wo 2016/111952 A2 |11 N0F 00 00O 0 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

14 July 2016 (14.07.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/111952 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 11/34 (2006.01) GO6F 11/30 (2006.01)
GO6F 11/36 (2006.01) GO6F 11/32 (2006.01)

Group Docketing (Bldg. 8/1000), One Microsoft Way,
Redmond, Washington 98052-6399 (US). SHOOTS, Dav-
id, William; Microsoft Technology Licensing, LLC, Attn:
Patent Group Docketing (Bldg. 8/1000), One Microsoft

International Application Number: . i
PCT/US2016/012100 Way, Redmond, Washington 98052-6399 (US).
. .) (74) Agents: MINHAS, Sandip et al.; Microsotft Corporation,
International Filing Date: 5 2016 (05.01 2016 Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
anuary 2016 (05.01.2016) crosoft Way, Redmond, Washington 98052-6399 (US).
Filing Language: English (81) Designated States (uniess otherwise indicated, for every
Publication Language: English kind of national protection available). AE, AG, AL, AM,
L. AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Applicant: MICROSOFT TECHNOLOGY LICENS- HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg. KZ, LA, LG, LK, LR, LS, LU, LY, MA, MD, ME, MG,
8/1000), One Microsott Way, Redmond, Washington MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
i} PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
98052-6399 (US).
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
Inventors: AJITH KUMAR, Harikrishna Menon; Mi- TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
crosoft Technology Licensing, LLC, Attn: Patent Group
(84) Designated States (uniess otherwise indicated, for every

Docketing (Bldg. 8/1000), One Microsoft Way, Redmond,
Washington 98052-6399 (US). SARDA, Pankaj Ka-
chrulal; Microsoft Technology Licensing, LLC, Attn: Pat-
ent Group Docketing (Bldg. 8/1000), One Microsoft Way,
Redmond, Washington 98052-6399 (US). PESSOA, Car-
los; Microsoft Technology Licensing, LLC, Attn: Patent

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: PERFORMANCE STATE MACHINE CONTROL WITH AGGREGATION INSERTION

TRACE
FILE 146

WRITE 804 TRACE
‘ INTERCEPT 802 TRACE

READ 812
TRACE
EVENTS

l

PROCESS 806
TRACE
EVENTS

SCENARIO
DETECTED?

YES
¥

AGGREGATE 712
PERFORMANCE DATA

|

SEND 810 DATA TO
GRAPHING ENGINE

SCENARIO LIST 814
AND HEURISTICS
622

NO

PIVOTS 808
FOR
AGGREGATION

Fig. 8

PROCESS

120

(57) Abstract: A performance state machine is controlled in part by identi-
fying notifications from an execution trace of an application program,
through rapid automatic comparison of trace events to notification events for
notification categories. Some notification categories include application
startup, page outline load, page data load start, page data load finish, page to
page transition, application input, window size change, media query, bind-
ing update, page background task start, page background task finish, de-
veloper-defined scenario start, and developer-defined scenario finish. Noti-
fications may reflect heuristics such as the time from startup to first frame
submission. A state is placed in the performance state machine for each
identified notitication, with aggregate application performance data for each
transition between identified notifications. Some performance data categor-
ies include network activity, disk activity, memory usage, parse time, frame
time, dropped frames, component or overall frame rates, and thread utiliza-
tion. Timelines and other visual representations aid application performance
optimization.

WO 2016/111952 A2 |IIWAT 00N T AT EREA AU

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

PERFORMANCE STATE MACHINE CONTROL WITH AGGREGATION
INSERTION

BACKGROUND
[0001] In computing, different kinds of performance tests are done to assess
computing system performance in various circumstances. System performance
characteristics such as responsiveness, reliability, scalability, and resource usage, among
others, can be investigated or verified under a particular workload pattern. For example,
load testing can investigate a computing system’s behavior under a specific work load,
such as a specified number of concurrent users of an application who perform a specific
number of transactions within a specified time period. Stress testing can investigate the
upper limits of system capacity under extreme loads to help developers or administrators
determine the system’s breaking point. Endurance testing can investigate the system’s
ability to operate continuously for long periods under normal loads, by detecting slow
leaks in memory usage and other performance degradation. Spike testing can investigate
the system’s ability to properly handle sudden increases in load, such as spikes generated
by sudden demands from a very large number of users. Configuration tests can investigate
the performance impact of configuration changes to the system’s components, such as
changing system configuration by swapping storage subsystems, adding threads, or adding
machines to a cluster or to a cloud-based architecture.

SUMMARY

[0002] Some embodiments control a performance state machine in part by identifying
notifications from an execution trace of an application program. The execution trace
includes a plurality of trace events within a period which has endpoints. The notifications
are identified through comparison of trace events to notification events for one or more
notification categories. Some examples of notification categories include application
startup, page outline load, page data load start, page data load finish, page to page
transition, application input, window size change, media query, binding update, page
background task start, page background task finish, developer-defined scenario start, and
developer-defined scenario finish. Some embodiments place a state in the performance
state machine for each identified notification, with aggregate application performance data
for each transition between identified notifications. The performance data individually
and/or collectively include data in one or more performance data categories. Some

examples of performance data categories include network activity, disk activity, memory

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

usage, parse time, frame time, elapsed time, dropped frames, component frame rate,

overall frame rate, CPU utilization, and thread utilization. Some embodiments insert

performance data aggregations in the performance state machine. Some display a visual

representation of the state machine states, transitions, and performance data aggregations

on a display screen. Some capture altered performance of the application in an updated

execution trace, and some of those subsequently alter at least one state, transition, or

performance data aggregation of the state machine.

[0003] The examples given are merely illustrative. This Summary is not intended to

identify key features or essential features of the claimed subject matter, nor is it intended

to be used to limit the scope of the claimed subject matter. Rather, this Summary is

provided to introduce — in a simplified form — some technical concepts that are further

described below in the Detailed Description. The innovation is defined with claims, and to

the extent this Summary conflicts with the claims, the claims should prevail.
DESCRIPTION OF THE DRAWINGS

[0004] A more particular description will be given with reference to the attached

drawings. These drawings only illustrate selected aspects and thus do not fully determine

coverage or scope.

[0005] Figure 1 is a block diagram illustrating a computer system having at least one

processor and at least one memory which interact with one another for the control of

application performance optimization, and other items in an operating environment which

may be present on multiple network nodes, and also illustrating configured storage

medium (as opposed to propagated signal) embodiments;

[0006] Figure 2 is a block diagram illustrating an example architecture with aspects of

performance data aggregation and state machine control;

[0007] Figure 3 is a block diagram illustrating notification categories;

[0008] Figure 4 is a block diagram illustrating performance data categories;

[0009] Figure 5 is a block diagram illustrating threads;

[0010] Figure 6 is a block diagram illustrating a further example architecture with

aspects of performance data aggregation and state machine control, including a

development machine and an end-user machine;

[0011] Figure 7 is a flow chart illustrating aspects of some process and configured

storage medium examples of performance state machine control with aggregation

insertion; and

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[0012] Figure 8 is another flow chart illustrating aspects of some process and
configured storage medium examples of performance state machine control with
aggregation insertion.
DETAILED DESCRIPTION
[0013] Acronyms
[0014] Some acronyms are defined below, but others may be defined elsewhere herein
or require no definition to be understood by one of skill.
[0015] ALU: arithmetic and logic unit
[0016] API: application program interface
[0017] CD: compact disc
[0018] CGI: computer-generated imagery
[0019] CPU: central processing unit
[0020] CSS: cascading style sheets
[0021] DVD: digital versatile disk or digital video disc
[0022] FPGA: field-programmable gate array
[0023] FPS: frames per second
[0024] FPU: floating point processing unit
[0025] GPU: graphical processing unit
[0026] GUI. graphical user interface
[0027] HTML.: hypertext markup language
[0028] IDE: integrated development environment, sometimes also called “interactive
development environment”
[0029] RAM: random access memory
[0030] ROM: read only memory
[0031] UL user interface
[0032] Overview
[0033] As used here, “frame” refers to a frame in a sequence of successively displayed
images. A give frame may appear one or more times in the sequence, but the present
teachings are particularly helpful when each frame displayed in an animation sequence has
different display content than the prior frame.
[0034] A “frame buffer” is a digital memory which holds pixel data for display on a
display screen. Such pixel data is an example of “display content.”
[0035] “Frame rate” is the number of frames displayed within a given time period,

either by given component(s) of a system or by an overall system. Progressive scanning is

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

assumed in the examples herein unless interlacing is indicated, but the teachings provided
apply regardless.

[0036] Frame rate can be identified either as the number of frames per second, or as
the duration of a given frame. A frame rate of 24 FPS (frames per second), for example,
corresponds to a frame duration of 1/24" of a second, which is about 42 ms (milliseconds).
25 FPS corresponds to a frame lasting exactly 40 ms, 30 FPS corresponds to a frame
length of about 33 ms, 46 FPS corresponds to frames that are approximately 22 ms, and so
on. Progressive formats that operate at 24 FPS or 25 FPS are well known. Thomas Edison
indicated that 46 FPS is the minimum needed for the human visual cortex to avoid eye
strain. In the present context, a target for providing user interfaces that people perceive as
smooth and responsive includes frame durations of 16 ms or less, which corresponds to a
frame rate of 62.5 FPS or higher.

[0037] “Frame preparation time” is the time spent preparing a frame, e.g., obtaining
and/or generating the frame’s pixel data and placing it in the frame buffer. This may be the
time spent by given component(s) of a system or by an overall system. Shorter frame
preparation times contribute to faster frame rates, particularly when frame display content
changes with each frame and frames are displayed as soon as they are prepared or shortly
thereafter.

[0038] In computing system architectures that use retained mode graphics, frames are
generated for a variety of reasons. Screen widgets and user interface controls may be
animated or relocated. Windows may be opened, closed, resized, moved, or refreshed.
Other displayed items may be animated, resized, rotated and/or translated, morphed, and
otherwise altered in some way that invalidates a displayed frame and results in creation
and display of a replacement frame.

[0039] Excessive or long frame preparation times can contribute to poor application
performance and responsiveness. As used here, a “long frame preparation time” is one 17
ms or greater, and an “excessive frame preparation time” is a long frame preparation time
that is also at least 5 ms longer than the previous frame’s preparation time.

[0040] It can be very difficult to determine what specific event or set of events caused
or contributed to the performance of a particular scenario, e.g., what caused a frame to be
prepared for display. Developers may manually inspect a large number of events and still
be unable to determine precisely the root cause, e.g., the exact reason a frame was
invalidated and hence the exact reason time and resources were taken to prepare a

replacement for the invalidated frame. Timeline tools depend on locality of reference,

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

which is imprecise. Under a familiar locality of reference approach, any of the numerous
events that happened before a frame invalidation or other scenario could be the cause of
the scenario, and it is left to developers to use their knowledge of the particular code to try
and identify the small subset of events that actually caused the scenario.

[0041] Tool displays that depict application execution by displaying events of interest
generally tend to overwhelm users with the sheer number of events that happen during
application execution. In-order to troubleshoot problems in an application, users often
have to know what specific narrow range of time, or what specific low-level event, they
are looking for in a trace, and may have to instrument their application to identify these
specifics.

