
United States
US 2013 O305212A1

(19)

(12) Patent Application Publication (10) Pub. No.: US 2013/0305212 A1
Reisbich (43) Pub. Date: Nov. 14, 2013

(54) DRY-RUN DESIGN TIME ENVIRONMENT (52) U.S. Cl.
CPC .. G06F 8/70 (2013.01)

(71) Applicant: Julia Reisbich, Leimen (DE) USPC .. T17/102

(72) Inventor: Julia Reisbich, Leimen (DE) (57) ABSTRACT
This disclosure provides various embodiments for perform

(73) Assignee: SAP AG, Walldorf (DE) ing a dry-run of a business process model in a design-time
environment. A start event and end event of the business

(21) Appl. No.: 13/943,355 process model are identified, defining a path of a flow map
1-1. including a sequence of a plurality of events, including the

(22) Filed: Jul. 16, 2013 start event, the end event, and at least one other event
O O sequenced between the start and ends. The events in the path

Related U.S. Application Data are stepped-through to simulate each event. An error is iden
(63) Continuation of application No. 12/886,008, filed on tified corresponding to a particular event in the path and the

Sep. 20, 2010, now Pat. No. 8,515,876. step-through is paused upon identifying the error. A user is
then prompted for an input to at least temporarily resolve the

Publication Classification at least one error. The stepping-through of the plurality of
events is then resumed in response to a resolution input from

(51) Int. Cl. the user. The dry run ends in response to stepping-through to
G06F 9/44 (2006.01) the end event.

^

R. Test R v ControlFlowDemo R. Vacation Request &
VacationRequest Palette b

Employee Manager R Select
Marquee

LoginData Start Proweddata Accept --
G fy Connections Manager's

Decision O Activities
405 - O Events

-- 9& {X Gateways
Accept Artifacts

HSwimlanes

VacationData
Vacation
Request

Send

US 2013/0305212 A1 Nov. 14, 2013 Sheet 1 of 14 Patent Application Publication

Z "OIH

Z|| ||HOLICE TECIOW SSE OO}}d
INHWNOHANE INEWdOBABC göz

0Z),

Patent Application Publication Nov. 14, 2013 Sheet 2 of 14 US 2013/0305212 A1

300

IDENTIFYA PROCESS
MODEL FOR ADRY RUN

STEP-THROUGH EVENTS
IN THE PROCESS MODEL

315 IDENTIFY ANERROR

320 PAUSE THE
STEP-THROUGH

PROMPTUSER FORA
325 RESOLUTION INPUT

RESUME IN RESPONSE
330 TO RESOLUTION INPUT

335 END DRY RUN

FIG. 3A

305

310

Patent Application Publication Nov. 14, 2013 Sheet 3 of 14 US 2013/0305212 A1

345

BEGINDRY RUN

352

SN RECEIVE QUICK
FIX INPUTS

ES Y

START STEP-THROUGH

IDENTIFY EVENT

350

358

360

MAPPING RECEIVE QUICK
FIX INPUTS

362

CASE
CONDITIONS RECEIVE QUICK

FIX INPUTS

PROCEED TO
NEXT EVENT

375

END DRY RUN

FIG. 3B

380

US 2013/0305212 A1 Nov. 14, 2013 Sheet 4 of 14 Patent Application Publication

{}Pula @?e?epdn@

N.G07
@@

US 2013/0305212 A1 Nov. 14, 2013 Sheet 5 of 14 Patent Application Publication

– 8ønbleN ?T

--------E---

US 2013/0305212 A1 Nov. 14, 2013 Sheet 6 of 14 Patent Application Publication

UH =

–
XO [5]

23 s??ºdold E | 601JOJE (€)

@ @

US 2013/0305212 A1 Nov. 14, 2013 Sheet 7 of 14 Patent Application Publication

aanbleW ††

--| ?

@

G

US 2013/0305212 A1 Nov. 14, 2013 Sheet 8 of 14 Patent Application Publication

DESDEO]DOT|----Q, ºvoid @
— —)

US 2013/0305212 A1 Nov. 14, 2013 Sheet 9 of 14 Patent Application Publication

$ pula @

NG07

US 2013/0305212 A1 Nov. 14, 2013 Sheet 10 of 14 Patent Application Publication

VS "OIH

99mbleN ††

US 2013/0305212 A1 Nov. 14, 2013 Sheet 11 of 14 Patent Application Publication

spe??uw []

US 2013/0305212 A1 Nov. 14, 2013 Sheet 12 of 14 Patent Application Publication

(%61) MOHlonuoo bullpune" |
G09

| XO |

03

US 2013/0305212 A1 Nov. 14, 2013 Sheet 13 of 14 Patent Application Publication

(%61) MoHonuoo fiul?ounei |
aanbleW T} pales ?!

< - 3??a?ed -
|-

909

US 2013/0305212 A1 Nov. 14, 2013 Sheet 14 of 14 Patent Application Publication

(EIS ‘OIH

??

US 2013/0305212 A1

DRY-RUN DESIGN TIME ENVIRONMENT

CLAIM OF PRIORITY

0001. This application claims priority under 35 USC S119
(e) to U.S. patent application Ser. No. 12/886,008, filed on
Sep. 20, 2010, the entire contents of which are hereby incor
porated by reference.

TECHNICAL FIELD

0002 This present disclosure relates to design-time soft
ware tools and operations, and, more particularly, to systems,
Software, and computer-implemented methods for providing
a dry-run design-time tool for business process models.

