US 20130305212A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0305212 Al

Reisbich 43) Pub. Date: Nov. 14, 2013
(54) DRY-RUN DESIGN TIME ENVIRONMENT (52) US.CL
CPC oottt GO6F 8/70 (2013.01)
(71) Applicant: Julia Reisbich, Leimen (DE) USPC oo, 717/102
(72) Inventor: Julia Reisbich, L.eimen (DE) (57) ABSTRACT

This disclosure provides various embodiments for perform-
ing a dry-run of a business process model in a design-time
environment. A start event and end event of the business
process model are identified, defining a path of a flow map
including a sequence of a plurality of events, including the
start event, the end event, and at least one other event
sequenced between the start and ends. The events in the path
are stepped-through to simulate each event. An error is iden-
(63) Continuation of application No. 12/886,008, filed on tified corresponding to a particular event in the path and the

(73) Assignee: SAP AG, Walldorf (DE)
(21) Appl. No.: 13/943,355
(22) Filed: Jul. 16, 2013

Related U.S. Application Data

Sep. 20, 2010, now Pat. No. 8,515,876. step-through is paused upon identifying the error. A user is

then prompted for an input to at least temporarily resolve the

Publication Classification at least one error. The stepping-through of the plurality of

events is then resumed in response to a resolution input from

(51) Int.ClL the user. The dry run ends in response to stepping-through to
GOG6F 9/144 (2006.01) the end event.

[5’5 Test Tj’bv ControlFlowDemo IC% Vacation_Request X{] = O
VacationRequest — Palette — ~
Employee Manager I3 Select

{7 Marquee
LoginData Start ProvedData Accept
= Connections
i_ n Decision O Activities
405 W
I : O Events
L _ | Decline > Gateways
: Accept [Artifacts
I .
Decline I H Swimlanes
I g
VacationData I ® Updgate 0] |[® Fng B

| Data Substitution

Vacation [ﬁP 3 |

Request Qo0 —

k -
Send
®X en
Save
\ ' «
End

US 2013/0305212 A1

Nov. 14,2013 Sheet 1 of 14

Patent Application Publication

¢ DIA
TINAOW NOILLNTOST HONYT T H0LIG3 T3AON 553008
y A Ghe N ore
o5z 01z STAON P o7)
— m_ob%s_ﬂ - o ¥399n830 1001 OLNY @1INg
100L NNY AXQ O ¥0LI03 3000 308N0S 1IN0
~ \ \
oLl INIWNOYIANT INFWAOTIAIA gozr 082
LN
G0l
—————— o
X ,._w_,w_.________" HHHHT °
Gel =)
™ = 0¥l
[] \ OOF
w S
B Gl c\r g W3LSAS
e TUYMLIOS
0gL - co1”” T00L NN ANE sek JSIMdNELNT

™ 021

Patent Application Publication = Nov. 14,2013 Sheet 2 of 14 US 2013/0305212 A1

300

\‘

305~ IDENTIFY APROCESS
MODEL FOR A DRY RUN

Y
310~] STEP-THROUGH EVENTS
IN THE PROCESS MODEL

Y
315~ IDENTIFY AN ERROR

Y
320~ PAUSE THE
STEP-THROUGH

\
PROMPT USER FOR A
325~ RESOLUTION INPUT

Y
RESUME IN RESPONSE
330-"| TORESOLUTION INPUT

Y
335" END DRY RUN

FIG. 3A

Patent Application Publication

345
\‘

350 ~_

BEGIN DRY RUN

Nov. 14,2013 Sheet 3 of 14

US 2013/0305212 A1

2

352)

START
AND END

RECEIVE QUICK
FIX INPUTS

358 ~

START STEP-THROUGH

N
355

v
IDENTIFY EVENT

360 ~_

3

)

/0
MAPPING

RECEIVE QUICK
FIX INPUTS

N
365

CASE
CONDITIONS

RECEIVE QUICK
FIXINPUTS

N
370

PROCEED TO
NEXT EVENT

END DRY RUN

380

FIG. 3B

N
375

US 2013/0305212 A1

Nov. 14,2013 Sheet 4 of 14

Patent Application Publication

Vv "DId

sauejmg H]

speyy [

skemoien &

seaz O

-—

puas Jx@

1senbay

puig @%l%@ ajepdn QL

ﬁ uonnisqng

< @u LoneoeA

pum

BRQUOIBOBA

AN

sepARY (O

suonosuuo)

aanbiey 1]

_ Jajes Y

UoISIoa(
il @ s abeuBpy

L

L

elegpanold 1eis
J

Jafeuep

® aafojdwg

elequibor

®

“ ojj8jed —

}sanbayuonesep

®

L —

$2 15enbay"UoReoBA n%_ OWSQMO|[0AJU0D) 4 @u% 159 @v_

US 2013/0305212 A1

Nov. 14,2013 Sheet 5 of 14

Patent Application Publication

g1 "DIdA

0zr~,|

[

BJeQpar0ld
piomssed [1 |-
sweusssn H---- &
elequibo @---D

ejequonesen El]-—
Bl

R

I\. sobevepy)@ PSOUBADY
uiboTercd E]--® ~ eoAo|dw @i& Buiddeyy inding
_ NN _ | _ Buiddeyy jnduj

uibo anoid Jo sindul 1XOJU0D 558001 S0eyIoju| 80IMBS
;Juswiad sIy) Joj Buiddew ndur sy} aulaq [eJousD

Aunjoypajewony

—% sepadoyd [_ B0 Jouig @h syse)

ﬂi 8j0su09 _W;

U fa

sioepuy [

sfemajeny &

swerl O M

sepiAY (O

suonoauuoy @

sonbiey T i

_ 103j08 &
« —— 3)j9jed — m

-~
|
o—o—e
(Q
@

uoIsioa(] il
@ spbeuey [T T Gev m (87 ™ Sop
1daooy »/) Elegpanold tﬁw gjlequibo
Jabeuey ® safodwg ®
jsenbayuoneoep ®

O —

$% 1sanbay uoneoeA n%b olagmo|4jonuc) nnﬁ% 18] n%h

US 2013/0305212 A1

Nov. 14,2013 Sheet 6 of 14

Patent Application Publication

v “DIA

eyequonesen [=--®

1dsooy —@
E-® 0y~

eegparold E]--®
elequibol [=E]--® |/

sebevey E]--@ N O E Y PasUBADY
sefoidws FH]--® asuodsayuifioanciyg @i@ Buiddepy ynding
_ NN i Q| _ Buiddeyy Jndu;

1X8jucd ssad0id uiBo anoud Jo sindinQ 20BISIU| SJINIRG
JusWwa|e sl Joj Buiddew Jndjno sy auyeq [EJOUBD)

AunpoypajewaINy

_% seadord [_ 607 JoL3 nwg syse) @_ 9josuoD _W__

seuejumg H]

speyy [

skemaren &

swanl O M

sapAY O

suoBUU0Y)

sonbiepy T

<« —— 9p9jed — m

|
_
_
_
_ _||-
_
_
_

JC aulpaq

™\ cop
T . |
ﬁ—u wLOONCNE mN.V m —‘.v
\deooy ejeqparcld Em ejequibo
Emmcms_ aakojdw3 ®
1sonbayuonesep ®