[0042] Some embodiments presented herein aggregate performance data on a per-
scenario basis and attribute scenario causality automatically. Some examine events that
precede a scenario and determine an event or subset of events that causes the scenario.
Some embodiments bring optimization issues and opportunities to the front of a
developer’s attention by automatically aggregating performance data on scenarios
important to application responsiveness and fluidity like Application Startup, Page Load &
Transition, Application Input (e.g., handling/responsiveness), Window Size Changes and
many more. Users can also use these scenarios to visualize their application execution in a
state machine and correspondingly identify opportunities of optimization throughout
execution. Details used in various alternative embodiments are discussed.

[0043] Some embodiments described herein may be viewed in a broader context. For
instance, concepts such as aggregation, change, categorization, control, filtering,
identification, invalidation, performance, time and/or visualization may be relevant to a
particular embodiment. However, it does not follow from the availability of a broad
context that exclusive rights are being sought herein for abstract ideas; they are not.
Rather, the present disclosure is focused on providing appropriately specific embodiments
whose technical effects fully or partially solve particular technical problems. Other media,
systems, and methods involving aggregation, change, categorization, control, filtering,
identification, invalidation, performance, time and/or visualization are outside the present
scope. Accordingly, vagueness, mere abstractness, lack of technical character, and
accompanying proof problems are also avoided under a proper understanding of the
present disclosure.

[0044] The technical character of embodiments described herein will be apparent to

one of ordinary skill in the art, and will also be apparent in several ways to a wide range of

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

attentive readers. First, some embodiments address technical problems such as attributing
scenario causality, increasing frame rate and/or other performance measures, and filtering
out extraneous data. Second, some embodiments include technical components such as
computing hardware which interacts with software in a manner beyond the typical
interactions within a general purpose computer. For example, in addition to normal
interaction such as memory allocation in general, memory reads and write in general,
instruction execution in general, and some sort of I/O, some embodiments described
herein apply filters to isolate particular kinds of property changes, resource usages, and/or
other events. Third, technical effects provided by some embodiments include reduction of
computational resource usage, such as less memory usage and/or less GPU usage. Fourth,
some embodiments modify technical functionality of applications by optimizing retained
mode graphics processing and/or software processing based on technical considerations
such as consolidating changes so they provoke a smaller number of scenarios. Fifth,
technical advantages of some embodiments include one or more of the following:
simplified application development, reduced hardware requirements (memory, CPU,
GPU), faster processing of a given scenario effort, and reduced processing workloads.
[0045] Reference will be made to exemplary embodiments such as those illustrated in
the drawings, and specific language will be used herein to describe the same. But
alterations and further modifications of the features illustrated herein, and additional
technical applications of the abstract principles illustrated by particular embodiments
herein, which would occur to one skilled in the relevant art(s) and having possession of
this disclosure, should be considered within the scope of the claims.

[0046] Some Additional Terminology

[0047] The meaning of terms is clarified in this disclosure, so the claims should be
read with careful attention to these clarifications. Specific examples are given, but those of
skill in the relevant art(s) will understand that other examples may also fall within the
meaning of the terms used, and within the scope of one or more claims. Terms do not
necessarily have the same meaning here that they have in general usage (particularly in
non-technical usage), or in the usage of a particular industry, or in a particular dictionary
or set of dictionaries. Reference numerals may be used with various phrasings, to help
show the breadth of a term. Omission of a reference numeral from a given piece of text
does not necessarily mean that the content of a Figure is not being discussed by the text.
The inventors assert and exercise their right to their own lexicography. Quoted terms are

defined explicitly, but quotation marks are not used when a term is defined implicitly.

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

Terms may be defined, either explicitly or implicitly, here in the Detailed Description
and/or elsewhere in the application file.

[0048] As used herein, a “computer system” may include, for example, one or more
servers, motherboards, processing nodes, personal computers (portable or not), personal
digital assistants, smartphones, cell or mobile phones, other mobile devices having at least
a processor and a memory, and/or other device(s) providing one or more processors
controlled at least in part by instructions. The instructions may be in the form of firmware
or other software in memory and/or specialized circuitry. In particular, although it may
occur that many embodiments run on workstation or laptop computers, other embodiments
may run on other computing devices, and any one or more such devices may be part of a
given embodiment.

[0049] A “multithreaded” computer system is a computer system which supports
multiple execution threads. The term “thread” should be understood to include any code
capable of or subject to scheduling (and possibly to synchronization), and may also be
known by another name, such as “task,” “process,” or “coroutine,” for example. The
threads may run in parallel, in sequence, or in a combination of parallel execution (e.g.,
multiprocessing) and sequential execution (e.g., time-sliced). Multithreaded environments
have been designed in various configurations. Execution threads may run in parallel, or
threads may be organized for parallel execution but actually take turns executing in
sequence. Multithreading may be implemented, for example, by running different threads
on different cores in a multiprocessing environment, by time-slicing different threads on a
single processor core, or by some combination of time-sliced and multi-processor
threading. Thread context switches may be initiated, for example, by a kernel’s thread
scheduler, by user-space signals, or by a combination of user-space and kernel operations.
Threads may take turns operating on shared data, or each thread may operate on its own
data, for example.

[0050] A “logical processor” or “processor” is a single independent hardware thread-
processing unit, such as a core in a simultaneous multithreading implementation. As
another example, a hyperthreaded quad core chip running two threads per core has eight
logical processors. A logical processor includes hardware. The term “logical” is used to
prevent a mistaken conclusion that a given chip has at most one processor; “logical
processor” and “processor” are used interchangeably herein. Processors may be general
purpose, or they may be tailored for specific uses such as graphics processing, signal

processing, floating-point arithmetic processing, encryption, I/O processing, and so on.

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[0051] A “multiprocessor” computer system is a computer system which has multiple
logical processors. Multiprocessor environments occur in various configurations. In a
given configuration, all of the processors may be functionally equal, whereas in another
configuration some processors may differ from other processors by virtue of having
different hardware capabilities, different software assignments, or both. Depending on the
configuration, processors may be tightly coupled to each other on a single bus, or they
may be loosely coupled. In some configurations the processors share a central memory, in
some they each have their own local memory, and in some configurations both shared and
local memories are present.

[0052] “Kernels” include operating systems, hypervisors, virtual machines, BIOS
code, and similar hardware interface software.

[0053] “Code” means processor instructions, data (which includes constants, variables,
and data structures), or both instructions and data.

[0054] “Program” is used broadly herein, to include applications, kernels, drivers,
interrupt handlers, libraries, and other code written by programmers (who are also referred
to as developers).

[0055] “Program” is used broadly herein, to include applications, kernels, drivers,
interrupt handlers, firmware, state machines, libraries, and other code written by
programmers (who are also referred to as developers).

[0056] “Routine” means a function, a procedure, an exception handler, an interrupt
handler, or another block of instructions which receives control via a jump and a context
save. A context save pushes a return address on a stack or otherwise saves the return
address, and may also save register contents to be restored upon return from the routine.
[0057] “IoT” or “Internet of Things” means any networked collection of addressable
embedded computing nodes. Such nodes are examples of computer systems as defined
herein, but they also have at least two of the following characteristics: (a) no local human-
readable display; (b) no local keyboard; (¢) the primary source of input is sensors that
track sources of non-linguistic data; (d) no local rotational disk storage — RAM chips or
ROM chips provide the only local memory; () no CD or DVD drive; (f) embedment in a
household appliance; (g) embedment in an implanted medical device; (h) embedment in a
vehicle; (1) embedment in a process automation control system; or (j) a design focused on
one of the following: environmental monitoring, civic infrastructure monitoring, industrial
equipment monitoring, energy usage monitoring, human or animal health monitoring, or

physical transportation system monitoring.

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[0058] As used herein, “include” allows additional elements (i.e., includes means
comprises) unless otherwise stated. “Consists of” means consists essentially of, or consists
entirely of. X consists essentially of Y when the non-Y part of X, if any, can be freely
altered, removed, and/or added without altering the functionality of claimed embodiments
so far as a claim in question is concerned.

[0059] “Process” is sometimes used herein as a term of the computing science arts,
and in that technical sense encompasses resource users, namely, coroutines, threads, tasks,
interrupt handlers, application processes, kernel processes, procedures, and object
methods, for example. “Process” is also used herein as a patent law term of art, e.g., in
describing a process claim as opposed to a system claim or an article of manufacture
(configured storage medium) claim. Similarly, “method” is used herein at times as a
technical term in the computing science arts (a kind of “routine”) and also as a patent law
term of art (a “process”). Those of skill will understand which meaning is intended in a
particular instance, and will also understand that a given claimed process or method (in the
patent law sense) may sometimes be implemented using one or more processes or methods
(in the computing science sense).

[0060] “Automatically” means by use of automation (e.g., general purpose computing
hardware configured by software for specific operations and technical effects discussed
herein), as opposed to without automation. In particular, steps performed “automatically”
are not performed by hand on paper or in a person’s mind, although they may be initiated
by a human person or guided interactively by a human person. Automatic steps are
performed with a machine in order to obtain one or more technical effects that would not
be realized without the technical interactions thus provided.

[0061] One of skill understands that technical effects are the presumptive purpose of a
technical embodiment. The mere fact that calculation is involved in an embodiment, for
example, and that some calculations can also be performed without technical components
(e.g., by paper and pencil, or even as mental steps) does not remove the presence of the
technical effects or alter the concrete and technical nature of the embodiment. For
example, certain familiar devices perform balance calculations to maintain their balance;
some examples include mobile robots and wheeled personal mobility devices. These
devices are not part of the embodiments described herein but they illustrate the point that
technical effects are provided by technical components, not by mere mental steps. Balance
calculations simply cannot be performed rapidly enough by mental steps or by paper and

pencil to provide the balance that is present in many mobile robots or wheeled personal

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

mobility devices. The technical effect of having a dynamically balanced device is thus
provided by technical components which include a processor and a memory interacting
with balance control software.

[0062] Frame rate improvements are part of some embodiments described herein. One
of skill understands that frame preparation calculations simply cannot be performed
rapidly enough by mental steps or by paper and pencil to provide the smoothness and
responsiveness sought in software user interface frame sequences. In particular, the use of
mental steps or strictly human computations would cause long and excessive frame
preparation times. Similarly, confining frame causality attribution to mental steps or
strictly human computations would make the control of display invalidation unwieldy,
inefficient, and ineffective in comparison to the embodiments described herein. Similar
considerations apply to many other scenarios discussed herein.

[0063] “Computationally” likewise means a computing device (processor plus
memory, at least) is being used, and excludes obtaining a result by mere human thought or
mere human action alone. For example, doing arithmetic with a paper and pencil is not
doing arithmetic computationally as understood herein. Computational results are faster,
broader, deeper, more accurate, more consistent, more comprehensive, and/or otherwise
provide technical effects that are beyond the scope of human performance alone.
“Computational steps” are steps performed computationally. Neither “automatically” nor
“computationally” necessarily means “immediately”. “Computationally” and
“automatically” are used interchangeably herein.

[0064] “Proactively” means without a direct request from a user. Indeed, a user may
not even realize that a proactive step by an embodiment was possible until a result of the
step has been presented to the user. Except as otherwise stated, any computational and/or
automatic step described herein may also be done proactively.