BACKGROUND

0003. In many respects, developing, programming, and
coding software involves a trial-and-error process of check
ing code syntax, compiling and re-compiling scripts, and
testing modules of the Software system in a design-time envi
ronment to ensure that the code is free of bugs and prepared
for commercial or runtime deployment. Tools have been
developed to assist Software developers in debugging, com
piling, and hard-coding their programs. Design-time tools
and environments can provide Such tools and development
tools automating traditional Software development tasks and
processes. One example of a design-time environment are
integrated development environments, or “IDEs. IDEs can
provide a suite of design-time components and tools, some
times in a common user interface. Rather than utilizing sev
eral, distinct development tools, an IDE integrates multiple
development tools into a common package to make access to
and use of the tools more convenient to the user. In some
instances, an IDE is dedicated to a particular programming
language, thereby providing tools and a feature set compat
ible with and adapted to the nuances and programming para
digms of the language. However, Some multiple-language
IDEs do exist, such as commercially available versions of
Eclipse, ActiveState Komodo, NetBeans, Microsoft Visual
Studio, WinDev, and Xcode.
0004 IDEs can provide tools and features for authoring,
modifying, compiling, deploying and debugging software.
Through a tight integration of development tools and tasks,
software development productivity and efficiency can be
improved. A typical IDE includes a debugger, compiler,
source code editor, and build automation tools. Other con
temporary IDEs can further include a class browser, object
inspectors, and class hierarchy tools, for example, to assist in
the development of object-oriented software.

SUMMARY

0005. This disclosure provides various embodiments for
performing a dry-run of a business process model in a design
time environment. A start event and at least one end event of
the business process model are identified. The start event and
at least one end event define at least one path of a flow map of
the business process model, the path including a sequence of
a plurality of events, the plurality of events including the start
event, the at least one end event, and at least one other event,
the at least one other event positioned between the start event
and the end event in the sequence. The plurality of events in
the path are stepped-through to simulate each event in the
plurality of events. At least one erroris identified correspond
ing to a particular event in the path. The stepping-through the

Nov. 14, 2013

plurality of events is paused at the particular event in response
to identifying the error. A user is then prompted for an input to
at least temporarily resolve the at least one error. The step
ping-through of the plurality of events is then resumed in
response to a resolution input from the user until the step
through reaches the at least one end event, ending the dry run.
0006 While generally described as computer imple
mented Software that processes and transforms the respective
data, Some orall of the aspects may be computer implemented
methods or further included in respective systems or other
devices for performing this described functionality. The
details of these and other aspects and embodiments of the
present disclosure are set forth in the accompanying drawings
and the description below. Other features, objects, and advan
tages of the disclosure will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

0007 FIG. 1 illustrates an example computing system
including a development environment including a dry-run
simulation tool.
0008 FIG. 2 is a schematic illustration of an example
implementation of a dry-run simulation tool.
0009 FIG. 3A is a flowchart illustrating an example com
puter process for performing a dry-run of a business process
model in a design-time environment.
0010 FIG. 3B is a flowchart illustrating another example
of a computer process for performing a dry-run of a business
process model in a design-time environment.
0011 FIGS. 4A-4F illustrate example screenshots of a
user interface of a design-time environment including a dry
run simulation tool.
(0012 FIGS. 5A-5E illustrate example screenshots of a
user interface of another example use of a dry-run simulation
tool.
0013 Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

0014. This disclosure generally describes software, com
puter-implemented methods, and systems relating to a
design-time tool for conducting a dry-run of a Software
model. Such as a business process model. A "dry-run typi
cally refers to a mental assessment or check of a Software
model, made by a Software developer, prior to introducing the
Software model and/or related code to a computer-imple
mented compiler, debugger, sandbox, runtime environment,
build automation tool, or other tool for more formal testing
and debugging. In some instances, a software model can be
used by a developer to map-out context, control and data
flows prior to coding the programs, modules, and processes
modeled by the software model. A software developer can
develop and fine-tune the software model prior to making the
investments in time, money, and computing resources needed
to code the programs, modules, and processes modeled by the
software model.
00.15 Generally, debuggers, compilers, and other tradi
tional design-time tools can require a piece of code or a
Software model that is capable of being compiled, complete,
sufficiently specified, or syntactically correct or otherwise
sufficiently specified in order for the tool to complete pro
cessing. That is, when a process model, for example, is
incomplete, underspecified, or syntactically incorrect, the

US 2013/0305212 A1

tool cannot successfully complete testing of the model. Addi
tionally, even in instances where a business process model is
fully specified, testing its functional behavior can require a
full design time-runtime roundtrip, resulting in unacceptably
long turnaround times and other inconveniences adversely
impacting testing and development of the Software.
0016. As described below, in some instances, a dry run
simulation tool can perform computer-implemented dry-runs
of an incomplete, underspecified, or syntactically incorrect
business process during the modeling stage to assist a devel
oper in assessing whether the current, partially-developed
state of the process complies with the developer's expecta
tions. During the dry run an end user can simulate the data
flow, understand how simulated input and output data can
affect a process execution, and recognize missing data flow
definition or other issues in already defined mapping instruc
tions. When the dry run encounters a portion of the model that
is underspecified or otherwise incomplete, the dry run can
temporarily pause to receive inputs from the end user, Such as
input data, control flow gateway conditions, and message
correlation predicates corresponding to the underdeveloped
portions of the model, to temporarily bridge the portion and
allow the user to complete a preliminary test or run of the
model.