[

$Q 1sanbayuonesep @w_ OWBAMO|J10U0D n%_ 189 @v_

US 2013/0305212 A1

Nov. 14,2013 Sheet 7 of 14

day “DId

anep

Auadoid

—Mw solpadold D_ 6o Joug @h syse| W_@\,.; 8josuo) _m__

@ puss _ \X/
GeY RS v ®
/A z B ° ° .
- (1197
leouen) E ih 189nboy H\
ejeq jndul Jnok sjeidwod snyj ‘Buissiu || < - @ uonesep _
s| Buiddeyy 1nduj "panoaxe Ajualing si Jsanbay uonesep, Aoy en ® ° °
A 1denoy
L08%80°L€
seuejwimg H]
spoepy (] pluyds _ aweu~sebeuep:$
L002'80'6) Bus wol4:¢
sfemayeny O ajeAud Bulls uondussaq:$
sjuers O O uesjoog 1deooy:¢
ane, adA salyadol
SeAIY () oA L m..ho smc_
suoRosuuoy 7 ejeq indu| 1noA gjejdwod sny ‘Buissiw d eS e1eauBo
sonbiepy 17 s) Buiddey indu) "pajnoexe AjuaLind st jsanbay uoneoep, Aoy 1equibet
__ yoles > uognosx3 Buiddeyy ndu) [safojdwy ®
« — apejed — @ _ }sanbayuonesep ®

Patent Application Publication

O SR 1senbay uoneoep n%h owagmoj4joauo) n%_ 1so] n%_

US 2013/0305212 A1

Nov. 14,2013 Sheet 8 of 14

Patent Application Publication

dv "DIA

anjep

Auedoiy

_% seiedold [_ 607 40413 @H SYSe| _H_@\,.; ajosuo) _m:

sauejums H]

sjoepy]

sfemaren &

susag O

seRIARY (O

SUoOBUU0Y

aonbiepy T

j—

GOy

-

uonnjisqng

@ puid ® @ ajepdn ®

puag /M@

) - B 15anbay
LONEOBA
gleq nate L
EjequoneoBA \deooy

%

141517

|||
|

wm] oo] @

I'B-e puss O
| idS [sllered (®

panunuod aq 1snw ABMm YaIym asooy)

@ painbay uoieuuou| [

Jobeuep

®]

E}egpanold Lels

eakojdwg

elequibo]

®

ﬁ pajes Y

« — 3j0jed — @

jsanbayuoneaep

®

L —

$2 1senboy uopesep n%d OLa(JMO|J[0NL0Y) n%% 1891 m&

US 2013/0305212 A1

Nov. 14,2013 Sheet 9 of 14

Patent Application Publication

4 "DIA

Kuadoug

—% seiadold [_ 607 Jou3 @H syse| _N_,: aj0suoy _W__

sauejumg H]

spejuy (]

sfemaieg O

siwenz O

sapaY O

suofnoauuo) 7

sanbrepy 1)

-

__ 18jes Y

SEE:%.V Eled
fh P @) aepdn @

L

)

&

-

pusg

/%@

B 1s8nbay
e @u uoneseA

B)equUONBIRA

1denoy

®

aulpeq

< anojed — @

1daooy
ubo
X / . —
® aupag @ onold) |
|
uolsioaq
r ~ kF@ sJobeuepy T ||||| —
1dsooy ﬁ Ejegpanold uels elequibo
\
Jabeuepy ® safojdwg ®
jsanbayuoneaep ®

L=

$2 1senbay uonedeA A%F oMol |onuoD n%_ 18] n%_

US 2013/0305212 A1

VS DIA
(%61) Moj<j0u0D) Buyoune] "
NG
€ Auanoy Kiejoioag
pajewoiny 0} ley-3 Bleq
@ ® b pues ® @ﬁmuas ®

N .

Ble(] Junoaoy

@ abueyn ®

Nov. 14,2013 Sheet 10 of 14

sauejwimg H]
& Eied 1dedoy
spejy (] @ puss &

Patent Application Publication

sfemaiey &
suen3 O J
sanAney O 5057 H
SUORBUUOY /7 @ o0ld
eenbiep 7]
_ yees teBeuepy ® sefojdwz ®
< —enoed— 0100 ®
O _ 1sanbay"uonesep 0%& $R2 owagmojqoguon | 1sel L’

US 2013/0305212 A1

Nov. 14,2013 Sheet 11 of 14

Patent Application Publication

qs "DId
syse] 1o} Buiuueog -A
NS
e £ Aoy Kejaieg
//r pejewoiny o} |ley-3 eleq
QO ®@| (& pws ® Qyaedn
0LS H
/ Eleq 1UN020y
sbueyn ®
saugums) |soue) %O &
=
soepy (] [xpm0 2|
shemaren &
querg O 0 100dsm Ue 9ABY ISNW 0 [00d,, |ood aAnoy
0100d | “"us ue aAey Jsnw ,(|00d, [ood 8AnoY
seniay O 18lqo uonduosag
SuofoBLU0Y /) :punoj aiom sioug Bumojjo
sanbieyy T] uny Kig, peis o sjgissod jou sty Y
__ vacs Y | I souz [oafojdwz ®
» apaed — 0lood ®
O 1sonbay"uonesep n& $2 owagmojdj0iuo) n%_ 1881 &

US 2013/0305212 A1

Nov. 14,2013 Sheet 12 of 14

Patent Application Publication

IS DIA

(%61) Moj4ioau0g Buiyouner | =0
G0s 015
g O
pauey | 5o ol (¥
eled
@%_g_: ®
19300 MO B 0) J0]28UU0D BUEINO U L)IM JUSAS LIE)S B ppY Ejed Junoady
: @_ abueyn ®
souejwmg] 0od € 0} juaka peis e ppy ¢
=
A
spepry ||| | 1d 1daooy
skemajen O :saxippinb a/dnnw Jo suo ssooy || |
9
sjuaag O @@. uopoales Xpand [%
sapARY O _ _ 1alao _ uonduaseq Ejeg
2A0)
SUONBUU0Y (] :punoy ajem siou3 Bumoliod @ d ®
B—— uny i, Wejs o} ajqissod jou s
paes Y | X o3 0 oofojdw3 ®
« ——o)jaled — 0 [ood ®
0 1sanbayuonesep nnﬂ $% owsgmoldioguon K| 18l L