[0065] “Linguistically” means by using a natural language or another form of
communication which is often employed in face-to-face human-to-human communication.
Communicating linguistically includes, for example, speaking, typing, or gesturing with
one’s fingers, hands, face, and/or body.

[0066] Throughout this document, use of the optional plural “(s)”, “(es)”, or “(ies)”
means that one or more of the indicated feature is present. For example, “processor(s)”
means “one or more processors” or equivalently “at least one processor”.

[0067] Throughout this document, unless expressly stated otherwise any reference to a

step in a process presumes that the step may be performed directly by a party of interest

10

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

and/or performed indirectly by the party through intervening mechanisms and/or
intervening entities, and still lie within the scope of the step. That is, direct performance of
the step by the party of interest is not required unless direct performance is an expressly
stated requirement. For example, a step involving action by a party of interest such as
activating, aggregating, altering, applying, attributing, binding, bounding, capturing,
changing, comparing, designating, displaying, eliminating, execution, filtering,
identifying, increasing, inputting, inserting, invalidating, launching, laying out, linking,
listing, loading, modifying, obtaining, placing, preparing, processing, producing, querying,
reaching, receiving, reducing, referencing, rendering, resizing, serializing, sorting,
specifying, tracing, treating, updating, using, or visualizing (or activates, aggregates,
activated, aggregated, etc.) with regard to a destination or other subject may involve
intervening action such as forwarding, copying, uploading, downloading, encoding,
decoding, compressing, decompressing, encrypting, decrypting, authenticating, invoking,
and so on by some other party, yet still be understood as being performed directly by the
party of interest.

[0068] Whenever reference is made to data or instructions, it is understood that these
items configure a computer-readable memory and/or computer-readable storage medium,
thereby transforming it to a particular article, as opposed to simply existing on paper, in a
person’s mind, or as a mere signal being propagated on a wire, for example. Unless
expressly stated otherwise in a claim, a claim does not cover a signal per se. For the
purposes of patent protection in the United States, a memory or other computer-readable
storage medium is not a propagating signal or a carrier wave outside the scope of
patentable subject matter under United States Patent and Trademark Office (USPTO)
interpretation of the /n re Nuijten case.

[0069] Moreover, notwithstanding anything apparently to the contrary elsewhere
herein, a clear distinction is to be understood between (a) computer readable storage media
and computer readable memory, on the one hand, and (b) transmission media, also
referred to as signal media, on the other hand. A transmission medium is a propagating
signal or a carrier wave computer readable medium. By contrast, computer readable
storage media and computer readable memory are not propagating signal or carrier wave
computer readable media. Unless expressly stated otherwise, “computer readable medium”
means a computer readable storage medium, not a propagating signal per se.

[0070] An “embodiment” herein is an example. The term “embodiment” is not

interchangeable with “the invention”. Embodiments may freely share or borrow aspects to

11

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

create other embodiments (provided the result is operable), even if a resulting aspect
combination is not explicitly described per se herein. Requiring each and every permitted
combination to be explicitly described is unnecessary for one of skill in the art, and would
be contrary to policies which recognize that patent specifications are written for readers
who are skilled in the art. Formal combinatorial calculations and informal common
intuition regarding the number of possible combinations arising from even a small number
of combinable features will also indicate that a large number of aspect combinations exist
for the aspects described herein. Accordingly, requiring an explicit recitation of each and
every combination would be contrary to policies calling for patent specifications to be
concise and for readers to be knowledgeable in the technical fields concerned.

[0071] Operating Environments

[0072] With reference to Figure 1, an operating environment 100 for an embodiment
may include a computer system 102. The computer system 102 may be a multiprocessor
computer system, or not. An operating environment may include one or more machines in
a given computer system, which may be clustered, client-server networked, and/or peer-to-
peer networked. An individual machine is a computer system, and a group of cooperating
machines is also a computer system. A given computer system 102 may be configured for
end-users, e.g., with applications, for administrators, as a server, as a distributed
processing node, as an IoT node, and/or in other ways.

[0073] Human users 104 may interact with the computer system 102 by using
displays, keyboards, and other peripherals 106, via typed text, touch, voice, movement,
computer vision, gestures, and/or other forms of I/O. A user interface may support
interaction between an embodiment and one or more human users. A user interface may
include a command line interface, a graphical user interface (GUI), natural user interface
(NUI), voice command interface, and/or other interface presentations. A user interface
may be generated on a local desktop computer, or on a smart phone, for example, or it
may be generated from a web server and sent to a client. The user interface may be
generated as part of a service and it may be integrated with other services, such as social
networking services. A given operating environment includes devices and infrastructure
which support these different user interface generation options and uses.

[0074] Natural user interface (NUI) operation may use speech recognition, touch and
stylus recognition, gesture recognition both on screen and adjacent to the screen, air
gestures, head and eye tracking, voice and speech, vision, touch, gestures, and/or machine

intelligence, for example. Some examples of NUI technologies include touch sensitive

12

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

displays, voice and speech recognition, intention and goal understanding, motion gesture
detection using depth cameras (such as stereoscopic camera systems, infrared camera
systems, RGB camera systems and combinations of these), motion gesture detection using
accelerometers/gyroscopes, facial recognition, 3D displays, head, eye, and gaze tracking,
immersive augmented reality and virtual reality systems, all of which provide a more
natural interface, as well as technologies for sensing brain activity using electric field
sensing electrodes (electroencephalograph and related tools).

[0075] As another example, a game application may be resident on a Microsoft XBOX
Live® server (mark of Microsoft Corporation). The game may be purchased from a
console and it may be executed in whole or in part on the server, on the console, or both.
Multiple users may interact with the game using standard controllers, air gestures, voice,
or using a companion device such as a smartphone or a tablet. A given operating
environment includes devices and infrastructure which support these different use
scenarios.

[0076] System administrators, developers, engineers, and end-users are each a
particular type of user 104. Automated agents, scripts, playback software, and the like
acting on behalf of one or more people may also be users 104. Storage devices and/or
networking devices may be considered peripheral equipment in some embodiments. Other
computer systems not shown in Figure 1 may interact in technological ways with the
computer system 102 or with another system embodiment using one or more connections
to a network 108 via network interface equipment, for example.

[0077] The computer system 102 includes at least one logical processor 110. The
computer system 102, like other suitable systems, also includes one or more computer-
readable storage media 112. Media 112 may be of different physical types. The media 112
may be volatile memory, non-volatile memory, fixed in place media, removable media,
magnetic media, optical media, solid-state media, and/or of other types of physical durable
storage media (as opposed to merely a propagated signal). In particular, a configured
medium 114 such as a portable (i.e., external) hard drive, CD, DVD, memory stick, or
other removable non-volatile memory medium may become functionally a technological
part of the computer system when inserted or otherwise installed, making its content
accessible for interaction with and use by processor 110. The removable configured
medium 114 is an example of a computer-readable storage medium 112. Some other
examples of computer-readable storage media 112 include built-in RAM, ROM, hard

disks, and other memory storage devices which are not readily removable by users 104.

13

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

For compliance with current United States patent requirements, neither a computer-
readable medium nor a computer-readable storage medium nor a computer-readable
memory is a signal per se.

[0078] The medium 114 is configured with instructions 116 that are executable by a
processor 110; “executable” is used in a broad sense herein to include machine code,
interpretable code, bytecode, and/or code that runs on a virtual machine, for example. The
medium 114 is also configured with data 118 which is created, modified, referenced,
and/or otherwise used for technical effect by execution of the instructions 116. The
instructions 116 and the data 118 configure the memory or other storage medium 114 in
which they reside; when that memory or other computer readable storage medium is a
functional part of a given computer system, the instructions 116 and data 118 also
configure that computer system. In some embodiments, a portion of the data 118 is
representative of real-world items such as product characteristics, inventories, physical
measurements, settings, images, readings, targets, volumes, and so forth. Such data is also
transformed by backup, restore, commits, aborts, reformatting, and/or other technical
operations.

[0079] Although an embodiment may be described as being implemented as software
instructions executed by one or more processors in a computing device (e.g., general
purpose computer, cell phone, or gaming console), such description is not meant to
exhaust all possible embodiments. One of skill will understand that the same or similar
functionality can also often be implemented, in whole or in part, directly in hardware
logic, to provide the same or similar technical effects. Alternatively, or in addition to
software implementation, the technical functionality described herein can be performed, at
least in part, by one or more hardware logic components. For example, and without
excluding other implementations, an embodiment may include hardware logic components
such as Field-Programmable Gate Arrays (FPGAs), Application-Specific Integrated
Circuits (ASICs), Application-Specific Standard Products (ASSPs), System-on-a-Chip
components (SOCs), Complex Programmable Logic Devices (CPLDs), and similar
components. Components of an embodiment may be grouped into interacting functional
modules based on their inputs, outputs, and/or their technical effects, for example.

[0080] In the illustrated environments 100, one or more applications 120 have
components such as a user interface 122, threads 124, object or other structure properties
126, routines 128, and user interface windows 130. Software development tools 132 such

as compilers 134 and debuggers 136 assist with software development by producing

14

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

and/or transforming code which implements components. Execution of the application
overall or of components such as routines or threads has associated performance 138
(ak.a. performance characteristics), at least some of which may be captured (exactly or
approximately, and fully or partially) in performance data 140. The visual portion of the
user interface of the application, and visual output of the application, are displayed on a
visual display 142. The application components, tools 132, and other items shown in the
Figures and/or discussed in the text, may each reside partially or entirely within one or
more hardware media 112, thereby configuring those media for technical effects which go
beyond the “normal” (i.e., least common denominator) interactions inherent in all
hardware — software cooperative operation.

[0081] The display 142 may include one or more touch screens, screens responsive to
input from a pen or tablet, or screens which operate solely for output. In addition to
processors 110 (CPUs, ALUs, FPUs, and/or GPUs), memory / storage media 112,
display(s) 142, and battery(ies), an operating environment may also include other
hardware, such as buses, power supplies, wired and wireless network interface cards, and
accelerators, for instance, whose respective operations are described herein to the extent
not already apparent to one of skill. CPUs are central processing units, ALUs are
arithmetic and logic units, FPUs are floating point processing units, and GPUs are
graphical processing units.

[0082] A given operating environment 100 may include an Integrated Development
Environment (IDE) 144 which provides a developer with a set of coordinated software
development tools 132 such as compilers, source code editors, profilers, debuggers, and so
on. In particular, some of the suitable operating environments for some embodiments
include or help create a Microsoft® Visual Studio® development environment (marks of
Microsoft Corporation) configured to support program development. Some suitable
operating environments include Java® environments (mark of Oracle America, Inc.), and
some include environments which utilize languages such as C++ or C# (“C-Sharp”), but
teachings herein are applicable with a wide variety of programming languages,
programming models, and programs, as well as with technical endeavors outside the field
of software development per se.

[0083] An execution trace 146 may be present. The trace may be a product of a tool
132 which also resides on the system 102, or the trace may have been produced on another
system and then transferred by a network, flash drive, or other mechanism to the present

location. The trace may document execution of an application 120 which resides on the

15

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

same machine as the trace, or the trace may document execution of an application run on a
different machine.