0017 Business process execution can not only depend on
control flow aspects but also data flow. For instance, data flow
instructions can be specified in connection with mappings of
process activities and events (e.g., transformations from the
global data context to the activity signature and vice-versa).
Additionally, data flow can also affect expressions relating to
the process data context of the model. Such as conditional
gateways or message correlation predicates. For instance, in
the event that a gateway condition or message correlation
predicate is not correctly defined, a business process can fail
to execute properly at runtime, if at all. In Such an instance, a
dry-run of modeled process can assist a developer in under
standing if any and/or all conditions, correlations, and data
flow of a business process are correctly defined in advance of
further development efforts and process deployment on a
“live.” productive system.
0018 FIG. 1 illustrates an example computing system 100
including a development environment 105 that includes a
dry-run simulation tool 110. The development environment
105 can be an integrated development environment or IDE
and include an integrated set of other development tools in
addition to the dry-run simulator tool 110. The development
environment 105 can include one or more business process
models 112 stored in memory 115 that are accessible to the
development environment 105, including the design time dry
run simulation tool 110. As an example, business process
models 112 can be accessed from memory associated with a
workspace of development environment 105. The develop
ment environment can be implemented in connection with an
enterprise software system 120 providing business services to
one or more customers 130, 135, such as shown in the
example of FIG. 1, over one or more networks 125. The
development environment 105 itself can be provided as a
service to one or more remote client computing devices (e.g.
130, 135). In some instances, at least a portion of the devel
opment environment 105, including the dry-run simulation
tool 110, can be installed on the client devices 130, 135
themselves, and interact with a backend portion of the devel
opment environment 105 remote from the client devices 130,
135. In still other examples, the development environment

Nov. 14, 2013

105 can be provided as a distributed software environment,
Such as a cloud computing system. In still other instances, the
development environment 105 can be locally stored and
executed on end-user computing devices 130, 135. Business
process models developed and tested using the development
environment 105 can be exported to or imported from other
computing devices, including a client computing device (e.g.,
130, 135), an enterprise software system 120, or other appli
cation server 140 or computing device, including computing
devices remote from the development environment 105.
(0019. The development environment 105 can be imple
mented using one or more computing devices. As used in this
document, the term “computing device' or “computer is
intended to encompass any suitable processing device. For
example, a computing device can include one or more servers
operable to receive, transmit, process, store, or manage data
and information associated with the Software environment
100. For example, the environment 100 may be implemented
using computers other than servers, including a serverpool.
Further, any, all, or some of the servers (including computing
devices 120, 130, 135, 140) may be adapted to execute any
operating system, including Linux, UNIX, Windows Server,
or any other suitable operating system. Clients 130, 135, as
well as other users external to environment 100, can, directly
or indirectly (e.g., via a proxy, virtual machine interface, etc.)
access and perform operations, testing, and dry runs using the
development environment 105. It will be further understood
that the term “application server” (e.g., 140) can include any
suitable software component or module, or computing device
(s) capable of hosting and/or serving a software application,
including distributed, enterprise, or cloud-based software
applications.
0020. In the present example, the development environ
ment 105 can interface with one or more application servers
140 and/or enterprise software systems 120. In some
instances a development environment 105 can be hosted on a
common computing system, server, or serverpool, and share
computing resources, including shared memory, processors,
and interfaces with an enterprise Software system or other
software system. The development environment 105 can
interface with other software systems and client devices to
communicate in a client-server or other distributed environ
ment (including within environment 100). Computing
devices providing the development environment 105 can
include one or more interfaces comprising logic encoded in
Software and/or hardware in a suitable combination and oper
able to communicate with a network 125, and other comput
ing devices, including computing devices coupled to the net
work 125. More specifically, such interfaces can comprise
Software Supporting one or more communication protocols
associated with communications such that a network 125 or
hardware is operable to communicate physical signals within
and outside of the illustrated software environment 100.

0021. Each of the example servers (e.g., 120, 140), includ
ing servers and computing devices hosting the development
environment 105, can include a processor. Each processor can
execute instructions and manipulate data to perform the
operations of the associated server, and may comprise, for
example, a central processing unit (CPU), a blade, an appli
cation specific integrated circuit (ASIC), or a field-program
mable gate array (FPGA), among other suitable options. Pro
cessors can be implemented as one or more processors
according to the particular needs of the associated server.
References to a single processor can also be interpreted to

US 2013/0305212 A1

include multiple processors where applicable. The operations
that each processor executes can be determined by the pur
pose and operations of its associated server. Generally, the
processor executes instructions and manipulates data to per
form the operations of its respective server and, specifically,
the software systems and applications (e.g., 105) hosted by
the server.

0022. At a high level, each "server' includes one or more
electronic computing devices operable to receive, transmit,
process, store, or manage data and information associated
with the environment 100. Specifically, a server is responsible
for receiving requests from one or more clients and sending
the appropriate response the requesting client. In addition to
requests from external clients, requests may also be sent from
internal users, external or third-party customers, other auto
mated applications, as well as any other appropriate entities,
individuals, systems, or computers. For example, although
FIG. 1 illustrates single server for application server 140, and
a serverpool for enterprise system 120, a server can be imple
mented using one or more servers, as well as computers other
than servers, including a serverpool. Indeed, a server may be
any computer or processing device Such as, for example, a
blade server, general-purpose personal computer (PC),
Macintosh, workstation, UNIX-based workstation, or any
other suitable device. In other words, the present disclosure
contemplates computers other than general purpose comput
ers, as well as computers without conventional operating
systems. Further, a server can be adapted to execute any
operating system, including Linux, UNIX, Windows, Mac
OS, or any other Suitable operating system.
0023. In the case of an server implementing development
environment 105, the server processor can execute the func
tionality required to receive and respond to requests and inter
actions from client devices 130, 135, as well as client appli
cations 140 interfacing with the development environment
105. Regardless of the particular implementation, “software'
may include computer-readable instructions, firmware, wired
or programmed hardware, or any combination thereof on a
tangible medium operable when executed to perform at least
the processes and operations described herein. Indeed, each
software component may be fully or partially written or
described in any appropriate computer language including C.
C++, Java, Visual Basic, assembler, Perl, any suitable version
of 4GL, as well as others. Applications can be implemented as
individual modules that implement the various features and
functionality through various objects, methods, or other pro
cesses, or may instead include a number of Sub-modules,
third party services, components, libraries, and Such, as
appropriate. Conversely, the features and functionality of
various components can be combined into single components
as appropriate.
0024. At a high level, applications included in the envi
ronment 100 can include any application, program, module,
process, or other Software that may execute, change, delete,
generate, or otherwise manage information according to the
present disclosure, particularly in response to and in connec
tion with one or more requests received from the illustrated
clients 130, 135, as well as other applications. In certain
cases, only one hosted application may be located at a par
ticular server. In others, a plurality of related and/or unrelated
hosted applications may be stored at a single server, or located
across a plurality of other servers, as well. In certain cases,
environment 100 may implement a composite hosted appli
cation. For example, portions of the composite application