US 2013/0305212 A1

Nov. 14,2013 Sheet 13 of 14

Patent Application Publication

as ‘Did
(%64) Moljouod Buoune1 | -A
50 015 - ————————- .
s | |
leoued (|| MO @ _ _
_
= _ I _ eleq _l|@_wu
_ O™N @] isopms
% S
_
MO} B WO} JOJOSULO0I Buiwoaul Ue yjm JusAd pua e ppy _ Emn_mEsoS«‘
sougiuwg [. ood & 0} JusAd pus & ppy _ E ®
|
spepy [| _ 0o _
skemajeg O :sax|pjoInb ajdiynw Jo auo asooyn) _
aAloY [
SjuaA
arg O @@D _ uogoapes XpEmd [J-- |
SOIJIARDY D 7 7 u—om—no CO_HQ_._owmﬂ _ eleqg
anol
suonaaUL0) :punoj a1am siou3 Bumoo4 _ @ 4 ®
sonbiepy ¥} uny A1q, peys o sjqissod jou st hl .
_ papRs Y z@ o3 [aafojdwz ®
« — apojed — 0 lood ®
O _ 15enbay uolesep nOQ_ $% owagmoldjonuoy L’ s8] K

US 2013/0305212 A1

Nov. 14,2013 Sheet 14 of 14

Patent Application Publication

HS "‘DIA
=H
¥
028 ~ [ond
ejepd
@ Oyoerdn
¢ Aoy Kejoioeg EJB(JUN02oY
pajewoiny o} |lelN-3 abueyn
Q ®| (& pes ® & ®
sougumg) ﬂ \n_u/ b
speiny (]
sfemaieny & Bleq
suang O r @ PIRS ®
samAloY O 509
SUOOBUU0D [GLS
senbepy 7] 159 JEIS
_ 10988 & Jabeuep ® aakojdwz ®
« —apeled — 0 lood ®
O _ 1sanbay uoneoep nnmuh $% owagmojdjonuoy L| 188 A%L

US 2013/0305212 Al

DRY-RUN DESIGN TIME ENVIRONMENT

CLAIM OF PRIORITY

[0001] This application claims priority under 35 USC §119
(e) to U.S. patent application Ser. No. 12/886,008, filed on
Sep. 20, 2010, the entire contents of which are hereby incor-
porated by reference.

TECHNICAL FIELD

[0002] This present disclosure relates to design-time soft-
ware tools and operations, and, more particularly, to systems,
software, and computer-implemented methods for providing
a dry-run design-time tool for business process models.

BACKGROUND

[0003] In many respects, developing, programming, and
coding software involves a trial-and-error process of check-
ing code syntax, compiling and re-compiling scripts, and
testing modules of the software system in a design-time envi-
ronment to ensure that the code is free of bugs and prepared
for commercial or runtime deployment. Tools have been
developed to assist software developers in debugging, com-
piling, and hard-coding their programs. Design-time tools
and environments can provide such tools and development
tools automating traditional software development tasks and
processes. One example of a design-time environment are
integrated development environments, or “IDEs”. IDEs can
provide a suite of design-time components and tools, some-
times in a common user interface. Rather than utilizing sev-
eral, distinct development tools, an IDE integrates multiple
development tools into a common package to make access to
and use of the tools more convenient to the user. In some
instances, an IDE is dedicated to a particular programming
language, thereby providing tools and a feature set compat-
ible with and adapted to the nuances and programming para-
digms of the language. However, some multiple-language
IDEs do exist, such as commercially available versions of
Eclipse, ActiveState Komodo, NetBeans, Microsoft Visual
Studio, WinDev, and Xcode.

[0004] IDEs can provide tools and features for authoring,
modifying, compiling, deploying and debugging software.
Through a tight integration of development tools and tasks,
software development productivity and efficiency can be
improved. A typical IDE includes a debugger, compiler,
source code editor, and build automation tools. Other con-
temporary IDEs can further include a class browser, object
inspectors, and class hierarchy tools, for example, to assist in
the development of object-oriented software.

SUMMARY

[0005] This disclosure provides various embodiments for
performing a dry-run of a business process model in a design-
time environment. A start event and at least one end event of
the business process model are identified. The start event and
at least one end event define at least one path of a flow map of
the business process model, the path including a sequence of
aplurality of events, the plurality of events including the start
event, the at least one end event, and at least one other event,
the at least one other event positioned between the start event
and the end event in the sequence. The plurality of events in
the path are stepped-through to simulate each event in the
plurality of events. At least one error is identified correspond-
ing to a particular event in the path. The stepping-through the

Nov. 14,2013

plurality of events is paused at the particular event in response
to identifying the error. A user is then prompted for an input to
at least temporarily resolve the at least one error. The step-
ping-through of the plurality of events is then resumed in
response to a resolution input from the user until the step-
through reaches the at least one end event, ending the dry run.
[0006] While generally described as computer imple-
mented software that processes and transforms the respective
data, some or all of the aspects may be computer implemented
methods or further included in respective systems or other
devices for performing this described functionality. The
details of these and other aspects and embodiments of the
present disclosure are set forth in the accompanying drawings
and the description below. Other features, objects, and advan-
tages of the disclosure will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0007] FIG. 1 illustrates an example computing system
including a development environment including a dry-run
simulation tool.

[0008] FIG. 2 is a schematic illustration of an example
implementation of a dry-run simulation tool.

[0009] FIG. 3A is a flowchart illustrating an example com-
puter process for performing a dry-run of a business process
model in a design-time environment.

[0010] FIG. 3B is a flowchart illustrating another example
of'a computer process for performing a dry-run of a business
process model in a design-time environment.

[0011] FIGS. 4A-4F illustrate example screenshots of a
user interface of a design-time environment including a dry-
run simulation tool.

[0012] FIGS. 5A-5E illustrate example screenshots of a
user interface of another example use of a dry-run simulation
tool.

[0013] Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

[0014] This disclosure generally describes software, com-
puter-implemented methods, and systems relating to a
design-time tool for conducting a dry-run of a software
model, such as a business process model. A “dry-run” typi-
cally refers to a mental assessment or check of a software
model, made by a software developer, prior to introducing the
software model and/or related code to a computer-imple-
mented compiler, debugger, sandbox, runtime environment,
build automation tool, or other tool for more formal testing
and debugging. In some instances, a software model can be
used by a developer to map-out context, control and data
flows prior to coding the programs, modules, and processes
modeled by the software model. A software developer can
develop and fine-tune the software model prior to making the
investments in time, money, and computing resources needed
to code the programs, modules, and processes modeled by the
software model.

[0015] Generally, debuggers, compilers, and other tradi-
tional design-time tools can require a piece of code or a
software model that is capable of being compiled, complete,
sufficiently specified, or syntactically correct or otherwise
sufficiently specified in order for the tool to complete pro-
cessing. That is, when a process model, for example, is
incomplete, underspecified, or syntactically incorrect, the

US 2013/0305212 Al

tool cannot successtully complete testing of the model. Addi-
tionally, even in instances where a business process model is
fully specified, testing its functional behavior can require a
full design time-runtime roundtrip, resulting in unacceptably
long turnaround times and other inconveniences adversely
impacting testing and development of the software.