[0084] One or more items are shown in outline form in the Figures to emphasize that
they are not necessarily part of the illustrated operating environment or all embodiments,
but may interoperate with items in the operating environment or some embodiments as
discussed herein. It does not follow that items not in outline form are necessarily required,
in any Figure or any embodiment. In particular, Figure 1 is provided for convenience;
inclusion of an item in Figure 1 does not imply that the item, or the describe use of the
item, was known prior to the current innovations.

[0085] Systems

[0086] Figure 2 illustrates aspects of an architecture which is suitable for use with
some embodiments. An execution trace 146 has associated notification events 202 and
other events 204 for at least one performance period 206. Designation 204 refers to trace
events generally; a notification event 202 is a non-exclusive example of an event 204. In
some implementations, notification events may be virtual, in that they are injected by post-
trace processing. The performance period has a start point and a finish point, collectively
referred to as the period’s endpoints 208. The execution trace 146 has a leading edge and a
trailing edge, collectively referred to as the trace’s edges 210. Either edge may coincide
with an event 204, but in some cases a trace starts before the earliest traced event and in
some it ends after the last of the traced events.

[0087] In some examples, the events 204 may include zero or more layout property
change events which document changes in layout properties 126, zero or more render
property change events which document changes in render properties 126, or both. Layout
properties 126 document a display layout value, e.g., a relative or absolute screen position,
a line width, a margin, or a visibility. Render properties 126 document a display render
value, e.g., display resolution, color palette, number of gray levels, whether ray tracing is
to be performed, and so on. In some examples, zero or more of the properties 126 reside in
a list of frame 216 invalidating change events, which are examples of notification 212
events. Frame invalidating properties are properties whose change would (or should)
provoke a re-creation of pixel content to display, either directly in a display 142 or via a
frame buffer 218.

[0088] In some examples, one or more notification categories 214 operate at an object
level, e.g., by specifying a list of graphic objects in a retained mode graphics structure. In

some examples, notification categories specify a list of routines, as window resize routines

16

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

and CSS media query routines. In a given example, a frame 216 invalidation category 214
specifies one or more items which potentially (or in some cases, actually) invalidates a
frame 216 when the item is changed or invoked.

[0089] In some examples, application of the notification categories 214 to trace events
204 whose timestamps lie within a particular frame’s performance period 206 produces a
set of events 204 which may have caused the prior frame’s invalidation and hence caused
the creation of the frame in question. These events may be ordered chronologically, or not.
[0090] Those of skill understand that a given event 204 may represent consumption of
computational resources 220. Some examples of computational resources 220 are cycles
on a particular CPU 110 or GPU 110, space allocated in RAM 112 or other memory,
exclusive control of a shared data structure such as a synchronization lock, or access to a
display 142 or network interface card or other peripheral 106. A given event 204 may also
have an associated execution time 222, e.g., the time spent executing a given routine 128
named in the event and all the routines which were invoked directly or indirectly by that
named routine. Use of computational resources may be divided according to some or all of
the performance data categories 224 in a given example. Some examples of performance
data categories 224 are memory performance, processor performance, network
performance, kernel 148 performance, thread performance, disk performance, render
engine performance, and so on.

[0091] Some embodiments provide a performance state machine 226 which has states
228, one or more transitions 230 between at least some of the states, and one or more
aggregations 232 associated with one or more of the transitions. That is, a given transition
230 may have zero, one, or more associated aggregations 232. In some embodiments, the
performance state machine is understood to depict performance data in the form of an
application state machine. Some examples also or alternately include a linear set 234 of
resource usage snapshots 236. Some examples also or alternately include a timeline 238 of
events 204 and/or scenarios 240. Some examples also or alternately include a visualization
242 of the performance state machine 226, snapshots 236, timeline 238, and/or of the
scenario(s) 240.

[0092] In some embodiments, display update code in the application 120 operates to
update pixels, alpha channels, or other display content of a frame 216 when the frame is
invalidated. Frame display content is implemented using display content data structures
which include objects, structs, records, or other structures that have layout properties 126

and/or render properties 126, for example. A frame 216 is invalidated by a change in a

17

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

layout property and/or by a change in a render property. After frame invalidation, a
different frame is prepared for display on a display 142 screen. A display 142 includes at
least a display screen in such cases, and may also include input sensors such as touch
sensors, magnetic sensors, or optical beam sensors.

[0093] Property 126 changes and other events executed in the system 102 can be
traced using injected breakpoints, interrupt handlers, exception handlers, macros, trace
preprocessors, kernel 148 markers, and other familiar technologies, or trace mechanisms
created hereafter. For example, some embodiments use Event Tracing for Windows
technology to produce events 204. Trace events 204 are typically low level information
such as a change in a particular variable (which may be a property or some other variable),
throwing a particular exception, a particular routine invocation, or reaching a particular
code branch. Trace file formats vary widely. Property names, routine names, other
identifiers, and event titles are normally given in the natural language used by the
developer(s) of the traced application, or something close to it, as opposed to being
localized to the natural language of the application’s end user.

[0094] Figure 3 illustrates some notification categories 214. Scenarios 240 may be
defined as individual notification categories 214 (e.g., window resize, media query), or as
a set of related notification categories 214 (e.g., background task start and finish, all
binding updates, all media queries to a particular medium). An app startup category 302
denotes application startup, e.g., a launch by a kernel plus initializations performed in the
application 120 prior to displaying an initial frame 216. A page outline load category 304
denotes loading into a frame buffer 218 or a display 142 (depending on embodiment) of at
least a portion of a page, with the understanding that additional data (e.g., images, lists,
data read from a relational database, financial transaction data, etc.) will be loaded
subsequently into positions indicated to the user in the loaded outline. Page data load start
306 and page data load finish 308 categories denote the start and finish of the loading of
such additional data into a loaded outline. In some embodiments, a page load denotes
server control of a user interface page object, invocation of an interface page-load routine,
or a similar event. A page to page transition 310 denotes a transition from one page or
page portion loaded in a display to at least a portion of a different page loaded in the
display. Some embodiments distinguish between the transition’s start and its finish. A
user input event 312 denotes receipt by the application 120 of user input from a touch
screen, keyboard (hard key or virtual), mouse, pen, microphone, camera, or another

peripheral 106 capable of receiving or transmitting or indicating user input. Page

18

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

background task start 314 and finish 316 categories denote the start and finish of a task
(process, coroutine, thread, etc.) which runs in the background relative to the main thread
or routine that performs page loading. A media query 318 denotes a query to determine
viewing device type, width, height, orientation, resolution, aspect ratio, and/or color depth,
for example. Media query 318 scenarios serve different style sheets in CSS in some
examples. A window resize 320 denotes a change in the size of a user interface window
which is displayed in a frame 216. Note that frame 216 pertains to the frame buffer and to
pixels regardless of whether they happen to be part of a window; “frame” as used here
does not refer to a window border or outline. A binding update 322 denotes a change in a
binding between a data variable, such as a table or list entry, and a user interface element
for obtaining a value, such as a textbox or set of radio buttons, for example. Some cases
obtain a value shown in a textbox, or the state of a radio button. A configured scenario 324
is any other notification event in a trace 146 or notification category which a given system
is configured to recognize. In particular, developer-defined scenarios may include start
326 and finish 328 developer-defined notification categories.

[0095] Figure 4 illustrates some performance data categories 224. The illustrated
categories are network activity 402, disk activity 404, memory usage 406, parse time 408,
frame time 410, dropped frames 412, frame rate 414, and thread utilization 416. Those of
skill understand that these may be defined in particular ways for a given embodiment,
within the generally accepted meaning of the terminology shown in Figure 4. For example,
network activity 402 may be measured in terms of packet count, packet payload size
transferred per unit of time elapsed, compliance with a network quality of service goal or
agreement, and/or using other familiar measures of system activity that involves one or
more networks 108. Similarly, disk activity 404 may be measured in terms of data
transferred, read accesses per unit time, write accesses per unit time, and/or using other
familiar measures of system activity that involves one or more RAM, optical, magnetic, or
other disks in a system 102. Memory usage 406 may be measured in terms of allocated
heap size, number of allocated heap objects, allocated stack size, and/or using other
familiar measures of memory 112 usage. Parse time 408 may be measured in terms of
command expression parse time, abstract syntax tree parse time, graphics object data
structure parse time, file parse time, and/or using other measures suited to the item(s)
being parsed, and may also be expressed in various units, e.g., elapsed milliseconds or the
number of processor 110 cycles performed during a parse. Frame time 410, dropped

frames 412, and frame rate 414 may each pertain to a system overall, or to a particular

19

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

component of a system such as a graphics compositor or a CGI engine. Thread utilization
416 may be measured in terms of the absolute or relative amount of time a given thread or
set of threads is idle, or is busy, or in terms of the number of threads, and/or using other
familiar measures of the availability or usage of threads 124.

[0096] Figure 5 illustrates some threads 124. A user interface thread 502 performs
and/or coordinates user interface operations such as updating a screen 142 and obtaining
user inputs. A main thread 504 initiates and coordinates (and sometimes terminates) the
other threads in an application, including the user interface thread 502, any composition
threads 506, and any worker threads 508. A composition thread 506 is a particular kind of
worker thread 508. A composition thread performs graphics composition to combine
images or text into a frame 216. A worker thread 508 performs specific computational
work, e.g., image composition, position calculation, ray tracing, encryption, decryption,
compression, decompression, and so on.

[0097] Figure 6 illustrates aspects of an architecture which is suitable for use with
some embodiments. The illustrated architecture includes both a development machine 608
and an end-user machine 610. In such architectures, the machines 608 and 610 may be the
same kind of machine, e.g., each two workstations, or they may be different kinds of
machines, e.g., the development machine 608 could be a desktop workstation and the end-
user machine 610 could be a smartphone, or the development machine 608 could be a
laptop while the end-user machine 610 is a blade server, or the development machine 608
could be a desktop workstation and the end-user machine 610 could be a laptop, and so on.
Also, other architectures within the scope of the disclosure include those in which focus is
on the development machine 608 so no particular end-user machine is required by a claim,
as well as those in which the development machine and the end-user machine are one and
the same machine. Furthermore, the mapping between development machine(s) and end-
user machine(s) is not necessarily one-to-one in every system; it may be one-to-many,
many-to-one, or many-to-many. For example, a trace 146 from a given end-user machine
may be utilized on multiple development machines.

[0098] In the architecture of Figure 6, a system 102 includes a development machine
608 (which is itself a system 102 within the larger system) having at least one
development machine processor 110, a development machine memory 112 in operable
communication with the development machine processor, a display 142 screen 614, and a
development tool 602 which is described further below. For clarity, memory, peripherals,

and other items are collectively designated at 612. An end-user machine 610 has at least

20

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

one end-user machine processor 110, an end-user machine memory 112 in operable
communication with the end-user machine processor, and an application 120. A set of
notification events 202 resides in the development machine memory. An execution trace
146 also resides in the development machine memory and has events 204 from an
execution of the application on the end-user machine 610.