Nov. 14, 2013

may be implemented as Enterprise Java Beans (EJBs) or
design-time components may have the ability to generate
run-time implementations into different platforms, such as
J2EE (Java 2 Platform, Enterprise Edition), ABAP (Ad
vanced Business Application Programming) objects, or
Microsoft's .NET, among others. Additionally, applications,
including applications provided through enterprise Software
services 120 may represent web-based applications accessed
and executed by remote clients 130, 135 or client applications
140 via the network 125 (e.g., through the Internet). Further,
one or more processes associated with a particular hosted
application may be stored, referenced, or executed remotely.
For example, a portion of a particular hosted application may
be a web service associated with the application that is
remotely called, while another portion of the hosted applica
tion may be an interface object or agent bundled for process
ing at a remote client 130, 135. Moreover, any or all of the
hosted applications may be a child or Sub-module of another
Software module or enterprise application (not illustrated)
without departing from the scope of this disclosure. Still
further, portions of the hosted application may be executed by
a user working directly at server 140, for example, as well as
remotely at a client 130, 135.
(0025. Each of the example servers 105, 120, 140 can
includes a memory. Each memory may include any memory
or database module and may take the form of volatile or
non-volatile memory including, without limitation, non-tran
sitory memory elements, magnetic media, optical media, ran
dom access memory (RAM), read-only memory (ROM),
removable media, or any other suitable local or remote
memory component. Each memory may store various objects
or data, including classes, frameworks, applications, backup
data, business objects, jobs, web pages, web page templates,
database tables, content repositories storing business or other
dynamic information, or other information including any
parameters, variables, algorithms, instructions, rules, con
straints, or references thereto relevant to the purposes of the
particular server. Each memory may also include any other
appropriate data, Such as VPN applications, firmware logs
and policies, firewall policies, a security or access log, print or
other reporting files, as well as others. Again, the particular
data and instructions stored in each memory will be described
in detail below in connection with the illustrated implemen
tations of the software environment 100 and components
thereof.

0026 Generally, the network 125 facilitates wireless or
wireline communications between the components of the
software environment 100 (e.g., between the development
environment 105 and one or more client devices 130, 135
utilizing the development environment 105), as well as with
any other local or remote computer, Such as those associated
with the one or more applications 120, 140 or external data
sources. The network 125 can be implemented as one or more
distinct networks. In any implementation, the network 125
may be a continuous or discontinuous network without
departing from the scope of this disclosure, so long as at least
a portion of the network 125 may facilitate communications
between senders and recipients. The network 125 may be all
or a portion of an enterprise or secured network. As an
example, in FIG. 1 networks 125a may represent a portion of
an enterprise network, while network 125b may represent a
connection to the Internet. In some instances, a portion of the
network 125 may be a virtual private network (VPN). All or a
portion of the network 125 can comprise either a wireline or

US 2013/0305212 A1

wireless link. Example wireless links may include 802.11a/
b/g/n, 802.20, WiMax, and/or any other appropriate wireless
link. In other words, the network 125 encompasses any inter
nal or external network, networks, Sub-network, or combina
tion thereof operable to facilitate communications between
various computing components inside and outside the illus
trated environment 100. The network 125 may communicate,
for example, Internet Protocol (IP) packets, Frame Relay
frames, Asynchronous Transfer Mode (ATM) cells, voice,
video, data, and other suitable information between network
addresses. The network 125 may also include one or more
local area networks (LANs), radio access networks (RANs).
metropolitan area networks (MANs), wide area networks
(WANs), all or a portion of the Internet, and/or any other
communication system or systems at one or more locations.
0027. The illustrated implementation of FIG. 1 includes
one or more local and/or remote clients 130, 135. The client
130, 135 is any computing device operable to connect or
communicate at least with the development environment 105
and/or the network 125 using a wireline or wireless connec
tion. Each client 130, 135 can include a graphical user inter
face (GUI). In general, the client 130, 135 comprises an
electronic computing device operable to receive, transmit,
process, and store any appropriate data associated with the
software environment of FIG. 1. It will be understood that
there may be any number of clients 130, 135 associated with
environment 100, as well as any number of clients 130, 135
external to environment 100. Further, the term "client' and
“user may be used interchangeably as appropriate without
departing from the scope of this disclosure. Moreover, while
each client 130, 135 is described in terms of being used by one
user, this disclosure contemplates that many users may use
one computer or that one user may use multiple computers.
As used in this disclosure, the client 130, 135 is intended to
encompassapersonal computer, touchscreen terminal, work
station, network computer, kiosk, wireless data port, Smart
phone, personal data assistant (PDA), one or more processors
within these or other devices, or any other Suitable processing
device. For example, the client 130, 135 may comprise a
computer that includes an input device. Such as a keypad,
touchscreen, mouse, or other device that can accept informa
tion, and an output device that conveys information associ
ated with operations of the development environment 105
(including the dry-run simulation tool 110), as well as other
applications stored and/or executed on the enterprise Software
system 120, application server 140 (or other servers in envi
ronment 100), or on the client 130, 135 itself, including
digital data, visual information, or the GUI. Both the input
device and the output device may include fixed or removable
storage media Such as a magnetic computer disk, CD-ROM,
or other suitable media to both receive input from and provide
output to users of the clients 130, 135 through the display,
namely the GUI.
0028 AGUI can comprise a graphical user interface oper
able to allow the user to interface with at least a portion of
environment 100 for any Suitable purpose, including allowing
a user to interact with one or more software applications,
including the development environment 105. Generally, a
GUI provides users with an efficient and user-friendly pre
sentation of data provided by or communicated within the
system. The term “graphical user interface, or GUI, may be
used in the singular or in the plural to describe one or more
graphical user interfaces and each of the displays of a par
ticular graphical user interface. Therefore, the GUI can be any