[0016] As described below, in some instances, a dry run
simulation tool can perform computer-implemented dry-runs
of an incomplete, underspecified, or syntactically incorrect
business process during the modeling stage to assist a devel-
oper in assessing whether the current, partially-developed
state of the process complies with the developer’s expecta-
tions. During the dry run an end user can simulate the data
flow, understand how simulated input and output data can
affect a process execution, and recognize missing data flow
definition or other issues in already defined mapping instruc-
tions. When the dry run encounters a portion of the model that
is underspecified or otherwise incomplete, the dry run can
temporarily pause to receive inputs from the end user, such as
input data, control flow gateway conditions, and message
correlation predicates corresponding to the underdeveloped
portions of the model, to temporarily bridge the portion and
allow the user to complete a preliminary test or run of the
model.

[0017] Business process execution can not only depend on
control flow aspects but also data flow. For instance, data flow
instructions can be specified in connection with mappings of
process activities and events (e.g., transformations from the
global data context to the activity signature and vice-versa).
Additionally, data flow can also affect expressions relating to
the process data context of the model, such as conditional
gateways or message correlation predicates. For instance, in
the event that a gateway condition or message correlation
predicate is not correctly defined, a business process can fail
to execute properly at runtime, if at all. In such an instance, a
dry-run of modeled process can assist a developer in under-
standing if any and/or all conditions, correlations, and data
flow of a business process are correctly defined in advance of
further development efforts and process deployment on a
“live,” productive system.

[0018] FIG.1 illustrates an example computing system 100
including a development environment 105 that includes a
dry-run simulation tool 110. The development environment
105 can be an integrated development environment or IDE
and include an integrated set of other development tools in
addition to the dry-run simulator tool 110. The development
environment 105 can include one or more business process
models 112 stored in memory 115 that are accessible to the
development environment 105, including the design time dry-
run simulation tool 110. As an example, business process
models 112 can be accessed from memory associated with a
workspace of development environment 105. The develop-
ment environment can be implemented in connection with an
enterprise software system 120 providing business services to
one or more customers 130, 135, such as shown in the
example of FIG. 1, over one or more networks 125. The
development environment 105 itself can be provided as a
service to one or more remote client computing devices (e.g.
130, 135). In some instances, at least a portion of the devel-
opment environment 105, including the dry-run simulation
tool 110, can be installed on the client devices 130, 135
themselves, and interact with a backend portion of the devel-
opment environment 105 remote from the client devices 130,
135. In still other examples, the development environment

Nov. 14,2013

105 can be provided as a distributed software environment,
such as a cloud computing system. In still other instances, the
development environment 105 can be locally stored and
executed on end-user computing devices 130, 135. Business
process models developed and tested using the development
environment 105 can be exported to or imported from other
computing devices, including a client computing device (e.g.,
130, 135), an enterprise software system 120, or other appli-
cation server 140 or computing device, including computing
devices remote from the development environment 105.

[0019] The development environment 105 can be imple-
mented using one or more computing devices. As used in this
document, the term “computing device” or “computer” is
intended to encompass any suitable processing device. For
example, a computing device can include one or more servers
operable to receive, transmit, process, store, or manage data
and information associated with the software environment
100. For example, the environment 100 may be implemented
using computers other than servers, including a server pool.
Further, any, all, or some of the servers (including computing
devices 120, 130, 135, 140) may be adapted to execute any
operating system, including Linux, UNIX, Windows Server,
or any other suitable operating system. Clients 130, 135, as
well as other users external to environment 100, can, directly
or indirectly (e.g., via a proxy, virtual machine interface, etc.)
access and perform operations, testing, and dry runs using the
development environment 105. It will be further understood
that the term “application server” (e.g., 140) can include any
suitable software component or module, or computing device
(s) capable of hosting and/or serving a software application,
including distributed, enterprise, or cloud-based software
applications.

[0020] In the present example, the development environ-
ment 105 can interface with one or more application servers
140 and/or enterprise software systems 120. In some
instances a development environment 105 can be hosted on a
common computing system, server, or server pool, and share
computing resources, including shared memory, processors,
and interfaces with an enterprise software system or other
software system. The development environment 105 can
interface with other software systems and client devices to
communicate in a client-server or other distributed environ-
ment (including within environment 100). Computing
devices providing the development environment 105 can
include one or more interfaces comprising logic encoded in
software and/or hardware in a suitable combination and oper-
able to communicate with a network 125, and other comput-
ing devices, including computing devices coupled to the net-
work 125. More specifically, such interfaces can comprise
software supporting one or more communication protocols
associated with communications such that a network 125 or
hardware is operable to communicate physical signals within
and outside of the illustrated software environment 100.

[0021] Each ofthe example servers (e.g., 120, 140), includ-
ing servers and computing devices hosting the development
environment 105, can include a processor. Each processor can
execute instructions and manipulate data to perform the
operations of the associated server, and may comprise, for
example, a central processing unit (CPU), a blade, an appli-
cation specific integrated circuit (ASIC), or a field-program-
mable gate array (FPGA), among other suitable options. Pro-
cessors can be implemented as one or more processors
according to the particular needs of the associated server.
References to a single processor can also be interpreted to

US 2013/0305212 Al

include multiple processors where applicable. The operations
that each processor executes can be determined by the pur-
pose and operations of its associated server. Generally, the
processor executes instructions and manipulates data to per-
form the operations of its respective server and, specifically,
the software systems and applications (e.g., 105) hosted by
the server.

[0022] At ahigh level, each “server” includes one or more
electronic computing devices operable to receive, transmit,
process, store, or manage data and information associated
with the environment 100. Specifically, a server is responsible
for receiving requests from one or more clients and sending
the appropriate response the requesting client. In addition to
requests from external clients, requests may also be sent from
internal users, external or third-party customers, other auto-
mated applications, as well as any other appropriate entities,
individuals, systems, or computers. For example, although
FIG. 1 illustrates single server for application server 140, and
a server pool for enterprise system 120, a server can be imple-
mented using one or more servers, as well as computers other
than servers, including a server pool. Indeed, a server may be
any computer or processing device such as, for example, a
blade server, general-purpose personal computer (PC),
Macintosh, workstation, UNIX-based workstation, or any
other suitable device. In other words, the present disclosure
contemplates computers other than general purpose comput-
ers, as well as computers without conventional operating
systems. Further, a server can be adapted to execute any
operating system, including Linux, UNIX, Windows, Mac
OS, or any other suitable operating system.

[0023] Inthe case of an server implementing development
environment 105, the server processor can execute the func-
tionality required to receive and respond to requests and inter-
actions from client devices 130, 135, as well as client appli-
cations 140 interfacing with the development environment
105. Regardless of the particular implementation, “software”
may include computer-readable instructions, firmware, wired
or programmed hardware, or any combination thereof on a
tangible medium operable when executed to perform at least
the processes and operations described herein. Indeed, each
software component may be fully or partially written or
described in any appropriate computer language including C,
C++, Java, Visual Basic, assembler, Perl, any suitable version
of'4GL, as well as others. Applications can be implemented as
individual modules that implement the various features and
functionality through various objects, methods, or other pro-
cesses, or may instead include a number of sub-modules,
third party services, components, libraries, and such, as
appropriate. Conversely, the features and functionality of
various components can be combined into single components
as appropriate.

