AD-20809 (SEQ ID NOs: 9 and 10, or SEQ ID NOs: 119 and 120).

[0522] Disclosed is AD-20810 (SEQ ID NOs: 11 and 12, or SEQ ID NOs: 121 and 122).

[0523] Disclosed is AD-20811 (SEQ ID NOs: 13 and 14, or SEQ ID NOs: 123 and 124).

[0524] Disclosed is AD-20812 (SEQ ID NOs: 15 and 16, or SEQ ID NOs: 125 and 126).

[0525] Disclosed is AD-20813 (SEQ ID NOs: 17 and 18, or SEQ ID NOs: 127 and 128).

[0526] Disclosed is AD-20814 (SEQ ID NOs: 19 and 20, or SEQ ID NOs: 129 and 130).

[0527] Disclosed is AD-20815 (SEQ ID NOs: 21 and 22, or SEQ ID NOs: 131 and 132).

[0528] Disclosed is AD-20816 (SEQ ID NOs: 23 and 24, or SEQ ID NOs: 133 and 134).

[0529] Disclosed is AD-20817 (SEQ ID NOs: 25 and 26, or SEQ ID NOs: 135 and 136).

[0530] Disclosed is AD-20818 (SEQ ID NOs: 27 and 28, or SEQ ID NOs: 137 and 138).

[0531] Disclosed is AD-20819 (SEQ ID NOs: 29 and 30, or SEQ ID NOs: 139 and 140).

[0532] Disclosed is AD-20820 (SEQ ID NOs: 31 and 32, or SEQ ID NOs: 141 and 142).

[0533] Disclosed is AD-20821 (SEQ ID NOs: 33 and 34, or SEQ ID NOs: 143 and 144).

[0534] Disclosed is AD-20822 (SEQ ID NOs: 35 and 36, or SEQ ID NOs: 145 and 146).

[0535] Disclosed is AD-20823 (SEQ ID NOs: 37 and 38, or SEQ ID NOs: 147 and 148).

[0536] Disclosed is AD-20824 (SEQ ID NOs: 39 and 40, or SEQ ID NOs: 149 and 150).

[0537] Disclosed is AD-20825 (SEQ ID NOs: 41 and 42, or SEQ ID NOs: 151 and 152).

[0538] Disclosed is AD-20826 (SEQ ID NOs: 43 and 44, or SEQ ID NOs: 153 and 154).

[0539] Disclosed is AD-20827 (SEQ ID NOs: 45 and 46, or SEQ ID NOs: 155 and 156).

[0540] Disclosed is AD-20828 (SEQ ID NOs: 47 and 48, or SEQ ID NOs: 157 and 158).

[0541] Disclosed is AD-20829 (SEQ ID NOs: 49 and 50, or SEQ ID NOs: 159 and 160).

[0542] Disclosed is AD-20830 (SEQ ID NOs: 51 and 52, or SEQ ID NOs: 161 and 162).

[0543] Disclosed is AD-20831 (SEQ ID NOs: 53 and 54, or SEQ ID NOs: 163 and 164).

[0544] Disclosed is AD-20832 (SEQ ID NOs: 55 and 56, or SEQ ID NOs: 165 and 166).

[0545] Disclosed is AD-20833 (SEQ ID NOs: 57 and 58, or SEQ ID NOs: 167 and 168).

[0546] Disclosed is AD-20834 (SEQ ID NOs: 59 and 60, or SEQ ID NOs: 169 and 170).

[0547] Disclosed is AD-20835 (SEQ ID NOs: 61 and 62, or SEQ ID NOs: 171 and 172).

[0548] Disclosed is AD-20836 (SEQ ID NOs: 63 and 64, or SEQ ID NOs: 173 and 174).

[0549] Disclosed is AD-20837 (SEQ ID NOs: 65 and 66, or SEQ ID NOs: 175 and 176).

[0550] Disclosed is AD-20838 (SEQ ID NOs: 67 and 68, or SEQ ID NOs: 177 and 178).

[0551] Disclosed is AD-20839 (SEQ ID NOs: 69 and 70, or SEQ ID NOs: 179 and 180).

[0552] Disclosed is AD-20840 (SEQ ID NOs: 71 and 72, or SEQ ID NOs: 181 and 182).

[0553] Disclosed is AD-20841 (SEQ ID NOs: 73 and 74, or SEQ ID NOs: 183 and 184).

[0554] Disclosed is AD-20842 (SEQ ID NOs: 75 and 76, or SEQ ID NOs: 185 and 186).

[0555] Disclosed is AD-20843 (SEQ ID NOs: 77 and 78, or SEQ ID NOs: 187 and 188).

[0556] Disclosed is AD-20844 (SEQ ID NOs: 79 and 80, or SEQ ID NOs: 189 and 190).

[0557] Disclosed is AD-20845 (SEQ ID NOs: 81 and 82, or SEQ ID NOs: 191 and 192).

[0558] Disclosed is AD-20846 (SEQ ID NOs: 83 and 84, or SEQ ID NOs: 193 and 194).

[0559] Disclosed is AD-20847 (SEQ ID NOs: 85 and 86, or SEQ ID NOs: 195 and 196).

[0560] Disclosed is AD-20848 (SEQ ID NOs: 87 and 88, or SEQ ID NOs: 197 and 198).

[0561] Disclosed is AD-20849 (SEQ ID NOs: 89 and 90, or SEQ ID NOs: 199 and 200).

[0562] Disclosed is AD-20850 (SEQ ID NOs: 91 and 92, or SEQ ID NOs: 201 and 202).

[0563] Disclosed is AD-20851 (SEQ ID NOs: 93 and 94, or SEQ ID NOs: 203 and 204).

[0564] Disclosed is AD-20852 (SEQ ID NOs: 95 and 96, or SEQ ID NOs: 205 and 206).

[0565] Disclosed is AD-20861 (SEQ ID NOs: 97 and 98, or SEQ ID NOs: 207 and 208).

[0566] Disclosed is AD-20862 (SEQ ID NOs: 99 and 100, or SEQ ID NOs: 209 and 210).

[0567] Disclosed is AD-20863 (SEQ ID NOs: 101 and 102, or SEQ ID NOs: 211 and 212).

[0568] Disclosed is AD-20864 (SEQ ID NOs: 103 and 104, or SEQ ID NOs: 213 and 214).

[0569] Disclosed is AD-20865 (SEQ ID NOs: 105 and 106, or SEQ ID NOs: 215 and 216).

[0570] Disclosed is AD-20866 (SEQ ID NOs: 107 and 108, or SEQ ID NOs: 217 and 218).

[0571] Disclosed is AD-20867 (SEQ ID NOs: 109 and 110, or SEQ ID NOs: 219 and 220).

[0572] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20805.

[0573] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20806.

strand of AD-20845.

[0613] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20846.

[0614] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20847.

[0615] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20848.

[0616] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20849.

[0617] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20850.

[0618] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20851.

[0619] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20852.

[0620] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20861.

[0621] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20862.

[0622] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20863.

[0623] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20864.

[0624] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20865.

[0625] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20866.

[0626] Disclosed is that the RNAi agent comprises an antisense strand that is the exact sequence and length of the antisense strand of AD-20867. In these various embodiments, a RNAi agent comprising an antisense strand that is the exact sequence and length of a recited antisense strand of a recited RNAi agent can comprise modified nucleotides, 3'-end caps, and/or other modifications which do not alter the sequence or length of the RNAi agent.

Various Embodiments of a RNAi Agent to Beta-ENaC

[0627] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20805.

[0628] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20806.

[0629] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20807.

[0668] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20846.

[0669] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20847.

[0670] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20848.

[0671] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20849.

[0672] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20850.

[0673] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20851.

[0674] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20852.

[0675] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20861.

[0676] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20862.

[0677] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20863.

[0678] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20864.

[0679] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20865.

[0680] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20866.

[0681] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20867.

Various Embodiments of a RNAi Agent to Beta-ENaC

[0682] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20805, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof, e.g., 0-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 2-3, 2-4, or 2-5 nt, etc.).

[0683] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20806, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0684] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20807, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

from that of the antisense strand of AD-20851, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0729] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20852, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0730] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20861, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0731] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20862, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0732] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20863, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0733] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20864, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0734] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20865, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0735] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20866, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

[0736] Disclosed is that the RNAi agent comprises an antisense strand consisting of a sequence with 0, 1, 2, or 3 mismatches from that of the antisense strand of AD-20867, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nt (or any range thereof).

Additional particular specific disclosures

[0737] In various disclosures a RNAi agent comprises a sense and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of any RNAi agent disclosed herein.

[0738] Thus, in various disclosures:

[0739] Disclosed is a RNAi agent comprising a sense and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of any one or more of the following duplexes, or modified or unmodified variants thereof: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834, AD-20805, AD-20806, AD-20808, AD-20809, AD-20810, AD-20811, AD-20812, AD-20813, AD-20814, AD-20815, AD-20816, AD-20817, AD-20818, AD-20819, AD-20820, AD-20821, AD-20822, AD-20823, AD-20824, AD-20825, AD-20827, AD-20828, AD-20829, AD-20830, AD-20831, AD-20833, AD-20835, AD-20836, AD-20838, AD-20839, AD-20840, AD-20841, AD-20842, AD-20843, AD-20844, AD-20845, AD-20846, AD-20847, AD-20849, AD-20850, AD-20851, AD-20852, AD-20862, AD-20863, AD-20864, AD-20865, AD-20866, AD-20867, or modified or unmodified variants thereof.

Additional particular specific disclosures

[0740] Disclosed is a RNAi agent comprising a first and a second strand, wherein the sequence of the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sequence of the first strand of, and the sequence of the

second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the second strand, of any RNAi agent, disclosed herein.

[0741] Thus, in various disclosures:

[0742] Disclosed is a RNAi agent comprising a sense and an antisense strand, wherein the sequence of the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sequence of the first strand of, and the sequence of the second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the second strand, of any one or more of the following duplexes, or modified or unmodified variants thereof: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834, AD-20805, AD-20806, AD-20808, AD-20809, AD-20810, AD-20811, AD-20812, AD-20813, AD-20814, AD-20815, AD-20816, AD-20817, AD-20818, AD-20819, AD-20820, AD-20821, AD-20822, AD-20823, AD-20824, AD-20825, AD-20827, AD-20828, AD-20829, AD-20830, AD-20831, AD-20833, AD-20835, AD-20836, AD-20838, AD-20839, AD-20840, AD-20841, AD-20842, AD-20843, AD-20844, AD-20845, AD-20846, AD-20847, AD-20849, AD-20850, AD-20851, AD-20852, AD-20862, AD-20863, AD-20864, AD-20865, AD-20866, AD-20867, or modified or unmodified variants thereof.

Additional particular disclosures

[0743] Disclosed is a RNAi agent comprising a sense and an antisense strand, wherein the antisense strand comprises or consists of the antisense strand of any RNAi agent disclosed herein.

[0744] Thus, the following are provided as examples.

[0745] Disclosed is a RNAi agent comprising a sense and an antisense strand, wherein the antisense strand comprises or consists of the antisense strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834, AD-20805, AD-20806, AD-20808, AD-20809, AD-20810, AD-20811, AD-20812, AD-20813, AD-20814, AD-20815, AD-20816, AD-20817, AD-20818, AD-20819, AD-20820, AD-20821, AD-20822, AD-20823, AD-20824, AD-20825, AD-20827, AD-20828, AD-20829, AD-20830, AD-20831, AD-20833, AD-20835, AD-20836, AD-20838, AD-20839, AD-20840, AD-20841, AD-20842, AD-20843, AD-20844, AD-20845, AD-20846, AD-20847, AD-20849, AD-20850, AD-20851, AD-20852, AD-20862, AD-20863, AD-20864, AD-20865, AD-20866, AD-20867, or modified or unmodified variants thereof.