Nov. 14, 2013

graphical user interface, such as a web browser, touchscreen,
or command line interface (CLI) that processes information
in the environment 100 and efficiently presents the results to
the user. In general, the GUI may include a plurality of user
interface (UI) elements such as interactive fields, pull-down
lists, media players, tables, graphics, virtual machine inter
faces, buttons, etc. operable by the user at the client 130, 135.
These UI elements may be particularly related to and adapted
for the functions of the development environment 105,
including the dry-run simulation tool 110.
0029 While FIG. 1 is described as containing or being
associated with a plurality of elements, not all elements illus
trated within environment 100 of FIG. 1 may be utilized in
each alternative implementation of the present disclosure.
Additionally, one or more of the elements described herein
may be located external to environment 100, while in other
instances, certain elements may be included within or as a
portion of one or more of the other described elements, as well
as other elements not described in the illustrated implemen
tation. Further, certain elements illustrated in FIG. 1 may be
combined with other components, as well as used for alter
native or additional purposes in addition to those purposes
described herein.
0030 FIG. 2 is a schematic representation of one example
implementation of a dry-run simulation tool 110 of a devel
opment environment. In some implementations, the dry-run
simulation tool 110 can include a simulator module 210 and
an error resolution module 220. One or more business process
models 112 can be stored in a memory 115 accessible to or
associated with the dry-run simulation tool 110. The simula
tor module 210 can be adapted to perform a step-through
simulation of each event in a path of a process model. The
simulator module 210 can include functionality that allows a
user to simulate various inputs or control conditions at the
event to test how the event, and Subsequent events in the path,
respond to the simulated inputs. One or more GUIs, including
pop-windows, can be displayed in connection with the func
tionality of the simulator module 210, allowing users to ana
lyze and interact with parameters of each event on an event
by-event basis. In addition to allowing a user to test and
scrutinize each event in a process model, the simulator mod
ule 210 can additionally identify errors associated with the
events. For instance, an error can identify parameters of an
event that are un- or under-specified.
0031. The error resolution module 220 can operation in
connection with the simulator module 210 to prompt a user
for a resolution input to temporarily resolve errors identified
by the simulator module 210. A dry-run simulation instance
can be paused by the dry-run simulation tool 110 in response
to a simulator module’s 210 detection of an event error. The
dry-run can be paused at the corresponding event until an
acceptable resolution input is received by the error resolution
module 220. The error resolution module 220 can addition
ally identify the nature of the error and identify a set of
potential resolution inputs or input options that could satisfy
the error prompt. For instance, the error resolution module
220 can present, through the prompt, a brief description of the
error and Suggest one or more resolutions to the particular
error. For instance, the prompt can present multiple resolution
options selectable by the user, and identified by the error
resolution module 220 as acceptable responses to the error.
0032. As shown in FIG. 2, the dry-run simulation tool 110
can be integrated with a development environment 105 that
includes additional development tools including a compiler

US 2013/0305212 A1

230, source code editor 235, a build automation tool 240, a
debugger 245, and a process model editor 255. The process
model editor 255 can provide functionality for building and
editing a business process model. One or more of the devel
opment tools included in the development environment,
including the process model editor 255, can interface with the
dry-run simulator module 210 to extend the functionality of
the dry-run simulation tool 110. For instance, the process
model editor 255 can provide a graphical editing environment
allowing users to edit, add, and delete events in a process
model. The editing functionality of the process model editor
255 can be used to modify a process model concurrently with
a dry-run simulation of the same process model. For instance,
in response to a pause in the dry-run simulation associated
with an error identified by the simulation module 210, a user
can respond to an error prompt generated by the error reso
lution module 220 by editing aspects of the process model,
temporarily or permanently, using editing functionality pro
vided through the process model editor 255. The error reso
lution module 220 can identify that modifications made to a
process model during a dry-run simulation using the process
model editor 255, resolve an identified error sufficiently to
allow the dry-run step-through to proceed to another event in
a path of the simulated process model.
0033. The example described and illustrated in connection
with FIG. 2 is but one example implementation of a dry-run
simulation tool for use and inclusion in a design-time devel
opment environment. Alternate implementation can be real
ized that provide substantially similar functionality and
results. For example, in some instances, the functionality of
modules 210, 220 can be combined, wholly or partially, in a
single module. In other instances, the functionality of mod
ules 210, 220, as well as other functionality present in the
dry-run simulator can be provided through other additional
modules.

0034 FIG. 3A is a flowchart 300 illustrating an example
computer process for performing a dry-run of a business
process model in a design-time environment, such as devel
opment environment 105. At least one path of a flow map of
a particular business process model can be identified 305. The
path can define a sequence of a plurality of events in the
business process beginning with a start event, ending with at
least one end event, with at least one other event positioned
between the start event and the end event in the sequence. The
dry-run can step-through 310 the plurality of events in the
path to simulate each event in the plurality of events. At least
one error can be identified 315 corresponding to a particular
event in the path. Stepping-through the plurality of events can
be paused 320 at the particular event in response to identify
ing the at least one error. A user can be prompted 325 for an
input to at least temporarily resolve the at least one error. For
instance, a pop-up window can be presented to the user to
offer suggestions or options for a temporary remedy (such as
a missing input value) and receive inputs from the user speci
fying a temporary remedy. Stepping-through of the plurality
of events can be resumed 330 in response to receiving a
resolution input from the user. The dry run can end 335 in
response to stepping-through to the at least one end event.
0035 FIG. 3B is a flowchart 345 illustrating another
example of a computer process for performing a dry-run of a
business process model in a design-time environment. A dry
run can be initiated 350, for instance, by a user using a
integrated development environment that includes a dry-run
simulation tool. A particular business process model can be

Nov. 14, 2013

identified and debugged using the dry-run simulation tool.
The dry run can begin by checking 352 to make sure that a
start event and at least one end event have been properly
specified for a path of the model. If one or both of the start and
end events have not been specified, or incorrectly or improp
erly specified, a user can be prompted accordingly and “quick
fix’ inputs received 355 corresponding to the user's selection
or identification of specifications or remedies for the missing
start and/or end event.

0036. If the start event and at least one end event have been
properly specified, the dry run can identify a path of the
model, with one or more branches, that include a plurality of
events. With the path identified, the dry run can step-through
358 each of the events in the plurality of events to simulate
each data flow and/or control flow corresponding to each of
the modeled process events. An event is identified 360 and
simulation (and, if necessary, debugging) of the event is ini
tiated. The event can be checked 362 to see if input or output
data needed for the event are properly specified. If it is deter
mined that input/output mapping of the event have been
under- or improperly-specified, the user can be prompted to
define or provide 365 test values or specifications for the
input/output mapping. In addition, control and case condi
tions of the event can be checked 368 to ensure that control
logic for the event has been properly specified. Checking case
conditions 368 can take place in parallel or serially with
checking the input/output mapping 362. While FIG. 3B
shows checking control conditions 368 to take place after
input/output mapping has been verified 362, check 368, in
Some implementations, can be performed prior to check 362,
and input/output mapping check 362 can be completed in
response to verifying control conditions 368. In some
instances, the order of checks 362,368 can be arbitrary or
performed Substantially concurrently.
0037. As with checks 352,362, in response to determining
368 that control conditions have been inadequately specified,
the dry-run can be paused, to allow the user to submit 370
quick-fixinputs to temporarily remedy the error and allow the
dry-run simulation to resume and proceed to an end event
372. Quick-fix inputs 370 received in response to a control
condition check 368 can specify logic or conditions that
should be applied in the simulation to designate how data
flows from one event to another. The specified logic and/or
conditions of an event can use or reference the I/O mapping,
as well as variable values, to determine the process flow from
one event to the next. For instance, the logic can specify two
or more cases conditions, such as IFXTHANa; IFy THENb,
etc. In some instances, quick-fix inputs 370 received in
response to a control condition check 368 can be as simple as
an explicit designation of the event, path, or branch that
should be followed in the model. For instance, if a first event
calls for control to flow to one of either two subsequent events
in response to the first event, the user can specify a quick-fix
that includes a designation of one of the two Subsequent
events to which control is to be passed. Upon concluding
simulation of an event, if the event is an end event 372, the dry
run ends 380. However, if the event is not an end event, the
step-through proceeds 375 to the next event simulated in the
model. Proceeding 375 to the next event in the model can be
dependent on the simulated outcomes or output of another
event previously simulated in the dry-run. For instance, as
articulated in the previous example, a quick-fix for a previous
event can result in the user hard-driving the process flow to a
particular Subsequent event in the model. Accordingly, in this

US 2013/0305212 A1

example, the dry-run step-through can proceed 375 to the
particular event specified in the quick-fix input 370. Step
ping-through to Subsequent events can involve cycling the
debugging steps 362-372 for each event until an end event is
reached 372, ending 380 the dry run.
0038 FIGS. 4A-4F illustrate example screenshots of a
user interface 400 of a design-time environment including a
dry-run simulation tool implementing techniques and incor
porating features similar to some of those described in con
nection with FIGS. 1-3B. As an illustrative example, and as
shown in FIG. 4A, a business process model 405 can be
selected for development and debugging in an integrated
development environment. In this example, business process
model 405 models a vacation request business process that,
when fully developed and deployed, can allow employees to
Submit a vacation request to a manager and receive a
response, for example, via email to the request. A visual
representation of the model 405 can be presented to a user on
a GUI and allow the user to visualize the general control and
data flow of a modeled process. The model can include con
trol flow elements with decision gateways, data flow objects,
definitions, and other modeling entities according to the
specifications of the modeling environment. In addition to
other, typical features and tools of integrated development
environments, the development environment in this particular
example can include a dry run simulation tool.
0039. A dry-run simulation can be performed on business
process model 405. The simulation can include stepping
through and simulating events in the model according to a
sequence or logic defined by the model. The dry-run simula
tion can also identify errors or underspecified modeling ele
ments, such as underspecified or unspecified input data, con
trol conditions or logic, decision element conditions, etc. In
the example of FIG. 4B, stepping through the process model
leads to the simulation and debugging of a Prove Login event
410. A user can simulate, check, test, and modify an event
during the dry-run. For instance, the Prove Login event 410
can have an input variable or object Login Data 415, corre
sponding to a user's log-in inputs used to authenticate a user
of the modeled vacation request Submission system. As
shown in window 420, a user can see and review parameters
associated with the Login Data object 415 as well as the input
mapping associated with the object 415 (e.g., in this case, the
objects association with and processing by the Prove Login
process event 410). In this example, the Prove Login process
event 410 can also have a ProvedData output data object 425
associated with the event 410 (e.g., corresponding to data
communicating the results of a user's Successful or unsuc
cessful authentication attempt). As shown in FIG. 4C, a user
can similarly view parameters and values associated with the
output data object 425. Additionally, during the dry run, the
user can experiment with and modify input data and data
objects associated with and passed between events in the
model to simulate how the process model passes, processes,
or reacts to the sample variable and data values used by the
user. The user can assess the results of these “trial runs’ to
determine whether the process model 405 accurately captures
the general functionality desired for the process modeled by
the process model 405.
0040. Further, as shown in FIG. 4D, as the dry run pro
ceeds through events in a path of the model, the step-through
may identify one or more errors associated with a particular
event. In the example of FIG. 4D, an input mapping error has
been identified by the dry run tool in connection with a Vaca

Nov. 14, 2013

tion Request event 430. The I/O mapping error can relate to
variables or data object values that would normally be speci
fied by a user or another process outside the scope of the
model. In response to the error, a prompt 435 can be displayed
to the user identifying the error and providing a GUI adapted
to receive user inputs that can temporarily remedy the error to
allow the dry run to proceed to completion. In this example,
the prompt 435 is a pop-up window adapted to accept tem
porary input data needed to complete the dry run. In some
instances, the prompt 435 can identify or Suggest a set of
potential resolution inputs to the user. In some instances, the
set of potential resolutions can be closed set (i.e., the only
available and responsive resolution inputs for a particular
error), while in other instances the resolutions may be merely
Suggestive, or an open set. In some instances, resolution of
errors with a variable's values or specification can be needed
in order to completely simulate the particular event associated
with the variable, or the error may identify that subsequent
events are dependent on a missing or underspecified variable
value, as is the case in the example of FIG. 4D. A subsequent
decision event 440 depends on a Boolean variable value Send,
in the Vacation Request event 430, indicating whether a vaca
tion request should be sent to a manager for review. As shown
in FIG. 4D, a user can enter a value 445 for the variable for
purposes of completing the dry run simulation of the process
model 405.

0041 As shown in the example illustrated in FIG. 4E,
errors can also relate to data flow control. For instance, deci
sion logic or conditions of a decision event 450 (shown in
FIG. 4A) included in the model, can be underspecified, result
ing in the identification of an error in the dry run. A user can
be presented with a prompt 455 requesting a temporary reso
lution to the error. For instance, in the case of a control flow
error, a request for rough, makeshift, or temporary control
conditions or logic can be received through the prompt GUI
455, or the result of the control event can simply be specified
by the user. As with I/O mapping errors, the prompt 455 can
identify and provide resolution options for a user to select that
could potentially provide an acceptable temporary resolution
to the error. As shown in the FIG. 4E, a user, in this example,
can simply specify how data is to flow through the decision
event 450, allowing the user to ignore, for the time being, the
underspecified nature of the event 450 and proceed with the
dry run simulation. In this example, the user has specified that
the dry-run is to proceed as if the decision event resulted in the
passing of control to branch split event 460, rather than the
immediate passing of control to the Send Email event 465. As
shown in FIG. 4F, the user can continue to step-through, test,
and simulate, and event correct or modify certain events, as
the user proceeds through each event in a models path until
the user reaches an end event in the path and concludes the dry
U.

0042 FIGS. 5A-5E illustrate example screenshots of a
user interface 400 of a design-time environment including a
dry-run simulation tool in a second example. In some
instances, in order for a dry-run to begin, a start and end event
need to be specified in order to define the bounds of the
dry-run. Such is the case in the examples of FIGS.5A-5E. As
shown in FIG.5A, a process model 505 has been selected for
a dry-run debugging, using a dry run tool of an integrated
development environment. The process model 505, in this
particular example, relates to a modeled process for accept
ing, modifying, and managing user log-in data. However, as
shown in FIG. 5B, as a user attempts to begin the dry-run, an

US 2013/0305212 A1

error prompt 510 can be presented indicating to the user that
neithera start event nor an end event had been specified for the
dry-run. Rather than cancelling the dry-run, as with the iden
tification of other errors during the dry-run, the dry-run simu
lation tool can allow the user to resolve the identified errors,
through the prompt 510, to allow the dry-run simulation to
proceed to completion. As shown in FIG. 5C, a user can
specify a start event through the error prompt GUI 510. Addi
tionally, the user can further specify an end event, as shown in
FIG.5D. Additionally, the user can enter, or modify, the start
and/or end events within the graphical representation of the
model itself, by dragging and dropping event icons 515, 520
to their proper places in the model path. As shown in FIG.5E,
the user has positioned start event 515 and end events 520 so
as to define an acceptable path in the model for the dry-run
(e.g., a path that includes an “end” event that follows a “start
event). Indeed, in some examples, dry-run resolution inputs,
Submitted by a user in connection with an error prompt, can
include user interactions with and modifications to the
graphical representation of the model, its events, and paths.
For instance, a user can temporarily correct a control error by
re-ordering events in the model on the graphical representa
tion of the model, to resolve a dry-run error.
0043 FIGS. 4A-4F and 5A-5E present two non-limiting
examples of the use of a dry-run design-time tool to test,
debug, and simulate business process models. Other
examples can include alternate protocols for handling and
presenting errors, accepting user resolution inputs, and other
features. The dry-run simulation tool, as well as any other
associated design-time tools, such as integrated development
environment tools, can include additional or fewer features,
and still be within the scope of some of the claims. It can also
be appreciated that the types, complexity, and size of business
process models simulated using a dry-run simulation tool can
be potentially limitless in variety. In some instances, a dry-run
simulation tool can be specific to a particular process model
format or specification. For instance, certain process models
can be directed to specialized processes developed to be com
patible with a particular enterprise software environment.
Accordingly, the dry-run simulation tool (as well as the
greater design-time environment) can be adapted or even
dedicated to be compatible with certain specialized process
model formats.
0044 Although this disclosure has been described in
terms of certain implementations and generally associated
methods, alterations and permutations of these implementa
tions and methods will be apparent to those skilled in the art.
For example, the actions described herein can be performed
in a different order than as described and still achieve the
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par
ticular order shown, or sequential order, to achieve the desired
results. In certain implementations, multitasking and parallel
processing may be advantageous. Other variations are within
the scope of the following claims.

1-20. (canceled)
21. A computer-implemented method for performing a

dry-run of a business process model in a design-time envi
ronment, the method comprising:

stepping-through, by a processor, a plurality of events in a
path of a flow map of a business process model to simu
late one or more events in the plurality of events;

identifying, by the processor, an error corresponding to a
particular event in the path;

Nov. 14, 2013

pausing, by the processor, the stepping-through of the plu
rality of events at the particular event in response to
identifying the error, and

providing, by the processor, a prompt requesting an input
to at least temporarily resolve the error.

22. The method of claim 21, further comprising:
receiving the input in response to providing the prompt

requesting the input; and
resuming the stepping-through of the plurality of events in

response to receiving the input.
23. The method of claim 22, wherein the particular event

includes a process using a variable, the error relates to a
failure to provide a value for the variable, and wherein receiv
ing the input comprises receiving a value for the variable.

24. The method of claim 23, wherein the variable corre
sponds to at least one of

an input to be received through a user interface associated
with a runtime business process modeled by the business
process model,

an input to be received from another process in a runtime
implementation of a business process modeled by the
business process model, or

an output of a runtime business process modeled by the
business process model.

25. The method of claim 22, wherein the particular event
includes a decision based at least in part on a condition, the
error relates to a failure to provide the condition for the
decision, and wherein receiving the input comprises receiv
ing the condition.

26. The method of claim 22, wherein the plurality of events
includes a start event and an end event, the business process
model defining a path of the flow map, the path including the
start event, the particular event, and the end event, and
wherein the method further comprises ending the dry-run in
response to stepping through to the end event.

27. The method of claim 21, further comprising presenting
a graphical representation of at least a portion of the business
process model and a progress of the stepping-through of the
plurality of events.

28. The method of claim 21, wherein providing the prompt
requesting the input comprises presenting an interactive pop
up window adapted to receive inputs.

29. The method of claim 21, wherein providing the prompt
requesting the input comprises presenting a listing of input
options, wherein the listing of input options includes a plu
rality of inputs determined to be potential resolutions to the
eO.

30. The method of claim 21, wherein the business process
model is an underspecified business process model.

31. The method of claim 30, wherein the business process
model is non-compilable.

32. The method of claim 30, wherein the business process
model is non-executable within a runtime environment based
at least in part on the at least one error.

33. The method of claim 21, wherein the design-time envi
ronment is an integrated development environment.

34. The method of claim 21, further comprising:
identifying that the business process model lacks at least

one of a start event and an end event;
pausing initiation of the stepping-through of the plurality

of events in response to identifying that the business
process model lacks at least one of a start event or an end
event;

US 2013/0305212 A1

providing a prompt requesting at least one of a start eventor
an end event; and

initiating stepping-through of the plurality of events in
response to receiving the lacking at least one of a start
event or an end event.

35. The method of claim 21, further comprising modifying
the business process model based at least in part on the input
to at least temporarily resolve the error received in response to
the prompt.

36. A non-transitory computer-readable medium storing
instructions executable by a processor to perform operations
comprising:

stepping-through, by a processor, a plurality of events in a
path of a flow map of a business process model to simu
late one or more events in the plurality of events;

identifying, by the processor, an error corresponding to a
particular event in the path;

pausing, by the processor, the stepping-through of the plu
rality of events at the particular event in response to
identifying the error, and

providing, by the processor, a prompt requesting an input
to at least temporarily resolve the error.

37. The medium of claim 36, the operations further com
prising:

receiving the input in response to providing the prompt
requesting the input; and

resuming the stepping-through of the plurality of events in
response to receiving the input.

38. The medium of claim 37, wherein the particular event
includes a process using a variable, the error relates to a

Nov. 14, 2013

failure to provide a value for the variable, and wherein receiv
ing the input comprises receiving a value for the variable.

39. A system comprising:
a processor; and
a computer-readable medium storing instructions execut

able by the processor to perform operations comprising:
stepping-through, by a processor, a plurality of events in

a path of a flow map of a business process model to
simulate one or more events in the plurality of events;

identifying, by the processor, an error corresponding to a
particular event in the path;

pausing, by the processor, the stepping-through of the plu
rality of events at the particular event in response to
identifying the error, and

providing, by the processor, a prompt requesting an input
to at least temporarily resolve the error.

40. The system of claim 39, the operations further com
prising:

receiving the input in response to providing the prompt
requesting the input, wherein the input is either a value
for a variable used in the particular event, the error
relating to a failure to provide a value for the variable or
the input is a condition for a decision used in the par
ticular event, the error relating to a failure to provide the
condition for the decision; and

resuming the stepping-through of the plurality of events in
response to receiving the input.

k k k k k