[0024] At a high level, applications included in the envi-
ronment 100 can include any application, program, module,
process, or other software that may execute, change, delete,
generate, or otherwise manage information according to the
present disclosure, particularly in response to and in connec-
tion with one or more requests received from the illustrated
clients 130, 135, as well as other applications. In certain
cases, only one hosted application may be located at a par-
ticular server. In others, a plurality of related and/or unrelated
hosted applications may be stored at a single server, or located
across a plurality of other servers, as well. In certain cases,
environment 100 may implement a composite hosted appli-
cation. For example, portions of the composite application

Nov. 14,2013

may be implemented as Enterprise Java Beans (EJBs) or
design-time components may have the ability to generate
run-time implementations into different platforms, such as
J2EE (Java 2 Platform, Enterprise Edition), ABAP (Ad-
vanced Business Application Programming) objects, or
Microsoft’s .NET, among others. Additionally, applications,
including applications provided through enterprise software
services 120 may represent web-based applications accessed
and executed by remote clients 130, 135 or client applications
140 via the network 125 (e.g., through the Internet). Further,
one or more processes associated with a particular hosted
application may be stored, referenced, or executed remotely.
For example, a portion of a particular hosted application may
be a web service associated with the application that is
remotely called, while another portion of the hosted applica-
tion may be an interface object or agent bundled for process-
ing at a remote client 130, 135. Moreover, any or all of the
hosted applications may be a child or sub-module of another
software module or enterprise application (not illustrated)
without departing from the scope of this disclosure. Still
further, portions of the hosted application may be executed by
a user working directly at server 140, for example, as well as
remotely at a client 130, 135.

[0025] Each of the example servers 105, 120, 140 can
includes a memory. Each memory may include any memory
or database module and may take the form of volatile or
non-volatile memory including, without limitation, non-tran-
sitory memory elements, magnetic media, optical media, ran-
dom access memory (RAM), read-only memory (ROM),
removable media, or any other suitable local or remote
memory component. Each memory may store various objects
or data, including classes, frameworks, applications, backup
data, business objects, jobs, web pages, web page templates,
database tables, content repositories storing business or other
dynamic information, or other information including any
parameters, variables, algorithms, instructions, rules, con-
straints, or references thereto relevant to the purposes of the
particular server. Each memory may also include any other
appropriate data, such as VPN applications, firmware logs
and policies, firewall policies, a security or access log, print or
other reporting files, as well as others. Again, the particular
data and instructions stored in each memory will be described
in detail below in connection with the illustrated implemen-
tations of the software environment 100 and components
thereof.

[0026] Generally, the network 125 facilitates wireless or
wireline communications between the components of the
software environment 100 (e.g., between the development
environment 105 and one or more client devices 130, 135
utilizing the development environment 105), as well as with
any other local or remote computer, such as those associated
with the one or more applications 120, 140 or external data
sources. The network 125 can be implemented as one or more
distinct networks. In any implementation, the network 125
may be a continuous or discontinuous network without
departing from the scope of this disclosure, so long as at least
a portion of the network 125 may facilitate communications
between senders and recipients. The network 125 may be all
or a portion of an enterprise or secured network. As an
example, in FIG. 1 networks 1254 may represent a portion of
an enterprise network, while network 1256 may represent a
connection to the Internet. In some instances, a portion of the
network 125 may be a virtual private network (VPN). Allor a
portion of the network 125 can comprise either a wireline or

US 2013/0305212 Al

wireless link. Example wireless links may include 802.11a/
b/g/n, 802.20, WiMax, and/or any other appropriate wireless
link. In other words, the network 125 encompasses any inter-
nal or external network, networks, sub-network, or combina-
tion thereof operable to facilitate communications between
various computing components inside and outside the illus-
trated environment 100. The network 125 may communicate,
for example, Internet Protocol (IP) packets, Frame Relay
frames, Asynchronous Transfer Mode (ATM) cells, voice,
video, data, and other suitable information between network
addresses. The network 125 may also include one or more
local area networks (LANs), radio access networks (RANs),
metropolitan area networks (MANSs), wide area networks
(WANSs), all or a portion of the Internet, and/or any other
communication system or systems at one or more locations.

[0027] The illustrated implementation of FIG. 1 includes
one or more local and/or remote clients 130, 135. The client
130, 135 is any computing device operable to connect or
communicate at least with the development environment 105
and/or the network 125 using a wireline or wireless connec-
tion. Each client 130, 135 can include a graphical user inter-
face (GUI). In general, the client 130, 135 comprises an
electronic computing device operable to receive, transmit,
process, and store any appropriate data associated with the
software environment of FIG. 1. It will be understood that
there may be any number of clients 130, 135 associated with
environment 100, as well as any number of clients 130, 135
external to environment 100. Further, the term “client” and
“user” may be used interchangeably as appropriate without
departing from the scope of this disclosure. Moreover, while
each client 130, 135 is described in terms of being used by one
user, this disclosure contemplates that many users may use
one computer or that one user may use multiple computers.
As used in this disclosure, the client 130, 135 is intended to
encompass a personal computer, touch screen terminal, work-
station, network computer, kiosk, wireless data port, smart
phone, personal data assistant (PDA), one or more processors
within these or other devices, or any other suitable processing
device. For example, the client 130, 135 may comprise a
computer that includes an input device, such as a keypad,
touch screen, mouse, or other device that can accept informa-
tion, and an output device that conveys information associ-
ated with operations of the development environment 105
(including the dry-run simulation tool 110), as well as other
applications stored and/or executed on the enterprise software
system 120, application server 140 (or other servers in envi-
ronment 100), or on the client 130, 135 itself, including
digital data, visual information, or the GUI. Both the input
device and the output device may include fixed or removable
storage media such as a magnetic computer disk, CD-ROM,
or other suitable media to both receive input from and provide
output to users of the clients 130, 135 through the display,
namely the GUL

[0028] A GUI can comprise a graphical user interface oper-
able to allow the user to interface with at least a portion of
environment 100 for any suitable purpose, including allowing
a user to interact with one or more software applications,
including the development environment 105. Generally, a
GUI provides users with an efficient and user-friendly pre-
sentation of data provided by or communicated within the
system. The term “graphical user interface,” or GUIL, may be
used in the singular or in the plural to describe one or more
graphical user interfaces and each of the displays of a par-
ticular graphical user interface. Therefore, the GUI can be any

Nov. 14,2013

graphical user interface, such as a web browser, touch screen,
or command line interface (CLI) that processes information
in the environment 100 and efficiently presents the results to
the user. In general, the GUI may include a plurality of user
interface (UI) elements such as interactive fields, pull-down
lists, media players, tables, graphics, virtual machine inter-
faces, buttons, etc. operable by the user at the client 130, 135.
These Ul elements may be particularly related to and adapted
for the functions of the development environment 105,
including the dry-run simulation tool 110.