[0099] In this example, the development tool 602 has performance state machine
control aggregation insertion code 604. Upon execution by the development machine
processor, a portion of code 604 identifies notifications 212 from the execution trace by
comparison of execution trace events 204 to notification events 202. A portion of code 604
also places a state 228 in a performance state machine 226 for each identified notification
212. A portion of code 604 also aggregates application performance data 140 for each
transition 230 between identified notifications. A portion of code 604 also inserts
performance data aggregations 232 in the performance state machine 226. A portion of
code 604 also displays a visual representation 242 of the state machine states, transitions,
and performance data aggregations on the display screen. In other examples, the code 604
omits one or more of the aforementioned portions, e.g., in some examples code 604 is not
responsible for displaying a visual representation 242 of the state machine.

[00100] In some examples, the development tool 602 compares execution trace events
204 to notification events 202 at a rate of at least ten thousand comparisons per second. In
some, identifying notifications in the execution trace involves comparing at least a
thousand trace events 204 to at least one notification event 202, at a rate of at least a
thousand comparisons per second.

[00101] In some examples, the notification events 202 belong to at least one of the
following notification categories 214: application startup 302, page outline load 304, page
data load start 306, page data load finish 308, page to page transition 310, application
input 312, window size change 320, media query 318, binding update 322, page
background task start 314, page background task finish 316, developer-defined scenario
start 326, developer-defined scenario finish 328. In other examples, notification events
202 belong to at least two of these categories, or at least three of them, or at least four of
them, or at least five of them. Any subset of these notification categories and/or other
notification categories may also be present.

[00102] In some examples, the performance data aggregations 232 belong to (i.e.,
represent data 140 in) at least one of the following performance data categories 224:

network activity 402, disk activity 404, memory usage 406, parse time 408, frame time

21

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

410, dropped frames 412, frame rate 414. In other examples, aggregations 232 belong to at
least two of these categories, or at least three of them, or at least four of them, or at least
five of them. Any subset of these performance data categories 224 and/or other
performance data categories may also be present.

[00103] In some examples, the system includes a displayed timeline 238 representation
of aggregated application performance data 140. The timeline 238 may be in place of, or
in addition to, a performance state machine visualization.

[00104] In some embodiments, frame invalidation or other scenario causality
identification module in code 604 of a development tool 602, 132 applies a list of
notifications 212 to trace events 204 to produce a causality set 606 of events 204 that are
(or can be) sorted chronologically. The earliest event in the causality set 606 is designated
a scenario’s causality.

[00105] In many embodiments, the trace 146 includes a record of some (but rarely if
ever all) events that occurred during execution of a target process 120. In the target
process, events may include events 204 that impact layout, render, composition and many
other operations. Events (in the sense of data) are emitted by instrumentation as the events
(in the sense of occurrences) happen, by a trace output engine 618 which may reside in the
process 120 or run alongside it.

[00106] In some embodiments, the code 604 includes a retained graphics data structure,
namely, an API and/or other data structure which implements retained mode graphics. In
some embodiments, the code 604 includes a user interface thread 502. In some
embodiments, the frame causality identification module includes code which upon
execution by the processor(s) determines a root cause 606 of an element’s participation in
frame 216 creation. The element may be a window, widget, or other Ul element.

[00107] In some examples, a list of scenarios 240 includes Page Load, App Startup,
Window Resize, Application Input, Data Load, and/or other scenarios discussed herein. In
some embodiments, scenarios may be defined in terms of notification events for any
scenarios of interest to the user around application execution that will help the user inspect
and optimize application performance and/or resource usage. These scenarios could be
instrumented by the user, gleaned by inspecting existing traces, and/or implemented by
adding new events 202 to the underlying platform.

[00108] In some examples, timing guidelines (also referred to as timing heuristics) 622
are associated with one or more scenarios. For instance, a Page Load scenario may have as

a heuristic a measurement from the start of page transition to the first frame submitted on

22

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

the destination page. As another instance, an App Startup scenario may have as a heuristic
a measurement from the start of application execution to the first frame submitted by the
app (“app” is short for “application” which is in turn short for “application program”). The
heuristic measurement may be in milliseconds or another time unit, or in processor cycles,
for example. Heuristics 622 can be gleaned by observing applications in the wild and
formulating specific intervals that approximate to scenarios of interest to the user. They
can also be directly integrated into the underlying platform as specific events or described
by the user by instrumenting the code 120.

[00109] The Figure 6 example also includes trace transmission mechanisms 620 which
serialize the trace for network transmission and deserialize transmitted traces for analysis
on the development machine. Trace transmission mechanisms may also perform
compression/decompression and/or encryption/decryption.

[00110] In some embodiments peripherals 106 such as human user I/O devices (screen,
keyboard, mouse, tablet, microphone, speaker, motion sensor, etc.) will be present in
operable communication with one or more processors 110 and memory. However, an
embodiment may also be deeply embedded in a technical system, such as a portion of the
Internet of Things, such that no human user 104 interacts directly and linguistically with
the embodiment. Software processes may be users 104.

[00111] In some embodiments, the system includes multiple computers connected by a
network. Networking interface equipment can provide access to networks 108, using
components such as a packet-switched network interface card, a wireless transceiver, or a
telephone network interface, for example, which may be present in a given computer
system. However, an embodiment may also communicate technical data and/or technical
instructions through direct memory access, removable nonvolatile media, or other
information storage-retrieval and/or transmission approaches, or an embodiment in a
computer system may operate without communicating with other computer systems.
[00112] Some embodiments operate in a “cloud” computing environment and/or a
“cloud” storage environment in which computing services are not owned but are provided
on demand. For example, an application 120 may run on one or more devices/systems 102
in a networked cloud for which trace events 204 may be captured on all or a subset and
then transferred to yet other devices within the cloud, and controlling alterations may then
be made on yet other cloud device(s) / system(s) 102.

[00113] With reference to Figures 1 through 6, some embodiments provide a computer

system 102 with a logical processor 110 and a memory medium 112 configured by

23

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

circuitry, firmware, and/or software to provide technical effects directed at technical
problems by extending functionality as described herein.

[00114] Some embodiments combine aspects of one or more of the system
embodiments of the preceding paragraphs. Some include other aspects depicted in the
Figures.

[00115] In some embodiments, the frame 216 has a frame preparation time of at least
17 milliseconds but less than one second. This excludes purely mental embodiments
because frames 216 are not mental artifacts. This also excludes approaches that rely on
human computation because such computation of frame 216 content would far exceed 1
second. People simply cannot do calculations quickly enough by hand to provide a frame
rate of even 1 FPS.

[00116] Processes

[00117] Figure 7 illustrates some process embodiments in a flowchart 700. Technical
processes shown in the Figures or otherwise disclosed may be performed in some
embodiments automatically, e.g., under control of a script or otherwise requiring little or
no contemporaneous live user input. Processes may also be performed in part
automatically and in part manually unless otherwise indicated. In a given embodiment
zero or more illustrated steps of a process may be repeated, perhaps with different
parameters or data to operate on. Steps in an embodiment may also be done in a different
order than the top-to-bottom order that is laid out in Figure 7. Steps may be performed
serially, in a partially overlapping manner, or fully in parallel. The order in which
flowchart 700 is traversed to indicate the steps performed during a process may vary from
one performance of the process to another performance of the process. The flowchart
traversal order may also vary from one process embodiment to another process
embodiment. Steps may also be omitted, combined, renamed, regrouped, or otherwise
depart from the illustrated flow, provided that the process performed is operable and
conforms to at least one claim.

[00118] Examples are provided herein to help illustrate aspects of the technology, but
the examples given within this document do not describe all possible embodiments.
Embodiments are not limited to the specific implementations, arrangements, displays,
features, approaches, or scenarios provided herein. A given embodiment may include
additional or different technical features, mechanisms, and/or data structures, for instance,

and may otherwise depart from the examples provided herein.

24

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[00119] During a step 702, an embodiment receives a performance period selection.
The period 206 may have a default length, which can be overridden by the user, or it may
require from the user an explicit specification of length (or equivalently, explicit
specification of both endpoints 208). The selection may be specified in absolute or relative
terms, and may take the form of a frame number, a time code, a timestamp, or a time
interval, for example. The selection may be made through a tool user interface.

[00120] Some embodiments treat a trace edge 210 as a performance period endpoint
208. As a simplified example, assume a trace 146 contains the following items with the
indicated timestamps (given in milliseconds):

0: trace start

1: main thread initialization complete

- user authentication complete

- property X changed without invalidating frame

- media query event initiated

- user input event, layout property changed

o) WLV, R VS B S]

- page load event, render property changed

10: property Y changed without invalidating frame

13: property Z changed without invalidating frame

14: exception raised

[application terminated]

[00121] In this simplified example, the trace has a leading edge at O ms and a trailing
edge at 14 ms. The application termination does not appear in the trace, but is inferred
from the presence of an exception as the last entry. The first bounding event is the media
query event at 5 ms. The trailing edge can be treated as a performance period endpoint
208. In this embodiment, frame invalidating events are examples of notification events
202, and they include the media query, user input, and page load events at times 5, 6, and
7 ms, respectively, and the property changes at times 6 and 7 ms.

[00122] During a step 704, an embodiment obtains or otherwise receives an event trace
146. The trace may be specified by an absolute or relative file name, or an application
name, for example, and may be local or transferred over network from a remote location.
[00123] During a step 706, an embodiment compares trace events to notification events,
thereby filtering out events which are not pertinent to the defined notification categories
214 or scenarios 240 within the specified period 206. This is accomplished by marking

events, copying them from the event trace, or otherwise distinguishing pertinent events

25

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

from events that are not pertinent to specified and currently active notification categories
214 or scenarios 240 within the specified period 206. Notification categories 214 or
scenarios 240 may be identified interactively by a user in some examples. Notification
events 202 in a trace may be identified entirely automatically by scanning the event trace,
parsing events, and comparing them to a pattern or list of recognized notification events
202.

[00124] During a step 708, an embodiment identifies notifications by grouping similar
notification events. Each group of similar notifications will correspond to a state in the
performance state machine.

[00125] During a step 710, an embodiment places a state 228 (e.g., struct, node, record,
table row or column, or object, depending on the implementation) in a state machine 226.
The state corresponds to a notification 212, which corresponds in turn to grouped
notification event(s) 202 which are filtered out from the trace events 204 and/or inferred
from the trace 146.

[00126] During a step 712, an embodiment aggregates performance data, which may
then be used in a performance state machine. For example, after identifying two
notifications 212 which have no chronologically intervening notification and hence will
share a transition 230 in the state machine 226, an embodiment may aggregate (e.g., sum)
all usages of a specified resource 220 which occur within a specified component of the
system 102. For instance, if a media query notification and a subsequent window resize
notification are identified, an embodiment may aggregate heap RAM usage by a user
interface thread, in terms of total heap memory allocated, total heap memory deallocated,
and net heap memory allocated between the beginning of a corresponding media query
event and the beginning of a corresponding window size property change event. As
another example, an embodiment may aggregate network activity from an identified page
data load start to an identified subsequent data load finish to produce a network activity
aggregation 232, and may also aggregate disk activity from the page data load start to the
data load finish to produce a disk activity aggregation 232.

[00127] During a step 714, an embodiment inserts an aggregation 232 in a performance
state machine 226. This may be accomplished by inserting or updating a cell, record field,
object property, or other variable which represented an aggregation that is associated with
a particular transition 230. A given transition 230 may have zero, one, or more associated
aggregations 232, but each aggregation for a given transition will differ is at least one of

the following: which resource(s) the aggregation represents, which resource user(s) (e.g.,

26

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

thread, routine, module, human user, or window) used those resource(s), which machine(s)
those resource(s) were used on, the manner of use (e.g., allocated, freed, net allocated,
number of accesses, total data transferred, cycles elapsed, clock time elapsed, internal
system time elapsed, etc.) of those resource(s).