[0746] Disclosed is a RNAi agent comprising a sense and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of any RNAi agent disclosed herein, or modified or unmodified variants thereof, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nt (or any range thereof, e.g., 0-1, 1-2, 1-3, 1-4 nt, etc.).

[0747] Thus, disclosed is a RNAi agent comprising a sense and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834, AD-20805, AD-20806, AD-20808, AD-20809, AD-20810, AD-20811, AD-20812, AD-20813, AD-20814, AD-20815, AD-20816, AD-20817, AD-20818, AD-20819, AD-20820, AD-20821, AD-20822, AD-20823, AD-20824, AD-20825, AD-20827, AD-20828, AD-20829, AD-20830, AD-20831, AD-20833, AD-20835, AD-20836, AD-20838, AD-20839, AD-20840, AD-20841, AD-20842, AD-20843, AD-20844, AD-20845, AD-20846, AD-20847, AD-20849, AD-20850, AD-20851, AD-20852, AD-20862, AD-20863, AD-20864, AD-20865, AD-20866, AD-20867, or modified or unmodified variants thereof, wherein the antisense strand optionally further comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nt (or any range thereof, e.g., 0-1, 1-2, 1-3, 1-4 nt, etc.).

[0748] Disclosed is a RNAi agent comprising a first and a second strand, wherein the sequence of the first strand comprises or consists of the sequence of the first strand of, and the sequence of the second strand comprises or consists of the sequence of the second strand of any RNAi agent disclosed herein, or modified or unmodified variants thereof.

[0749] Thus, disclosed is a RNAi agent comprising a first and a second strand, wherein the sequence of the first strand comprises or consists of the sequence of the first strand of, and the sequence of the second strand comprises or consists of the sequence of the second strand of: AD-20832; AD-20848; AD-20807; AD-20826; AD-20837; AD-20861; AD-20834, AD-20805, AD-20806, AD-20808, AD-20809, AD-20810, AD-20811, AD-20812, AD-20813, AD-20814, AD-20815, AD-20816, AD-20817, AD-20818, AD-20819, AD-20820, AD-20821, AD-20822, AD-20823, AD-20824, AD-20825, AD-20827, AD-20828, AD-20829, AD-20830, AD-20831, AD-20833, AD-20835, AD-20836, AD-20838, AD-20839, AD-20840, AD-20841, AD-20842, AD-20843, AD-

20844, AD-20845, AD-20846, AD-20847, AD-20849, AD-20850, AD-20851, AD-20852, AD-20862, AD-20863, AD-20864, AD-20865, AD-20866, AD-20867.

[0750] Disclosed is one or more RNAi agent listed herein.

Overlapping sets of RNAi agents to Beta-ENaC

[0751] Disclosed are groups of RNAi agents to Beta-ENaC with overlapping sequences. Thus, disclosed are groups of RNAi agents wherein each RNAi agent in the group overlaps with each other RNAi agent in the same group by at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or more nucleotides. Particularly, disclosed is that the overlap is at least 12 nt.

[0752] Some of the RNAi agents listed herein overlap each other in sequence. Table 2 presents a compilation of some of these groups of overlapping RNAi agents, wherein each member of a group overlaps with each other member of the same group by at least 12 nt. A 12-nt portion of the overlap of the sense and anti-sense strand are presented.

[0753] Thus, for example, as shown in Table 2, the sequences of RNAi agents AD-20807 and AD-20832 overlap, wherein the overlap in the sense strand comprises the sequence UGAAGAAGUACC (SEQ ID NO: 223); these RNAi agents also overlap in the anti-sense strand sequence, wherein the overlap comprises the sequence GGUACUUCUCA (SEQ ID NO: 224). The RNAi agents AD-20807, AD-20862 and AD-20832 all overlap in the sense strand, wherein the overlap comprises the sequence GAAGAAGUACCU (SEQ ID NO: 225); these RNAi agents also overlap in the anti-sense strand, wherein the overlap comprises the sequence AGGUACUUCUUC (SEQ ID NO: 226). Thus, these and other various sets of overlapping RNAi agents presented in Table 2 share common technical features, for example, the overlap in the sense and anti-sense strand.

[0754] Particular sets of overlapping RNAi agents to Beta-ENaC are provided below in Table 2.

[0755] Disclosed are thus any group or subgroup of RNAi agents comprising a common technical feature, wherein the common technical feature is an overlap (e.g., of at least 12 nt) of a sequence in the sense or anti-sense strand.

[0756] Thus:

[0757] Disclosed is a RNAi agent comprising: an antisense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the antisense strand, and/or a sense strand comprising at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the sense strand, of any of the group of: AD-20807 and AD-20832 (or any other group presented in Table 2).

[0758] Disclosed is a RNAi agent comprising a first and a second strand, wherein the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the first strand of, and/or the second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nt from the second strand, of any of the group of: AD-20807 and AD-20832 (or any other group presented in Table 2).

[0759] Disclosed is a RNAi agent comprising a first and a second strand, wherein the first strand comprises or consists of the sequence of a first strand of, and/or the second strand comprises or consists of the sequence of, any of the group of: AD-20807 and AD-20832 (or any other group presented in Table 2).

[0760] Disclosed is a RNAi agent comprising a first and a second strand (wherein the first and second strand may optionally be covalently linked, linked via a loop or linker, or contiguous), and wherein the first and/or second strand comprise, consist essentially of, or consist of sequences with 0, 1, 2, or 3 nt or bp mismatches of any of the group of: AD-20807 and AD-20832 (or any other group presented in Table 2), optionally further comprising 0-10 nt or bp.

[0761] Disclosed are groups of overlapping RNAi agents presented in Table 2.

Additional Definitions

[0762] The articles "a" and "an" as used herein and in the claims refer to one or more than one (at least one) of the grammatical object of the article.

[0763] The terms "RNAi agent," "RNAi agents", "RNAi agent(s)" and the like all refer without limitation to one or more RNAi agents of the present disclosure.

[0764] The designations of particular example duplexes of RNAi agents to Beta-ENaC disclosed herein on occasion have the suffix "b" followed by a number. This indicates a batch number. Thus, the suffix "b1" indicates "batch 1." Thus, a RNAi duplex designated, for example, "AD-20807-b1" is specifically from batch 1 and has the same sequence as any RNAi agent designated "AD-20807".

[0765] Unless defined otherwise, the technical and scientific terms used herein have the same meaning as that usually understood by a specialist familiar with the field to which the present disclosure belongs.

[0766] Unless indicated otherwise, all methods, steps, techniques and manipulations that are not specifically described in detail can be performed and have been performed in a manner known per se, as will be clear to the skilled person. Reference is for example again made to the standard handbooks and the general background art mentioned herein.

[0767] Various additional formulations and obvious variants of the described RNAi agents to Beta-ENaC can be devised by those of ordinary skill in the art. Non-limiting example RNAi agents to Beta-ENaC are described in the Examples below.

EXAMPLES

EXAMPLE 1

Bioinformatics and Beta-ENaC RNAi Agent (siRNA) sequences

[0768] Beta-ENaC oligonucleotide design is carried out to identify siRNAs targeting mRNAs encoding the Beta-ENaC gene ["sodium channel, nonvoltage-gated 1 beta" from human (NCBI human symbol SCNN1 B) and the orthologous sequences from cynomolgus monkey (*Macaca fascicularis*) and rat (*Rattus norvegicus*)]. The design process uses the SCNNB1 transcripts NM_000336.2 from human (NCBI Genel 6338), NM_012648.1 from rat (NCBI Genel 24767), and a full length cynomolgus monkey sequence (described herein).

[0769] All siRNA duplexes are designed to have 100% identity to all three SCNNB1 transcripts. All sequences are from Transcript NM_000336.

[0770] Unmodified and modified sequences are listed in Table 1. Unmodified sequences include both the sense and antisense sequences which are listed as SEQ ID NO: 111 to 220. The relative positions of the first residue as compared to the human Beta-ENaC transcript in SEQ ID NO: 222 are also provided.

[0771] As described below, Table 1 also provides example modified variants of these sequences (SEQ ID NO: 1 to 110). For the Table 1 columns, "S" represents the sense strand, "AS" represents the antisense strand, and "Pos'n" represents the position of the first nucleotide. Modified nucleotides, as indicated by lower case letters (e.g., "c" and "u") are as described in Table 1 A, below.

[0772] In the sequences in Table 1, the modified and unmodified sequences can optionally comprise the sequence "dTsdT" at the 3' end. Thus, for example, AD-20805 can optionally have the modified sequence cAGuGAcuAcAAcAcGAccdTsdT (SEQ ID NO: 429) in the sense strand and GGUCGUGUUGuAGUcACUGdTsdT (SEQ ID NO: 430) in the antisense strand. As noted in Table 1 A, below, dT is 2'-deoxy-thymidine-5'-phosphate and sdT is 2'-deoxy Thymidine 5'-phosphorothioate.

Table 1. Beta-ENaC sequences

Duplex ID		SEQ ID	Modified sequence	SEQ ID	Unmodified sequence	Pos'n
AD-20805	S	1	cAGuGAcuAcAAcAcGAcc	111	CAGUGACUACAAACACGACC	1298
	AS	2	GGUCGUGUUGuAGUcACUG	112	GGUCGUGUUGUAGUCACUG	1298
AD-20806	S	3	AuGAcAGAGAAGGGcAcuuc	113	AUGACAGAGAAGGCACUUC	1011
	AS	4	GAAGUGCCUUCUCUGUcAU	114	GAAGUGCCUUCUCUGUcAU	1011

Duplex ID		SEQ ID	Modified sequence	SEQ ID	Unmodified sequence	Pos'n
AD-20807	S	5	GuGAAGAAGuAccuGcuGA	115	GUGAAGAAGUACCUGCUGA	183
	AS	6	UcAGCAGGuACUUCUUCAC	116	UCAGCAGGUACUUCUUCAC	183
AD-20808	S	7	GuGAcuAcAAcAcGAccuA	117	GUGACUACAAACACGACCUA	1300
	AS	8	uAGGUCGUGUUGuAGUcAC	118	UAGGUCGUGUUGUAGUCAC	1300
AD-20809	S	9	GGuGGAGGcccAcAccAAc	119	GGUGGAGGCCACACCAAC	1919
	AS	10	GUUGGUGUGGCCUCCACC	120	GUUGGUGUGGCCUCCACC	1919
AD-20810	S	11	uGGuGGAGGcccAcAccAA	121	UGGUGGAGGCCACACCAA	1918
	AS	12	UUGGUGUGGCCUCCACC	122	UUGGUGUGGCCUCCACC	1918
AD-20811	S	13	uuccAAGAccAcAuGAucc	123	UUCCAAGACCACAAUGAUCC	1347
	AS	14	GGAUcAUGUGGUCUUGGAA	124	GGAUCAUGUGGUCUUGGAA	1347
AD-20812	S	15	AGcUGGGAGGGuAGcGucu	125	AGCUGGGAGGGuAGcGUCU	402
	AS	16	AGACCGUGACCUCCcAGCU	126	AGACCGUGACCUCCCAGCU	402
AD-20813	S	17	GGGAGAAAuAcuGcAAcAA	127	GGGAGAAAuACUGCAACAA	1408
	AS	18	UUGUUGcAGuAUUUCUCCC	128	UUGUUGcAGuAUUUCUCCC	1408
AD-20814	S	19	ccAGuuuGGcuucuGGAuG	129	CCAGUUUGGUUCUGGAUG	1748
	AS	20	cAUCCAGAAGCcAACUGG	130	CAUCCAGAAGCCAACUGG	1748
AD-20815	S	21	AGuGAcuAcAAcAcGAccu	131	AGUGACUACAAACACGACCU	1299
	AS	22	AGGUcGUGUUGuAGUcACU	132	AGGUcGUGUUGuAGUcACU	1299
AD-20816	S	23	AAuAucAccuGAGcAGGA	133	AAuAucAccuGAGcAGGA	1626
	AS	24	UCCUGCUCAGGGUGAUUU	134	UCCUGCUCAGGGUGAUUU	1626
AD-20817	S	25	ccuGcAGGccAccAAcAuc	135	CCUGCAGGCCACCAACAU	836
	AS	26	GAUGUUGGUGGCCUGcAGG	136	GAUGUUGGUGGCCUGcAGG	836
AD-20818	S	27	AucAccuGAGcAGGAAGG	137	AUCACCCUGAGCAGGAAGG	1629
	AS	28	CCUUCUUGCUCAGGGUGAU	138	CCUUCUUGCUCAGGGUGAU	1629
AD-20819	S	29	GcUGGGAGGGuAGcGucu	139	GCUGGGAGGGuAGcGUCU	403
	AS	30	GAGACGCUGACCUCCcAGC	140	GAGACGCUGACCUCCCAGC	403
AD-20820	S	31	GAGcUGGGAGGGuAGcGuc	141	GAGCUGGGAGGGuAGcGUC	401
	AS	32	GACGCUGACCUCCcAGCUC	142	GACGCUGACCUCCCAGCUC	401
AD-20821	S	33	GuGGccAGuuuGGcuucuG	143	GUGGCCAGUUUGGUUCUG	1744
	AS	34	cAGAAAGCcAAACUGGccAC	144	CAGAAGCCAAACUGGCCAC	1744
AD-20822	S	35	cAGuuuGGcuucuGGAuGG	145	CAGUUUGGUUCUGGAUGG	1749
	AS	36	CcAUCCAGAAGCcAACUG	146	CCAUCCAGAAGCCAACUG	1749
AD-20823	S	37	GGccAGuuuGGcuucuGGA	147	GGCCAGUUUGGUUCUGGA	1746
	AS	38	UCCAGAAGCcAAACUGGCC	148	UCCAGAAGCCAACUGGCC	1746
AD-20824	S	39	cuGGGuGGccAGuuuGGcu	149	CUGGGUGGCCAGUUUGGU	1740
	AS	40	AGCcAAACUGGCCACCcAG	150	AGCCAAACUGGCCACCcAG	1740
AD-20825	S	41	ucuAcAGuGAcuAcAAcAc	151	UCUACAGUGACUACAAACAC	1294
	AS	42	GUGUUGuAGUcACUGuAGA	152	GUGUUGuAGUcACUGuAGA	1294
AD-20826	S	43	GcAuGAcAGAGAAGGcAcu	153	GCAUGACAGAGAAGGCACU	1009
	AS	44	AGUGCCUUUCUCUGUcAUGC	154	AGUGCCUUUCUCUGUcAUGC	1009
AD-20827	S	45	AuAucAccuGAGcAGGAA	155	AUAUCACCCUGAGCAGGAA	1627
	AS	46	UUCCUGCUCAGGGUGAUU	156	UUCCUGCUCAGGGUGAUU	1627
AD-20828	S	47	cuAcAGuGAcuAcAAcAcG	157	CUACAGUGACUACAAACACG	1295
	AS	48	CGUGUUGuAGUcACUGuAG	158	CGUGUUGuAGUcACUGuAG	1295

Duplex ID		SEQ ID	Modified sequence	SEQ ID	Unmodified sequence	Pos'n
AD-20829	S	49	uAucAccuGAGcAGGAAG	159	UAUCACCCUGAGCAGGAAG	1628
	AS	50	CUUCCUGCUcAGGGUGAU	160	CUUCCUGCUCAGGGUGAU	1628
AD-20830	S	51	uGcAGGccAccAAcAuu	161	UGCAGGCCACCAACAUU	838
	AS	52	AAGAUGUUGGUGGCCUGcA	162	AAGAUGUUGGUGGCCUGCA	838
AD-20831	S	53	cAuGAcAGAGAAGGcAuu	163	CAUGACAGAGAAGGCACUU	1010
	AS	54	AAGUGCCUUCUCUGUcAUG	164	AAGUGCCUUCUCUGUCAUG	1010
AD-20832	S	55	uGAAGAAGuAccuGcuGAA	165	UGAAGAAGUACCUUGCUGAA	184
	AS	56	UUCAGcAGGuACUUCUuA	166	UUCAGCAGGUACUUCUuCA	184
AD-20833	S	57	GcuGGuGGAGGcccAcAcc	167	GCUGGUGGAGGCCACACC	1916
	AS	58	GGUGUGGGCCUCCAcCAGC	168	GGUGUGGGCCUCCACCAGC	1916
AD-20834	S	59	uAcAGuGAcuAcAAcAcGA	169	UACAGUGACUACAACACGA	1296
	AS	60	UCGUGUUGuAGUcACUGuA	170	UCGUGUUGUAGUCACUGUA	1296
AD-20835	S	61	AcAGAGAAGGcAcuuccuu	171	ACAGAGAAGGCACUUCUU	1014
	AS	62	AAGGAAGUGCCUUCUCUGU	172	AAGGAAGUGCCUUCUCUGU	1014
AD-20836	S	63	AcAGuGAcuAcAAcAcGA	173	ACAGUGACUACAACACGAC	1297
	AS	64	GUcGUGUUGuAGUcACUGU	174	GUcGUGUUGUAGUCACUGU	1297
AD-20837	S	65	uGAGcGGGAGGGuAGcGu	175	UGAGCUGGGAGGUcAGCGU	400
	AS	66	ACGCUGACCUCcAGCUcA	176	ACGCUGACCUCcAGCUCA	400
AD-20838	S	67	uGGccAGuuuGGcuuucuGG	177	UGGCCAGUUUUGGUcUUCUGG	1745
	AS	68	CcAGAACGcAAACUGGcA	178	CCAGAACGcAAACUGGcA	1745
AD-20839	S	69	uGucuAGGAGcGGGAccA	179	UGUCUAGGAGcGGGAccA	1600
	AS	70	UGGUCCCCGUCCUGAGAcA	180	UGGUCCCCGUCCUGAGACA	1600
AD-20840	S	71	GuGGAGGcccAcAccAAcu	181	GUGGAGGcccAcACCAACU	1920
	AS	72	AGUUGGUGUGGGCCUCCAC	182	AGUUGGUGUGGGCCUCCAC	1920
AD-20841	S	73	GGGuGGccAGuuuGGcuu	183	GGGUGGCCAGUUUUGGUcU	1742
	AS	74	GAAGCcAAACUGGcACCC	184	GAAGCcAAACUGGcACCC	1742
AD-20842	S	75	GGGuGGccAGuuuGGcuu	185	GGUGGCCAGUUUUGGUcU	1743
	AS	76	AGAACGcAAACUGGcACC	186	AGAACGcAAACUGGcACC	1743
AD-20843	S	77	ucAccuGAGcAGGAAGGG	187	UCACCCUGAGCAGGAAGGG	1630
	AS	78	CCCUUCCUGCUcAGGGUGA	188	CCCUUCCUGCUcAGGGUGA	1630
AD-20844	S	79	GccAGuuuGGcuuGGAu	189	GCCAGUUUGGUcUUCUGGAU	1747
	AS	80	AUCcAGAACGcAAACUGGC	190	AUCCAGAACGcAAACUGGC	1747
AD-20845	S	81	AGcuGGuGGAGGcccAcAc	191	AGCUGGUGGAGGCCACAC	1915
	AS	82	GUGUGGGCCUCCAcCAGCU	192	GUGUGGGCCUCCACCAGCU	1915
AD-20846	S	83	AucuccAuGGcuGAcuGGc	193	AUCUCCAUUGCUGACUGGC	1545
	AS	84	GCcAGUcAGCcAUGGAGAU	194	GCcAGUcAGCcAUGGAGAU	1545
AD-20847	S	85	GGcAuGAcAGAGAAGGcAc	195	GGcAuGAcAGAGAAGGcAC	1008
	AS	86	GUGCCUUCUCUGUcAUGCC	196	GUGCCUUCUCUGUcAUGCC	1008
AD-20848	S	87	GGAGAAAuAcuGcAAcAAc	197	GGAGAAAuAcuGcAAcAAc	1409
	AS	88	GUUGUUGcAGuAUUUCUCC	198	GUUGUUGcAGuAUUUCUCC	1409
AD-20849	S	89	uGGGuGGccAGuuuGGcuu	199	UGGGUGGCCAGUUUUGGUcU	1741
	AS	90	AAGCcAAACUGGcACCCcA	200	AAGCcAAACUGGcACCCcA	1741
AD-20850	S	91	GAGcuGGuGGAGGcccAcA	201	GAGCUGGUGGAGGCCACAC	1914

Duplex ID		SEQ ID	Modified sequence	SEQ ID	Unmodified sequence	Pos'n
	AS	92	UGUGGGCCUCcACcAGCUC	202	UGUGGGCCUCCACCAGCUC	1914
AD-20851	S	93	GAcAGAGAAGGcAcuuccu	203	GACAGAGAAGGCACUCCU	1013
	AS	94	AGGAAGUGCCUUCUCUGUC	204	AGGAAGUGCCUUCUCUGUC	1013
AD-20852	S	95	AGuuuGGcuucuGGuGGG	205	AGUUUGCUUCUGGAUGGG	1750
	AS	96	CCcAUCCAGAACGcAAACU	206	CCCAUCCAGAACGCAAACU	1750
AD-20861	S	97	uGAcAGAGAAGGcAcuucc	207	UGACAGAGAAGGCACUCC	1012
	AS	98	GGAAAGUGCCUUCUCUGucA	208	GGAAGUGCCUUCUCUGUCA	1012
AD-20862	S	99	GAAGAAGGuAccuGcuGAAG	209	GAAGAAGUACCUGCUGAAG	185
	AS	100	CUUcAGcAGGuACUUCUUC	210	CUUCAGCAGGUACUUCUUC	185
AD-20863	S	101	ucuccAuGGcuGAcuGGcc	211	UCUCCAUGGCUGACUGGCC	1546
	AS	102	GGCcAGUcAGCcAUGGAGA	212	GGCCAGUCAGCCAUGGAGA	1546
AD-20864	S	103	cuGGuGGAGGcccAcAccA	213	CUGGUGGAGGCCACACCCA	1917
	AS	104	UGGUGUGGGCCUCcACcAG	214	UGGUGUGGGCCUCCACCAAG	1917
AD-20865	S	105	cAGAGAAGGcAcuuccuuc	215	CAGAGAAGGCACUUCUUC	1015
	AS	106	GAAGGAAGUGCCUUCUCUG	216	GAAGGAAGUGCCUUCUCUG	1015
AD-20866	S	107	cuGcAGGccAccAAcAucu	217	CUGCAGGCCACCAACAUCU	837
	AS	108	AGAUGUUGGUGGCCUGcAG	218	AGAUGUUGGUGGCCUGCAG	837
AD-20867	S	109	GGGcAuGAcAGAGAAGGcA	219	GGGCAUGACAGAGAAGGCA	1007
	AS	110	UGCCUUCUCUGcAUGC	220	UGCCUUCUCUGcAUGC	1007

[0773] Modifications of the sequences of RNAi agents of SEQ ID NO: 111 to 220 are easily conceived by one of skill in the art. Examples and non-limiting modifications of these sequences are conceived and are also listed in Table 1, e.g., the sense and antisense (AS) sequences in SEQ ID NO: 1 to 110.

[0774] Some modifications are placed at sites predicted to be sensitive to endonucleases. Some modifications are designed to eliminate an immune response to the siRNA while preserving activity. In general, the sense strand is heavily modified, and the antisense strand lightly modified. Some modifications serve more than one purpose.

[0775] The sequences in Table 1 and other tables are represented by these abbreviations:

TABLE 1A. ABBREVIATIONS

Abbreviation	Nucleotide(s)
A	adenosine-5'-phosphate
C	cytidine-5'-phosphate
G	guanosine-5'-phosphate
dT	2'-deoxy-thymidine-5'-phosphate
U	uridine-5'-phosphate
C	2'-O-methylcytidine-5'-phosphate
u	2'-O-methyluridine-5'-phosphate
sdT	2'-deoxy Thymidine 5'-phosphorothioate

siRNA sequence selection

[0776] A total of 55 sense and 55 antisense human SCNNB1-derived siRNA oligos (RNAi agents to Beta-ENaC) are synthesized,

as described in Example 2. The sense and their respective antisense oligos are annealed into duplexes.

EXAMPLE 1A

Overlapping sets of Beta-ENaC RNAi Agents

[0777] Disclosed are groups of RNAi agents to Beta-ENaC with overlapping sequences. Thus, the present disclosure encompasses groups of RNAi agents wherein each RNAi agent in the group overlaps with each other RNAi agent in the same group by at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or more nucleotides. Particularly, disclosed is that the overlap is at least 12 nt.

[0778] Some of the RNAi agents listed herein overlap each other in sequence. Table 2 presents a compilation of some of these groups of overlapping RNAi agents, wherein each member of a group overlaps with each other member of the same group by at least 12 nt. A 12-nt portion of the overlap of the sense and anti-sense strand are presented.

[0779] Thus, for example, as shown in Table 2, the sequences of RNAi agents AD-20807 and AD-20832 overlap, wherein the overlap in the sense strand comprises the sequence UGAAGAAGUACC (SEQ ID NO: 223); these RNAi agents also overlap in the anti-sense strand sequence, wherein the overlap comprises the sequence GGUACUUUCUCA (SEQ ID NO: 224). The RNAi agents AD-20807, AD-20862 and AD-20832 all overlap in the sense strand, wherein the overlap comprises the sequence GAAGAAGUACCU (SEQ ID NO: 225); these RNAi agents also overlap in the anti-sense strand, wherein the overlap comprises the sequence AGGUACUUUCU (SEQ ID NO: 226). Thus, these and other various sets of overlapping RNAi agents presented in Table 2 share common technical features, for example, the overlap in the sense and anti-sense strand.

[0780] Particular sets of overlapping RNAi agents to Beta-ENaC are provided below in Table 2.

[0781] Disclosed is thus any group or subgroup of RNAi agents comprising a common technical feature, wherein the common technical feature is an overlap (e.g., of at least 12 nt) of a sequence in the sense or anti-sense strand.

Table 2.

Pos	Sense overlap	SEQ ID	Anti-sense overlap	SEQ ID	Overlapping RNAi agents to Beta-ENaC
183	UGAAGAAGUACC	223	GGUACUUUCUCA	224	AD-20807, AD-20832
184	GAAGAAGUACCU	225	AGGUACUUUCU	226	AD-20807, AD-20862, AD-20832
185	AAGAAGUACCUG	227	CAGGUACUUUU	228	AD-20807, AD-20862, AD-20832
186	AGAAGUACCUGC	229	GCAGGUACUUU	230	AD-20807, AD-20862, AD-20832
187	GAAGUACCUGCU	231	AGCAGGUACUUC	232	AD-20807, AD-20862, AD-20832
188	AAGUACCUGCUG	233	CAGCAGGUACUU	234	AD-20807, AD-20862, AD-20832
189	AGUACCUGCUGA	235	UCAGCAGGUACU	236	AD-20807, AD-20862, AD-20832
190	GUACCUGCUGAA	237	UUCAGCAGGUAC	238	AD-20862, AD-20832
400	GAGCUGGGAGGU	239	ACCUCCCAGCUC	240	AD-20820, AD-20837
401	AGCUGGGAGGU	241	GACCUCCCAGCU	242	AD-20820, AD-20812, AD-20837
402	GCUGGGAGGUCA	243	UGACCUCCCAGC	244	AD-20820, AD-20819, AD-20812, AD-20837
403	CUGGGAGGUCA	245	CUGACCUCCCAG	246	AD-20819, AD-20812, AD-20837
404	UGGGAGGUCA	247	GCUGACCUCCC	248	AD-20820, AD-20819, AD-20837
405	GGGAGGUCA	249	CGCUGACCUCCC	250	AD-20820, AD-20819, AD-20812, AD-20837
406	GGAGGUCA	251	ACGCUGACCUCC	252	AD-20819, AD-20837
407	GAGGUCA	253	GACGCUGACCU	254	AD-20820, AD-20819, AD-20812
408	AGGUCA	255	AGACGCUGACCU	256	AD-20819, AD-20812

Pos	Sense overlap	SEQ ID	Anti-sense overlap	SEQ ID	Overlapping RNAi agents to Beta-ENaC
836	CUGCAGGCCACC	257	GGUGGCCUGCAG	258	AD-20866, AD-20817
837	UGCAGGCCACCA	259	UGGUGGCCUGCA	260	AD-20866, AD-20830, AD-20817
838	GCAGGCCACCAA	261	UUGGUGGCCUGC	262	AD-20866, AD-20830, AD-20817
839	CAGGCCACCAAC	263	GUUGGUGGCCUG	264	AD-20866, AD-20830, AD-20817
840	AGGCCACCAACA	265	UGUUGGUGGCCU	266	AD-20866, AD-20830, AD-20817
841	GGCCACCAACAU	267	AUGUUGGUGGCC	268	AD-20866, AD-20830, AD-20817
842	GCCACCAACAUC	269	GAUGUUGGUGGC	270	AD-20866, AD-20830, AD-20817
843	CCACCAACAUU	271	AGAUGUUGGUGG	272	AD-20866, AD-20830
1007	GGCAUGACAGAG	273	CUCUGUCAUGCC	274	AD-20847, AD-20867
1008	GCAUGACAGAGA	275	UCUCUGUCAUGC	276	AD-20826, AD-20867
1009	CAUGACAGAGAA	277	UUCUCUGUCAUG	278	AD-20826, AD-20831, AD-20867
1010	AUGACAGAGAAG	279	CUUCUCUGUCAU	280	AD-20826, AD-20831, AD-20867, AD-20806
1011	UGACAGAGAAGG	281	CCUUCUCUGUCA	282	AD-20826, AD-20831, AD-20867, AD-20806, AD-20861
1012	GACAGAGAAGGC	283	GCCUUCUCUGUC	284	AD-20851, AD-20847, AD-20826, AD-20831, AD-20867, AD-20806, AD-20861
1013	ACAGAGAAGGCA	285	UGCCUUCUCUGU	286	AD-20851, AD-20835, AD-20847, AD-20826, AD-20831, AD-20867, AD-20806, AD-20861
1014	CAGAGAAGGCAC	287	GUGCCUUCUCUG	288	AD-20851, AD-20835, AD-20865, AD-20826, AD-20831, AD-20806, AD-20861
1015	AGAGAAGGCACU	289	AGUGCCUUCUCU	290	AD-20851, AD-20835, AD-20865, AD-20826, AD-20831, AD-20806, AD-20861
1016	GAGAAGGCACUU	291	AAGUGCCUUCUC	292	AD-20851, AD-20835, AD-20865, AD-20831, AD-20806, AD-20861
1017	AGAAGGCACUUC	293	GAAGUGCCUUCU	294	AD-20851, AD-20835, AD-20865, AD-20806, AD-20861
1018	GAAGGCACUUCC	295	GGAAGUGCCUUC	296	AD-20851, AD-20835, AD-20865, AD-20861
1019	AAGGCACUUCCU	297	AGGAAGUGCCUU	298	AD-20851, AD-20835, AD-20865
1020	AGGCACUUCCUU	299	AAGGAAGUGCCU	300	AD-20835, AD-20865
1294	CUACAGUGACUA	301	UAGUCACUGUAG	302	AD-20828, AD-20825
1295	UACAGUGACUAC	303	GUAGUCACUGUA	304	AD-20834, AD-20825
1296	ACAGUGACUACA	305	UGUAGUCACUGU	306	AD-20828, AD-20834, AD-20825, AD-20836
1297	CAGUGACUACAA	307	UUGUAGUCACUG	308	AD-20834, AD-20805, AD-20825
1298	AGUGACUACAAC	309	GUUGUAGUCACU	310	AD-20828, AD-20834, AD-20805, AD-20825, AD-20836
1299	GUGACUACAACA	311	UGUUGUAGUCAC	312	AD-20834, AD-20805, AD-20808, AD-20825

Pos	Sense overlap	SEQ ID	Anti-sense overlap	SEQ ID	Overlapping RNAi agents to Beta-ENaC
1300	UGACUACAACAC	313	GUGUUGUAGUCA	314	AD-20828, AD-20834, AD-20805, AD-20808, AD-20825, AD-20815, AD-20836
1301	GACUACAACACG	315	CGUGUUGUAGUC	316	AD-20828, AD-20834, AD-20805, AD-20808, AD-20836
1302	ACUACAACACGA	317	UCGUGUUGUAGU	318	AD-20834, AD-20805, AD-20808
1303	CUACAAACACGAC	319	GUCGUGUUGUAG	320	AD-20805, AD-20808, AD-20815, AD-20836
1304	UACAACACGACC	321	GGUCGUGUUGUA	322	AD-20805, AD-20808
1305	ACAAACACGACCU	323	AGGUCGUGUUGU	324	AD-20808, AD-20815
1408	GGAGAAAUCUG	325	CAGUAUUCUCC	326	AD-20813, AD-20848
1409	GAGAAAUCUGC	327	GCAGUAUUCUC	328	AD-20813, AD-20848
1410	AGAAAUCUGCA	329	UGCAGUAUUCU	330	AD-20813, AD-20848
1411	GAAAUCUGCAA	331	UUGCAGUAUUC	332	AD-20813, AD-20848
1412	AAAUCUGCAAC	333	GUUGCAGUAUU	334	AD-20813, AD-20848
1413	AAUACUGCAACA	335	UGUUGCAGUAU	336	AD-20813, AD-20848
1414	AUACUGCAACAA	337	UUGUUGCAGUAU	338	AD-20813, AD-20848
1545	UCUCCAUGGCUG	339	CAGCCAUGGAGA	340	AD-20846, AD-20863
1546	CUCCAUGGCUGA	341	UCAGCCAUGGAG	342	AD-20846, AD-20863
1547	UCCAUGGCUGAC	343	GUCAGCCAUGGA	344	AD-20846, AD-20863
1548	CCAUGGCUGACU	345	AGUCAGCCAUGG	346	AD-20846, AD-20863
1549	CAUGGCUGACUG	347	CAGUCAGCCAUG	348	AD-20846, AD-20863
1550	AUGGCUGACUGG	349	CCAGUCAGCCA	350	AD-20846, AD-20863
1551	UGGCUGACUGGC	351	GCCAGUCAGCCA	352	AD-20846, AD-20863
1626	AUAUCACCCUGA	353	UCAGGGUGAUAU	354	AD-20816, AD-20827
1627	UAUCACCCUGAG	355	CUCAGGGUGAU	356	AD-20816, AD-20827, AD-20829
1628	AUCACCCUGAGC	357	GCUCAGGGUGAU	358	AD-20816, AD-20827, AD-20829, AD-20818
1629	UCACCCUGAGCA	359	UGCUCAGGGUGA	360	AD-20816, AD-20827, AD-20829, AD-20843, AD-20818
1630	CACCCUGAGCAG	361	CUGCUCAGGGUG	362	AD-20816, AD-20827, AD-20829, AD-20843, AD-20818
1631	ACCCUGAGCAGG	363	CCUGCUCAGGGU	364	AD-20816, AD-20827, AD-20829, AD-20843, AD-20818
1632	CCCUGAGCAGGA	365	UCCUGCUCAGGG	366	AD-20816, AD-20827, AD-20829, AD-20843, AD-20818
1633	CCUGAGCAGGAA	367	UUCCUGCUCAGG	368	AD-20827, AD-20829, AD-20843, AD-20818
1634	CUGAGCAGGAAG	369	CUUCCUGCUCAG	370	AD-20829, AD-20843, AD-20818
1635	UGAGCAGGAAGG	371	CCUUCUGCUCUA	372	AD-20843, AD-20818
1740	UGGGUGGCCAGU	373	ACUGGCCACCCA	374	AD-20824, AD-20849
1741	GGGUUGGCCAGUU	375	AACUGGCCACCC	376	AD-20824, AD-20841, AD-20849
1742	GGUGGCCAGUUU	377	AAACUGGCCACC	378	AD-20824, AD-20842, AD-20841, AD-20849

Pos	Sense overlap	SEQ ID	Anti-sense overlap	SEQ ID	Overlapping RNAi agents to Beta-ENaC
1743	GUGGCCAGUUUG	379	CAAACUGGCCAC	380	AD-20824, AD-20842, AD-20821, AD-20841, AD-20849
1744	UGGCCAGUUJUGG	381	CCAAACUGGCCA	382	AD-20824, AD-20842, AD-20821, AD-20838, AD-20841, AD-20849
1745	GGCCAGUUUGGC	383	GCCAAACUGGCC	384	AD-20824, AD-20842, AD-20821, AD-20838, AD-20841, AD-20823, AD-20849
1746	GCCAGUUUGGU	385	AGCCAAACUGGC	386	AD-20844, AD-20824, AD-20842, AD-20821, AD-20838, AD-20841, AD-20823, AD-20849
1747	CCAGUUUGGUU	387	AAGCCAAACUGG	388	AD-20814, AD-20844, AD-20842, AD-20821, AD-20838, AD-20841, AD-20823, AD-20849
1748	CAGUUUGGUUUC	389	GAAGCCAAACUG	390	AD-20814, AD-20844, AD-20842, AD-20821, AD-20838, AD-20841, AD-20822, AD-20823
1749	AGUUUGGUUUCU	391	AGAAGCCAAACU	392	AD-20814, AD-20844, AD-20842, AD-20821, AD-20852, AD-20838, AD-20822, AD-20823
1750	GUUUGGUUUCUG	393	CAGAAGCCAAAC	394	AD-20814, AD-20844, AD-20821, AD-20852, AD-20838, AD-20822, AD-20823
1751	UUUGGUUUCUGG	395	CCAGAAGCCAAA	396	AD-20814, AD-20844, AD-20852, AD-20838, AD-20822, AD-20823
1752	UUGGUUUCUGGA	397	UCCAGAAGCCAA	398	AD-20814, AD-20844, AD-20852, AD-20822, AD-20823
1753	UGGUUUCUGGAU	399	AUCCAGAAGCCA	400	AD-20814, AD-20844, AD-20852, AD-20822
1754	GGCUUCUGGAUG	401	CAUCCAGAAGCC	402	AD-20814, AD-20852, AD-20822
1755	GCUUCUGGAUGG	403	CCAUCAGAAGC	404	AD-20852, AD-20822
1914	AGCUGGUGGAGG	405	CCUCCACCAGCU	406	AD-20850, AD-20845
1915	GCUGGUGGAGGC	407	GCCUCCACCAGC	408	AD-20850, AD-20845, AD-20833
1916	CUGGUGGAGGCC	409	GGCCUCCACCAG	410	AD-20850, AD-20845, AD-20833, AD-20864
1917	UGGUGGAGGCC	411	GGGCCUCCACCA	412	AD-20810, AD-20850, AD-20845, AD-20833, AD-20864
1918	GGUGGAGGCCA	413	UGGGCCUCCACC	414	AD-20809, AD-20810, AD-20850, AD-20845, AD-20833, AD-20864
1919	GUGGAGGCCAC	415	GUGGGCCUCCAC	416	AD-20809, AD-20810, AD-20850, AD-20845, AD-20833, AD-20864, AD-20840
1920	UGGAGGCCACA	417	UGUGGGCCUCCA	418	AD-20809, AD-20810, AD-20850, AD-20845, AD-20833, AD-20864, AD-20840
1921	GGAGGCCACAC	419	GUGUGGGCCUCC	420	AD-20809, AD-20810, AD-20845, AD-20833, AD-20864, AD-20840
1922	GAGGCCACACC	421	GGUGUGGGCCUC	422	AD-20809, AD-20810, AD-20833, AD-20864, AD-20840
1923	AGGCCACACCA	423	UGGUGUGGGCCU	424	AD-20809, AD-20810, AD-20864, AD-20840

Pos	Sense overlap	SEQ ID	Anti-sense overlap	SEQ ID	Overlapping RNAi agents to Beta-ENaC
1924	GGCCCACACCAA	425	UUGGUGUGGGCC	426	AD-20809, AD-20810, AD-20840
1925	GCCCCACACCAAAC	427	GUUGGGUGUGGGC	428	AD-20809, AD-20840

[0782] The position ("Pos") in NM_000336.2 is indicated. 12 exemplary nt of the overlap in the sense and anti-sense strand are presented; in many cases, the overlap is actually longer.

EXAMPLE 2

Synthesis of Beta-ENaC RNAi Agent Sequences

[0783] The modified Beta-ENaC RNAi agent sequences listed as SEQ ID NO: 1 to 110 in Table 1 are synthesized on MerMade 192 synthesizer at 1 μ mol scale.

[0784] For all the sequences in the list, 'endolight' chemistry is applied as detailed below.

[0785] All pyrimidines (cytosine and uridine) in the sense strand contain 2'-O-Methyl bases (2' O-Methyl C and 2' O-Methyl U).

[0786] In the antisense strand, pyrimidines adjacent to (i.e., towards the 5' position) ribo A nucleoside are replaced with their corresponding 2-O-Methyl nucleosides.

[0787] A two-base dTsdT extension at 3' end of both sense and anti sense sequences is introduced.

[0788] The sequence file is converted to a text file to make it compatible for loading in the MerMade 192 synthesis software.

Synthesis, Cleavage and deprotection:

[0789] The synthesis of Beta-ENaC sequences uses solid supported oligonucleotide synthesis using phosphoramidite chemistry.

[0790] The synthesis of the above sequences is performed at 1 um scale in 96 well plates. The amidite solutions are prepared at 0.1 M concentration and ethyl thio tetrazole (0.6M in Acetonitrile) is used as activator.

[0791] The synthesized sequences are cleaved and de-protected in 96 well plates, using methylamine in the first step and fluoride reagent in the second step. The crude sequences are precipitated using acetone: ethanol (80:20) mix and the pellets are re-suspended in 0.2M sodium acetate buffer. Samples from each sequence are analyzed by LC-MS to confirm the identity, UV for quantification and a selected set of samples by IEX chromatography to determine purity.

Purification and desalting:

[0792] Beta-ENaC sequences are purified on AKTA explorer purification system using Source 15Q column. A column temperature of 65 C is maintained during purification. Sample injection and collection is performed in 96 well (1.8mL -deep well) plates. A single peak corresponding to the full length sequence is collected in the eluent. The purified sequences are desalted on a Sephadex G25 column using AKTA purifier. The desalted Beta-ENaC sequences are analyzed for concentration (by UV measurement at A260) and purity (by ion exchange HPLC).

[0793] The single strands are then submitted for annealing.

[0794] A detailed list of Beta-ENaC single strands and duplexes are shown in Table 1, above. The duplexes are used in *in vitro* screening to test their ability to knock down Beta-ENaC gene level.

EXAMPLE 3.***In vitro* screening of Beta-ENaC RNAi Agents**

[0795] The Beta-ENaC RNAi agents are screened *in vitro* to determine their ability to knock down Beta-ENaC gene level.

Cell culture and transfections:

[0796] H441 (ATCC, Manassas, VA) cells are grown to near confluence at 37°C in an atmosphere of 5% CO₂ in RPMI 1640 (ATCC) supplemented with 10% FBS, streptomycin, and glutamine (ATCC) before being released from the plate by trypsinization. Reverse transfection is carried out by adding 5 µl of Opti-MEM to 5 µl of siRNA duplexes per well into a 96-well plate along with 10 µl of Opti-MEM plus 0.2 µl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat # 13778-150) and incubated at room temperature for 15 minutes. 80 µl of complete growth media without antibiotic containing 2.0 × 10⁴ H441 cells are then added. Cells are incubated for 24 hours prior to RNA purification. Experiments are performed at 0.1 or 10 nM final duplex concentration for single dose screens with each of the 55 Beta-ENaC duplexes. Each siRNA is transfected 3 times at each of the doses tested. The results are shown in Table 3.

[0797] A subset of duplexes that shows robust silencing in the 10 nM and 0.1 nM screens is assayed over a range of concentrations from 10 nM to 10 fM using serial dilutions to determine their IC₅₀. The results are shown in Table 4.

Total RNA isolation:

[0798] Cells are harvested and lysed in 140 µl of Lysis/Binding Solution then mixed for 1 minute at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process).

[0799] A MagMAX-96 Total RNA Isolation Kit (Applied Biosystem, Foster City CA, part #: AM1830) is used to isolate total RNA. Twenty micro liters of magnetic beads and Lysis/Binding Enhancer mixture are added into cell-lysate and mixed for 5 minutes. Magnetic beads are captured using magnetic stand and the supernatant is removed without disturbing the beads. After removing supernatant, magnetic beads are washed with Wash Solution 1 (isopropanol added) and mixed for 1 minute. Beads are capture again and supernatant removed. Beads are then washed with 150 µl Wash Solution 2 (Ethanol added), captured and supernatant is removed. 50 µl of DNase mixture (MagMax turbo DNase Buffer and Turbo DNase) is then added to the beads and they are mixed for 10 to 15 minutes. After mixing, 100 µl of RNA Rebinding Solution is added and mixed for 3 minutes. Supernatant is removed and magnetic beads are washed again with 150 µl Wash Solution 2 and mixed for 1 minute and supernatant is removed completely. The magnetic beads are mixed for 2 minutes to dry before RNA is eluted with 50 µl of water.

cDNA synthesis:

[0800] ABI High capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, Cat #4368813) is used for cDNA synthesis. A master mix of 2 µl 10X Buffer, 0.8 µl 25X dNTPs, 2 µl Random primers, 1 µl Reverse Transcriptase, 1 µl RNase inhibitor and 3.2 µl of H₂O per reaction are added into 10 µl total RNA. cDNA is generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, CA) through the following steps: 25°C 10 min, 37°C 120 min, 85°C 5 sec, 4°C hold.

Real time PCR:

[0801] 2 µl of cDNA are added to a master mix containing 0.5 µl GAPDH TaqMan Probe (Applied Biosystems. Cat # 4326317E), 0.5 µl Beta-ENaC TaqMan probe (Applied Biosystems cat # Hs00165722_m1) and 5 µl Roche Probes Master Mix (Roche Cat # 04887301001) in a total of 10 µl per well in a LightCycler 480 384 well plate (Roche cat # 0472974001). Real time PCR is done in a LightCycler 480 Real Time PCR machine (Roche). Each duplex is tested in two independent transfections and each transfections is assayed in duplicate.

[0802] Real time data are analyzed using the $\Delta\Delta Ct$ method. Each sample is normalized to GAPDH expression and knockdown is assessed relative to cells transfected with the non-targeting duplex AD-1955. IC50s are defined using a 4 parameter fit model in XLfit.

[0803] The results are shown below. Table 3 shows the results of experiments performed at 0.1 nM or 10 nM final duplex concentrations for single dose screens with each of the 55 Beta-ENaC duplexes. The "Fraction message remaining" indicates the residual gene level, at 10 nM or 0.1 nM. Thus "0.17" in the second column for AD-20832-b1 indicates that, at a concentration of 10 nM, there was 17% residual gene level, or 83% knockdown of expression. Note also that the suffix "b1" indicates "batch 1." Thus, for example, a RNAi agent with the designation "AD-20832-b1" has the same sequence as a RNAi agent designated "AD-20832".

Table 3.10 nM and 0.1 nM knockdown of Beta-ENaC

	Fraction message remaining At 10 nM	Fraction message remaining At 0.1 nM	Standard deviation At 10 nM	Standard deviation At 0.1 nM
AD-20832-b1	0.17	0.33	0.04	0.03
AD-20848-b1	0.17	0.49	0.01	0.04
AD-20807-b1	0.18	0.26	0.02	0.05
AD-20826-b1	0.19	0.49	0.02	0.22
AD-20837-b1	0.19	0.51	0.04	0.04
AD-20861-b1	0.19	0.71	0.02	0.29
AD-20834-b1	0.20	0.34	0.06	0.05
AD-20806-b1	0.22	0.60	0.02	0.15
AD-20851-b1	0.23	0.55	0.04	0.07
AD-20865-b1	0.24	0.64	0.02	0.05
AD-20811-b1	0.25	0.52	0.17	0.23
AD-20819-b1	0.27	0.60	0.01	0.07
AD-20839-b1	0.27	0.55	0.06	0.05
AD-20835-b1	0.28	0.63	0.07	0.21
AD-20825-b1	0.30	0.72	0.11	0.15
AD-20867-b1	0.30	0.68	0.00	0.20
AD-20813-b1	0.34	0.56	0.17	0.36
AD-20823-b1	0.34	0.75	0.05	0.05
AD-20805-b1	0.36	0.86	0.02	0.09
AD-20831-b1	0.36	0.60	0.01	0.21
AD-20862-b1	0.38	0.93	0.02	0.29
AD-20808-b1	0.40	0.81	0.13	0.16
AD-20827-b1	0.40	2.55	0.07	1.44
AD-20828-b1	0.42	0.89	0.11	0.25
AD-20812-b1	0.47	0.74	0.32	0.36
AD-20836-b1	0.48	1.07	0.11	0.27
AD-20822-b1	0.49	0.94	0.11	0.09
AD-20810-b1	0.53	0.87	0.25	0.20
AD-20824-b1	0.54	1.12	0.08	0.33
AD-20844-b1	0.55	0.98	0.07	0.28
AD-20814-b1	0.60	1.30	0.09	0.12
AD-20838-b1	0.65	1.18	0.07	0.18
AD-20816-b1	0.66	1.38	0.05	0.17

	Fraction message remaining At 10 nM	Fraction message remaining At 0.1 nM	Standard deviation At 10 nM	Standard deviation At 0.1 nM
AD-20845-b1	0.72	1.18	0.01	0.27
AD-20820-b1	0.75	0.89	0.06	0.14
AD-20830-b1	0.75	0.94	0.04	0.24
AD-20866-b1	0.77	1.24	0.03	0.57
AD-20809-b1	0.78	1.05	0.05	0.03
AD-20833-b1	0.79	0.99	0.01	0.35
AD-20821-b1	0.80	0.99	0.07	0.14
AD-20846-b1	0.83	1.13	0.10	0.15
AD-20818-b1	0.88	1.36	0.04	0.62
AD-20817-b1	0.89	1.11	0.11	0.19
AD-20843-b1	0.92	1.64	0.11	0.16
AD-20840-b1	0.93	1.13	0.15	0.30
AD-20847-b1	0.94	0.99	0.64	0.12
AD-20815-b1	0.96	2.06	0.23	0.99
AD-20842-b1	0.96	1.37	0.16	0.28
AD-20852-b1	0.96	1.30	0.17	0.17
AD-20863-b1	0.99	0.84	0.24	0.11
AD-20864-b1	0.99	1.36	0.05	0.74
AD-20850-b1	1.00	1.22	0.14	0.14
AD-20829-b1	1.08	1.39	0.26	0.70
AD-20849-b1	1.11	1.31	0.27	0.17
AD-20841-b1	1.12	1.37	0.10	0.48

[0804] All the RNAi agents to Beta-ENaC used in these experiments were the modified sequences (SEQ ID NO: 1 to 110) listed in Table 1.

[0805] Table 4 shows the results of experiments wherein a subset of duplexes that show robust silencing in the 10 nM and 0.1 nM screens is assayed over a range of concentrations from 10 nM to 10 fM using serial dilutions to determine their IC50.

Table 4. Beta-ENaC dose response screen

Duplex_ID	H441 New (Average of 4 replicates)		H441 Old (Average of 8 replicates)	
	IC50nM	IC50 Standard deviation	IC50nM	IC50 Standard deviation
AD-20807	0.05	0.03	0.04	0.06
AD-20826	0.14	0.05	0.05	0.07
AD-20832	0.05	0.02	0.04	0.05
AD-20834	0.06	0.03	0.03	0.06
AD-20848	0.25	0.14	0.13	0.17
AD-20861	0.13	0.08	0.09	0.06

EXAMPLE 4

In vivo analysis of Beta-ENaC RNAi Agents AD-20807 and AD-20832

[0806] In *in vivo* experiments, two Beta-ENaC RNAi agents, AD-20807 and AD-20832, are tested for the ability to knock down Beta-ENaC gene level in whole lungs in rats. The purpose is to determine the dose responses. Immunostimulation is also measured.

[0807] The Rat strain used is Sprague-Dawley; individuals have an approximate weight of 280-300 grams. Rats are dosed once a day for two days. They are then sacrificed about 24 hrs after the second dose. The left lung is taken and ground for qPCR determination of Beta-ENaC levels; the right lung frozen and stored.

Table 5.

Group	Rat Numbers	Formulation	Concentration	Rats per group
1	1-5	D5W	NA	5
2	6-10	AD1955	10mg/kg	5
3	11-15	AD20191	10mg/kg	5
4	16-20	AD20807	10mg/kg	5
5	12-25	AD20807	3mg/kg	5
6	26-30	AD20807	1 mg/kg	5
7	31-35	AD20832	10mg/kg	4*
8	36-40	AD20832	3mg/kg	5
9	41-45	AD20832	1 mg/kg	5

*In the group of 4, 5 rats are initially dosed, but 1 in each group does not survive the experiment and is not included in the final data.

[0808] Both RNAi agents to Beta-ENaC, AD20807 and AD20832, show reductions in Beta-ENaC levels in a dose-dependent manner. For AD20807, the level of Beta-ENaC is reduced by approximately 30%, 40%, and 50% at dosages of 1, 3 and 10 mg/kg, respectively.

[0809] In contrast, the Beta-ENaC (bENaC) RNAi agents do not decrease the level of Alpha-ENaC (aENaC). There is, however, an increase in Alpha-ENaC with administration of AD20832.

Negative controls include:

[0810] D5W: a solution of 5% dextrose in water; it is the vehicle used to dilute the siRNA when dosing; AD1955: a siRNA which does not specifically target either Alpha- or Beta-ENaC, but targets firefly luciferase; and AD20191: a siRNA which does not bind to Beta-ENaC, but targets rat Alpha-ENaC; and AD-9201, which targets Alpha-ENaC (not used in this particular example).

[0811] Thus, specific knock-down of Beta-ENaC is seen with RNAi agent AD20807 and AD20832 in this experiment.

EXAMPLE 5

***In vivo* analysis of Beta-ENaC AD-20834**

[0812] In *in vivo* experiments, Beta-ENaC RNAi agent AD20834 is tested for its ability to knock down Beta-ENaC gene level in whole lungs in rats. The purpose is to determine the dosage responses. Immunostimulation is also measured.

[0813] The rat strain is Sprague-Dawley; individuals have an approximate weight of 280-300 grams. Rats are dosed once a day for two days. They are then sacrificed about 24 hours after the second dose. The left lung is taken and ground for qPCR determination of Beta-ENaC levels; the right lung is frozen and stored.

Table 6.

Group	rat #s	Formulation	concentration	rats per group
1	1-5	D5W	NA	5

Group	rat #s	Formulation	concentration	rats per group
2	6-10	AD1955	10mg/kg	4*
3	11-15	AD20191	10mg/kg	5
4	16-20	AD20834	10mg/kg	5
5	21-25	AD20834	3mg/kg	5
6	26-30	AD20834	1 mg/kg	4*

*In the groups of 4, 5 rats are initially dosed, but 1 in each group does not survive the experiment and is not included in the final data.

[0814] Assuming a weight of 300grams (0.3kg) the following dilutions are made:

10mg/kg = 3mg of siRNA in a 200uL volume = 15mg/mL

3mg/kg = 1 mg of siRNA in a 200uL volume = 5mg/mL

1 mg/kg = 0.3mg of siRNA in a 200uL volume = 1.5mg/mL

[0815] The data are normalized to PPIB [Peptidyl-prolyl cis-trans isomerase B, used as a housekeeping (normalization) gene].

[0816] The experiments show that Beta-ENaC RNAi agent AD20834 demonstrates an approximately 40% reduction in Beta-ENaC level in Sprague-Dawley rats. This effect is specific to Beta-ENaC.

[0817] The controls are as follows: D5W (5% dextrose in water) is a negative control, not showing an effect on Alpha-ENaC or Beta-ENaC levels. AD1955, a control siRNA which does not bind to Alpha- or Beta-ENaC, also showing little effect on Alpha- or Beta-ENaC level. The positive control siRNA AD20191, which targets Alpha- but not Beta-ENaC, demonstrates an approximately 50% reduction in Alpha-ENaC level, but not Beta-ENaC.

[0818] Thus, a dosage of 10 mg/kg of Beta-ENaC RNAi agent AD20834 demonstrates at least about 40% inhibition of Beta-ENaC gene expression in Sprague-Dawley rats.

EXAMPLE 6

Analysis of Beta-ENaC RNAi Agents

[0819] Additional experimentation is done with Beta-ENaC RNAi agents AD20807, AD20832, AD20834, AD20848, and AD20861 *in vivo* in Sprague-Dawley rats. Rats are dosed at 10 mg/kg in D5W on day 1 and day 2, and are sacrificed on day 3, and the lungs are collected.

[0820] The results are shown in Figure 1. The results show qPCR data from the left lung, normalized to the control gene PPIB.

[0821] The controls in Figure 1 are as follows: D5W (5% dextrose in water) is a negative control, not showing an effect on Alpha-ENaC or Beta-ENaC levels. The positive control is AD-9201, which targets Alpha-ENaC (αENaC).

[0822] The results, shown in Figure 1, show a statistically significant and specific knock-down of Beta-ENaC (βENaC) by AD20807, AD20832, AD20834, AD20848, and AD20861. The expression of the Beta-ENaC gene is inhibited by at least about 40% at a concentration of 10 mg/kg of these RNAi agents in Sprague-Dawley rats.

EXAMPLE 7

In vitro effect of Beta-ENaC RNAi Agent AD20832 on ENaC Channel Functional Activity in Human Bronchial Epithelial

Cells

[0823] Human Bronchial Epithelial Cells (HBEC) are transfected with the indicated siRNA, including Beta-ENaC RNAi agent AD20832. Transfected cells are seeded onto Snapwell inserts and cultured for 24 hours. Subsequently, the apical culture medium is removed from each insert and the cells cultured at Air Liquid Interface (ALI). Cells are assayed for ENaC and CFTR activity at Day 8 post-ALI as described. To control for cell viability, ENaC function is normalized to CFTR activity and the data presented as a percentage relative to the untransfected control (Figure 2A). As an additional viability control, trans-membrane resistance is also measured (Figure 2B). Expression analysis of alpha and beta ENaC subunit mRNA is performed for each insert and normalized to GAPDH expression. (Figure 2C). The data demonstrate that a 70% inhibition of mRNA expression is sufficient to generate a 50% functional inhibition of ENaC channel. This is true for knockdown of either alpha or beta subunits, where each is compared to untransfected (neg) and nonspecific (ns) siRNA controls. The data also show that beta ENaC siRNA does not inhibit alpha ENaC mRNA expression and vice versa.

Methods: ENaC functional activity in Human Bronchial Epithelial Cells

[0824] Human Bronchial Epithelial Cells (HBEC) are purchased from Lonza and passaged once before freezing in growth media (BEGM plus singlequots - Lonza). Subsequently, cells are thawed, expanded to confluence and split 1:10 for transfection. Once at 80% confluence, each flask of cells is transfected with the indicated siRNA at 30nM, using 2 μ L/mL Lipofectamine 2000 in a total volume of 30mL transfection media (1:1 mix of BEGM (Lonza) and DMEM high glucose (Gibco) with no additives). At 24 hours post-transfection, cells are seeded onto 6 well Snapwell inserts (Costar) at 2.5×10^5 cells/insert in differentiation medium (50:50 mix of BEMB and DMEM/high glucose with singlequots (minus the tri-iodothreonine and retinoic acid supplements, with all-trans retinoic acid added separately at 50nM). Cells are supplemented with 0.5mL differentiation media apically and 2.5mL differentiation media basolaterally. Following a further 24 hours of culture on the inserts the basolateral media is replaced and the apical media is removed, thus taking the cells to Air Liquid Interface (ALI) culture. Cells are assayed for ENaC and CFTR activity at Day 8 (D8) Post-ALI.

[0825] To assess the ion transport phenotype of the transfected cells the Snapwell inserts are mounted in Vertical Diffusion Chambers (Costar) and are bathed continuously with gassed Ringer solution (5% CO₂ in O₂; pH 7.4) maintained at 37°C containing (in mM): 120 NaCl, 25 NaHCO₃, 3.3 KH₂PO₄, 0.8 K₂HPO₄, 1.2 CaCl₂, 1.2 MgCl₂, and 10 glucose (Osmolarity maintained between 280 and 300 mosmol/l). Cells are voltage clamped to 0 mV (model EVC4000; WPI). Trans-membrane resistance (TM res) is measured by applying a 2-mV pulse at 30-s intervals and calculating TM res using Ohm's law. Short circuit current data are recorded using a PowerLab workstation (ADI Instruments). Activity of the ENaC channel in each group is assessed by the change in short-circuit current following the apical addition of 10 μ M of the ENaC blocker Amiloride (Amiloride-sensitive current). Chloride secretion via CFTR is assessed by the change in short circuit current following apical and basolateral addition of 0.6 μ M Forskolin which is known to activate CFTR (Forskolin response). For each insert the Amiloride-sensitive current is normalized to the Forskolin response and the data presented as a percentage relative to the untransfected control. At the end of the study each insert is lysed for RNA analysis (300 μ L RLT Buffer - Qiagen) and samples retained for subsequent analysis of mRNA knockdown by rtPCR as described.

Abbreviations:**[0826]**

ALI

Air-Liquid Interface

BEGM

Bronchial Epithelial Growth Medium

D6, D8

Day 6, Day 8

DMEM

Dulbecco's Modified Eagle Medium

HBEC

Human Bronchial Epithelial Cells

TM res

Trans-membrane resistance

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [EP1752536A \[0006\]](#)
- [WO0175164A \[0128\]](#)
- [WO01752164A \[0128\]](#)
- [WO2005021749A \[0136\]](#)
- [WO2007128477A \[0136\]](#)
- [WO2008147824A \[0170\]](#)
- [WO0044814A \[0174\]](#)
- [WO0168836A \[0174\]](#)
- [CA2359180 \[0174\]](#)
- [US20070111230A \[0194\]](#)
- [US5032401A \[0195\]](#)
- [US5607677A \[0195\]](#)
- [US20050261781A \[0195\]](#)
- [WO02100436A1A \[0204\]](#)
- [WO03015757A1 \[0204\]](#)
- [WO04029213A2 \[0204\]](#)
- [US5962016A \[0204\]](#)
- [US5030453A \[0204\]](#)
- [US6680068B \[0204\]](#)
- [US20040208921A \[0204\]](#)
- [WO04002453A1 \[0204\]](#)
- [US20040204377A \[0205\]](#)
- [US20030012812A \[0206\]](#)
- [US20060240093A \[0207\]](#)
- [US20070135372A \[0207\]](#)
- [WO2009082817A \[0207\]](#)
- [US5399163A \[0219\]](#)
- [US5383851A \[0219\]](#)
- [US5312335A \[0219\]](#)
- [US5064413A \[0219\]](#)
- [US4941880A \[0219\]](#)
- [US4790834A \[0219\]](#)
- [US4596556A \[0219\]](#)
- [US4487603A \[0219\]](#)
- [US4486194A \[0219\]](#)
- [US4447233A \[0219\]](#)
- [US4447224A \[0219\]](#)
- [US4439196A \[0219\]](#)
- [US4475196A \[0219\]](#)
- [US4522811A \[0220\]](#)
- [US5374548A \[0220\]](#)

- [US5399331A \[0229\]](#)
- [US5416016A \[0221\]](#)
- [US346069P \[0249\]](#)
- [US0241850W \[0249\]](#)

Non-patent literature cited in the description

- **SAXENA et al.** Biochem. Biophys. Res. Comm., 1998, vol. 252, 208-213 [\[0092\]](#) [\[0098\]](#)
- **HUMMLER et al.** Am. J. Physiol. Gastrointest. Liver Physiol., 1999, vol. 276, 567-571 [\[0095\]](#) [\[0229\]](#) [\[0233\]](#)
- **MCDONALD et al.** Am. J. Physiol. Renal Physiol., 2002, vol. 283, 3F431-6 [\[0106\]](#)
- **HARVEY et al.** J. Biol. Chem., 2001, vol. 276, 118597-601 [\[0106\]](#)
- **FARR et al.** Biochem. J., 2000, vol. 345, 503-9 [\[0106\]](#)
- **GARTY et al.** Physiol. Rev., 1997, vol. 77, 359-396 [\[0107\]](#)
- **AHN et al.** Am. J. Physiol., 1999, vol. 277, F121-F129 [\[0107\]](#)
- **SIoud** J. Mol. Biol., 2005, vol. 348, 1079-1090 [\[0122\]](#)
- **HUTVAGNER et al.** Science, 2001, vol. 293, 834- [\[0126\]](#)
- **SHARP et al.** Genes Dev., 2001, vol. 15, 485- [\[0127\]](#)
- **BERNSTEIN et al.** Nature, 2001, vol. 409, 363- [\[0127\]](#)
- **NYKANEN et al.** Cell, 2001, vol. 107, 309- [\[0127\]](#)
- **ELBASHIR et al.** Genes Dev., 2001, vol. 15, 188- [\[0127\]](#)
- **ELBASHIR et al.** EMBO J., 2001, vol. 20, 6877- [\[0128\]](#)
- **HUMMER et al.** J. Am. Soc. Nephrol., 2005, vol. 16, 3160-3166 [\[0154\]](#)
- **RANDRIANARISON et al.** Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, vol. 294, 409-416 [\[0154\]](#) [\[0159\]](#) [\[0160\]](#)
- **CAO et al.** Am. J. Physiol. Renal Physiol., 2006, [\[0154\]](#)
- **BRAUNER-OSBORNE et al.** Biochim. Biophys. Acta, 2001, vol. 1518, 237-248 [\[0155\]](#)
- **GAMBLING et al.** Kidney Intl., 2004, vol. 65, 1774-1781 [\[0160\]](#)
- **ZHOU et al.** Am. J. Resp. Crit. Care Med., 2008, vol. 178, 1245-1256 [\[0160\]](#)
- **PARRISH et al.** Molecular Cell, 2000, vol. 6, 1077-1087 [\[0175\]](#)
- **HENSCHEL et al.** DEQOR: a web-based tool for the design and quality control of siRNAs Nucleic Acids Research, 2004, vol. 32, W113-W120 [\[0176\]](#)
- **USMANCEDERGREN** TIBS, 1992, vol. 17, 34- [\[0177\]](#)
- **USMAN et al.** Nucleic Acids Symp. Ser., 1994, vol. 31, 163- [\[0177\]](#)
- **BURGIN et al.** Biochemistry, 1996, vol. 35, 14090- [\[0177\]](#)
- **SOUTSCHEK et al.** Nature, 2004, vol. 432, 173-178 [\[0178\]](#)
- **GAULTIER et al.** Nucleic Acids. Res., 1987, vol. 15, 6625-6641 [\[0186\]](#)
- **INOUE et al.** Nucleic Acids Res., 1987, vol. 15, 6131-6148 [\[0187\]](#)
- **INOUE et al.** FEBS Lett., 1987, vol. 215, 327-330 [\[0187\]](#)
- **HASELHOFF et al.** Nature, 1988, vol. 334, 585-591 [\[0188\]](#)
- **HELENE** Anticancer Drug Des., 1991, vol. 6, 6569-84 [\[0189\]](#)
- **HELENE et al.** Ann. N.Y. Acad. Sci., 1992, vol. 660, 27-36 [\[0189\]](#)
- **MAHER** Bioassays, 1992, vol. 14, 12807-15 [\[0189\]](#)
- **XIA et al.** Nat. Biotechnol., 2002, 20- [\[0190\]](#)
- **DEVROE et al.** BMC Biotechnol., 2002, vol. 2 1, 15- [\[0196\]](#)
- **OVCHARENKO** DEfficient delivery of siRNAs to human primary cells Ambion TechNotes, 2003, vol. 10, 515-16 [\[0208\]](#)
- **SONG et al.** Nat Med., 2003, [\[0208\]](#)
- **CAPLEN et al.** Proc. Natl. Acad. Sci. (USA), 2001, vol. 98, 9742-9747 [\[0208\]](#)
- **MCCAFFREY et al.** Nature, vol. 414, 34-39 [\[0208\]](#)
- **SONG et al.** Nat Biotech., 2005, vol. 23, 709-717 [\[0209\]](#)
- **SCHIFFELERS et al.** Nucl. Acids Res., 2004, vol. 32, el49141-1 10 [\[0209\]](#)
- **HU-LIESKOVAN et al.** Cancer Res., 2005, vol. 65, 8984-8992 [\[0210\]](#)
- **V.V. RANADE** J. Clin. Pharmacol., 1989, vol. 29, 685- [\[0220\]](#)
- **UMEZAWA et al.** Biochem. Biophys. Res. Commun., 1988, vol. 153, 1038- [\[0221\]](#)
- **P.G. BLOEMAN et al.** FEBS Lett., 1995, vol. 357, 140- [\[0221\]](#)
- **M. OWAIS et al.** Antimicrob. Agents Chemother., 1995, vol. 39, 180- [\[0221\]](#)

- **BRISCOE et al.** Am. J. Physiol., 1995, vol. 268, 134- [\[0221\]](#)
- **SCHREIER et al.** J. Biol. Chem., 1994, vol. 269, 9090- [\[0221\]](#)
- **K. KEINANENM.L. LAUKKANEN** FEBS Lett., 1994, vol. 346, 123- [\[0221\]](#)
- **J.J. KILLIONI.J. FIDLER** Immunomethods, 1994, vol. 4, 273- [\[0221\]](#)
- **BICKEL et al.** Am. J. Physiol. Renal Physiol., 2001, vol. 281, 639-648 [\[0231\]](#)
- **HYDE et al.** The 23rd North American Cystic Fibrosis Conference, Minneapolis, 2009, [\[0249\]](#)

Patentkrav

1. Sammensætning, som omfatter et RNAi-agens, der omfatter en sense-streng og en antisense-streng, hvor antisense-strengen omfatter mindst 15 sam-
5 menhængende nukleotider fra antisense-strengen fra et RNAi-agens, som er specifikt for Beta-ENaC, i overensstemmelse med sekvensen ifølge SEQ ID NO: 170.
2. Sammensætning ifølge krav 1, hvor sammensætningen endvidere omfatter
10 et andet RNAi-agens mod Beta-ENaC, som er tilvejebragt i tabel 1.
3. Sammensætning ifølge krav 1 eller 2, hvor RNAi-agenset omfatter mindst én modificeret rygrad og/eller mindst ét 2'-modificeret nukleotid.
- 15 4. Sammensætning ifølge et hvilket som helst af kravene 1-3, hvor RNAi-agen-
set er ligeret til et eller flere agenser valgt blandt: diagnostisk forbindelse, repor-
tergruppe, tværbindingsmiddel, nukleaseresistensbibringende del, naturlig eller
usædvanlig nukleobase, lipofilt molekyle, cholesterol, lipid, lectin, steroid, uvaol,
hecigenin, diosgenin, terpen, triterpen, sarsasapogenin, friedelin, epifriedelanol-
20 derivatiseret lithocholsyre, vitamin, carbohydrat, dextran, pullulan, chitin, chito-
san, syntetisk carbohydrat, oligolactat-15-mer, naturlig polymer, polymer med lav
eller middelhøj molekylvægt, inulin, cyclodextrin, hyaluronsyre, protein, protein-
bindende agens, integrinmålsøgningsmolekyle, polykation, peptid, polyamin,
peptidimitator og/eller transferrin.
- 25 5. Sammensætning ifølge et hvilket som helst af kravene 1-4, hvor alle pyrimi-
dinerne er 2'-O-methyl-modificerede nukleotider.
6. Sammensætning ifølge et hvilket som helst af kravene 1-5, hvor sense-
30 strengen og antisense-strengen hver har en længde på mindst 19 nukleotider og
ikke mere end 30 nukleotider, og hvor sense-strengen og/eller antisense-stren-
gen er modificeret eller umodificeret.

7. Anvendelse af en sammensætning ifølge et hvilket som helst af kravene 1-6 til fremstilling af et lægemiddel til behandling af en Beta-ENaC-relateret sygdom hos et individ.
- 5 8. Anvendelse ifølge krav 7, hvor den Beta-ENaC-relaterede sygdom er cystisk fibrose, pseudohypoaldosteronisme type 1 (PHA1), Liddles syndrom, hypertension, alkalose, hypokalæmi og/eller hypertension associeret med overvægt.
9. Anvendelse ifølge krav 7 eller 8, hvor sammensætningen endvidere omfatter
- 10 en yderligere antagonist mod ENaC.
10. Farmaceutisk sammensætning, som omfatter sammensætningen ifølge et hvilket som helst af kravene 1-6 og en farmaceutisk acceptabel bærer.

DRAWINGS

B.

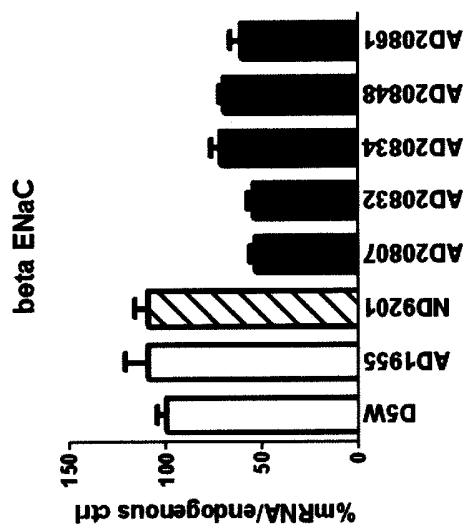
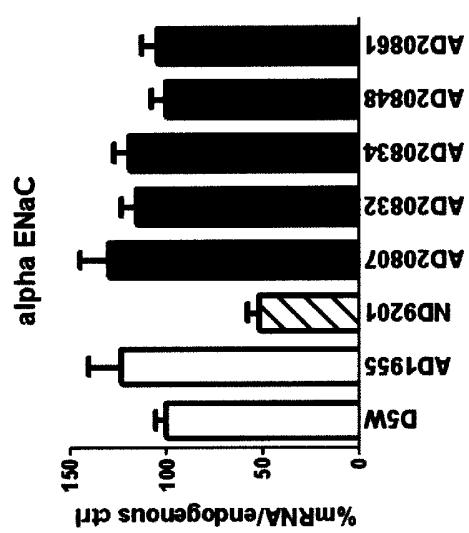



FIG. 1

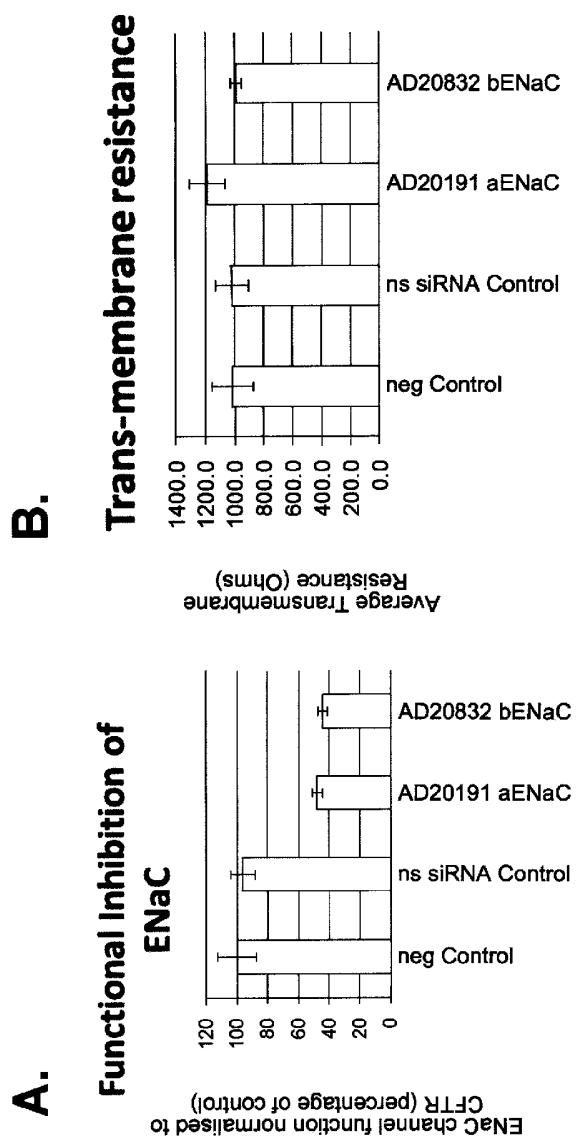
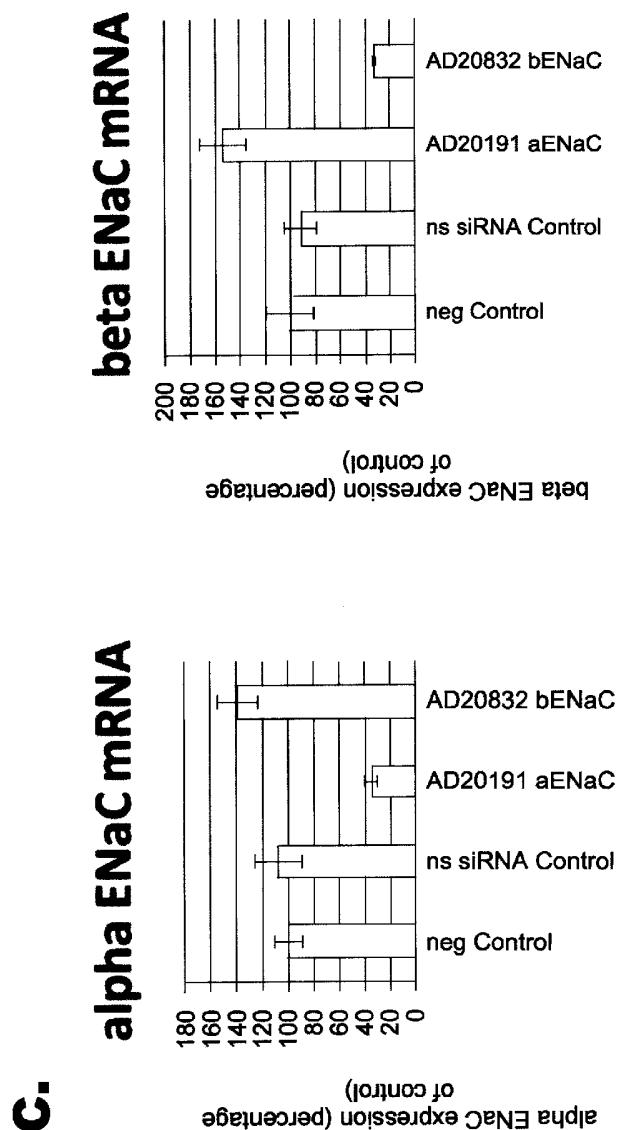


FIG. 2

FIG. 2