[0029] While FIG. 1 is described as containing or being
associated with a plurality of elements, not all elements illus-
trated within environment 100 of FIG. 1 may be utilized in
each alternative implementation of the present disclosure.
Additionally, one or more of the elements described herein
may be located external to environment 100, while in other
instances, certain elements may be included within or as a
portion of one or more of the other described elements, as well
as other elements not described in the illustrated implemen-
tation. Further, certain elements illustrated in FIG. 1 may be
combined with other components, as well as used for alter-
native or additional purposes in addition to those purposes
described herein.

[0030] FIG. 2 is a schematic representation of one example
implementation of a dry-run simulation tool 110 of a devel-
opment environment. In some implementations, the dry-run
simulation tool 110 can include a simulator module 210 and
an error resolution module 220. One or more business process
models 112 can be stored in a memory 115 accessible to or
associated with the dry-run simulation tool 110. The simula-
tor module 210 can be adapted to perform a step-through
simulation of each event in a path of a process model. The
simulator module 210 can include functionality that allows a
user to simulate various inputs or control conditions at the
event to test how the event, and subsequent events in the path,
respond to the simulated inputs. One or more GUIs, including
pop-windows, can be displayed in connection with the func-
tionality of the simulator module 210, allowing users to ana-
lyze and interact with parameters of each event on an event-
by-event basis. In addition to allowing a user to test and
scrutinize each event in a process model, the simulator mod-
ule 210 can additionally identify errors associated with the
events. For instance, an error can identify parameters of an
event that are un- or under-specified.

[0031] The error resolution module 220 can operation in
connection with the simulator module 210 to prompt a user
for a resolution input to temporarily resolve errors identified
by the simulator module 210. A dry-run simulation instance
can be paused by the dry-run simulation tool 110 in response
to a simulator module’s 210 detection of an event error. The
dry-run can be paused at the corresponding event until an
acceptable resolution input is received by the error resolution
module 220. The error resolution module 220 can addition-
ally identify the nature of the error and identify a set of
potential resolution inputs or input options that could satisfy
the error prompt. For instance, the error resolution module
220 can present, through the prompt, a brief description of the
error and suggest one or more resolutions to the particular
error. For instance, the prompt can present multiple resolution
options selectable by the user, and identified by the error
resolution module 220 as acceptable responses to the error.
[0032] Asshown in FIG. 2, the dry-run simulation tool 110
can be integrated with a development environment 105 that
includes additional development tools including a compiler

US 2013/0305212 Al

230, source code editor 235, a build automation tool 240, a
debugger 245, and a process model editor 255. The process
model editor 255 can provide functionality for building and
editing a business process model. One or more of the devel-
opment tools included in the development environment,
including the process model editor 255, can interface with the
dry-run simulator module 210 to extend the functionality of
the dry-run simulation tool 110. For instance, the process
model editor 255 can provide a graphical editing environment
allowing users to edit, add, and delete events in a process
model. The editing functionality of the process model editor
255 can be used to modify a process model concurrently with
a dry-run simulation of the same process model. For instance,
in response to a pause in the dry-run simulation associated
with an error identified by the simulation module 210, a user
can respond to an error prompt generated by the error reso-
Iution module 220 by editing aspects of the process model,
temporarily or permanently, using editing functionality pro-
vided through the process model editor 255. The error reso-
Iution module 220 can identify that modifications made to a
process model during a dry-run simulation using the process
model editor 255, resolve an identified error sufficiently to
allow the dry-run step-through to proceed to another event in
a path of the simulated process model.

[0033] Theexample described and illustrated in connection
with FIG. 2 is but one example implementation of a dry-run
simulation tool for use and inclusion in a design-time devel-
opment environment. Alternate implementation can be real-
ized that provide substantially similar functionality and
results. For example, in some instances, the functionality of
modules 210, 220 can be combined, wholly or partially, in a
single module. In other instances, the functionality of mod-
ules 210, 220, as well as other functionality present in the
dry-run simulator can be provided through other additional
modules.

[0034] FIG. 3A is a flowchart 300 illustrating an example
computer process for performing a dry-run of a business
process model in a design-time environment, such as devel-
opment environment 105. At least one path of a flow map of
aparticular business process model can be identified 305. The
path can define a sequence of a plurality of events in the
business process beginning with a start event, ending with at
least one end event, with at least one other event positioned
between the start event and the end event in the sequence. The
dry-run can step-through 310 the plurality of events in the
path to simulate each event in the plurality of events. At least
one error can be identified 315 corresponding to a particular
event in the path. Stepping-through the plurality of events can
be paused 320 at the particular event in response to identify-
ing the at least one error. A user can be prompted 325 for an
input to at least temporarily resolve the at least one error. For
instance, a pop-up window can be presented to the user to
offer suggestions or options for a temporary remedy (such as
a missing input value) and receive inputs from the user speci-
fying a temporary remedy. Stepping-through of the plurality
of events can be resumed 330 in response to receiving a
resolution input from the user. The dry run can end 335 in
response to stepping-through to the at least one end event.

[0035] FIG. 3B is a flowchart 345 illustrating another
example of a computer process for performing a dry-run of a
business process model in a design-time environment. A dry
run can be initiated 350, for instance, by a user using a
integrated development environment that includes a dry-run
simulation tool. A particular business process model can be

Nov. 14,2013

identified and debugged using the dry-run simulation tool.
The dry run can begin by checking 352 to make sure that a
start event and at least one end event have been properly
specified for a path of the model. If one or both of the start and
end events have not been specified, or incorrectly or improp-
erly specified, a user can be prompted accordingly and “quick
fix” inputs received 355 corresponding to the user’s selection
or identification of specifications or remedies for the missing
start and/or end event.

[0036] Ifthe start event and at least one end event have been
properly specified, the dry run can identify a path of the
model, with one or more branches, that include a plurality of
events. With the path identified, the dry run can step-through
358 each of the events in the plurality of events to simulate
each data flow and/or control flow corresponding to each of
the modeled process events. An event is identified 360 and
simulation (and, if necessary, debugging) of the event is ini-
tiated. The event can be checked 362 to see if input or output
data needed for the event are properly specified. If it is deter-
mined that input/output mapping of the event have been
under- or improperly-specified, the user can be prompted to
define or provide 365 test values or specifications for the
input/output mapping. In addition, control and case condi-
tions of the event can be checked 368 to ensure that control
logic for the event has been properly specified. Checking case
conditions 368 can take place in parallel or serially with
checking the input/output mapping 362. While FIG. 3B
shows checking control conditions 368 to take place after
input/output mapping has been verified 362, check 368, in
some implementations, can be performed prior to check 362,
and input/output mapping check 362 can be completed in
response to verifying control conditions 368. In some
instances, the order of checks 362, 368 can be arbitrary or
performed substantially concurrently.