[00128] During a step 716, an embodiment displays a state machine representation, e.g.,
by displaying state names, transitions between named states, and at least one aggregation
for at least one state transition in a developer tool UL

[00129] During a step 718, an embodiment alters at least one aspect of the performance
of an application 120 which was represented by a performance state machine. Alteration
may be evident from a change in resource 220 usage (whether considered to be a
beneficial change or not) and/or by a change in at least one execution time 222 (again,
whether considered beneficial or not) and/or by a change in a sequence of operations
performed (whether beneficial or not). In some embodiments, alteration 718 includes one
or more of the following: eliminating a frame invalidation event, changing the location of
a frame invalidation event so it occurs at a different relative point in the creation of
frame(s), reducing usage of a computational resource during the creation of frame(s),
reducing execution time of a layout routine and/or a render routine, or increasing an
application’s frame rate. Some embodiments modify a retained mode graphics structure,
e.g., by changing layout properties or render properties in objects that model display
elements, setting or clearing a flag, or updating a timestamp.

[00130] During a step 720, an embodiment captures altered performance, data, namely
performance data from an altered 718 application 120. This may be accomplished using a
profiler, instrumentation, server logs, kernel monitors, and/or other mechanisms now
known or developed hereafter for capturing raw data which reflects at least part of the
performance of at least part of at least one component of an application.

[00131] During a step 722, an embodiment alters a performance state machine 226 to
match an application. For example, transitions can be updated to reflect aggregations of
altered application performance data. In particular, a data aggregation which corresponds
to application activity after navigation from a display page can be altered 730 to reflect
altered application performance data. States and/or transitions can also be added, removed,
and/or renamed.

[00132] During a step 724, an embodiment displays a set 234 of snapshots 236 which
show values for performance data at instants in time during execution of an application

120.

27

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[00133] During a step 726, an embodiment displays a timeline 238 showing events
and/or notifications which occurred during execution of an application 120. A given
embodiment may display 716 a performance state machine, display 724 snapshots, and/or
display 726 a timeline.

[00134] During a step 728, which is a particular occurrence of one or more comparing
steps 706, an embodiment compares trace events to notification events at a specified rate,
or faster, in an implementation which cannot be achieved by human mental processes or
by mere pen and paper calculations. Some examples of such rates are noted herein, and
will also be apparent to one of skill in the art. Of course, those of skill will also understand
that even if a human were able to perform calculations at such a rate, the data necessary
for the calculations is stored in digital form and cannot be transferred to a human mind
(nor can the calculation results be transferred from a human mind into digital storage 112
for subsequent use) at a rate comparable to that achieved using a computer system 102.
[00135] During a step 732, an embodiment specifies a profiling trigger 736. For
example, rather than capturing all frame rate events in a trace, any of the following could
be specified in a given embodiment as a profiling trigger to capture frame rate events:
every Nth frame, every frame following a user-generated navigation command (e.g., play,
next, or other link or button press), every call to a specified routine, every memory
allocation larger than a specified number of bytes. During execution of an application, an
embodiment activates 734 the trigger and captures events 204 accordingly in a trace 146.
[00136] During a step 738, an embodiment displays in a tool 132 an indication of
elapsed time (e.g., microseconds, or processor cycles) from application launch to the
creation of the first frame for display by the application.

[00137] During a step 740, an embodiment displays in a tool 132 an indication of
elapsed time (e.g., microseconds, or processor cycles) from a transit command to the
creation of the next frame for display by the application. A transit command is a command
from a user which invalidates a current frame. Some embodiments reference a list of
property change events that invalidate a frame, such as a list of layout properties or render
properties that could appear in a trace. For example, some implementations check a pre-
existing list of properties to figure out whether a property change event in the trace is a
layout event or a render event, or is instead an event that does not impact frame rate or
frame creation resource usage.

[00138] During a step 742, an embodiment uses component-specific frame rate for the

application. As to frame rate, some embodiments include components in the form of a

28

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

render thread, a Ul thread and a Composition Thread; each component handles different
aspects of Ul layout, rasterization and composition. One can measure the frame rate of
each of these threads separately, as one example of using 742 component-specific frame
rate.

[00139] During a step 744, an embodiment uses an overall frame rate for the
application. A given embodiment may use 742 one or more component-specific frame
rates, use 744 an overall frame rate, do both, or do neither.

[00140] Some embodiments are consistent with Figure 8. Such an embodiment
intercepts 802 trace 146 information from a process 120, by reading 812 events that are
written 804 to a trace file or by receiving live instrumentation output, for example. The
trace events are scanned, filtered, and/or otherwise processed 806 to identify notification
events 202 and trace edges 210. Processing 806 may also utilize a list 814 of scenarios 240
and/or utilize timing heuristics 622. After one or more scenarios are detected, related
events (e.g., property change events for a frame of interest for a frame-related scenario
304, 306, 308, 310, 320) are scanned, filtered, and/or otherwise processed to obtain a
sequence of relevant (e.g., events which impact layout and/or rendering and hence may
invalidate the frame). Performance data for the corresponding notifications is aggregated
712. Aggregation may utilize pivots 808 such as Disk, Network, Thread Utilization, File
Access, Background Task execution, Memory, Frame rate (composition, UI, Render,
etc...), More generally, any computational resources or data aggregates that affect or
reflect application performance and good system citizenship may serve as pivots 808.
Pivots 808 could be low level hardware resources like Disk or higher level constructs like
average frame rate in a page load, for example.

[00141] In embodiments illustrated by Figure 8, processed data is then sent to a trace
report visualizer or other graphing engine. The trace report visualizer displays this data in
views to the user 104, e.g., in a Gantt chart formatted, sorted by duration or start time. The
processed data may read from a network connection if the trace was sent from a remote
machine, e.g., in a serialized form, by a transmission mechanism 620.

[00142] Some embodiments provide a process for controlling a performance state
machine. This process includes automatically identifying 708 notifications from an
execution trace of an application. The execution trace includes a plurality of trace events
within a period which has endpoints. The notifications are identified through comparison
706 of trace events to notification events for at least three notification categories; in other

embodiments notifications are identified using at least two notification categories, or at

29

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

least one notification category. This process also includes automatically placing 710 a
state in a performance state machine for each identified notification. This process also
includes automatically aggregating 712 application performance data for each transition
between identified notifications. In this process, the performance data collectively includes
data in at least two performance data categories. This process also includes automatically
inserting 714 performance data aggregations in the performance state machine. This
process also includes displaying 716 a visual representation of the state machine states,
transitions, and performance data aggregations on a display screen. This process also
includes capturing 720 altered performance of the application in an updated execution
trace after the placing and inserting steps. This process also includes altering 722 at least
one state, transition, or performance data aggregation of the state machine after the
capturing step. Some other processes omit one or more of steps 706, 708, 710, 712, 714,
716, 720, 722. Of course, those of skill understand that additional steps or actions not
recited in this paragraph may also be part of a given embodiment.

[00143] In some embodiments, the notification categories include at least three of the
following: application startup, page outline load, page data load start, page data load
finish, page to page transition, application input, window size change, media query,
binding update, page background task start, page background task finish. In some
embodiments, the notification categories also include a developer-defined scenario start
and a developer-defined scenario finish. In some embodiments, the notification categories
include at least four of those listed here in this paragraph. In some embodiments, the
notification categories include at least five of those here. In some embodiments, the
notification categories include at least two of those here, and in some they include at least
one of the notification categories. Of course, those of skill understand that additional
notification categories not recited in this paragraph may also be part of a given
embodiment.

[00144] In some embodiments, the performance data categories include at least two of
the following: network activity, disk activity, memory usage, parse time, frame time,
dropped frames, frame rate, thread utilization. In some, they include at least three of the
listed performance data categories, and in some they include at least four of the listed
performance data categories. Of course, those of skill understand that additional
performance data categories not recited in this paragraph may also be part of a given

embodiment.

30

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[00145] In some embodiments, the process includes displaying 724 and/or displaying
726 at least one of the following visual representations of aggregated application
performance data: a linear set of snapshots, or a timeline.

[00146] In some embodiments, identifying 708 notifications in the execution trace
comprises comparing 706, 728 at least a thousand trace events to at least one notification
event each, at a rate of at least a thousand comparisons per second. In some, identifying
708 notifications in the execution trace comprises comparing 706, 728 at least a hundred
thousand trace events to at least one notification event each, at a rate of at least ten
thousand comparisons per second.

[00147] In some embodiments, altering 722 at least one state, transition, or performance
data aggregation of the state machine comprises altering 730 application performance data
for a transition from a page navigation request state to a page loaded state in which a
frame of a post-navigation requested page has been submitted by the application to a
compositor.

[00148] Configured Media

[00149] Some embodiments include a configured computer-readable storage medium
112. Medium 112 may include disks (magnetic, optical, or otherwise), RAM, EEPROMS
or other ROMs, and/or other configurable memory, including in particular computer-
readable media (as opposed to mere propagated signals). The storage medium which is
configured may be in particular a removable storage medium 114 such as a CD, DVD, or
flash memory. A general-purpose memory, which may be removable or not, and may be
volatile or not, can be configured into an embodiment using items such as a performance
state machine 226, notification events 202, scenarios 240, heuristics 622, and/or code 604,
in the form of data 118 and instructions 116, read from a removable medium 114 and/or
another source such as a network connection, to form a configured medium. The
configured medium 112 is capable of causing a computer system to perform technical
process steps for display invalidation and/or frame causality attribution as disclosed
herein. Figures 1 through 8 thus help illustrate configured storage media embodiments and
process embodiments, as well as system and process embodiments. In particular, any of
the process steps illustrated in Figure 7 and/or Figure 8, or otherwise taught herein, may be
used to help configure a storage medium to form a configured medium embodiment.
[00150] In some examples, a computer-readable storage medium is configured with
data and instructions which upon execution by a digital processor perform a process for

controlling a performance state machine. This process includes identifying 708

31

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

notifications from an execution trace of an application. The execution trace includes a
plurality of trace events within a period which has endpoints. The notifications are
identified through comparison 706 of trace events to notification events for at least four of
the following notification categories: application startup, page outline load, page data load
start, page data load finish, page to page transition, application input, window size change,
media query, binding update, page background task start, page background task finish,
developer-defined scenario start, developer-defined scenario finish. This process also
includes placing 710 a state in a performance state machine for each identified
notification. This process also includes aggregating 712 application performance data for
each transition between identified notifications. The performance data collectively
includes data in at least three of the following performance data categories: network
activity, disk activity, memory usage, parse time, frame time, dropped frames, frame rate.
This process also includes inserting 714 performance data aggregations in the performance
state machine. This process also includes displaying 716 a visual representation of the
state machine states, transitions, and performance data aggregations on a display screen.
This process also includes capturing 720 altered performance of the application in an
updated execution trace after the placing and inserting steps. This process also includes
altering 722 at least one state, transition, or performance data aggregation of the state
machine after the capturing step. This process also includes displaying 716 an altered
visual representation of the state machine states, transitions, and performance data
aggregations on the display screen. Some other processes omit one or more of steps 706,
708, 710, 712, 714, 716, 720, 722. Of course, those of skill understand that additional
steps or actions not recited in this paragraph may also be part of a given embodiment.
[00151] In some embodiments, the process also includes displaying 726 a timeline
representing aggregated application performance data.