[0037] Aswithchecks 352,362, in response to determining
368 that control conditions have been inadequately specified,
the dry-run can be paused, to allow the user to submit 370
quick-fix inputs to temporarily remedy the error and allow the
dry-run simulation to resume and proceed to an end event
372. Quick-fix inputs 370 received in response to a control
condition check 368 can specity logic or conditions that
should be applied in the simulation to designate how data
flows from one event to another. The specified logic and/or
conditions of an event can use or reference the I/O mapping,
as well as variable values, to determine the process flow from
one event to the next. For instance, the logic can specify two
or more cases conditions, such as [Fx THAN a; IF y THEN b,
etc. In some instances, quick-fix inputs 370 received in
response to a control condition check 368 can be as simple as
an explicit designation of the event, path, or branch that
should be followed in the model. For instance, if a first event
calls for control to flow to one of either two subsequent events
in response to the first event, the user can specity a quick-fix
that includes a designation of one of the two subsequent
events to which control is to be passed. Upon concluding
simulation of an event, if the event is an end event 372, the dry
run ends 380. However, if the event is not an end event, the
step-through proceeds 375 to the next event simulated in the
model. Proceeding 375 to the next event in the model can be
dependent on the simulated outcomes or output of another
event previously simulated in the dry-run. For instance, as
articulated in the previous example, a quick-fix for a previous
event can result in the user hard-driving the process flow to a
particular subsequent event in the model. Accordingly, in this

US 2013/0305212 Al

example, the dry-run step-through can proceed 375 to the
particular event specified in the quick-fix input 370. Step-
ping-through to subsequent events can involve cycling the
debugging steps 362-372 for each event until an end event is
reached 372, ending 380 the dry run.

[0038] FIGS. 4A-4F illustrate example screenshots of a
user interface 400 of a design-time environment including a
dry-run simulation tool implementing techniques and incor-
porating features similar to some of those described in con-
nection with FIGS. 1-3B. As an illustrative example, and as
shown in FIG. 4A, a business process model 405 can be
selected for development and debugging in an integrated
development environment. In this example, business process
model 405 models a vacation request business process that,
when fully developed and deployed, can allow employees to
submit a vacation request to a manager and receive a
response, for example, via email to the request. A visual
representation of the model 405 can be presented to a user on
a GUI and allow the user to visualize the general control and
data flow of a modeled process. The model can include con-
trol flow elements with decision gateways, data flow objects,
definitions, and other modeling entities according to the
specifications of the modeling environment. In addition to
other, typical features and tools of integrated development
environments, the development environment in this particular
example can include a dry run simulation tool.

[0039] A dry-run simulation can be performed on business
process model 405. The simulation can include stepping-
through and simulating events in the model according to a
sequence or logic defined by the model. The dry-run simula-
tion can also identify errors or underspecified modeling ele-
ments, such as underspecified or unspecified input data, con-
trol conditions or logic, decision element conditions, etc. In
the example of FIG. 4B, stepping through the process model
leads to the simulation and debugging of a Prove Login event
410. A user can simulate, check, test, and modify an event
during the dry-run. For instance, the Prove Login event 410
can have an input variable or object Login Data 415, corre-
sponding to a user’s log-in inputs used to authenticate a user
of the modeled vacation request submission system. As
shown in window 420, a user can see and review parameters
associated with the Login Data object 415 as well as the input
mapping associated with the object 415 (e.g., in this case, the
object’s association with and processing by the Prove Login
process event 410). In this example, the Prove Login process
event 410 can also have a ProvedData output data object 425
associated with the event 410 (e.g., corresponding to data
communicating the results of a user’s successful or unsuc-
cessful authentication attempt). As shown in FIG. 4C, a user
can similarly view parameters and values associated with the
output data object 425. Additionally, during the dry run, the
user can experiment with and modify input data and data
objects associated with and passed between events in the
model to simulate how the process model passes, processes,
or reacts to the sample variable and data values used by the
user. The user can assess the results of these “trial runs” to
determine whether the process model 405 accurately captures
the general functionality desired for the process modeled by
the process model 405.

[0040] Further, as shown in FIG. 4D, as the dry run pro-
ceeds through events in a path of the model, the step-through
may identify one or more errors associated with a particular
event. In the example of FIG. 4D, an input mapping error has
been identified by the dry run tool in connection with a Vaca-

Nov. 14,2013

tion Request event 430. The I/O mapping error can relate to
variables or data object values that would normally be speci-
fied by a user or another process outside the scope of the
model. In response to the error, a prompt 435 can be displayed
to the user identifying the error and providing a GUI adapted
to receive user inputs that can temporarily remedy the error to
allow the dry run to proceed to completion. In this example,
the prompt 435 is a pop-up window adapted to accept tem-
porary input data needed to complete the dry run. In some
instances, the prompt 435 can identify or suggest a set of
potential resolution inputs to the user. In some instances, the
set of potential resolutions can be closed set (i.e., the only
available and responsive resolution inputs for a particular
error), while in other instances the resolutions may be merely
suggestive, or an open set. In some instances, resolution of
errors with a variable’s values or specification can be needed
in order to completely simulate the particular event associated
with the variable, or the error may identify that subsequent
events are dependent on a missing or underspecified variable
value, as is the case in the example of FIG. 4D. A subsequent
decision event 440 depends on a Boolean variable value Send,
in the Vacation Request event 430, indicating whether a vaca-
tion request should be sent to a manager for review. As shown
in FIG. 4D, a user can enter a value 445 for the variable for
purposes of completing the dry run simulation of the process
model 405.

[0041] As shown in the example illustrated in FIG. 4E,
errors can also relate to data flow control. For instance, deci-
sion logic or conditions of a decision event 450 (shown in
FIG. 4A) included in the model, can be underspecified, result-
ing in the identification of an error in the dry run. A user can
be presented with a prompt 455 requesting a temporary reso-
lution to the error. For instance, in the case of a control flow
error, a request for rough, makeshift, or temporary control
conditions or logic can be received through the prompt GUI
455, or the result of the control event can simply be specified
by the user. As with [/O mapping errors, the prompt 455 can
identify and provide resolution options for a user to select that
could potentially provide an acceptable temporary resolution
to the error. As shown in the FIG. 4E, a user, in this example,
can simply specify how data is to flow through the decision
event 450, allowing the user to ignore, for the time being, the
underspecified nature of the event 450 and proceed with the
dry run simulation. In this example, the user has specified that
the dry-run is to proceed as if the decision event resulted in the
passing of control to branch split event 460, rather than the
immediate passing of control to the Send Email event 465. As
shown in FIG. 4F, the user can continue to step-through, test,
and simulate, and event correct or modify certain events, as
the user proceeds through each event in a model’s path until
the user reaches an end event in the path and concludes the dry
run.

[0042] FIGS. 5A-5E illustrate example screenshots of a
user interface 400 of a design-time environment including a
dry-run simulation tool in a second example. In some
instances, in order for a dry-run to begin, a start and end event
need to be specified in order to define the bounds of the
dry-run. Such is the case in the examples of FIGS. 5A-5E. As
shown in FIG. 5A, a process model 505 has been selected for
a dry-run debugging, using a dry run tool of an integrated
development environment. The process model 505, in this
particular example, relates to a modeled process for accept-
ing, modifying, and managing user log-in data. However, as
shown in FIG. 5B, as a user attempts to begin the dry-run, an

US 2013/0305212 Al

error prompt 510 can be presented indicating to the user that
neither a start event nor an end event had been specified for the
dry-run. Rather than cancelling the dry-run, as with the iden-
tification of other errors during the dry-run, the dry-run simu-
lation tool can allow the user to resolve the identified errors,
through the prompt 510, to allow the dry-run simulation to
proceed to completion. As shown in FIG. 5C, a user can
specify a start event through the error prompt GUI 510. Addi-
tionally, the user can further specify an end event, as shown in
FIG. 5D. Additionally, the user can enter, or modify, the start
and/or end events within the graphical representation of the
model itself, by dragging and dropping event icons 515, 520
to their proper places in the model path. As shown in FIG. 5E,
the user has positioned start event 515 and end events 520 so
as to define an acceptable path in the model for the dry-run
(e.g., apath thatincludes an “end” event that follows a “start”
event). Indeed, in some examples, dry-run resolution inputs,
submitted by a user in connection with an error prompt, can
include user interactions with and modifications to the
graphical representation of the model, its events, and paths.
For instance, a user can temporarily correct a control error by
re-ordering events in the model on the graphical representa-
tion of the model, to resolve a dry-run error.

[0043] FIGS. 4A-4F and SA-5E present two non-limiting
examples of the use of a dry-run design-time tool to test,
debug, and simulate business process models. Other
examples can include alternate protocols for handling and
presenting errors, accepting user resolution inputs, and other
features. The dry-run simulation tool, as well as any other
associated design-time tools, such as integrated development
environment tools, can include additional or fewer features,
and still be within the scope of some of the claims. It can also
be appreciated that the types, complexity, and size of business
process models simulated using a dry-run simulation tool can
be potentially limitless in variety. In some instances, a dry-run
simulation tool can be specific to a particular process model
format or specification. For instance, certain process models
can be directed to specialized processes developed to be com-
patible with a particular enterprise software environment.
Accordingly, the dry-run simulation tool (as well as the
greater design-time environment) can be adapted or even
dedicated to be compatible with certain specialized process
model formats.

[0044] Although this disclosure has been described in
terms of certain implementations and generally associated
methods, alterations and permutations of these implementa-
tions and methods will be apparent to those skilled in the art.
For example, the actions described herein can be performed
in a different order than as described and still achieve the
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par-
ticular order shown, or sequential order, to achieve the desired
results. In certain implementations, multitasking and parallel
processing may be advantageous. Other variations are within
the scope of the following claims.

1-20. (canceled)

21. A computer-implemented method for performing a
dry-run of a business process model in a design-time envi-
ronment, the method comprising:

stepping-through, by a processor, a plurality of events in a

path of a flow map of a business process model to simu-
late one or more events in the plurality of events;

identifying, by the processor, an error corresponding to a

particular event in the path;

Nov. 14,2013

pausing, by the processor, the stepping-through of the plu-
rality of events at the particular event in response to
identifying the error; and

providing, by the processor, a prompt requesting an input

to at least temporarily resolve the error.

22. The method of claim 21, further comprising:

receiving the input in response to providing the prompt

requesting the input; and

resuming the stepping-through of the plurality of events in

response to receiving the input.

23. The method of claim 22, wherein the particular event
includes a process using a variable, the error relates to a
failure to provide a value for the variable, and wherein receiv-
ing the input comprises receiving a value for the variable.

24. The method of claim 23, wherein the variable corre-
sponds to at least one of:

an input to be received through a user interface associated

with a runtime business process modeled by the business
process model,

an input to be received from another process in a runtime

implementation of a business process modeled by the
business process model, or

an output of a runtime business process modeled by the

business process model.

25. The method of claim 22, wherein the particular event
includes a decision based at least in part on a condition, the
error relates to a failure to provide the condition for the
decision, and wherein receiving the input comprises receiv-
ing the condition.

26. The method of claim 22, wherein the plurality of events
includes a start event and an end event, the business process
model defining a path of the flow map, the path including the
start event, the particular event, and the end event, and
wherein the method further comprises ending the dry-run in
response to stepping through to the end event.

27. The method of claim 21, further comprising presenting
a graphical representation of at least a portion of the business
process model and a progress of the stepping-through of the
plurality of events.

28. The method of claim 21, wherein providing the prompt
requesting the input comprises presenting an interactive pop-
up window adapted to receive inputs.

29. The method of claim 21, wherein providing the prompt
requesting the input comprises presenting a listing of input
options, wherein the listing of input options includes a plu-
rality of inputs determined to be potential resolutions to the
error.

30. The method of claim 21, wherein the business process
model is an underspecified business process model.

31. The method of claim 30, wherein the business process
model is non-compilable.

32. The method of claim 30, wherein the business process
model is non-executable within a runtime environment based
at least in part on the at least one error.

33. The method of claim 21, wherein the design-time envi-
ronment is an integrated development environment.

34. The method of claim 21, further comprising:

identifying that the business process model lacks at least

one of a start event and an end event;

pausing initiation of the stepping-through of the plurality

of events in response to identifying that the business
process model lacks at least one of a start event or an end
event;

US 2013/0305212 Al

providing a prompt requesting at least one of a start event or

an end event; and

initiating stepping-through of the plurality of events in

response to receiving the lacking at least one of a start
event or an end event.

35. The method of claim 21, further comprising modifying
the business process model based at least in part on the input
to at least temporarily resolve the error received in response to
the prompt.

36. A non-transitory computer-readable medium storing
instructions executable by a processor to perform operations
comprising:

stepping-through, by a processor, a plurality of events in a

path of a flow map of a business process model to simu-
late one or more events in the plurality of events;

identifying, by the processor, an error corresponding to a

particular event in the path;

pausing, by the processor, the stepping-through of the plu-

rality of events at the particular event in response to
identifying the error; and

providing, by the processor, a prompt requesting an input

to at least temporarily resolve the error.

37. The medium of claim 36, the operations further com-
prising:

receiving the input in response to providing the prompt

requesting the input; and

resuming the stepping-through of the plurality of events in

response to receiving the input.

38. The medium of claim 37, wherein the particular event
includes a process using a variable, the error relates to a

Nov. 14,2013

failure to provide a value for the variable, and wherein receiv-
ing the input comprises receiving a value for the variable.
39. A system comprising:
a processor; and
a computer-readable medium storing instructions execut-
able by the processor to perform operations comprising:
stepping-through, by a processor, a plurality of events in
a path of a flow map of a business process model to
simulate one or more events in the plurality of events;
identifying, by the processor, an error corresponding to a
particular event in the path;
pausing, by the processor, the stepping-through of the plu-
rality of events at the particular event in response to
identifying the error; and
providing, by the processor, a prompt requesting an input
to at least temporarily resolve the error.
40. The system of claim 39, the operations further com-
prising:
receiving the input in response to providing the prompt
requesting the input, wherein the input is either a value
for a variable used in the particular event, the error
relating to a failure to provide a value for the variable or
the input is a condition for a decision used in the par-
ticular event, the error relating to a failure to provide the
condition for the decision; and
resuming the stepping-through of the plurality of events in
response to receiving the input.

#* #* #* #* #*