[00152] In some embodiments, the process also includes displaying 724 a linear set of
snapshots representing aggregated application performance data.

[00153] In some embodiments, identifying notifications in the execution trace includes
comparing 706, 728 at least a hundred thousand trace events to at least one notification
event each, at a rate of at least a hundred thousand comparisons per second. In some
embodiments, identifying notifications in the execution trace includes 706, 728 comparing
at least five hundred thousand trace events to at least one notification event each, at a rate

of at least a hundred thousand comparisons per second.

32

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[00154] In some embodiments, the process also includes specifying 732 a profiling
trigger, and the performance data includes data collected in response to activation 734 of
the profiling trigger during execution of the application.

[00155] In some embodiments, the displaying step includes displaying 740 a measure
of time elapsed from when the application is launched by an operating system to when a
first frame is submitted by the application to the operating system.

[00156] Additional Examples

[00157] Additional details and design considerations are provided below. As with the
other examples herein, the features described may be used individually and/or in
combination, or not at all, in a given embodiment.

[00158] Those of skill will understand that implementation details may pertain to
specific code, such as specific APIs and specific sample programs, and thus need not
appear in every embodiment. Those of skill will also understand that program identifiers
and some other terminology used in discussing details are implementation-specific and
thus need not pertain to every embodiment. Nonetheless, although they are not necessarily
required to be present here, these details are provided because they may help some readers
by providing context and/or may illustrate a few of the many possible implementations of
the technology discussed herein.

[00159] The following discussion is derived from Visual Studio® documentation (mark
of Microsoft Corporation). The various versions of Visual Studio® tools are programs
implemented by Microsoft Corporation. Aspects of the Visual Studio® programs and/or
documentation are consistent with or otherwise illustrate aspects of the embodiments
described herein. However, it will be understood that Visual Studio® documentation
and/or implementation choices do not necessarily constrain the scope of such
embodiments, and likewise that Visual Studio® software and/or its documentation may
well contain features that lie outside the scope of such embodiments. It will also be
understood that the discussion below is provided in part as an aid to readers who are not
necessarily of ordinary skill in the art, and thus may contain and/or omit details whose
recitation below is not strictly required to support the present disclosure.

[00160] Some implementations exert control by eliminating, moving, and/or reducing
resource usage which results in a property change and/or other notification event, and/or

by reducing processing time which led to the event.

33

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[00161] By treating a trace edge as a notification event, some examples provide control
despite dropped events which occurred during execution but are not reflected in the trace
146.

[00162] By providing control despite the presence of many (e.g., hundreds and/or at
least 80%) events in a trace that do not impact frame invalidation or otherwise match some
notification event, some examples improve development efficiency by identifying fruitful
targets for optimization. Some optimizations then alter 718 application performance by
removing unnecessary frames. Some optimizations alter 718 application performance by
reducing excessive frame preparations for the frames that are deemed necessary (e.g.,
because they present data the end user expects to see or data that notifies the end user of
status changes the end user would respond to).

[00163] In some examples, a tool 132 user interface, such as an IDE 144 user interface,
displays some or all of the following data with corresponding labels: a diagnostic session
length in seconds; a bar chart of Ul thread utilization with a legend for color codes
distinguishing parsing, layout, render, I/O, app code, Extensible Application Markup
Language (XAML) usage, and other activities; a line graph of visual throughput in FS
with a legend for color codes distinguishing a composition thread from a Ul thread; a
timeline with detail headings or links for obtaining details on application startup, parsing
(app), window resize, page load (MainPage), parsing (MainPage), one or more layout
activity sections, one or more render activity sections, and one or more disk (dll) activity
sections within a layout or render section.

[00164] As to scenarios where an implementation can be used to understand why
specific elements participated in Layout or Render, in some cases, given a set of N
property change events, an implementation can help a developer determine the root cause
of an element’s participation by looking at the first property change event that either
changed a property on the element under inspection or one of its parents. This helps a
developer troubleshoot issues when large number (hundreds or more) of elements take part
in layout, thus increasing the total layout time proportionately.

[00165] Some implementations rely on, or include and rely on, instrumentations in
place in a platform. Instrumentation provides an ability to monitor property changes in the
application 120. Instrumentation may also provide a classification methodology to help
developers understand which events impact frame invalidation. Instrumentation may also
provide an ability to monitor application scenarios like StateChange (e.g., media query

execution in HTML), Window Resize, Transient or Binding expression updates.

34

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

[00166] In some examples, Gantt chart based timeline views and/or other visualizations
configure a display in a tool. In some, causality chained events can be viewed in
dependency chains which show links from the frame in question to the underlying
causality event or events. Some implementations highlight causality events in a
developer’s view when the frame in question is highlighted in the tool user interface.
[00167] Some implementations bring issues / opportunities of optimization up to the
front by automatically aggregating performance data on scenarios important to application
responsiveness and fluidity. In some cases, these scenarios include Application Startup,
Page Load & Transition, Application Input, and Window Size Changes, but those of skill
will acknowledge many more scenarios may be of interest in a given situation. Users 104
can also use these scenarios to visualize their application execution like a state machine in
order to identify opportunities for optimization throughout its execution

[00168] Some implementations look at events 204 spewed out by a platform. Based on
a list of pre-determined scenarios (and possibly heuristics), they generate a view of the
program execution with the performance data of interest to the developer.

[00169] Instrumentation

[00170] In order to aggregate and visualize the information, some implementations rely
on having some notification events from the platform around the scenarios of interest.
Scenarios of interest may include adaptive app sizing, data set loads in item controls,
application startup, view load, user input and/or others, for example.

[00171] Methodology

[00172] Once the trace for the session is collected and processed (either in real-time or
postmortem), some implementations look for notification events (sorted by start time:
Ascending) that are a part of a list. For each notification, performance data is aggregated.
One kind of aggregation includes the following categories, which may be varied according
to particular heuristics on a per-scenario basis, e.g., only show page loads if the load time
> x secs, where x is either a default value or provided interactively by the developer. In
this example, the aggregation categories include: Network activity, data transferred / data
downloaded, Disk activity, Memory usage, Parse times, Average Frame times, Dropped
Frames. This data set is sent 810 to a graphics / charting engine that generates the state
machine for the same.

[00173] Visualization

[00174] One way of visualizing this information is as a state machine 226 in which

each page load or significant change in Ul is represented as a state. User input, adaptive

35

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

changes, and so on are represented as transitions to / from the state. Performance data is
aggregated and represented for each state and its transition(s). Another way of visualizing
this information is as snapshots, e.g., a linear set of snapshots for each state and its
transitions. Performance data is aggregated for each snapshot. Another way of visualizing
this information is as events in Gantt chart timeline(s) to showcase the breadth of time
encompassed by a particular scenario.

[00175] By automatically identifying scenarios of interest in an application and
aggregating performance data on the same, and by visualizing scenarios as a state
machine, these examples help identify opportunities for optimization and help developers
understand performance data in the context of application scenarios and a given sequence
of interactions.

[00176] Some Additional Combinations and Variations

[00177] Any of these combinations of code, data structures, logic, components, signals,
signal timings, and/or their functional equivalents may also be combined with any of the
systems and their variations described above. A process may include any steps described
herein in any subset or combination or sequence which is operable. Each variant may
occur alone, or in combination with any one or more of the other variants. Each variant
may occur with any of the processes and each process may be combined with any one or
more of the other processes. Each process or combination of processes, including variants,
may be combined with any of the medium combinations and variants describe above.
[00178] Some examples include a means for identifying optimizations which includes
software that compares 706 events 204 from an execution trace 146 to notification events
202 and filters out other events 204. Some examples include a means for identifying
optimizations which includes software that satisfies particular comparison 728 rates.
[00179] Some examples include a means for identifying optimizations which includes
software that operates in a manner consistent with the flowchart of Figure 8. Some
examples include a means for identifying optimizations which includes software that
operates in a manner consistent with the flowchart of Figure 7.

[00180] Some examples operate on traces for an application that includes a Ul thread
502, whereas other examples do not, e.g., they operate on traces from an application that is
not multi-threaded.

[00181] Conclusion

[00182] Although particular embodiments are expressly illustrated and described herein

as processes, as configured media, or as systems, it will be appreciated that discussion of

36

10

15

20

25

30

WO 2016/111952 PCT/US2016/012100

one type of embodiment also generally extends to other embodiment types. For instance,
the descriptions of processes in connection with Figures 7 and 8 also help describe
configured media, and help describe the technical effects and operation of systems and
manufactures like those discussed in connection with other Figures. It does not follow that
limitations from one embodiment are necessarily read into another. In particular, processes
are not necessarily limited to the data structures and arrangements presented while
discussing systems or manufactures such as configured memories.

[00183] Reference herein to an embodiment having some feature X and reference
elsewhere herein to an embodiment having some feature Y does not exclude from this
disclosure embodiments which have both feature X and feature Y, unless such exclusion is
expressly stated herein. All possible negative claim limitations are within the scope of this
disclosure, in the sense that any feature which is stated to be part of an embodiment may
also be expressly removed from inclusion in another embodiment, even if that specific
exclusion is not given in any example herein. The term “embodiment” is merely used
herein as a more convenient form of “process, system, article of manufacture, configured
computer readable medium, and/or other example of the teachings herein as applied in a
manner consistent with applicable law.” Accordingly, a given “embodiment” may include
any combination of features disclosed herein, provided the embodiment is consistent with
at least one claim.

[00184] Not every item shown in the Figures need be present in every embodiment.
Conversely, an embodiment may contain item(s) not shown expressly in the Figures.
Although some possibilities are illustrated here in text and drawings by specific examples,
embodiments may depart from these examples. For instance, specific technical effects or
technical features of an example may be omitted, renamed, grouped differently, repeated,
instantiated in hardware and/or software differently, or be a mix of effects or features
appearing in two or more of the examples. Functionality shown at one location may also
be provided at a different location in some embodiments; one of skill recognizes that
functionality modules can be defined in various ways in a given implementation without
necessarily omitting desired technical effects from the collection of interacting modules
viewed as a whole.

[00185] Reference has been made to the figures throughout by reference numerals. Any
apparent inconsistencies in the phrasing associated with a given reference numeral, in the

figures or in the text, should be understood as simply broadening the scope of what is

37

10

15

20

WO 2016/111952 PCT/US2016/012100

referenced by that numeral. Different instances of a given reference numeral may refer to
different embodiments, even though the same reference numeral is used.

[00186] Asused herein, terms such as “a” and “the” are inclusive of one or more of the
indicated item or step. In particular, in the claims a reference to an item generally means at
least one such item is present and a reference to a step means at least one instance of the
step is performed.

[00187] Headings are for convenience only; information on a given topic may be found
outside the section whose heading indicates that topic.

[00188] All claims and the abstract, as filed, are part of the specification.

[00189] While exemplary embodiments have been shown in the drawings and described
above, it will be apparent to those of ordinary skill in the art that numerous modifications
can be made without departing from the principles and concepts set forth in the claims,
and that such modifications need not encompass an entire abstract concept. Although the
subject matter is described in language specific to structural features and/or procedural
acts, it is to be understood that the subject matter defined in the appended claims is not
necessarily limited to the specific technical features or acts described above the claims. It
is not necessary for every means or aspect or technical effect identified in a given
definition or example to be present or to be utilized in every embodiment. Rather, the
specific features and acts and effects described are disclosed as examples for consideration
when implementing the claims.

[00190] All changes which fall short of enveloping an entire abstract idea but come
within the meaning and range of equivalency of the claims are to be embraced within their

scope to the full extent permitted by law.

38

WO 2016/111952 PCT/US2016/012100

CLAIMS
1. A process for controlling a performance state machine, comprising:
automatically identifying notifications from an execution trace of an application,
the execution trace including a plurality of trace events within a period
which has endpoints, the notifications identified through comparison of
trace events to notification events for at least three notification categories;
automatically placing a state in a performance state machine for each identified
notification;
automatically aggregating application performance data for each transition
between identified notifications, the performance data collectively
including data in at least two performance data categories;

automatically inserting performance data aggregations in the performance state

machine;

displaying a visual representation of the state machine states, transitions, and

performance data aggregations on a display screen;

capturing altered performance of the application in an updated execution trace after

the placing and inserting steps; and

altering at least one state, transition, or performance data aggregation of the state

machine after the capturing step.

2. The process of claim 1, wherein the notification categories include at least
three of the following: application startup, page outline load, page data load start, page
data load finish, page to page transition, application input, window size change, media
query, binding update, page background task start, page background task finish, a
developer-defined scenario start, a developer-defined scenario finish.

3. The process of claim 1, wherein the performance data categories include at
least two of the following: network activity, disk activity, memory usage, parse time,
frame time, dropped frames, frame rate, thread utilization.

4. The process of claim 1, further comprising displaying at least one of the
following visual representations of aggregated application performance data: a linear set of
snapshots representing aggregated application performance data, or a timeline representing
aggregated application performance data.

5. The process of claim 1, wherein identifying notifications in the execution
trace comprises comparing at least a thousand trace events to at least one notification

event each, at a rate of at least a thousand comparisons per second.

39

WO 2016/111952 PCT/US2016/012100

6. The process of claim 1, wherein altering at least one state, transition, or
performance data aggregation of the state machine comprises altering application
performance data for a transition from a page navigation request state to a page loaded
state in which a frame of a post-navigation requested page has been submitted by the
application to a compositor.

7. A computer-readable storage medium configured with data and instructions
which upon execution by a digital processor perform a process for controlling a
performance state machine, the process comprising:

identifying notifications from an execution trace of an application, the execution

trace including a plurality of trace events within a period which has
endpoints, the notifications identified through comparison of trace events to
notification events for at least four of the following notification categories:
application startup, page outline load, page data load start, page data load
finish, page to page transition, application input, window size change,
media query, binding update, page background task start, page background
task finish, developer-defined scenario start, developer-defined scenario
finish;

placing a state in a performance state machine for each identified notification;

aggregating application performance data for each transition between identified

notifications, the performance data collectively including data in at least
three of the following performance data categories: network activity, disk
activity, memory usage, parse time, frame time, dropped frames, frame
rate;

inserting performance data aggregations in the performance state machine;

displaying a visual representation of the state machine states, transitions, and

performance data aggregations on a display screen;

capturing altered performance of the application in an updated execution trace after

the placing and inserting steps;

altering at least one state, transition, or performance data aggregation of the state

machine after the capturing step; and then

displaying an altered visual representation of the state machine states, transitions,

and performance data aggregations on the display screen.

8. The computer-readable storage medium of claim 7, wherein identifying

notifications in the execution trace comprises comparing at least a hundred thousand trace

40

WO 2016/111952 PCT/US2016/012100

events to at least one notification event each, at a rate of at least a hundred thousand
comparisons per second.

9. The computer-readable storage medium of claim 7, wherein the process
further comprises specifying a profiling trigger, and the performance data includes data
collected in response to activation of the profiling trigger during execution of the
application.

10. The computer-readable storage medium of claim 7, wherein the displaying
step comprises displaying a measure of time elapsed from when the application is
launched by an operating system to when a first frame is submitted by the application to
the operating system.

1. A system comprising:

a development machine having at least one development machine processor, a
development machine memory in operable communication with the
development machine processor, a display screen, and a development tool
which is described further below;

an end-user machine having at least one end-user machine processor, an end-user
machine memory in operable communication with the end-user machine
processor, and an application;

a set of notification events residing in the development machine memory;

an execution trace residing in the development machine memory and having events
from an execution of the application on the end-user machine; and

the development tool having code which upon execution by the development
machine processor identifies notifications from the execution trace by
comparison of execution trace events to notification events, places a state in
a performance state machine for each identified notification, aggregates
application performance data for each transition between identified
notifications, inserts performance data aggregations in the performance
state machine, and displays a visual representation of the state machine
states, transitions, and performance data aggregations on the display screen.

12. The system of claim 11, wherein the development tool compares execution
trace events to notification events at a rate of at least ten thousand comparisons per
second.

13. The system of claim 11, wherein the notification events belong to at least

three of the following notification categories: application startup, page outline load, page

41

WO 2016/111952 PCT/US2016/012100

data load start, page data load finish, page to page transition, application input, window
size change, media query, binding update, page background task start, page background
task finish, developer-defined scenario start, developer-defined scenario finish.

14. The system of claim 11, wherein the performance data aggregations belong
to at least two of the following performance data categories: network activity, disk
activity, memory usage, parse time, frame time, dropped frames, frame rate.

15. The system of claim 11, further comprising a displayed timeline

representation of aggregated application performance data.

42

WO 2016/111952 PCT/US2016/012100

1/5

DEVICE, E.G., COMPUTER SYSTEM 102
MEMORY / MEDIA 112

APPLICATION 120 WITH UI 122,
| PERFORMANCE 138 | THREADS 124, PROPERTIES 126,
! DATA 140 | ROUTINES 128, WINDOWS 130,...

L I E—

TOOLS 132: COMPILER 134, DEBUGGER 136,...| | KERNEL 148

L |
PROCESSOR(S) 110| | DISPLAY 142 |! TRACE 146 |! IDE 144 !
Y A 4
CONFIGURED MEDIUM 114 USER(S) 104
100 Y
INSTRUCTIONS 116 } NETWORK(S) 108
DATA 118 v
PERIPHERAL(S) 106
Fig. 1
STORAGE MEDIA 112
PERFORMANCE EXECUTION TRACE 146
PERIOD 206 WITH NOTIFICATION EVENTS 202,

ENDPOINTS 208 OTHER EVENTS 204, AND EDGES 210

| PERFORMANCE STATE MACHINE 226 WITH STATES 228, |
! TRANSITIONS 230, AND AGGREGATIONS 232 :

PERFORMANCE DATA FRAME 216 || LINEAR SET 234 OF
CATEGORIES 224 BUFFER 218 || SNAPSHOTS 236

e e o o o o — — — — — — ——————

NOTIFICATION 212 | |
CATEGORIES 214 : 242
|

e — —

WO 2016/111952 PCT/US2016/012100

2/5

NOTIFICATION CATEGORIES 214
APP STARTUP 302 PAGE OUTLINE LOAD 304

PAGE DATA LOAD START 306 || PAGE DATA LOAD FINISH 308

PAGE TO PAGE TRANSITION 310 APP INPUT 312

PAGE BACKGROUND TASK START 314 MEDIA QUERY 318

PAGE BACKGROUND TASK FINISH 316 CONFIGURED 324

WINDOW RESIZE 320 BINDING UPDATE 322

DEVELOPER-DEFINED SCENARIO START, FINISH 326, 328

Fig. 3

PERFORMANCE DATA CATEGORIES 224

NETWORK ACTIVITY 402 FRAME TIME 410

DISK ACTIVITY 404 DROPPED FRAMES 412

MEMORY USAGE 406 FRAME RATE(S) 414

PARSE TIME 408 THREAD UTILIZATION 416

Fig. 4

THREADS 124
USER INTERFACE THREAD 502 MAIN THREAD 504

O
O
<
T
O
)
-
O
4
_|
T
T
m
>
o
|cn
o
o
2
O
0
x
m
py
_|
T
T
m
>
9
£
(€]
o
(0]

—— e e e e e e e e e — — — — — —— —

WO 2016/111952 PCT/US2016/012100

3/5

COMPUTER SYSTEM 102

DEVELOPMENT MACHINE 102, 608

PROCESSOR(S) 110 |! OTHER COMPONENTS 612 |

—_———,e—eee e e e e ———

MEMORY 112 WITH DEVELOPMENT TOOL 602 CODE 604,
NOTIFICATION 212 EVENTS 202, TRACE 146

PERFORMANCE STATE MACHINE 226, WITH STATES 228,
TRANSITIONS 230 WITH AGGREGATIONS 232

SCENARIOS 240

|__________________|______________

—_E—_—e——,e— e, —————

END-USER MACHINE 102, 610

DATA
TRACE 146 EVENTS 204 OUTPUT ENGINE 618 || 118,140
PROCESSOR(S) 110 MEMORY 112 WITH APP 120

Fig. 6

WO 2016/111952 PCT/US2016/012100

4/5
.~ 700

| RECEIVE 702 PERFORMANCE PERIOD SELECTION

Y

OBTAIN 704 EVENT TRACE

A 4

COMPARE 706 TRACE EVENTS TO NOTIFICATION EVENTS

Y

IDENTIFY 708 NOTIFICATIONS

A 4

PLACE 710 STATE IN MACHINE FOR NOTIFICATION

Y

AGGREGATE 712 DATA FOR NOTIFICATION TRANSITION

> INSERT 714 AGGREGATION IN MACHINE

> DISPLAY 716 MACHINE REPRESENTATION

> ALTER 718 APPLICATION’'S PERFORMANCE

Y

CAPTURE 720 ALTERED PERFORMANCE DATA

> ALTER 722 MACHINE TO MATCH APPLICATION

g DISPLAY 724/726 SNAPSHOTS SET / TIMELINE

A 4

COMPARE 728 EVENTS AT SPECIFIED RATE OR FASTER

| ALTER 730 POST-NAVIGATION DATA AGGREGATION

”| SPECIFY/ACTIVATE 732/734 PROFILING TRIGGER 736

— DISPLAY 738 TIME FROM LAUNCH TO FIRST FRAME

| DISPLAY 740 TIME FROM TRANSIT TO NEXT FRAME

" USE 742/744 COMPONENT/OVERALL FRAME RATE

Fig. 7

WO 2016/111952

5/5

TRACE
FILE 146

WRITE 804 TRACE

READ 812

PCT/US2016/012100

PROCESS
120

INTERCEPT

622

SCENARIO LIST 814
AND HEURISTICS

TRACE |«
EVENTS

A
PROCESS 806

PIVOTS 808
FOR
AGGREGATION

TRACE
EVENTS

SCENARIO
DETECTED?

YES
v

AGGREGATE 712

*| PERFORMANCE DATA

|

SEND 810 DATATO
GRAPHING ENGINE

Fig. 8

802 TRACE

END

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings

