wo 2010/151496 A 1[I 0K A OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
29 December 2010 (29.12.2010)

(10) International Publication Number

WO 2010/151496 Al

(51)

(2D

(22)

(29
(26)
(30)

(71)

(72)
(79)

International Patent Classification:
HO4L 12/56 (2006.01)

International Application Number:
PCT/US2010/039213

International Filing Date:
18 June 2010 (18.06.2010)

Filing Language: English
Publication Language: English
Priority Data:

61/219,264 22 June 2009 (22.06.2009) us

Applicant (for all designated States except US): CITRIX
SYSTEMS, INC. [US/US]; 851 West Cypress Creek
Road, Fort Lauderdale, FL 33309 (US).

Inventors; and

Inventors/Applicants (for US only): AVDANIN, Roman
[USIUS]; clo crTrix SYSTEMS, INC., 4988 Great
America Parkway, Santa Clara, CA 95054 (US). BOTS,
Henk [USUS]; clo CURIX SYSTEMS, INC., 4988
Great America Parkway, Sabta Clara, CA 95054 (US).
TALLA, Ramanjaneyulu, Y. [IN/IN]; c/o CITRIX SY S-
TEMS, INC., 4988 Great America Parkway, Santa Clara,
CA 95054 (US). CHAUHAN, Abhishek [US/US]; clo
CITRIX SYSTEMS, INC., 4988 Great America Parkway,

(74)

(81)

(84)

Santa Clara, CA 95054 (US). MIRANI, Rajiv [IN/US];
27 Farrwood Dirive, Andover, MD 01810 (US).

Agent: MISIC, Mead; Choate, Hall & Stewart LLP, Two
International Place, Boston, MA 021 10 (US).

Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, Cz, DE, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, Sz, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR PLATFORM RATE LIMITING

Intermediary / Appliance 200

Rate Limiting Manager (RLM) 605

Rate Limiting License
660

Performance Level
Settings (PLS) 640A

Rate Limit Settings 645

Token Generator 610

Token Rate 615

Performance
Level 665

Bucket settings 646

Throughput rate 650

BPS Limit 651
PPS Limit 652

Performance Level settings
(PLS) 640N

I\
L Jord>

Excess Handler 630 Data Out

FIG. 6A

(57) Abstract: The present disclosure presents systems and methods for controlling network traffic traversing an intermediary de-
vice based on alicense or apermit granted for the intermediary device. The systems and methods control arate of atraffic of ade-
vice in accordance with a rate limit identified by arate limiting license. A rate limiting manager of an intermediary device that
processes network traffic between aplurality of clients and a plurality of servers, may identify presence of arate limiting license
that further identifies a performance level. The rate limiting manager may establish arate limit based on the performance level of
the rate limiting license. A throttler of the intermediary may control arate of receiving network packets in accordance with the rate

limit.

WO 2010/151496 A1 W00)00 0T TR0 AP OO T

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
1

SYSTEMS AND METHODS FOR PLATFORM RATELIMITING

Related Applications
This present application claims priority to aU.S. Provisional Application No.
61/219,264, entitled " Systems and Methods for Platform Rate Limiting", filed on June 22,
2009, which isincorporated herein by reference in its entirety.

Field of the Invention

The present application generaly relates to data communication networks. In
particular, the present application relates to systems and methods for controlling arate of a

traffic according to alicense.

Background of the Invention

An enterprise may provide a service to users accessing servers from client machines
via intermediaries deployed by the enterprise between the clients and servers. The
intermediaries may manage and control the network traffic to enhance the user experience.
The enterprise may, for avariety of reasons, determineto control the flow of the network
traffic that traverses the intermediaries. The enterprise may further determine to control the

flow of the network traffic receiving the intermediaries.

Brief Summary of the Invention

The present application is directed towards systems and methods for controlling
network traffic traversing an intermediary device based on alicense or a permit granted for
the intermediary device. The present application is also directed towards systems and
methods for controlling arate of atraffic being received by an intermediary devicein
accordance with arate limit identified by alicense or permit. By controlling the rate of the
traffic being received by the intermediary, the rate a which the traffic is processed and the
resources of the intermediary are utilized may also be controlled.

In some aspects, the present application is directed to amethod for controlling arate
of atraffic of adevicein accordance with arate limit identified by arate limiting license. A
rate limiting manager of an intermediary device that processes network traffic between a

plurality of clients and aplurality of servers, may identify presence of arate limiting license

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
2

identifying aperformance level. The rate limiting manager may establish arate limit based
on the performance level of the rate limiting license. A throttler of the intermediary may
control arate of receiving network packets in accordance with the rate limit.

Therate limiting manager may identify the rate limiting license is not present and
establish a set of one or more rate limit parameters for the rate limit for alower performance
level. The lower performance level may include the throttler controlling the rate of receiving
network packets at a slower rate than arate for identified rate limiting licenses. In some
embodiments, the rate limiting manager identifies atype of hardware platform of the
intermediary device. Therate limiting manager establishes the rate limit based on the type of
hardware platform and the performance level. In some embodiments, the rate limiting
manager establishes amaximum size of atoken bucket in milliseconds based on the rate limit
for the performance level of the rate limiting license. The token bucket may determine the
maximum total number of tokens used by the throttler to identify the number of data packets
to propagate or throttle in aburst and not in accordance with the rate limit. In some
embodiments, the throttler receives anetwork packet, determines that the token bucket has
reached the maximum size and discards the network packet in response to the determination.
In other embodiments, the throttler receives anetwork packet, determines that the token
bucket has reached the maximum size and waits until anext available token to propagate or
throttle anext data packet.

In some embodiments, the rate limiting manager establishes athroughput rate limit in
bits per second based on the rate limit for the performance level of the rate limiting license.
In further embodiments, atoken generator generates atoken for atoken bucket a arate
specified by the throughput rate limit. In yet further embodiments, the rate limiting manager
establishes a packet rate in packets per second based on the rate limit for the performance
level of the rate limiting license. In some embodiments, the throttler receives a network
packet having a number of bytes, and removes, or sends an instruction to remove, anumber
of tokens from atoken bucket equal to the number of bytes. In some embodiments, the
throttler receives anetwork packet having anumber of bytes, determines that anumber of
tokens in atoken bucket is less than the number of bytes and does not remove atoken from
the token bucket. In some embodiments, the throttler provides the network packet to an
excess packet handler.

In other aspects, the present application is directed to a system for controlling arate of
atraffic of adevice in accordance with arate limit identified by arate limiting license. The

system may include arate limiting manager of an intermediary device that processes network

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
3

traffic between aplurality of clients and aplurality of serversidentifying presence of arate
limiting license identifying aperformance level. The rate limiting manager may establish a
rate limit based on the performance level of the rate limiting license. A throttler of the
intermediary may controlling arate of receiving network packets in accordance with the rate
limit.

The details of various embodiments of the invention are set forth in the accompanying

drawings and the description below.

Brief Description of the Figures

The foregoing and other objects, aspects, features, and advantages of the invention
will become more apparent and better understood by referring to the following description
taken in conjunction with the accompanying drawings, in which:

FIG. IA isablock diagram of an embodiment of a network environment for a client
to access a server via an appliance;

FIG. IB is ablock diagram of an embodiment of an environment for delivering a
computing environment from a server to a client via an appliance;

FIG. 1C isablock diagram of another embodiment of an environment for delivering a
computing environment from a server to a client via an appliance;

FIG. 1D isablock diagram of another embodiment of an environment for delivering a
computing environment from a server to a client via an appliance;

FIGs. |E - IH are block diagrams of embodiments of a computing device;

FIG. 2A isablock diagram of an embodiment of an appliance for processing
communications between a client and a server;

FIG. 2B isablock diagram of another embodiment of an appliance for optimizing,
accelerating, load-balancing and routing communications between aclient and a server;

FIG. 3isablock diagram of an embodiment of a client for communicating with a
server viathe appliance;

FIG. 4A isablock diagram of an embodiment of avirtualization environment;

FIG. 4B isablock diagram of another embodiment of avirtualization environment;

FIG. 4Cisablock diagram of an embodiment of avirtualized appliance;

FIG. 5A are block diagrams of embodiments of approaches to implementing

parallelism in amulti-core system;

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
4

FIG. 5B isablock diagram of an embodiment of a system utilizing a multi-core
system,

FIG. 5Cisablock diagram of another embodiment of an aspect of amulti-core
system,

FIG. 6A are block diagrams of an embodiments of a system for controlling arate of
traffic traversing an intermediary device; and

FIG. 6B isaflow diagram of an embodiment of steps of amethod for controlling a
rate of traffic traversing an intermediary device.

In the drawings, like reference numbers generally indicate identical, functionally

similar, and/or structurally similar elements.

Detailed Description of the Invention

For purposes of reading the description of the various embodiments below, the
following descriptions of the sections of the specification and their respective contents may
be helpful:

- Section A describes anetwork environment and computing environment

which may be useful for practicing embodiments described herein;

- Section B describes embodiments of systems and methods for delivering a

computing environment to aremote user;

- Section C describes embodiments of systems and methods for accelerating

communications between aclient and a server;

- Section D describes embodiments of systems and methods for virtualizing an

application delivery controller;

- Section E describes embodiments of systems and methods for providing a

multi-core architecture and environment;

- Section F describes embodiments of systems and methods for controlling a

rate of traffic traversing an intermediary device

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the systems and methods of an
appliance and/or client, it may be helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring now to Figure 1A, an embodiment

of anetwork environment is depicted. In brief overview, the network environment comprises

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
5

one or more clients 102a-102n (also generaly referred to as local maching(s) 102, or client(s)
102) in communication with one or more servers 106a-106n (also generally referred to as
server(s) 106, or remote machine(s) 106) via one or more networks 104, 104" (generally
referred to as network 104). In some embodiments, aclient 102 communicates with a server
106 via an appliance 200.

Although FIG. 1A shows anetwork 104 and anetwork 104" between the clients 102
and the servers 106, the clients 102 and the servers 106 may be on the same network 104.
The networks 104 and 104' can be the same type of network or different types of networks.
The network 104 and/or the network 104' can be alocal-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or awide area network (WAN), such
asthe Internet or the World Wide Web. In one embodiment, network 104' may be aprivate
network and network 104 may be apublic network. In some embodiments, network 104 may
be aprivate network and network 104" apublic network. In another embodiment, networks
104 and 104' may both be private networks. In some embodiments, clients 102 may be
located a abranch office of a corporate enterprise communicating via aWAN connection
over the network 104 to the servers 106 located a a corporate data center.

The network 104 and/or 104' be any type and/or form of network and may include
any of the following: apoint to point network, abroadcast network, awide area network, a
local area network, atelecommunications network, a data communication network, a
computer network, an ATM (Asynchronous Transfer Mode) network, a SONET
(Synchronous Optical Network) network, a SDH (Synchronous Digital Hierarchy) network, a
wireless network and awireline network. 1n some embodiments, the network 104 may
comprise awireless link, such as an infrared channel or satellite band. The topology of the
network 104 and/or 104' may be abus, star, or ring network topology. The network 104
and/or 104" and network topology may be of any such network or network topology as
known to those ordinarily skilled in the art capable of supporting the operations described
herein.

Asshown in FIG. IA, the appliance 200, which also may bereferred to as an interface
unit 200 or gateway 200, is shown between the networks 104 and 104'. In some
embodiments, the appliance 200 may be located on network 104. For example, abranch
office of a corporate enterprise may deploy an appliance 200 at the branch office. In other
embodiments, the appliance 200 may be located on network 104'. For example, an appliance
200 may be located at a corporate data center. In yet another embodiment, aplurality of
appliances 200 may be deployed on network 104. In some embodiments, aplurality of

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
6

appliances 200 may be deployed on network 104'. In one embodiment, afirst appliance 200
communicates with a second appliance 200. In other embodiments, the appliance 200 could
be apart of any client 102 or server 106 on the same or different network 104,104 asthe
client 102. One or more appliances 200 may be located at any point in the network or
network communications path between aclient 102 and a server 106.

In some embodiments, the appliance 200 comprises any of the network devices
manufactured by Citrix Systems, Inc. of Ft. Lauderdale Florida, referred to as Citrix
NetScaler devices. In other embodiments, the appliance 200 includes any of the product
embodiments referred to as WebAccelerator and BiglP manufactured by F5 Networks, Inc. of
Seattle, Washington. In another embodiment, the appliance 205 includes any of the DX
acceleration device platforms and/or the SSL VPN series of devices, such as SA 700, SA
2000, SA 4000, and SA 6000 devices manufactured by Juniper Networks, Inc. of Sunnyvale,
Cdifornia. Inyet another embodiment, the appliance 200 includes any application
acceleration and/or security related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, California, such asthe Cisco ACE Application Control Engine
Module service software and network modules, and Cisco AVS Series Application Velocity
System.

In one embodiment, the system may include multiple, logically-grouped servers 106.
In these embodiments, the logical group of servers may bereferred to as a server farm 38. In
some of these embodiments, the serves 106 may be geographically dispersed. In some cases,
afarm 38 may be administered as asingle entity. In other embodiments, the server farm 38
comprises aplurality of server farms 38. In one embodiment, the server farm executes one or
more applications on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous. One or more of the
servers 106 can operate according to one type of operating system platform (e.g., WINDOWS
NT, manufactured by Microsoft Corp. of Redmond, Washington), while one or more of the
other servers 106 can operate on according to another type of operating system platform (e.g.,
Unix or Linux). The servers 106 of each farm 38 do not need to be physically proximate to
another server 106 in the same farm 38. Thus, the group of servers 106 logically grouped as
afarm 38 may be interconnected using awide-area network (WAN) connection or medium-
area network (MAN) connection. For example, afarm 38 may include servers 106 physically
located in different continents or different regions of a continent, country, state, city, campus,

or room. Data transmission speeds between servers 106 in the farm 38 can be increased if the

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
7

servers 106 are connected using a local-area network (LAN) connection or some form of
direct connection.

Servers 106 may bereferred to as afile server, application server, web server, proxy
server, or gateway server. In some embodiments, aserver 106 may have the capacity to
function as either an application server or as amaster application server. In one embodiment,
aserver 106 may include an Active Directory. The clients 102 may also bereferred to as
client nodes or endpoints. In some embodiments, aclient 102 has the capacity to function as
both a client node seeking access to applications on a server and as an application server
providing access to hosted applications for other clients 102a-102n.

In some embodiments, aclient 102 communicates with a server 106. In one
embodiment, the client 102 communicates directly with one of the servers 106 in afarm 38.
In another embodiment, the client 102 executes aprogram neighborhood application to
communicate with aserver 106 in afarm 38. In still another embodiment, the server 106
provides the functionality of amaster node. In some embodiments, the client 102
communicates with the server 106 in the farm 38 through anetwork 104. Over the network
104, the client 102 can, for example, request execution of various applications hosted by the
servers 106a-106n in the farm 38 and receive output of the results of the application
execution for display. In some embodiments, only the master node provides the functionality
required to identify and provide address information associated with aserver 106' hosting a
requested application.

In one embodiment, the server 106 provides functionality of aweb server. In another
embodiment, the server 106areceives requests from the client 102, forwards the requests to a
second server 106b and responds to the request by the client 102 with aresponse to the
request from the server 106b. In still another embodiment, the server 106 acquires an
enumeration of applications available to the client 102 and address information associated
with aserver 106 hosting an application identified by the enumeration of applications. In yet
another embodiment, the server 106 presents the response to the request to the client 102
using aweb interface. In one embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another embodiment, the client 102
receives application output data, such as display data, generated by an execution of the
identified application on the server 106.

Referring now to FIG. 1B, an embodiment of anetwork environment deploying
multiple appliances 200 is depicted. A first appliance 200 may be deployed on afirst

network 104 and a second appliance 200 on a second network 104'. For example a

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
8

corporate enterprise may deploy afirst appliance 200 at a branch office and a second
appliance 200" at a data center. In another embodiment, the first appliance 200 and second
appliance 200" are deployed on the same network 104 or network 104. For example, afirst
appliance 200 may be deployed for afirst server farm 38, and a second appliance 200 may be
deployed for asecond server farm 38'. In another example, afirst appliance 200 may be
deployed at afirst branch office while the second appliance 200" is deployed at a second
branch office’. In some embodiments, the first appliance 200 and second appliance 200
work in cooperation or in conjunction with each other to accelerate network traffic or the
delivery of application and data between aclient and a server

Referring now to FIG. 1C, another embodiment of anetwork environment deploying
the appliance 200 with one or more other types of appliances, such asbetween one or more
WAN optimization appliance 205, 205' is depicted. For example afirst WAN optimization
appliance 205 is shown between networks 104 and 104' and a second WAN optimization
appliance 205" may be deployed between the appliance 200 and one or more servers 106. By
way of example, a corporate enterprise may deploy afirst WAN optimization appliance 205
at abranch office and a second WAN optimization appliance 205" a a data center. In some
embodiments, the appliance 205 may be located on network 104'. In other embodiments, the
appliance 205" may be located on network 104. In some embodiments, the appliance 205
may be located on network 104" or network 104". In one embodiment, the appliance 205
and 205" are on the same network. In another embodiment, the appliance 205 and 205" are
on different networks. In another example, afirst WAN optimization appliance 205 may be
deployed for afirst server farm 38 and a second WAN optimization appliance 205' for a
second server farm 38'

In one embodiment, the appliance 205 is adevice for accelerating, optimizing or
otherwise improving the performance, operation, or quality of service of any type and form of
network traffic, such astraffic to and/or from aWAN connection. In some embodiments, the
appliance 205 is aperformance enhancing proxy. In other embodiments, the appliance 205 is
any type and form of WAN optimization or acceleration device, sometimes also referred to as
aWAN optimization controller. In one embodiment, the appliance 205 is any of the product
embodiments referred to as WANScaler manufactured by Citrix Systems, Inc. of Ft.
Lauderdale, Florida. In other embodiments, the appliance 205 includes any of the product
embodiments referred to as BIG-IP link controller and WAN;j et manufactured by F5
Networks, Inc. of Seattle, Washington. In another embodiment, the appliance 205 includes
any of the WX and WXC WAN acceleration device platforms manufactured by Juniper

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
9

Networks, Inc. of Sunnyvale, California. In some embodiments, the appliance 205 includes
any of the steelhead line of WAN optimization appliances manufactured by Riverbed
Technology of San Francisco, California. In other embodiments, the appliance 205 includes
any of the WAN related devices manufactured by Expand Networks Inc. of Roseland, New
Jersey. In one embodiment, the appliance 205 includes any of the WAN related appliances
manufactured by Packeteer Inc. of Cupertino, California, such asthe PacketShaper, iShared,
and SkyX product embodiments provided by Packeteer. In yet another embodiment, the
appliance 205 includes any WAN related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, California, such asthe Cisco Wide Area Network Application
Services software and network modules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides application and data acceleration
services for branch-office or remote offices. In one embodiment, the appliance 205 includes
optimization of Wide Area File Services (WAFS). In another embodiment, the appliance 205
accelerates the delivery of files, such as viathe Common Internet File System (CIFS)
protocol. In other embodiments, the appliance 205 provides caching in memory and/or
storage to accelerate delivery of applications and data. In one embodiment, the appliance 205
provides compression of network traffic a any level of the network stack or a any protocol
or network layer. In another embodiment, the appliance 205 provides transport layer protocol
optimizations, flow control, performance enhancements or modifications and/or management
to accelerate delivery of applications and data over aWAN connection. For example, in one
embodiment, the appliance 205 provides Transport Control Protocol (TCP) optimizations. In
other embodiments, the appliance 205 provides optimizations, flow control, performance
enhancements or modifications and/or management for any session or application layer
protocol.

In another embodiment, the appliance 205 encoded any type and form of data or
information into custom or standard TCP and/or 1P header fields or option fields of network
packet to announce presence, functionality or capability to another appliance 205'. In
another embodiment, an appliance 205' may communicate with another appliance 205" using
data encoded in both TCP and/or 1P header fields or options. For example, the appliance may
use TCP option(s) or IP header fields or options to communicate one or more parameters to
be used by the appliances 205, 205" in performing functionality, such as WAN acceleration,
or for working in conjunction with each other.

In some embodiments, the appliance 200 preserves any of the information encoded in
TCP and/or IP header and/or option fields communicated between appliances 205 and 205".

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
10

For example, the appliance 200 may terminate atransport layer connection traversing the
appliance 200, such as atransport layer connection from between aclient and a server
traversing appliances 205 and 205'. In one embodiment, the appliance 200 identifies and
preserves any encoded information in atransport layer packet transmitted by afirst appliance
205 via afirst transport layer connection and communicates atransport layer packet with the
encoded information to a second appliance 205" via a second transport layer connection.

Referring now to FIG. ID, anetwork environment for delivering and/or operating a
computing environment on aclient 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a computing environment or an
application and/or data file to one or more clients 102. In brief overview, aclient 10isin
communication with a server 106 via network 104, 104" and appliance 200. For example, the
client 102 may reside in aremote office of a company, e.g., abranch office, and the server
106 may reside at a corporate data center. The client 102 comprises a client agent 120, and a
computing environment 15. The computing environment 15 may execute or operate an
application that accesses, processes or uses adata file. The computing environment 15,
application and/or data file may be delivered via the appliance 200 and/or the server 106.

In some embodiments, the appliance 200 accelerates delivery of a computing
environment 15, or any portion thereof, to aclient 102. In one embodiment, the appliance
200 accelerates the delivery of the computing environment 15 by the application delivery
system 190. For example, the embodiments described herein may be used to accelerate
delivery of astreaming application and data file processable by the application from a central
corporate data center to aremote user location, such as abranch office of the company. In
another embodiment, the appliance 200 accelerates transport layer traffic between aclient
102 and a server 106. The appliance 200 may provide acceleration techniques for
accelerating any transport layer payload from aserver 106 to aclient 102, such as: 1)
transport layer connection pooling, 2) transport layer connection multiplexing, 3) transport
control protocol buffering, 4) compression and 5) caching. In some embodiments, the
appliance 200 provides load balancing of servers 106 in responding to requests from clients
102. In other embodiments, the appliance 200 acts as aproxy or access server to provide
access to the one or more servers 106. In another embodiment, the appliance 200 provides a
secure virtual private network connection from afirst network 104 of the client 102 to the
second network 104" of the server 106, such asan SSL VPN connection. It yet other
embodiments, the appliance 200 provides application firewall security, control and

management of the connection and communications between aclient 102 and a server 106.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
11

In some embodiments, the application delivery management system 190 provides
application delivery techniques to deliver a computing environment to a desktop of auser,
remote or otherwise, based on aplurality of execution methods and based on any
authentication and authorization policies applied via apolicy engine 195. With these
techniques, aremote user may obtain a computing environment and access to server stored
applications and data files from any network connected device 100. In one embodiment, the
application delivery system 190 may reside or execute on a server 106. In another
embodiment, the application delivery system 190 may reside or execute on aplurality of
servers 106a-106n. In some embodiments, the application delivery system 190 may execute
in aserver farm 38. In one embodiment, the server 106 executing the application delivery
system 190 may also store or provide the application and data file. In another embodiment, a
first set of one or more servers 106 may execute the application delivery system 190, and a
different server 106n may store or provide the application and data file. In some
embodiments, each of the application delivery system 190, the application, and data file may
reside or be located on different servers. In yet another embodiment, any portion of the
application delivery system 190 may reside, execute or be stored on or distributed to the
appliance 200, or aplurality of appliances.

The client 102 may include a computing environment 15 for executing an application
that uses or processes adatafile. The client 102 via networks 104, 104" and appliance 200
may request an application and data file from the server 106. In one embodiment, the
appliance 200 may forward arequest from the client 102 to the server 106. For example, the
client 102 may not have the application and data file stored or accessible locally. In response
to the request, the application delivery system 190 and/or server 106 may deliver the
application and data file to the client 102. For example, in one embodiment, the server 106
may transmit the application as an application stream to operate in computing environment
15 on client 102.

In some embodiments, the application delivery system 190 comprises any portion of
the Citrix Access Suite™ by Citrix Systems, Inc., such asthe MetaFrame or Citrix
Presentation Server™ and/or any of the Microsoft® Windows Terminal Services
manufactured by the Microsoft Corporation. In one embodiment, the application delivery
system 190 may deliver one or more applications to clients 102 or users via aremote-display
protocol or otherwise via remote-based or server-based computing. In another embodiment,
the application delivery system 190 may deliver one or more applications to clients or users

via steaming of the application.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
12

In one embodiment, the application delivery system 190 includes apolicy engine 195
for controlling and managing the access to, selection of application execution methods and
the delivery of applications. In some embodiments, the policy engine 195 determines the one
or more applications auser or client 102 may access. In another embodiment, the policy
engine 195 determines how the application should be delivered to the user or client 102, e.g.,
the method of execution. In some embodiments, the application delivery system 190
provides aplurality of delivery techniques from which to select amethod of application
execution, such as a server-based computing, streaming or delivering the application localy
to the client 120 for local execution.

In one embodiment, aclient 102 requests execution of an application program and the
application delivery system 190 comprising a server 106 selects amethod of executing the
application program. In some embodiments, the server 106 receives credentials from the
client 102. In another embodiment, the server 106 receives arequest for an enumeration of
available applications from the client 102. In one embodiment, in response to the request or
receipt of credentials, the application delivery system 190 enumerates aplurality of
application programs available to the client 102. The application delivery system 190
receives areguest to execute an enumerated application. The application delivery system 190
selects one of apredetermined number of methods for executing the enumerated application,
for example, responsive to apolicy of apolicy engine. The application delivery system 190
may select amethod of execution of the application enabling the client 102 to receive
application-output data generated by execution of the application program on aserver 106.
The application delivery system 190 may select amethod of execution of the application
enabling the local machine 10 to execute the application program locally after retrieving a
plurality of application files comprising the application. In yet another embodiment, the
application delivery system 190 may select amethod of execution of the application to stream
the application via the network 104 to the client 102.

A client 102 may execute, operate or otherwise provide an application, which can be
any type and/or form of software, program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server application, athin-client computing
client, an ActiveX control, or aJava applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some embodiments, the application may
be a server-based or aremote-based application executed on behalf of the client 102 on a
server 106. In one embodiments the server 106 may display output to the client 102 using

any thin-client or remote-display protocol, such asthe Independent Computing Architecture

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
13

(ICA) protocol manufactured by Citrix Systems, Inc. of Ft. Lauderdale, Florida or the
Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond,
Washington. The application can use any type of protocol and it can be, for example, an
HTTP client, an FTP client, an Oscar client, or a Telnet client. In other embodiments, the
application comprises any type of software related to VolP communications, such as a soft IP
telephone. In further embodiments, the application comprises any application related to real-
time data communications, such as applications for streaming video and/or audio.

In some embodiments, the server 106 or aserver farm 38 may berunning one or more
applications, such as an application providing athin-client computing or remote display
presentation application. In one embodiment, the server 106 or server farm 38 executes as an
application, any portion of the Citrix Access Suite™ by Citrix Systems, Inc., such asthe
MetaFrame or Citrix Presentation Server™, and/or any of the Microsoft® Windows Terminal
Services manufactured by the Microsoft Corporation. In one embodiment, the application is
an ICA client, developed by Citrix Systems, Inc. of Fort Lauderdale, Florida. In other
embodiments, the application includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Washington. Also, the server 106 may run an
application, which for example, may be an application server providing email services such
as Microsoft Exchange manufactured by the Microsoft Corporation of Redmond,
Washington, aweb or Internet server, or adesktop sharing server, or acollaboration server.
In some embodiments, any of the applications may comprise any type of hosted service or
products, such as GoToMeeting™ provided by Citrix Online Division, Inc. of Santa Barbara,
Cdlifornia, WebEx™ provided by WebEx, Inc. of Santa Clara, California, or Microsoft
Office Live Meeting provided by Microsoft Corporation of Redmond, Washington.

Still referring to FIG. ID, an embodiment of the network environment may include a
monitoring server 106A. The monitoring server 106A may include any type and form
performance monitoring service 198. The performance monitoring service 198 may include
monitoring, measurement and/or management software and/or hardware, including data
collection, aggregation, analysis, management and reporting. In one embodiment, the
performance monitoring service 198 includes one or more monitoring agents 197. The
monitoring agent 197 includes any software, hardware or combination thereof for performing
monitoring, measurement and data collection activities on a device, such asaclient 102,
server 106 or an appliance 200, 205. In some embodiments, the monitoring agent 197
includes any type and form of script, such asVisual Basic script, or Javascript. In one

embodiment, the monitoring agent 197 executes transparently to any application and/or user

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
14

of the device. In some embodiments, the monitoring agent 197 isinstalled and operated
unaobtrusively to the application or client. Inyet another embodiment, the monitoring agent
197 isinstaled and operated without any instrumentation for the application or device.

In some embodiments, the monitoring agent 197 monitors, measures and collects data
on apredetermined frequency. In other embodiments, the monitoring agent 197 monitors,
measures and collects data based upon detection of any type and form of event. For example,
the monitoring agent 197 may collect data upon detection of arequest for aweb page or
receipt of an HTTP response. In another example, the monitoring agent 197 may collect data
upon detection of any user input events, such as amouse click. The monitoring agent 197
may report or provide any monitored, measured or collected data to the monitoring service
198. In one embodiment, the monitoring agent 197 transmits information to the monitoring
service 198 according to a schedule or apredetermined frequency. In another embodiment,
the monitoring agent 197 transmits information to the monitoring service 198 upon detection
of an event.

In some embodiments, the monitoring service 198 and/or monitoring agent 197
performs monitoring and performance measurement of any network resource or network
infrastructure element, such as aclient, server, server farm, appliance 200, appliance 205, or
network connection. In one embodiment, the monitoring service 198 and/or monitoring
agent 197 performs monitoring and performance measurement of any transport layer
connection, such asaTCP or UDP connection. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and measures network latency. In yet one
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
bandwidth utilization.

In other embodiments, the monitoring service 198 and/or monitoring agent 197
monitors and measures end-user response times. In some embodiments, the monitoring
service 198 performs monitoring and performance measurement of an application. In another
embodiment, the monitoring service 198 and/or monitoring agent 197 performs monitoring
and performance measurement of any session or connection to the application. In one
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
performance of abrowser. In another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of HTTP based transactions. In
some embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of aVoice over IP (VolP) application or session. In other

embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
15

measures performance of aremote display protocol application, such asan ICA client or RDP
client. In yet another embodiment, the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of ahosted application or a Software-As-A-Service (SaaS) delivery
model.

In some embodiments, the monitoring service 198 and/or monitoring agent 197
performs monitoring and performance measurement of one or more transactions, requests or
responses related to application. In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any portion of an application layer stack, such
asany .NET or J2EE calls. In one embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures database or SQL transactions. In yet another
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
any method, function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or monitoring agent 197 performs
monitoring and performance measurement of a delivery of application and/or data from a
server to aclient via one or more appliances, such as appliance 200 and/or appliance 205. In
some embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of delivery of avirtualized application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 monitors and measures performance of
delivery of astreaming application. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures performance of delivery of a desktop
application to aclient and/or the execution of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
performance of a client/server application.

In one embodiment, the monitoring service 198 and/or monitoring agent 197 is
designed and constructed to provide application performance management for the application
delivery system 190. For example, the monitoring service 198 and/or monitoring agent 197
may monitor, measure and manage the performance of the delivery of applications via the
Citrix Presentation Server. In this example, the monitoring service 198 and/or monitoring
agent 197 monitors individual ICA sessions. The monitoring service 198 and/or monitoring
agent 197 may measure the total and per session system resource usage, aswell as application
and networking performance. The monitoring service 198 and/or monitoring agent 197 may

identify the active servers for agiven user and/or user session. In some embodiments, the

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
16

monitoring service 198 and/or monitoring agent 197 monitors back-end connections between
the application delivery system 190 and an application and/or database server. The
monitoring service 198 and/or monitoring agent 197 may measure network latency, delay and
volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or monitoring agent 197
measures and monitors memory usage for the application delivery system 190, such astotal
memory usage, per user session and/or per process. In other embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and monitors CPU usage the application
delivery system 190, such astotal CPU usage, per user session and/or per process. In another
embodiments, the monitoring service 198 and/or monitoring agent 197 measures and
monitors the time required to log-in to an application, a server, or the application delivery
system, such as Citrix Presentation Server. In one embodiment, the monitoring service 198
and/or monitoring agent 197 measures and monitors the duration auser islogged into an
application, a server, or the application delivery system 190. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 measures and monitors active and
inactive session counts for an application, server or application delivery system session. In
yet another embodiment, the monitoring service 198 and/or monitoring agent 197 measures
and monitors user session latency.

In yet further embodiments, the monitoring service 198 and/or monitoring agent 197
measures and monitors measures and monitors any type and form of server metrics. In one
embodiment, the monitoring service 198 and/or monitoring agent 197 measures and monitors
metrics related to system memory, CPU usage, and disk storage. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 measures and monitors metrics related to
page faults, such as page faults per second. In other embodiments, the monitoring service
198 and/or monitoring agent 197 measures and monitors round-trip time metrics. In yet
another embodiment, the monitoring service 198 and/or monitoring agent 197 measures and
monitors metrics related to application crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and monitoring agent 198 includes
any of the product embodiments referred to as EdgeSight manufactured by Citrix Systems,
Inc. of Ft. Lauderdale, Florida. In another embodiment, the performance monitoring service
198 and/or monitoring agent 198 includes any portion of the product embodiments referred to
asthe TrueView product suite manufactured by the Symphoniq Corporation of Palo Alto,
Cdlifornia. 1n one embodiment, the performance monitoring service 198 and/or monitoring

agent 198 includes any portion of the product embodiments referred to asthe TealLeaf CX

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
17

product suite manufactured by the TealLeaf Technology Inc. of San Francisco, California. In
other embodiments, the performance monitoring service 198 and/or monitoring agent 198
includes any portion of the business service management products, such as the BMC
Performance Manager and Patrol products, manufactured by BMC Software, Inc. of Houston,
Texas.

The client 102, server 106, and appliance 200 may be deployed as and/or executed on
any type and form of computing device, such as a computer, network device or appliance
capable of communicating on any type and form of network and performing the operations
described herein. FIGs. |E and | F depict block diagrams of a computing device 100 useful
for practicing an embodiment of the client 102, server 106 or appliance 200. Asshown in
FIGs. |1E and IF, each computing device 100 includes acentral processing unit 101, and a
main memory unit 122. Asshown in FIG. |IE, acomputing device 100 may include avisual
display device 124, akeyboard 126 and/or apointing device 127, such asamouse. Each
computing device 100 may aso include additional optional elements, such asone or more
input/output devices 130a-130b (generally referred to using reference numeral 130), and a
cache memory 140 in communication with the central processing unit 101.

The central processing unit 101 isany logic circuitry that responds to and processes
instructions fetched from the main memory unit 122. In many embodiments, the central
processing unit isprovided by amicroprocessor unit, such as: those manufactured by Intel
Corporation of Mountain View, California; those manufactured by Motorola Corporation of
Schaumburg, Illinois; those manufactured by Transmeta Corporation of Santa Clara,
Cdlifornia; the RS/6000 processor, those manufactured by International Business Machines
of White Plains, New Y ork; or those manufactured by Advanced Micro Devices of
Sunnyvale, California. The computing device 100 may bebased on any of these processors,
or any other processor capable of operating as described herein.

Main memory unit 122 may be one or more memory chips capable of storing data and
allowing any storage location to be directly accessed by the microprocessor 101, such as
Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM),
Dynamic random access memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM), Extended Data
Output DRAM (EDO DRAM), Burst Extended Data Output DRAM (BEDO DRAM),
Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC SRAM, PCIOO
SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM),
SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
18

(FRAM). The main memory 122 may be based on any of the above described memory chips,
or any other available memory chips capable of operating as described herein. In the
embodiment shown in FIG. IE, the processor 101 communicates with main memory 122 via
a system bus 150 (described in more detail below). FIG. IF depicts an embodiment of a
computing device 100 in which the processor communicates directly with main memory 122
via amemory port 103. For example, in FIG. | Fthe main memory 122 may be DRDRAM.

FIG. I F depicts an embodiment in which the main processor 101 communicates
directly with cache memory 140 via a secondary bus, sometimes referred to as abackside
bus. In other embodiments, the main processor 101 communicates with cache memory 140
using the system bus 150. Cache memory 140 typically has afaster response time than main
memory 122 and istypically provided by SRAM, BSRAM, or EDRAM. In the embodiment
shown in FIG. IF, the processor 101 communicates with various 1/O devices 130 via alocal
system bus 150. Various busses may be used to connect the central processing unit 101 to
any of the 1/0 devices 130, including aVESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, aPCI bus, aPCI-X bus, a PCI-Express bus, or a
NuBus. For embodiments in which the 1/O device isavideo display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate with the display 124. FIG. |IF
depicts an embodiment of acomputer 100 in which the main processor 101 communicates
directly with 1/0 device 130b via HyperTransport, Rapid I/O, or InfiniBand. FIG. IF aso
depicts an embodiment in which local busses and direct communication are mixed: the
processor 101 communicates with 1/O device 130b using alocal interconnect bus while
communicating with 1/O device 130a directly.

The computing device 100 may support any suitable installation device 116, such as a
floppy disk drive for receiving floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, aCD-R/RW drive, aDVD-ROM drive, tape drives of various formats, USB
device, hard-drive or any other device suitable for installing software and programs such as
any client agent 120, or portion thereof. The computing device 100 may further comprise a
storage device 128, such as one or more hard disk drives or redundant arrays of independent
disks, for storing an operating system and other related software, and for storing application
software programs such as any program related to the client agent 120. Optionally, any of the
installation devices 116 could also be used asthe storage device 128. Additionaly, the
operating system and the software can berun from abootable medium, for example, a
bootable CD, such as KNOPPIX®, abootable CD for GNU/Linux that isavailable as a
GNU/Linux distribution from knoppix.net.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
19

Furthermore, the computing device 100 may include anetwork interface 118 to
interface to aLocal Area Network (LAN), Wide Area Network (WAN) or the Internet
through avariety of connections including, but not limited to, standard telephone lines, LAN
or WAN links (e.g., 802.11, Tl, T3, 56kb, X.25), broadband connections (e.g., ISDN, Frame
Relay, ATM), wireless connections, or some combination of any or all of the above. The
network interface 118 may comprise abuilt-in network adapter, network interface card,
PCMCIA network card, card bus network adapter, wireless network adapter, USB network
adapter, modem or any other device suitable for interfacing the computing device 100 to any
type of network capable of communication and performing the operations described herein.
A wide variety of 1/0 devices 130a-130n may be present in the computing device 100. Input
devices include keyboards, mice, trackpads, trackballs, microphones, and drawing tablets.
Output devices include video displays, speakers, inkjet printers, laser printers, and dye-
sublimation printers. The 1/O devices 130 may be controlled by an I/O controller 123 as
shown in FIG. IE. The I/O controller may control one or more 1/O devices such asa
keyboard 126 and apointing device 127, e.g., amouse or optical pen. Furthermore, an I/O
device may aso provide storage 128 and/or an installation medium 116 for the computing
device 100. In still other embodiments, the computing device 100 may provide USB
connections to receive handheld USB storage devices such asthe USB Flash Drive line of
devices manufactured by Twintech Industry, Inc. of Los Alamitos, California.

In some embodiments, the computing device 100 may comprise or be connected to
multiple display devices 124a-124n, which each may be of the same or different type and/or
form. Assuch, any of the I/O devices 130a 130n and/or the 1/0O controller 123 may comprise
any type and/or form of suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and use of multiple display devices
124a-124n by the computing device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card, driver, and/or library to interface,
communicate, connect or otherwise use the display devices 124a-124n. In one embodiment, a
video adapter may comprise multiple connectors to interface to multiple display devices
124a-124n. In other embodiments, the computing device 100 may include multiple video
adapters, with each video adapter connected to one or more of the display devices 124a-124n.
In some embodiments, any portion of the operating system of the computing device 100 may
be configured for using multiple displays 124a-124n. In other embodiments, one or more of
the display devices 124a-124n may be provided by one or more other computing devices,

such as computing devices 100a and 100b connected to the computing device 100, for

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
20

example, via anetwork. These embodiments may include any type of software designed and
constructed to use another computer's display device as asecond display device 124afor the
computing device 100. One ordinarily skilled in the art will recognize and appreciate the
various ways and embodiments that a computing device 100 may be configured to have
multiple display devices 124a-124n.

In further embodiments, an I/0O device 130 may be abridge 170 between the system
bus 150 and an external communication bus, such asaUSB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, aFireWire bus, a FireWire 800 bus, an Ethernet bus,
an AppleTak bus, aGigabit Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI bus,
a Super HIPPI bus, a SeriaPlus bus, a SCI/LAMP bus, aFibreChannel bus, or a Serial
Attached small computer system interface bus.

A computing device 100 of the sort depicted in FIGs. |E and | F typically operate
under the control of operating systems, which control scheduling of tasks and access to
system resources. The computing device 100 can berunning any operating system such as
any of the versions of the Microsoft® Windows operating systems, the different releases of
the Unix and Linux operating systems, any version of the Mac OS® for Macintosh
computers, any embedded operating system, any real-time operating system, any open source
operating system, any proprietary operating system, any operating systems for mobile
computing devices, or any other operating system capable of running on the computing
device and performing the operations described herein. Typical operating systems include:
WINDOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP, al of which are manufactured by
Microsoft Corporation of Redmond, Washington; MacOS, manufactured by Apple Computer
of Cupertino, California; OS/2, manufactured by International Business Machines of
Armonk, New York; and Linux, afreely-available operating system distributed by Caldera
Corp. of Salt Lake City, Utah, or any type and/or form of aUnix operating system, among
others.

In other embodiments, the computing device 100 may have different processors,
operating systems, and input devices consistent with the device. For example, in one
embodiment the computer 100 isaTreo 180, 270, 1060, 600 or 650 smart phone
manufactured by Palm, Inc. In this embodiment, the Treo smart phone is operated under the
control of the PAlMOS operating system and includes a stylus input device aswell asafive-
way navigator device. Moreover, the computing device 100 can be any workstation, desktop

computer, laptop or notebook computer, server, handheld computer, mobile telephone, any

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
21

other computer, or other form of computing or telecommunications device that is capable of
communication and that has sufficient processor power and memory capacity to perform the
operations described herein.

Asshown in FIG. |G, the computing device 100 may comprise multiple processors
and may provide functionality for simultaneous execution of instructions or for simultaneous
execution of one instruction on more than one piece of data. In some embodiments, the
computing device 100 may comprise aparallel processor with one or more cores. In one of
these embodiments, the computing device 100 is a shared memory parallel device, with
multiple processors and/or multiple processor cores, accessing all available memory as a
single global address space. In another of these embodiments, the computing device 100 isa
distributed memory parallel device with multiple processors each accessing local memory
only. In gtill another of these embodiments, the computing device 100 has both some
memory which is shared and some memory which can only be accessed by particular
processors or subsets of processors. In still even another of these embodiments, the
computing device 100, such as amulti-core microprocessor, combines two or more
independent processors into a single package, often a single integrated circuit (IC). In yet
another of these embodiments, the computing device 100 includes a chip having a CELL
BROADBAND ENGINE architecture and including a Power processor element and a
plurality of synergistic processing elements, the Power processor element and the plurality of
synergistic processing elements linked together by an internal high speed bus, which may be
referred to as an element interconnect bus.

In some embodiments, the processors provide functionality for execution of asingle
instruction simultaneously on multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple instructions simultaneously on
multiple pieces of data (MIMD). In still other embodiments, the processor may use any
combination of SIMD and MIMD cores in a single device.

In some embodiments, the computing device 100 may comprise a graphics processing
unit. In one of these embodiments, depicted in FIG. IH, the computing device 100 includes
at least one central processing unit 101 and at least one graphics processing unit. In another
of these embodiments, the computing device 100 includes at least one parallel processing unit
and a least one graphics processing unit. In still another of these embodiments, the
computing device 100 includes aplurality of processing units of any type, one of the plurality

of processing units comprising a graphics processing unit.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
22

In some embodiments, afirst computing device 100a executes an application on
behalf of auser of aclient computing device 100b. In other embodiments, a computing
device 100a executes avirtua machine, which provides an execution session within which
applications execute on behalf of auser or a client computing devices 100b. In one of these
embodiments, the execution session is ahosted desktop session. In another of these
embodiments, the computing device 100 executes aterminal services session. The terminal
services session may provide ahosted desktop environment. In still another of these
embodiments, the execution session provides access to a computing environment, which may
comprise one or more of: an application, aplurality of applications, a desktop application,

and a desktop session in which one or more applications may execute.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appliance 200. The architecture of
the appliance 200 in FIG. 2A isprovided by way of illustration only and is not intended to be
limiting. Asshown in FIG. 2, appliance 200 comprises a hardware layer 206 and a software
layer divided into auser space 202 and akernel space 204.

Hardware layer 206 provides the hardware elements upon which programs and
services within kernel space 204 and user space 202 are executed. Hardware layer 206 also
provides the structures and elements which allow programs and services within kernel space
204 and user space 202 to communicate data both internally and externally with respect to
appliance 200. Asshown in FIG. 2, the hardware layer 206 includes aprocessing unit 262
for executing software programs and services, amemory 264 for storing software and data,
network ports 266 for transmitting and receiving data over anetwork, and an encryption
processor 260 for performing functions related to Secure Sockets Layer processing of data
transmitted and received over the network. In some embodiments, the central processing unit
262 may perform the functions of the encryption processor 260 in a single processor.
Additionally, the hardware layer 206 may comprise multiple processors for each of the
processing unit 262 and the encryption processor 260. The processor 262 may include any of
the processors 101 described above in connection with FIGs. |E and IF. For example, in one
embodiment, the appliance 200 comprises a first processor 262 and a second processor 262'.
In other embodiments, the processor 262 or 262' comprises amulti-core processor.

Although the hardware layer 206 of appliance 200 is generally illustrated with an
encryption processor 260, processor 260 may be aprocessor for performing functions related

to any encryption protocol, such asthe Secure Socket Layer (SSL) or Transport Layer

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
23

Security (TLS) protocol. In some embodiments, the processor 260 may be a general purpose
processor (GPP), and in further embodiments, may have executable instructions for
performing processing of any security related protocol.

Although the hardware layer 206 of appliance 200 isillustrated with certain elements
in FIG. 2, the hardware portions or components of appliance 200 may comprise any type and
form of elements, hardware or software, of a computing device, such asthe computing device
100 illustrated and discussed herein in conjunction with FIGs. 1E and IF. In some
embodiments, the appliance 200 may comprise a server, gateway, router, switch, bridge or
other type of computing or network device, and have any hardware and/or software elements
associated therewith.

The operating system of appliance 200 allocates, manages, or otherwise segregates
the available system memory into kernel space 204 and user space 204. In example software
architecture 200, the operating system may be any type and/or form of Unix operating system
although the invention isnot so limited. As such, the appliance 200 can be running any
operating system such as any of the versions of the Microsoft® Windows operating systems,
the different releases of the Unix and Linux operating systems, any version of the Mac OS®
for Macintosh computers, any embedded operating system, any network operating system,
any real-time operating system, any open source operating system, any proprietary operating
system, any operating systems for mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and performing the operations
described herein.

The kernel space 204 isreserved for running the kernel 230, including any device
drivers, kernel extensions or other kernel related software. Asknown to those skilled in the
art, the kernel 230 isthe core of the operating system, and provides access, control, and
management of resources and hardware-related elements of the application 104. In
accordance with an embodiment of the appliance 200, the kernel space 204 also includes a
number of network services or processes working in conjunction with a cache manager 232,
sometimes also referred to asthe integrated cache, the benefits of which are described in
detail further herein. Additionally, the embodiment of the kernel 230 will depend on the
embodiment of the operating system installed, configured, or otherwise used by the device
200.

In one embodiment, the device 200 comprises one network stack 267, such as a
TCP/IP based stack, for communicating with the client 102 and/or the server 106. In one

embodiment, the network stack 267 isused to communicate with afirst network, such as

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
24

network 108, and a second network 110. In some embodiments, the device 200 terminates a
first transport layer connection, such asa TCP connection of aclient 102, and establishes a
second transport layer connection to aserver 106 for use by the client 102, e.g., the second
transport layer connection isterminated at the appliance 200 and the server 106. The first
and second transport layer connections may be established via a single network stack 267. In
other embodiments, the device 200 may comprise multiple network stacks, for example 267
and 267', and the first transport layer connection may be established or terminated at one
network stack 267, and the second transport layer connection on the second network stack
267'. For example, one network stack may be for receiving and transmitting network packet
on afirst network, and another network stack for receiving and transmitting network packets
on a second network. In one embodiment, the network stack 267 comprises abuffer 243 for
gueuing one or more network packets for transmission by the appliance 200.

Asshown in FIG. 2, the kernel space 204 includes the cache manager 232, a high-
speed layer 2-7 integrated packet engine 240, an encryption engine 234, apolicy engine 236
and multi-protocol compression logic 238. Running these components or processes 232,
240, 234, 236 and 238 in kernel space 204 or kernel mode instead of the user space 202
improves the performance of each of these components, alone and in combination. Kernel
operation means that these components or processes 232, 240, 234, 236 and 238 run in the
core address space of the operating system of the device 200. For example, running the
encryption engine 234 in kernel mode improves encryption performance by moving
encryption and decryption operations to the kernel, thereby reducing the number of
transitions between the memory space or akernel thread in kernel mode and the memory
gpace or athread in user mode. For example, data obtained in kernel mode may not need to
be passed or copied to aprocess or thread running in user mode, such as from akernel level
data structure to auser level data structure. In another aspect, the number of context switches
between kernel mode and user mode are also reduced. Additionally, synchronization of and
communications between any of the components or processes 232, 240, 235, 236 and 238 can
be performed more efficiently in the kernel space 204.

In some embodiments, any portion of the components 232, 240, 234, 236 and 238
may run or operate in the kernel space 204, while other portions of these components 232,
240, 234, 236 and 238 may run or operate in user space 202. In one embodiment, the
appliance 200 uses akernel-level data structure providing access to any portion of one or
more network packets, for example, anetwork packet comprising arequest from aclient 102

or aresponse from aserver 106. In some embodiments, the kernel-level data structure may

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
25

be obtained by the packet engine 240 via atransport layer driver interface or filter to the
network stack 267. The kernel-level data structure may comprise any interface and/or data
accessible via the kernel space 204 related to the network stack 267, network traffic or
packets received or transmitted by the network stack 267. In other embodiments, the kernel-
level data structure may be used by any of the components or processes 232, 240, 234, 236
and 238 to perform the desired operation of the component or process. In one embodiment, a
component 232, 240, 234, 236 and 238 isrunning in kernel mode 204 when using the kernel-
level data structure, while in another embodiment, the component 232, 240, 234, 236 and 238
isrunning in user mode when using the kernel-level data structure. In some embodiments,
the kernel-level data structure may be copied or passed to a second kernel-level data
structure, or any desired user-level data structure.

The cache manager 232 may comprise software, hardware or any combination of
software and hardware to provide cache access, control and management of any type and
form of content, such as objects or dynamically generated objects served by the originating
servers 106. The data, objects or content processed and stored by the cache manager 232
may comprise data in any format, such as amarkup language, or communicated via any
protocol. In some embodiments, the cache manager 232 duplicates original data stored
elsewhere or data previously computed, generated or transmitted, in which the original data
may require longer access time to fetch, compute or otherwise obtain relative to reading a
cache memory element. Once the data is stored in the cache memory element, future use can
be made by accessing the cached copy rather than refetching or recomputing the original
data, thereby reducing the access time. In some embodiments, the cache memory element
may comprise a data object in memory 264 of device 200. In other embodiments, the cache
memory element may comprise memory having afaster access time than memory 264. In
another embodiment, the cache memory element may comprise any type and form of storage
element of the device 200, such as aportion of ahard disk. In some embodiments, the
processing unit 262 may provide cache memory for use by the cache manager 232. In yet
further embodiments, the cache manager 232 may use any portion and combination of
memory, storage, or the processing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques of the appliance 200 described
herein. For example, the cache manager 232 includes logic or functionality to invalidate
objects based on the expiration of an invalidation time period or upon receipt of an

invalidation command from aclient 102 or server 106. In some embodiments, the cache

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
26

manager 232 may operate as aprogram, service, process or task executing in the kernel space
204, and in other embodiments, in the user space 202. In one embodiment, afirst portion of
the cache manager 232 executes in the user space 202 while a second portion executes in the
kernel space 204. In some embodiments, the cache manager 232 can comprise any type of
general purpose processor (GPP), or any other type of integrated circuit, such as aField
Programmable Gate Array (FPGA), Programmable Logic Device (PLD), or Application
Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an intelligent statistical engine or
other programmable application(s). In one embodiment, the policy engine 236 provides a
configuration mechanism to allow auser to identify, specify, define or configure a caching
policy. Policy engine 236, in some embodiments, also has access to memory to support data
structures such as lookup tables or hash tables to enable user-selected caching policy
decisions. In other embodiments, the policy engine 236 may comprise any logic, rules,
functions or operations to determine and provide access, control and management of objects,
data or content being cached by the appliance 200 in addition to access, control and
management of security, network traffic, network access, compression or any other function
or operation performed by the appliance 200. Further examples of specific caching policies
are further described herein.

The encryption engine 234 comprises any logic, business rules, functions or
operations for handling the processing of any security related protocol, such as SSL or TLS,
or any function related thereto. For example, the encryption engine 234 encrypts and
decrypts network packets, or any portion thereof, communicated viathe appliance 200. The
encryption engine 234 may also setup or establish SSL or TLS connections on behalf of the
client 102a-102n, server 106a-106n, or appliance 200. As such, the encryption engine 234
provides offloading and acceleration of SSL processing. In one embodiment, the encryption
engine 234 uses atunneling protocol to provide avirtual private network between a client
102a-102n and a server 106a-106n. In some embodiments, the encryption engine 234 isin
communication with the Encryption processor 260. In other embodiments, the encryption
engine 234 comprises executable instructions running on the Encryption processor 260.

The multi-protocol compression engine 238 comprises any logic, business rules,
function or operations for compressing one or more protocols of anetwork packet, such as
any of the protocols used by the network stack 267 of the device 200. In one embodiment,
multi-protocol compression engine 238 compresses bi-directionally between clients 102a-

102n and servers 106a-106n any TCP/IP based protocol, including Messaging Application

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
27

Programming Interface (MAPI) (email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) protocol (filetransfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop Protocol (RDP), Wireless
Application Protocol (WAP), Mobile IP protocol, and Voice Over IP (VolP) protocol. In
other embodiments, multi-protocol compression engine 238 provides compression of
Hypertext Markup Language (HTML) based protocols and in some embodiments, provides
compression of any markup languages, such asthe Extensible Markup Language (XML). In
one embodiment, the multi-protocol compression engine 238 provides compression of any
high-performance protocol, such as any protocol designed for appliance 200 to appliance 200
communications. In another embodiment, the multi-protocol compression engine 238
compresses any payload of or any communication using amodified transport control
protocol, such as Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion prediction protocol such asthe
TCP-Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238 accel erates performance for users
accessing applications via desktop clients, e.g., Microsoft Outlook and non-Web thin clients,
such as any client launched by popular enterprise applications like Oracle, SAP and Siebel,
and even mobile clients, such asthe Pocket PC. In some embodiments, the multi-protocol
compression engine 238 by executing in the kernel mode 204 and integrating with packet
processing engine 240 accessing the network stack 267 is able to compress any of the
protocols carried by the TCP/IP protocol, such as any application layer protocol.

High speed layer 2-7 integrated packet engine 240, also generally referred to as a
packet processing engine or packet engine, is responsible for managing the kernel-level
processing of packets received and transmitted by appliance 200 via network ports 266. The
high speed layer 2-7 integrated packet engine 240 may comprise a buffer for queuing one or
more network packets during processing, such as for receipt of anetwork packet or
transmission of anetwork packet. Additionally, the high speed layer 2-7 integrated packet
engine 240 isin communication with one or more network stacks 267 to send and receive
network packets via network ports 266. The high speed layer 2-7 integrated packet engine
240 works in conjunction with encryption engine 234, cache manager 232, policy engine 236
and multi-protocol compression logic 238. In particular, encryption engine 234 is configured
to perform SSL processing of packets, policy engine 236 is configured to perform functions

related to traffic management such as request-level content switching and request-level cache

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
28

redirection, and multi-protocol compression logic 238 is configured to perform functions
related to compression and decompression of data.

The high speed layer 2-7 integrated packet engine 240 includes apacket processing
timer 242. In one embodiment, the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.e., received, or outgoing, i.e., transmitted,
network packets. In some embodiments, the high speed layer 2-7 integrated packet engine
240 processes network packets responsive to the timer 242. The packet processing timer 242
provides any type and form of signal to the packet engine 240 to notify, trigger, or
communicate atime related event, interval or occurrence. In many embodiments, the packet
processing timer 242 operates in the order of milliseconds, such as for example 100ms, 50ms
or 25ms. For example, in some embodiments, the packet processing timer 242 provides time
intervals or otherwise causes anetwork packet to be processed by the high speed layer 2-7
integrated packet engine 240 a a 10 mstime interval, while in other embodiments, a a5 ms
time interval, and still yet in further embodiments, as short asa 3, 2, or 1 mstime interval.
The high speed layer 2-7 integrated packet engine 240 may beinterfaced, integrated or in
communication with the encryption engine 234, cache manager 232, policy engine 236 and
multi-protocol compression engine 238 during operation. As such, any of the logic,
functions, or operations of the encryption engine 234, cache manager 232, policy engine 236
and multi-protocol compression logic 238 may be performed responsive to the packet
processing timer 242 and/or the packet engine 240. Therefore, any of the logic, functions, or
operations of the encryption engine 234, cache manager 232, policy engine 236 and multi-
protocol compression logic 238 may be performed at the granularity of time intervals
provided via the packet processing timer 242, for example, a atime interval of lessthan or
equal to 10ms. For example, in one embodiment, the cache manager 232 may perform
invalidation of any cached objects responsive to the high speed layer 2-7 integrated packet
engine 240 and/or the packet processing timer 242. In another embodiment, the expiry or
invalidation time of a cached object can be set to the same order of granularity asthe time
interval of the packet processing timer 242, such asat every 10 ms.

In contrast to kernel space 204, user space 202 isthe memory area or portion of the
operating system used by user mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space 204 directly and uses service
callsin order to access kernel services. Asshown in FIG. 2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, acommand line interface (CLI1) 212, shell
services 214, health monitoring program 216, and daemon services 218. GUI 210 and CLI

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
29

212 provide ameans by which a system administrator or other user can interact with and
control the operation of appliance 200, such as via the operating system of the appliance 200.
The GUI 210 or CLI 212 can comprise code running in user space 202 or kernel space 204.
The GUI 210 may be any type and form of graphical user interface and may be presented via
text, graphical or otherwise, by any type of program or application, such as abrowser. The
CLI 212 may be any type and form of command line or text-based interface, such as a
command line provided by the operating system. For example, the CLI 212 may comprise a
shell, which is atool to enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via abash, csh, tcsh, or ksh type shell. The shell
services 214 comprises the programs, services, tasks, processes or executable instructions to
support interaction with the appliance 200 or operating system by auser viathe GUI 210
and/or CLI 212.

Health monitoring program 216 isused to monitor, check, report and ensure that
network systems are functioning properly and that users are receiving requested content over
anetwork. Health monitoring program 216 comprises one or more programs, services, tasks,
processes or executable instructions to provide logic, rules, functions or operations for
monitoring any activity of the appliance 200. In some embodiments, the health monitoring
program 216 intercepts and inspects any network traffic passed via the appliance 200. In
other embodiments, the health monitoring program 216 interfaces by any suitable means
and/or mechanisms with one or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression logic 238, packet engine 240,
daemon services 218, and shell services 214. As such, the health monitoring program 216
may call any application programming interface (API) to determine a state, status, or health
of any portion of the appliance 200. For example, the health monitoring program 216 may
ping or send a status inquiry on aperiodic basis to check if aprogram, process, service or task
is active and currently running. In another example, the health monitoring program 216 may
check any status, error or history logs provided by any program, process, service or task to
determine any condition, status or error with any portion of the appliance 200.

Daemon services 218 are programs that run continuously or in the background and
handle periodic service requests received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or processes, such as another daemon
service 218 as appropriate. Asknown to those skilled in the art, a daemon service 218 may
run unattended to perform continuous or periodic system wide functions, such as network

control, or to perform any desired task. In some embodiments, one or more daemon services

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
30

218 run in the user space 202, while in other embodiments, one or more daemon services 218
run in the kernel space.

Referring now to FIG. 2B, another embodiment of the appliance 200 is depicted. In
brief overview, the appliance 200 provides one or more of the following services,
functionality or operations: SSL VPN connectivity 280, switching/load balancing 284,
Domain Name Service resolution 286, acceleration 288 and an application firewall 290 for
communications between one or more clients 102 and one or more servers 106. Each of the
servers 106 may provide one or more network related services 270a-270n (referred to as
services 270). For example, aserver 106 may provide an http service 270. The appliance
200 comprises one or more virtual servers or virtual internet protocol servers, referred to asa
vServer, VIP server, orjust VIP 275a-275n (also referred herein asvServer 275). The
vServer 275 receives, intercepts or otherwise processes communications between aclient 102
and a server 106 in accordance with the configuration and operations of the appliance 200.

The vServer 275 may comprise software, hardware or any combination of software
and hardware. The vServer 275 may comprise any type and form of program, service, task,
process or executable instructions operating in user mode 202, kernel mode 204 or any
combination thereof in the appliance 200. The vServer 275 includes any logic, functions,
rules, or operations to perform any embodiments of the techniques described herein, such as
SSL VPN 280, switching/load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290. In some embodiments, the vServer 275
establishes a connection to a service 270 of aserver 106. The service 275 may comprise any
program, application, process, task or set of executable instructions capable of connecting to
and communicating to the appliance 200, client 102 or vServer 275. For example, the service
275 may comprise aweb server, http server, ftp, email or database server. In some
embodiments, the service 270 is a daemon process or network driver for listening, receiving
and/or sending communications for an application, such as email, database or an enterprise
application. In some embodiments, the service 270 may communicate on a specific IP
address, or |P address and port.

In some embodiments, the vServer 275 applies one or more policies of the policy
engine 236 to network communications between the client 102 and server 106. In one
embodiment, the policies are associated with avServer 275. In another embodiment, the
policies are based on auser, or agroup of users. In yet another embodiment, apolicy is
global and applies to one or more vServers 275a-275n, and any user or group of users

communicating via the appliance 200. In some embodiments, the policies of the policy

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
31

engine have conditions upon which the policy is applied based on any content of the
communication, such asinternet protocol address, port, protocol type, header or fields in a
packet, or the context of the communication, such asuser, group of the user, vServer 275,
transport layer connection, and/or identification or attributes of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization of aremote user or aremote
client 102 to access the computing environment 15, application, and/or data file from a server
106. In another embodiment, the appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization of aremote user or aremote
client 102 to have the application delivery system 190 deliver one or more of the computing
environment 15, application, and/or datafile. In yet another embodiment, the appliance 200
establishes aVPN or SSL VPN connection based on the policy engine's 236 authentication
and/or authorization of aremote user or aremote client 102 In one embodiment, the
appliance 200 controls the flow of network traffic and communication sessions based on
policies of the policy engine 236. For example, the appliance 200 may control the access to
a computing environment 15, application or data file based on the policy engine 236.

In some embodiments, the vServer 275 establishes atransport layer connection, such
as a TCP or UDP connection with aclient 102 viathe client agent 120. In one embodiment,
the vServer 275 listens for and receives communications from the client 102. In other
embodiments, the vServer 275 establishes atransport layer connection, such asaTCP or
UDP connection with aclient server 106. In one embodiment, the vServer 275 establishes
the transport layer connection to an internet protocol address and port of a server 270 running
on the server 106. In another embodiment, the vServer 275 associates afirst transport layer
connection to a client 102 with a second transport layer connection to the server 106. In
some embodiments, avServer 275 establishes apool of transport layer connections to a
server 106 and multiplexes client requests via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL VPN connection 280
between aclient 102 and aserver 106. For example, aclient 102 on afirst network 102
requests to establish a connection to a server 106 on a second network 104'. In some
embodiments, the second network 104' isnot routable from the first network 104. In other
embodiments, the client 102 ison apublic network 104 and the server 106 ison aprivate
network 104', such as a corporate network. In one embodiment, the client agent 120
intercepts communications of the client 102 on the first network 104, encrypts the

communications, and transmits the communications via a first transport layer connection to

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
32

the appliance 200. The appliance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the server 106 on the second
network 104. The appliance 200 receives the intercepted communication from the client
agent 102, decrypts the communications, and transmits the communication to the server 106
on the second network 104 via the second transport layer connection. The second transport
layer connection may be apooled transport layer connection. A ssuch, the appliance 200
provides an end-to-end secure transport layer connection for the client 102 between the two
networks 104, 104"

In one embodiment, the appliance 200 hosts an intranet internet protocol or IntranetlP
282 address of the client 102 on the virtual private network 104. The client 102 has alocal
network identifier, such as an internet protocol (IP) address and/or host name on the first
network 104. When connected to the second network 104" via the appliance 200, the
appliance 200 establishes, assigns or otherwise provides an IntranetlP address 282, which isa
network identifier, such asIP address and/or host name, for the client 102 on the second
network 104'. The appliance 200 listens for and receives on the second or private network
104" for any communications directed towards the client 102 using the client's established
IntranetlP 282. In one embodiment, the appliance 200 acts as or on behalf of the client 102 on
the second private network 104. For example, in another embodiment, avServer 275 listens
for and responds to communications to the IntranetlP 282 of the client 102. In some
embodiments, if acomputing device 100 on the second network 104" transmits arequest, the
appliance 200 processes the request asif it were the client 102. For example, the appliance
200 may respond to aping to the client's IntranetlP 282. In another example, the appliance
may establish a connection, such asaTCP or UDP connection, with computing device 100
on the second network 104 requesting a connection with the client's IntranetlP 282.

In some embodiments, the appliance 200 provides one or more of the following
acceleration techniques 288 to communications between the client 102 and server 106: 1)
compression; 2) decompression; 3) Transmission Control Protocol pooling; 4) Transmission
Control Protocol multiplexing; 5) Transmission Control Protocol buffering; and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of much of the processing load
caused by repeatedly opening and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each server 106 and maintaining these
connections to alow repeated data accesses by clients via the Internet. This technique is

referred to herein as "connection pooling".

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
33

In some embodiments, in order to seamlessly splice communications from a client
102 to a server 106 via apooled transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number and acknowledgment numbers
at the transport layer protocol level. Thisisreferred to as "connection multiplexing”. In
some embodiments, no application layer protocol interaction isrequired. For example, in the
case of an in-bound packet (that is, apacket received from aclient 102), the source network
address of the packet is changed to that of an output port of appliance 200, and the destination
network address is changed to that of the intended server. In the case of an outbound packet
(that is, one received from a server 106), the source network address is changed from that of
the server 106 to that of an output port of appliance 200 and the destination address is
changed from that of appliance 200 to that of the requesting client 102. The sequence
numbers and acknowledgment numbers of the packet are also translated to sequence numbers
and acknowledgement numbers expected by the client 102 on the appliance's 200 transport
layer connection to the client 102. In some embodiments, the packet checksum of the
transport layer protocol isrecalculated to account for these trandations.

In another embodiment, the appliance 200 provides switching or load-balancing
functionality 284 for communications between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and directs client requests to a server 106
based on layer 4 or application-layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination server 106, the appliance 200
determines the server 106 to distribute the network packet by application information and
data carried as payload of the transport layer packet. In one embodiment, the health
monitoring programs 216 of the appliance 200 monitor the health of servers to determine the
server 106 for which to distribute aclient's request. In some embodiments, if the appliance
200 detects a server 106 isnot available or has aload over apredetermined threshold, the
appliance 200 can direct or distribute client requests to another server 106.

In some embodiments, the appliance 200 acts as aDomain Name Service (DNYS)
resolver or otherwise provides resolution of aDNS request from clients 102. In some
embodiments, the appliance intercepts a DNS request transmitted by the client 102. In one
embodiment, the appliance 200 responds to aclient's DNS request with an |P address of or
hosted by the appliance 200. In this embodiment, the client 102 transmits network
communication for the domain name to the appliance 200. In another embodiment, the

appliance 200 responds to a client's DNS request with an IP address of or hosted by a second

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
34

appliance 200'. In some embodiments, the appliance 200 responds to aclient's DNS request
with an | P address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides application firewall
functionality 290 for communications between the client 102 and server 106. In one
embodiment, the policy engine 236 provides rules for detecting and blocking illegitimate
requests. In some embodiments, the application firewall 290 protects against denial of
service (DoS) attacks. In other embodiments, the appliance inspects the content of intercepted
requests to identify and block application-based attacks. In some embodiments, the
rules/policy engine 236 comprises one or more application firewall or security control
policies for providing protections against various classes and types of web or Internet based
vulnerabilities, such asone or more of the following: 1) buffer overflow, 2) CGI-BIN
parameter manipulation, 3) form/hidden field manipulation, 4) forceful browsing, 5) cookie
or session poisoning, 6) broken access control list (ACLS) or weak passwords, 7) cross-site
scripting (XSS), 8) command injection, 9) SQL injection, 10) error triggering sensitive
information leak, 11) insecure use of cryptography, 12) server misconfiguration, 13) back
doors and debug options, 14) website defacement, 15) platform or operating systems
vulnerabilities, and 16) zero-day exploits. In an embodiment, the application firewall 290
provides HTML form field protection in the form of inspecting or anayzing the network
communication for one or more of the following: 1) required fields are returned, 2) no added
field allowed, 3) read-only and hidden field enforcement, 4) drop-down list and radio button
field conformance, and 5) form-field max-length enforcement. In some embodiments, the
application firewall 290 ensures cookies are not modified. In other embodiments, the
application firewall 290 protects against forceful browsing by enforcing legal URLS.

In still yet other embodiments, the application firewall 290 protects any confidential
information contained in the network communication. The application firewall 290 may
inspect or analyze any network communication in accordance with the rules or polices of the
engine 236 to identify any confidential information in any field of the network packet. In
some embodiments, the application firewall 290 identifies in the network communication one
or more occurrences of acredit card number, password, social security number, name, patient
code, contact information, and age. The encoded portion of the network communication may
comprise these occurrences or the confidential information. Based on these occurrences, in
one embodiment, the application firewall 290 may take apolicy action on the network

communication, such asprevent transmission of the network communication. In another

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
35

embodiment, the application firewall 290 may rewrite, remove or otherwise mask such
identified occurrence or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a performance monitoring
agent 197 asdiscussed above in conjunction with FIG. ID. In one embodiment, the
appliance 200 receives the monitoring agent 197 from the monitoring service 198 or
monitoring server 106 as depicted in FIG. ID. In some embodiments, the appliance 200
stores the monitoring agent 197 in storage, such as disk, for delivery to any client or server in
communication with the appliance 200. For example, in one embodiment, the appliance 200
transmits the monitoring agent 197 to a client upon receiving arequest to establish atransport
layer connection. In other embodiments, the appliance 200 transmits the monitoring agent
197 upon establishing the transport layer connection with the client 102. In another
embodiment, the appliance 200 transmits the monitoring agent 197 to the client upon
intercepting or detecting arequest for aweb page. In yet another embodiment, the appliance
200 transmits the monitoring agent 197 to a client or a server in response to arequest from
the monitoring server 198. In one embodiment, the appliance 200 transmits the monitoring
agent 197 to a second appliance 200" or appliance 205.

In other embodiments, the appliance 200 executes the monitoring agent 197. In one
embodiment, the monitoring agent 197 measures and monitors the performance of any
application, program, process, service, task or thread executing on the appliance 200. For
example, the monitoring agent 197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitoring agent 197 measures and
monitors the performance of any transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and monitors the performance of any user
sessions traversing the appliance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private network connections and/or
sessions traversing the appliance 200, such an SSL VPN session. In still further
embodiments, the monitoring agent 197 measures and monitors the memory, CPU and disk
usage and performance of the appliance 200. In yet another embodiment, the monitoring
agent 197 measures and monitors the performance of any acceleration technique 288
performed by the appliance 200, such as SSL offloading, connection pooling and
multiplexing, caching, and compression. In some embodiments, the monitoring agent 197
measures and monitors the performance of any load balancing and/or content switching 284

performed by the appliance 200. In other embodiments, the monitoring agent 197 measures

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
36

and monitors the performance of application firewall 290 protection and processing

performed by the appliance 200.

C. Client Agent
Referring now to FIG. 3, an embodiment of the client agent 120 is depicted. The

client 102 includes aclient agent 120 for establishing and exchanging communications with
the appliance 200 and/or server 106 via anetwork 104. In brief overview, the client 102
operates on computing device 100 having an operating system with akernel mode 302 and a
user mode 303, and anetwork stack 310 with one or more layers 310a-310b. The client 102
may have installed and/or execute one or more applications. In some embodiments, one or
more applications may communicate via the network stack 310 to anetwork 104. One of the
applications, such as aweb browser, may also include afirst program 322. For example, the
first program 322 may beused in some embodiments to install and/or execute the client agent
120, or any portion thereof. The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications from the network stack 310 from
the one or more applications.

The network stack 310 of the client 102 may comprise any type and form of software,
or hardware, or any combinations thereof, for providing connectivity to and communications
with anetwork. In one embodiment, the network stack 310 comprises a software
implementation for anetwork protocol suite. The network stack 310 may comprise one or
more network layers, such as any networks layers of the Open Systems Interconnection (OSI)
communications model asthose skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of protocols for any of the following
layers of the OSI model: 1) physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7) application layer. In one
embodiment, the network stack 310 may comprise atransport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally referred to as TCP/IP. In some
embodiments, the TCP/IP protocol may be carried over the Ethernet protocol, which may
comprise any of the family of IEEE wide-area-network (WAN) or loca-area-network (LAN)
protocols, such asthose protocols covered by the IEEE 802.3. In some embodiments, the
network stack 310 comprises any type and form of awireless protocol, such as |[EEE 802.1 1
and/or mobile internet protocol.

Inview of a TCP/IP based network, any TCP/IP based protocol may be used,
including Messaging Application Programming Interface (MAPI) (email), File Transfer

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
37

Protocol (FTP), HyperText Transfer Protocol (HTTP), Common Internet File System (CIFS)
protocol (file transfer), Independent Computing Architecture (ICA) protocol, Remote
Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and
Voice Over IP (VolP) protocol. In another embodiment, the network stack 310 comprises
any type and form of transport control protocol, such as amodified transport control protocol,
for example a Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion prediction protocol such asthe
TCP-Vegas protocol, and a TCP spoofing protocol. In other embodiments, any type and
form of user datagram protocol (UDP), such as UDP over IP, may be used by the network
stack 310, such as for voice communications or real-time data communications.

Furthermore, the network stack 310 may include one or more network drivers
supporting the one or more layers, such asa TCP driver or anetwork layer driver. The
network drivers may beincluded as part of the operating system of the computing device 100
or as part of any network interface cards or other network access components of the
computing device 100. In some embodiments, any of the network drivers of the network
stack 310 may be customized, modified or adapted to provide a custom or modified portion
of the network stack 310 in support of any of the techniques described herein. In other
embodiments, the acceleration program 302 is designed and constructed to operate with or
work in conjunction with the network stack 310 installed or otherwise provided by the
operating system of the client 102.

The network stack 310 comprises any type and form of interfaces for receiving,
obtaining, providing or otherwise accessing any information and data related to network
communications of the client 102. In one embodiment, an interface to the network stack 310
comprises an application programming interface (API). The interface may also comprise any
function call, hooking or filtering mechanism, event or call back mechanism, or any type of
interfacing technique. The network stack 310 via the interface may receive or provide any
type and form of data structure, such as an object, related to functionality or operation of the
network stack 310. For example, the data structure may comprise information and data
related to anetwork packet or one or more network packets. In some embodiments, the data
structure comprises aportion of the network packet processed a aprotocol layer of the
network stack 310, such as anetwork packet of the transport layer. In some embodiments,
the data structure 325 comprises akernel-level data structure, while in other embodiments,
the data structure 325 comprises auser-mode data structure. A kernel-level data structure

may comprise a data structure obtained or related to aportion of the network stack 310

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
38

operating in kernel-mode 302, or anetwork driver or other software running in kernel-mode
302, or any data structure obtained or received by a service, process, task, thread or other
executable instructions running or operating in kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may execute or operate in
kernel-mode 302, for example, the data link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the network stack 310. For
example, afirst portion 310a of the network stack may provide user-mode access to the
network stack 310 to an application while a second portion 310a of the network stack 310
provides access to anetwork. In some embodiments, afirst portion 310a of the network stack
may comprise one or more upper layers of the network stack 310, such as any of layers 5-7.
In other embodiments, a second portion 310b of the network stack 310 comprises one or
more lower layers, such as any of layers 1-4. Each of the first portion 310a and second
portion 310b of the network stack 310 may comprise any portion of the network stack 310, a
any one or more network layers, in user-mode 203, kernel-mode, 202, or combinations
thereof, or a any portion of anetwork layer or interface point to anetwork layer or any
portion of or interface point to the user-mode 203 and kernel-mode 203. .

The interceptor 350 may comprise software, hardware, or any combination of
software and hardware. In one embodiment, the interceptor 350 intercept a network
communication a any point in the network stack 310, and redirects or transmits the network
communication to a destination desired, managed or controlled by the interceptor 350 or
client agent 120. For example, the interceptor 350 may intercept anetwork communication
of anetwork stack 310 of afirst network and transmit the network communication to the
appliance 200 for transmission on a second network 104. In some embodiments, the
interceptor 350 comprises any type interceptor 350 comprises adriver, such as anetwork
driver constructed and designed to interface and work with the network stack 310. In some
embodiments, the client agent 120 and/or interceptor 350 operates a one or more layers of
the network stack 310, such as at the transport layer. In one embodiment, the interceptor 350
comprises afilter driver, hooking mechanism, or any form and type of suitable network
driver interface that interfaces to the transport layer of the network stack, such asviathe
transport driver interface (TDI). In some embodiments, the interceptor 350 interfaces to a
first protocol layer, such asthe transport layer and another protocol layer, such as any layer
above the transport protocol layer, for example, an application protocol layer. In one
embodiment, the interceptor 350 may comprise a driver complying with the Network Driver

Interface Specification (NDIS), or aNDIS driver. In another embodiment, the interceptor

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
39

350 may comprise amini-filter or amini-port driver. In one embodiment, the interceptor 350,
or portion thereof, operates in kernel-mode 202. In another embodiment, the interceptor 350,
or portion thereof, operates in user-mode 203. In some embodiments, aportion of the
interceptor 350 operates in kernel-mode 202 while another portion of the interceptor 350
operates in user-mode 203. In other embodiments, the client agent 120 operates in user-mode
203 but interfaces viathe interceptor 350 to akernel-mode driver, process, service, task or
portion of the operating system, such asto obtain akernel-level data structure 225. In further
embodiments, the interceptor 350 isauser-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any transport layer connection
requests. In these embodiments, the interceptor 350 execute transport layer application
programming interface (API) callsto set the destination information, such as destination |IP
address and/or port to adesired location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to alP address and port controlled or
managed by the interceptor 350 or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to alocal 1P address and port of the client
102 on which the client agent 120 islistening. For example, the client agent 120 may
comprise aproxy service listening on alocal I1P address and port for redirected transport layer
communications. In some embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance 200.

In some embodiments, the interceptor 350 intercepts a Domain Name Service (DNS)
request. In one embodiment, the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits the intercepted DNS request to the
appliance 200 for DNS resolution. In one embodiment, the appliance 200 resolves the DNS
request and communicates the DNS response to the client agent 120. In some embodiments,
the appliance 200 resolves the DNS request via another appliance 200" or a DNS server 106.

In yet another embodiment, the client agent 120 may comprise two agents 120 and
120'. In one embodiment, afirst agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodiments, the first agent 120 intercepts
network layer requests such as Internet Control Message Protocol (ICMP) requests (e.g., ping
and traceroute). In other embodiments, the second agent 120" may operate at the transport
layer and intercept transport layer communications. In some embodiments, the first agent
120 intercepts communications at one layer of the network stack 210 and interfaces with or

communicates the intercepted communication to the second agent 120

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
40

The client agent 120 and/or interceptor 350 may operate at or interface with a protocol
layer in amanner transparent to any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or interfaces with the transport
layer of the network stack 310 transparently to any protocol layer below the transport layer,
such asthe network layer, and any protocol layer above the transport layer, such asthe
session, presentation or application layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without modification for using the interceptor
350. Assuch, the client agent 120 and/or interceptor 350 can interface with the transport
layer to secure, optimize, accelerate, route or load-balance any communications provided via
any protocol carried by the transport layer, such as any application layer protocol over
TCP/IP.

Furthermore, the client agent 120 and/or interceptor may operate at or interface with
the network stack 310 in amanner transparent to any application, auser of the client 102, and
any other computing device, such as aserver, in communications with the client 102. The
client agent 120 and/or interceptor 350 may beinstalled and/or executed on the client 102 in a
manner without modification of an application. In some embodiments, the user of the client
102 or acomputing device in communications with the client 102 are not aware of the
existence, execution or operation of the client agent 120 and/or interceptor 350. Assuch, in
some embodiments, the client agent 120 and/or interceptor 350 isinstalled, executed, and/or
operated transparently to an application, user of the client 102, another computing device,
such as a server, or any of the protocol layers above and/or below the protocol layer
interfaced to by the interceptor 350.

The client agent 120 includes an acceleration program 302, a streaming client 306, a
collection agent 304, and/or monitoring agent 197. In one embodiment, the client agent 120
comprises an Independent Computing Architecture (ICA) client, or any portion thereof,
developed by Citrix Systems, Inc. of Fort Lauderdale, Florida, and is also referred to as an
ICA client. In some embodiments, the client 120 comprises an application streaming client
306 for streaming an application from a server 106 to aclient 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for accelerating communications
between client 102 and server 106. In another embodiment, the client agent 120 includes a
collection agent 304 for performing end-point detection/scanning and collecting end-point
information for the appliance 200 and/or server 106.

In some embodiments, the acceleration program 302 comprises a client-side

acceleration program for performing one or more acceleration techniques to accelerate,

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
41

enhance or otherwise improve aclient's communications with and/or access to a server 106,
such as accessing an application provided by aserver 106. The logic, functions, and/or
operations of the executable instructions of the acceleration program 302 may perform one or
more of the following acceleration techniques. 1) multi-protocol compression, 2) transport
control protocol pooling, 3) transport control protocol multiplexing, 4) transport control
protocol buffering, and 5) caching via a cache manager. Additionally, the acceleration
program 302 may perform encryption and/or decryption of any communications received
and/or transmitted by the client 102. In some embodiments, the acceleration program 302
performs one or more of the acceleration techniques in an integrated manner or fashion.
Additionally, the acceleration program 302 can perform compression on any of the protocols,
or multiple-protocols, carried as apayload of anetwork packet of the transport layer protocol.

The streaming client 306 comprises an application, program, process, service, task or
executable instructions for receiving and executing a streamed application from a server 106.
A server 106 may stream one or more application data filesto the streaming client 306 for
playing, executing or otherwise causing to be executed the application on the client 102. In
some embodiments, the server 106 transmits a set of compressed or packaged application
data files to the streaming client 306. In some embodiments, the plurality of application files
are compressed and stored on afile server within an archive file such asa CAB, ZIP, SIT,
TAR, JAR or other archive. In one embodiment, the server 106 decompresses, unpackages or
unarchives the application files and transmits the files to the client 102. In another
embodiment, the client 102 decompresses, unpackages or unarchives the application files.
The streaming client 306 dynamically installs the application, or portion thereof, and executes
the application. In one embodiment, the streaming client 306 may be an executable program.
In some embodiments, the streaming client 306 may be able to launch another executable
program.

The collection agent 304 comprises an application, program, process, service, task or
executable instructions for identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits the collection agent 304 to the
client 102 or client agent 120. The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In other embodiments, the
collection agent 304 transmits collected information on the client 102 to the appliance 200.
In one embodiment, the policy engine 236 of the appliance 200 uses the collected information
to determine and provide access, authentication and authorization control of the client's

connection to anetwork 104.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
42

In one embodiment, the collection agent 304 comprises an end-point detection and
scanning mechanism, which identifies and determines one or more attributes or
characteristics of the client. For example, the collection agent 304 may identify and
determine any one or more of the following client-side attributes: 1) the operating system
an/or aversion of an operating system, 2) a service pack of the operating system, 3) arunning
service, 4) arunning process, and 5) afile. The collection agent 304 may aso identify and
determine the presence or versions of any one or more of the following on the client: 1)
antivirus software, 2) personal firewall software, 3) anti-spam software, and 4) internet
security software. The policy engine 236 may have one or more policies based on any one or
more of the attributes or characteristics of the client or client-side attributes.

In some embodiments, the client agent 120 includes amonitoring agent 197 as
discussed in conjunction with FIGs. ID and 2B. The monitoring agent 197 may be any type
and form of script, such asVisual Basic or Java script. 1n one embodiment, the monitoring
agent 197 monitors and measures performance of any portion of the client agent 120. For
example, in some embodiments, the monitoring agent 197 monitors and measures
performance of the acceleration program 302. In another embodiment, the monitoring agent
197 monitors and measures performance of the streaming client 306. In other embodiments,
the monitoring agent 197 monitors and measures performance of the collection agent 304. In
gtill another embodiment, the monitoring agent 197 monitors and measures performance of
the interceptor 350. In some embodiments, the monitoring agent 197 monitors and measures
any resource of the client 102, such as memory, CPU and disk.

The monitoring agent 197 may monitor and measure performance of any application
of the client. In one embodiment, the monitoring agent 197 monitors and measures
performance of abrowser on the client 102. In some embodiments, the monitoring agent 197
monitors and measures performance of any application delivered via the client agent 120. In
other embodiments, the monitoring agent 197 measures and monitors end user response times
for an application, such asweb-based or HTTP response times. The monitoring agent 197
may monitor and measure performance of an ICA or RDP client. In another embodiment, the
monitoring agent 197 measures and monitors metrics for auser session or application session.
In some embodiments, monitoring agent 197 measures and monitors an ICA or RDP session.
In one embodiment, the monitoring agent 197 measures and monitors the performance of the
appliance 200 in accelerating delivery of an application and/or datato the client 102.

In some embodiments and still referring to FIG. 3, afirst program 322 may be used to

install and/or execute the client agent 120, or portion thereof, such asthe interceptor 350,

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
43

automatically, silently, transparently, or otherwise. In one embodiment, the first program 322
comprises aplugin component, such an ActiveX control or Java control or script that is
loaded into and executed by an application. For example, the first program comprises an
ActiveX control loaded and run by aweb browser application, such asin the memory space
or context of the application. In another embodiment, the first program 322 comprises a set
of executable instructions loaded into and run by the application, such as abrowser. In one
embodiment, the first program 322 comprises a designed and constructed program to install
the client agent 120. In some embodiments, the first program 322 obtains, downloads, or
receives the client agent 120 via the network from another computing device. In another
embodiment, the first program 322 is an instaler program or aplug and play manager for

installing programs, such asnetwork drivers, on the operating system of the client 102.

D. Systems and Methods for Providing Virtualized Application Delivery Controller
Referring now to FIG. 4A, ablock diagram depicts one embodiment of a

virtualization environment 400. In brief overview, a computing device 100 includes a
hypervisor layer, avirtualization layer, and a hardware layer. The hypervisor layer includes a
hypervisor 401 (also referred to as avirtualization manager) that allocates and manages
access to anumber of physical resources in the hardware layer (e.g., the processor(s) 421, and
disk(s) 428) by at least one virtual machine executing in the virtualization layer. The
virtualization layer includes at least one operating system 410 and aplurality of virtual
resources allocated to the at least one operating system 410. Virtua resources may include,
without limitation, aplurality of virtual processors 432a, 432b, 432c (generally 432), and
virtual disks 442a, 442b, 442c (generally 442), aswell asvirtual resources such asvirtual
memory and virtual network interfaces. The plurality of virtual resources and the operating
system 410 may bereferred to as avirtual machine 406. A virtual machine 406 may include
acontrol operating system 405 in communication with the hypervisor 401 and used to
execute applications for managing and configuring other virtual machines on the computing
device 100.

In greater detail, ahypervisor 401 may provide virtual resources to an operating
system in any manner which simulates the operating system having access to a physical
device. A hypervisor 401 may provide virtual resources to any number of guest operating
systems 410a, 410b (generally 410). In some embodiments, a computing device 100 executes
one or more types of hypervisors. In these embodiments, hypervisors may be used to emulate

virtual hardware, partition physical hardware, virtualize physical hardware, and execute

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
44

virtual machines that provide access to computing environments. Hypervisors may include
those manufactured by VMWare, Inc., of Palo Alto, California; the XEN hypervisor, an open
source product whose development is overseen by the open source Xen.org community;
HyperV, Virtua Server or virtual PC hypervisors provided by Microsoft, or others. In some
embodiments, acomputing device 100 executing a hypervisor that creates avirtual machine
platform on which guest operating systems may execute isreferred to as ahost server. In one
of these embodiments, for example, the computing device 100 isaXEN SERVER provided
by Citrix Systems, Inc., of Fort Lauderdale, FL.

In some embodiments, ahypervisor 401 executes within an operating system
executing on a computing device. In one of these embodiments, a computing device
executing an operating system and a hypervisor 401 may be said to have a host operating
system (the operating system executing on the computing device), and a guest operating
system (an operating system executing within a computing resource partition provided by the
hypervisor 401). In other embodiments, ahypervisor 401 interacts directly with hardware on
a computing device, instead of executing on a host operating system. In one of these
embodiments, the hypervisor 401 may be said to be executing on "bare metal,” referring to
the hardware comprising the computing device.

In some embodiments, ahypervisor 401 may create avirtual machine 406a-c
(generally 406) in which an operating system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads avirtua machine image to create avirtual machine 406.

In another of these embodiments, the hypervisor 401 executes an operating system 410 within
the virtual machine 406. In still another of these embodiments, the virtual machine 406
executes an operating system 410.

In some embodiments, the hypervisor 401 controls processor scheduling and memory
partitioning for avirtual machine 406 executing on the computing device 100. In one of
these embodiments, the hypervisor 401 controls the execution of at least one virtual machine
406. In another of these embodiments, the hypervisor 401 presents at least one virtual
machine 406 with an abstraction of at least one hardware resource provided by the computing
device 100. In other embodiments, the hypervisor 401 controls whether and how physical
processor capabilities are presented to the virtual machine 406.

A control operating system 405 may execute at least one application for managing
and configuring the guest operating systems. In one embodiment, the control operating
system 405 may execute an administrative application, such as an application including auser

interface providing administrators with access to functionality for managing the execution of

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
45

avirtual machine, including functionality for executing avirtual machine, terminating an
execution of avirtual machine, or identifying atype of physical resource for allocation to the
virtual machine. In another embodiment, the hypervisor 401 executes the control operating
system 405 within avirtual machine 406 created by the hypervisor 401. In still another
embodiment, the control operating system 405 executes in avirtual machine 406 that is
authorized to directly access physical resources on the computing device 100. In some
embodiments, a control operating system 405aon a computing device 100amay exchange
data with a control operating system 405b on a computing device 100b, via communications
between a hypervisor 401a and ahypervisor 401b. In this way, one or more computing
devices 100 may exchange data with one or more of the other computing devices 100
regarding processors and other physical resources available in apool of resources. In one of
these embodiments, this functionality allows a hypervisor to manage apool of resources
distributed across aplurality of physical computing devices. In another of these
embodiments, multiple hypervisors manage one or more of the guest operating systems
executed on one of the computing devices 100.

In one embodiment, the control operating system 405 executes in avirtual machine
406 that is authorized to interact with a least one guest operating system 410. In another
embodiment, a guest operating system 410 communicates with the control operating system
405 viathe hypervisor 401 in order to request access to adisk or anetwork. In still another
embodiment, the guest operating system 410 and the control operating system 405 may
communicate via acommunication channel established by the hypervisor 401, such as, for
example, via aplurality of shared memory pages made available by the hypervisor 401.

In some embodiments, the control operating system 405 includes a network back-end
driver for communicating directly with networking hardware provided by the computing
device 100. In one of these embodiments, the network back-end driver processes at least one
virtual machine request from at least one guest operating system 110. In other embodiments,
the control operating system 405 includes ablock back-end driver for communicating with a
storage element on the computing device 100. In one of these embodiments, the block back-
end driver reads and writes data from the storage element based upon at least one request
received from a guest operating system 410.

In one embodiment, the control operating system 405 includes atools stack 404. In
another embodiment, atools stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating systems 405 (for example, on a

second computing device 100b), or managing virtual machines 406b, 406¢ on the computing

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
46

device 100. In another embodiment, the tools stack 404 includes customized applications for
providing improved management functionality to an administrator of avirtual machine farm.
In some embodiments, at least one of the tools stack 404 and the control operating system
405 include amanagement API that provides an interface for remotely configuring and
controlling virtual machines 406 running on acomputing device 100. In other embodiments,
the control operating system 405 communicates with the hypervisor 401 through the tools
stack 404.

In one embodiment, the hypervisor 401 executes a guest operating system 410 within
avirtual machine 406 created by the hypervisor 401. In another embodiment, the guest
operating system 410 provides auser of the computing device 100 with access to resources
within a computing environment. In still another embodiment, aresource includes a
program, an application, a document, afile, aplurality of applications, aplurality of files, an
executable program file, a desktop environment, a computing environment, or other resource
made available to auser of the computing device 100. In yet another embodiment, the
resource may be delivered to the computing device 100 via aplurality of access methods
including, but not limited to, conventional installation directly on the computing device 100,
delivery to the computing device 100 via amethod for application streaming, delivery to the
computing device 100 of output data generated by an execution of the resource on a second
computing device 100" and communicated to the computing device 100 via a presentation
layer protocol, delivery to the computing device 100 of output data generated by an execution
of the resource via avirtual machine executing on a second computing device 100, or
execution from aremovable storage device connected to the computing device 100, such asa
USB device, or via avirtual machine executing on the computing device 100 and generating
output data. In some embodiments, the computing device 100 transmits output data
generated by the execution of the resource to another computing device 100'.

In one embodiment, the guest operating system 410, in conjunction with the virtual
machine on which it executes, forms afully-virtualized virtual machine which isnot aware
that it isavirtual machine; such amachine may bereferred to asa"Doman U HVM
(Hardware Virtua Machine) virtual machine". In another embodiment, afully-virtualized
machine includes software emulating a Basic Input/Output System (BIOS) in order to execute
an operating system within the fully-virtualized machine. In still another embodiment, a
fully-virtualized machine may include a driver that provides functionality by communicating
with the hypervisor 401. In such an embodiment, the driver may be aware that it executes

within avirtualized environment. In another embodiment, the guest operating system 410, in

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
47

conjunction with the virtual machine on which it executes, forms aparavirtualized virtua
machine, which isaware that it isavirtual machine; such amachine may bereferred to asa
"Domain U PV virtual machine". In another embodiment, aparavirtualized machine includes
additional drivers that afully-virtualized machine does not include. In still another
embodiment, the paravirtualized machine includes the network back-end driver and the block
back-end driver included in a control operating system 405, as described above.

Referring now to FIG. 4B, ablock diagram depicts one embodiment of aplurality of
networked computing devices in asystem in which at least one physical host executes a
virtual machine. In brief overview, the system includes a management component 404 and a
hypervisor 401. The system includes aplurality of computing devices 100, aplurality of
virtual machines 406, aplurality of hypervisors 401, aplurality of management components
referred to variously astools stacks 404 or management components 404, and a physical
resource 421, 428. The plurality of physical machines 100 may each be provided as
computing devices 100, described above in connection with FIGs. 1E- IH and 4A.

In greater detail, aphysical disk 428 isprovided by a computing device 100 and stores
a least aportion of avirtual disk 442. In some embodiments, avirtual disk 442 is associated
with aplurality of physical disks 428. In one of these embodiments, one or more computing
devices 100 may exchange data with one or more of the other computing devices 100
regarding processors and other physical resources available in apool of resources, allowing a
hypervisor to manage apool of resources distributed across aplurality of physical computing
devices. In some embodiments, acomputing device 100 on which avirtual machine 406
executes isreferred to as aphysical host 100 or as a host machine 100.

The hypervisor executes on aprocessor on the computing device 100. The hypervisor
alocates, to avirtual disk, an amount of access to the physical disk. In one embodiment, the
hypervisor 401 allocates an amount of space on the physical disk. In another embodiment,
the hypervisor 401 allocates aplurality of pages on the physical disk. In some embodiments,
the hypervisor provisions the virtual disk 442 as part of aprocess of initializing and
executing avirtual machine 450.

In one embodiment, the management component 404a isreferred to as a pool
management component 404a. In another embodiment, a management operating system
405a, which may bereferred to as a control operating system 405a, includes the management
component. In some embodiments, the management component isreferred to as atools
stack. In one of these embodiments, the management component isthe tools stack 404

described above in connection with FIG. 4A. In other embodiments, the management

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
48

component 404 provides auser interface for receiving, from auser such as an administrator,
an identification of avirtual machine 406 to provision and/or execute. In still other
embodiments, the management component 404 provides auser interface for receiving, from a
user such as an administrator, the request for migration of avirtual machine 406b from one
physical machine 100 to another. In further embodiments, the management component 404a
identifies a computing device 100b on which to execute arequested virtual machine 406d and
instructs the hypervisor 401b on the identified computing device 100b to execute the
identified virtual machine; such amanagement component may bereferred to as apool
management component.

Referring now to Figure 4C, embodiments of avirtual application delivery controller
or virtual appliance 450 are depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application delivery controller) described above
in connection with FIGs. 2A and 2B may be deployed in any embodiment of the virtualized
environment described above in connection with FIGs 4A and 4B. Instead of the
functionality of the application delivery controller being deployed in the form of an appliance
200, such functionality may be deployed in avirtualized environment 400 on any computing
device 100, such asaclient 102, server 106 or appliance 200.

Referring now to FIG. 4C, adiagram of an embodiment of avirtual appliance 450
operating on a hypervisor 401 of aserver 106 is depicted. Aswith the appliance 200 of FIGs.
2A and 2B, the virtual appliance 450 may provide functionality for availability, performance,
offload and security. For availability, the virtual appliance may perform load balancing
between layers 4 and 7 of the network and may also perform intelligent service health
monitoring. For performance increases via network traffic acceleration, the virtual appliance
may perform caching and compression. To offload processing of any servers, the virtua
appliance may perform connection multiplexing and pooling and/or SSL processing. For
security, the virtual appliance may perform any of the application firewall functionality and
SSL VPN function of appliance 200.

Any of the modules of the appliance 200 as described in connection with FIGs. 2A
may be packaged, combined, designed or constructed in aform of the virtualized appliance
delivery controller 450 deployable as one or more software modules or components
executable in avirtualized environment 300 or non-virtualized environment on any server,
such as an off the shelf server. For example, the virtual appliance may be provided in the
form of an installation package to install on acomputing device. With reference to FIG. 2A,

any of the cache manager 232, policy engine 236, compression 238, encryption engine 234,

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
49

packet engine 240, GUI 210, CLI 212, shell services 214 and health monitoring programs
216 may be designed and constructed as a software component or module to run on any
operating system of acomputing device and/or of avirtualized environment 300. Instead of
using the encryption processor 260, processor 262, memory 264 and network stack 267 of the
appliance 200, the virtualized appliance 400 may use any of these resources as provided by
the virtualized environment 400 or as otherwise available on the server 106.

Still referring to FIG. 4C, and in brief overview, any one or more vServers 275A -
275N may bein operation or executed in avirtualized environment 400 of any type of
computing device 100, such as any server 106. Any of the modules or functionality of the
appliance 200 described in connection with FIG. 2B may be designed and constructed to
operate in either avirtualized or non-virtualized environment of a server. Any of the vServer
275, SSL VPN 280, Intranet UP 282, Switching 284, DNS 286, acceleration 288, App FW
280 and monitoring agent may be packaged, combined, designed or constructed in aform of
application delivery controller 450 deployable as one or more software modules or
components executable on a device and/or virtualized environment 400.

In some embodiments, a server may execute multiple virtual machines 406a-406n in
the virtualization environment with each virtual machine running the same or different
embodiments of the virtual application delivery controller 450. In some embodiments, the
server may execute one or more virtual appliances 450 on one or more virtual machines on a
core of amulti-core processing system. In some embodiments, the server may execute one or
more virtua appliances 450 on one or more virtual machines on each processor of amultiple

processor device.

E. Systems and Methods for Providing A Multi-Core Architecture

In accordance with Moore's Law, the number of transistors that may be placed on an
integrated circuit may double approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has been around 3.5 - 4 GHz range
since 2005. In some cases, CPU manufacturers may not rely on CPU speed increases to gain
additional performance. Some CPU manufacturers may add additional cores to their
processors to provide additional performance. Products, such asthose of software and
networking vendors, that rely on CPUs for performance gains may improve their
performance by leveraging these multi-core CPUs. The software designed and constructed
for asingle CPU may beredesigned and/or rewritten to take advantage of a multi-threaded,

parallel architecture or otherwise amulti-core architecture.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
50

A multi-core architecture of the appliance 200, referred to as nCore or multi-core
technology, alows the appliance in some embodiments to break the single core performance
barrier and to leverage the power of multi-core CPUs. In the previous architecture described
in connection with FIG. 2A, asingle network or packet engineisrun. The multiple cores of
the nCore technology and architecture allow multiple packet engines to run concurrently
and/or in parallel. With apacket engine running on each core, the appliance architecture
leverages the processing capacity of additional cores. In some embodiments, this provides up
to a 7X increase in performance and scalability.

Illustrated in FIG. 5A are some embodiments of work, task, load or network traffic
distribution across one or more processor cores according to atype of parallelism or parallel
computing scheme, such as functional parallelism, data parallelism or flow-based data
parallelism. In brief overview, FIG. 5A illustrates embodiments of amulti-core system such
as an appliance 200" with n-cores, atotal of cores numbers 1through N. In one embodiment,
work, load or network traffic can be distributed among a first core 505A, a second core 505B,
athird core 505C, afourth core 505D, afifth core 505E, a sixth core 505F, a seventh core
505G, and so on such that distribution is across all or two or more of the n cores 505N
(hereinafter referred to collectively as cores 505.) There may be multiple VIPs 275 each
running on arespective core of the plurality of cores. There may be multiple packet engines
240 each running on arespective core of the plurality of cores. Any of the approaches used
may lead to different, varying or similar work load or performance level 515 across any of
the cores. For afunctional parallelism approach, each core may run adifferent function of
the functionalities provided by the packet engine, aVIP 275 or appliance 200. In adata
parallelism approach, data may be paralleled or distributed across the cores based on the
Network Interface Card (NIC) or VIP 275 receiving the data. In another data parallelism
approach, processing may be distributed across the cores by distributing data flowsto each
core.

In further detail to FIG. 5A, in some embodiments, load, work or network traffic can
be distributed among cores 505 according to functional parallelism 500. Functional
parallelism may be based on each core performing one or more respective functions. In some
embodiments, afirst core may perform afirst function while a second core performs a second
function. In functiona parallelism approach, the functions to be performed by the multi-core
system are divided and distributed to each core according to functionality. In some
embodiments, functional parallelism may be referred to astask paralelism and may be

achieved when each processor or core executes a different process or function on the same or

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
51

different data. The core or processor may execute the same or different code. In some cases,
different execution threads or code may communicate with one another as they work.
Communication may take place to pass data from one thread to the next as part of a
workflow.

In some embodiments, distributing work across the cores 505 according to functional
parallelism 500, can comprise distributing network traffic according to aparticular function
such as network input/output management (NW 1/0) 510A, secure sockets layer (SSL)
encryption and decryption 510B and transmission control protocol (TCP) functions 510C.
Thismay lead to awork, performance or computing load 515 based on avolume or level of
functionality being used. In some embodiments, distributing work across the cores 505
according to data parallelism 540, can comprise distributing an amount of work 515 based on
distributing data associated with aparticular hardware or software component. In some
embodiments, distributing work across the cores 505 according to flow-based data
parallelism 520, can comprise distributing data based on a context or flow such that the
amount of work 515A-N on each core may be similar, substantially equal or relatively evenly
distributed.

In the case of the functional parallelism approach, each core may be configured to run
one or more functionalities of the plurality of functionalities provided by the packet engine or
VIP of the appliance. For example, core 1 may perform network /O processing for the
appliance 200" while core 2 performs TCP connection management for the appliance.
Likewise, core 3 may perform SSL offloading while core 4 may perform layer 7 or
application layer processing and traffic management. Each of the cores may perform the
same function or different functions. Each of the cores may perform more than one function.
Any of the cores may run any of the functionality or portions thereof identified and/or
described in conjunction with FIGs. 2A and 2B. In this the approach, the work across the
cores may be divided by function in either a coarse-grained or fine-grained manner. In some
cases, asillustrated in FIG. 5A, division by function may lead to different cores running at
different levels of performance or load 515.

In the case of the functional parallelism approach, each core may be configured to run
one or more functionalities of the plurality of functionalities provided by the packet engine of
the appliance. For example, core 1may perform network 1/0O processing for the appliance
200" while core 2 performs TCP connection management for the appliance. Likewise, core 3
may perform SSL offloading while core 4 may perform layer 7 or application layer

processing and traffic management. Each of the cores may perform the same function or

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
52

different functions. Each of the cores may perform more than one function. Any of the cores
may run any of the functionality or portions thereof identified and/or described in conjunction
with FIGs. 2A and 2B. In this the approach, the work across the cores may be divided by
function in either a coarse-grained or fine-grained manner. In some cases, asillustrated in
FIG. 5A division by function may lead to different cores running at different levels of load or
performance.

The functionality or tasks may be distributed in any arrangement and scheme. For
example, FIG. 5B illustrates afirst core, Core 1505A, processing applications and processes
associated with network 1/0 functionality 510A. Network traffic associated with network
I/0, in some embodiments, can be associated with aparticular port number. Thus, outgoing
and incoming packets having aport destination associated with NW 1/0O 510A will be
directed towards Core 1505A which isdedicated to handling all network traffic associated
with the NW 1/O port. Similarly, Core 2 505B is dedicated to handling functionality
associated with SSL processing and Core 4 505D may be dedicated handling al TCP level
processing and functionality.

While FIG. 5A illustrates functions such asnetwork 1/0, SSL and TCP, other
functions can be assigned to cores. These other functions can include any one or more of the
functions or operations described herein. For example, any of the functions described in
conjunction with FIGs. 2A and 2B may be distributed across the cores on afunctionality
basis. In some cases, afirst VIP 275A may run on afirst core while a second VIP 275B with
adifferent configuration may run on asecond core. In some embodiments, each core 505 can
handle aparticular functionality such that each core 505 can handle the processing associated
with that particular function. For example, Core 2 505B may handle SSL offloading while
Core 4 505D may handle application layer processing and traffic management.

In other embodiments, work, load or network traffic may be distributed among cores
505 according to any type and form of data paralelism 540. In some embodiments, data
paralelism may be achieved in amulti-core system by each core performing the same task or
functionally on different pieces of distributed data. In some embodiments, asingle execution
thread or code controls operations on all pieces of data. In other embodiments, different
threads or instructions control the operation, but may execute the same code. In some
embodiments, data parallelism isachieved from the perspective of apacket engine, vServers
(VIPs) 275A-C, network interface cards (NIC) 542D-E and/or any other networking
hardware or software included on or associated with an appliance 200. For example, each

core may run the same packet engine or VIP code or configuration but operate on different

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
53

sets of distributed data. Each networking hardware or software construct can receive
different, varying or substantially the same amount of data, and as aresult may have varying,
different or relatively the same amount of load 515.

In the case of adata parallelism approach, the work may be divided up and distributed
based on VIPs, NICs and/or data flows of the VIPs or NICs. In one of these approaches, the
work of the multi-core system may be divided or distributed among the VIPs by having each
VIP work on adistributed set of data. For example, each core may be configured to run one
or more VIPs. Network traffic may be distributed to the core for each VIP handling that
traffic. In another of these approaches, the work of the appliance may be divided or
distributed among the cores based on which NIC receives the network traffic. For example,
network traffic of afirst NIC may be distributed to afirst core while network traffic of a
second NIC may be distributed to a second core. In some cases, a core may process data
from multiple NICs.

While FIG 5A illustrates a single vServer associated with a single core 505, asisthe
case for VIPI 275A, VIP2 275B and VIP3 275C. In some embodiments, asingle vServer
can be associated with one or more cores 505. In contrast, one or more vServers can be
associated with a single core 505. Associating avServer with a core 505 may include that
core 505 to process all functions associated with that particular vServer. In some
embodiments, each core executes aVIP having the same code and configuration. In other
embodiments, each core executes aVIP having the same code but different configuration. In
some embodiments, each core executes aVIP having different code and the same or different
configuration.

Like vServers, NICs can aso be associated with particular cores 505. In many
embodiments, NICs can be connected to one or more cores 505 such that when aNIC
receives or transmits data packets, aparticular core 505 handles the processing involved with
receiving and transmitting the data packets. In one embodiment, asingle NIC can be
associated with a single core 505, asisthe case with NICI 542D and NIC2 542E. In other
embodiments, one or more NICs can be associated with asingle core 505. In other
embodiments, asingle NIC can be associated with one or more cores 505. In these
embodiments, load could be distributed amongst the one or more cores 505 such that each
core 505 processes a substantially similar amount of load. A core 505 associated with aNIC

may process all functions and/or data associated with that particular NIC.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
54

While distributing work across cores based on data of VIPs or NICs may have alevel
of independency, in some embodiments, this may lead to unbalanced use of cores as
illustrated by the varying loads 515 of FIG. 5A.

In some embodiments, load, work or network traffic can be distributed among cores
505 based on any type and form of data flow. In another of these approaches, the work may
be divided or distributed among cores based on data flows. For example, network traffic
between aclient and a server traversing the appliance may be distributed to and processed by
one core of the plurality of cores. In some cases, the core initially establishing the session or
connection may be the core for which network traffic for that session or connection is
distributed. In some embodiments, the data flow isbased on any unit or portion of network
traffic, such as atransaction, arequest/response communication or traffic originating from an
application on aclient. In this manner and in some embodiments, data flows between clients
and servers traversing the appliance 200" may be distributed in amore balanced manner than
the other approaches.

In flow-based data parallelism 520, distribution of dataisrelated to any type of flow
of data, such as request/response pairings, transactions, sessions, connections or application
communications. For example, network traffic between aclient and a server traversing the
appliance may be distributed to and processed by one core of the plurality of cores. In some
cases, the core initially establishing the session or connection may be the core for which
network traffic for that session or connection is distributed. The distribution of data flow may
be such that each core 505 carries a substantially equal or relatively evenly distributed
amount of load, data or network traffic.

In some embodiments, the data flow isbased on any unit or portion of network
traffic, such as atransaction, arequest/response communication or traffic originating from an
application on aclient. In this manner and in some embodiments, data flows between clients
and servers traversing the appliance 200" may be distributed in amore balanced manner than
the other approached. In one embodiment, data flow can be distributed based on a
transaction or a series of transactions. This transaction, in some embodiments, can be
between aclient and a server and can be characterized by an IP address or other packet
identifier. For example, Core 1505A can be dedicated to transactions between a particular
client and aparticular server, therefore the load 515A on Core 1505A may be comprised of
the network traffic associated with the transactions between the particular client and server.
Allocating the network traffic to Core 1 505A can be accomplished by routing all data

packets originating from either the particular client or server to Core 1 505A..

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
55

While work or load can be distributed to the cores based in part on transactions, in
other embodiments load or work can be allocated on aper packet basis. In these
embodiments, the appliance 200 can intercept data packets and allocate them to a core 505
having the least amount of load. For example, the appliance 200 could allocate afirst
incoming data packet to Core 1505A because the load 515A on Core 1is less than the load
515B-N on the rest of the cores 505B-N. Once the first data packet is allocated to Core 1
505A, the amount of load 515A on Core 1505A isincreased proportiona to the amount of
processing resources needed to process the first data packet. When the appliance 200
intercepts a second data packet, the appliance 200 will allocate the load to Core 4 505D
because Core 4 505D has the second least amount of load. Allocating data packets to the
core with the least amount of load can, in some embodiments, ensure that the load 515A-N
distributed to each core 505 remains substantially equal.

In other embodiments, load can be allocated on aper unit basis where a section of
network traffic is allocated to aparticular core 505. The above-mentioned example illustrates
load balancing on aper/packet basis. In other embodiments, load can be allocated based on a
number of packets such that every 10, 100 or 1000 packets are allocated to the core 505
having the least amount of load. The number of packets allocated to a core 505 can be a
number determined by an application, user or administrator and can be any number greater
than zero. In still other embodiments, load can be allocated based on atime metric such that
packets are distributed to aparticular core 505 for apredetermined amount of time. In these
embodiments, packets can be distributed to aparticular core 505 for five milliseconds or for
any period of time determined by auser, program, system, administrator or otherwise. After
the predetermined time period elapses, data packets are transmitted to a different core 505 for
the predetermined period of time.

Flow-based data parallelism methods for distributing work, load or network traffic
among the one or more cores 505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part of the appliance 200, by an
application or set of executable instructions executing on one of the cores 505, such asthe
packet engine, or by any application, program or agent executing on a computing device in
communication with the appliance 200.

The functional and data parallelism computing schemes illustrated in FIG. 5A can be
combined in any manner to generate a hybrid parallelism or distributed processing scheme
that encompasses function parallelism 500, data parallelism 540, flow-based data parallelism

520 or any portions thereof. In some cases, the multi-core system may use any type and form

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
56

of load balancing schemes to distribute load among the one or more cores 505. The load
balancing scheme may be used in any combination with any of the functional and data
parallelism schemes or combinations thereof.

Illustrated in FIG. 5B is an embodiment of amulti-core system 545, which may be
any type and form of one or more systems, appliances, devices or components. This system
545, in some embodiments, can beincluded within an appliance 200 having one or more
processing cores 505A-N. The system 545 can further include one or more packet engines
(PE) or packet processing engines (PPE) 548A-N communicating with amemory bus 556.
The memory bus may be used to communicate with the one or more processing cores 505A -
N. Also included within the system 545 can be one or more network interface cards (NIC)
552 and aflow distributor 550 which can further communicate with the one or more
processing cores 505A-N. The flow distributor 550 can comprise a Receive Side Sealer
(RSS) or Receive Side Scaling (RSS) module 560.

Further referring to FIG. 5B, and in more detail, in one embodiment the packet
engine(s) 548A-N can comprise any portion of the appliance 200 described herein, such as
any portion of the appliance described in FIGs. 2A and 2B. The packet engine(s) 548A-N
can, in some embodiments, comprise any of the following elements. the packet engine 240, a
network stack 267; a cache manager 232; apolicy engine 236; a compression engine 238; an
encryption engine 234; aGUI 210; a CLI 212; shell services 214; monitoring programs 216;
and any other software or hardware element able to receive data packets from one of either
the memory bus 556 or the one of more cores 505A-N. In some embodiments, the packet
engine(s) 548A-N can comprise one or more vServers 275A-N, or any portion thereof. In
other embodiments, the packet engine(s) 548A-N can provide any combination of the
following functionalities: SSL VPN 280; Intranet UP 282; switching 284; DNS 286; packet
acceleration 288; App FW 280; monitoring such asthe monitoring provided by a monitoring
agent 197; functionalities associated with functioning as a TCP stack; load balancing; SSL
offloading and processing; content switching; policy evaluation; caching; compression;
encoding; decompression; decoding; application firewall functionalities; XML processing
and acceleration; and SSL VPN connectivity.

The packet engine(s) 548A-N can, in some embodiments, be associated with a
particular server, user, client or network. When apacket engine 548 becomes associated with
aparticular entity, that packet engine 548 can process data packets associated with that entity.
For example, should apacket engine 548 be associated with afirst user, that packet engine

548 will process and operate on packets generated by the first user, or packets having a

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
57

destination address associated with the first user. Similarly, the packet engine 548 may
choose not to be associated with aparticular entity such that the packet engine 548 can
process and otherwise operate on any data packets not generated by that entity or destined for
that entity.

In some instances, the packet engine(s) 548A-N can be configured to carry out the
any of the functional and/or data parallelism schemes illustrated in FIG. 5A. Inthese
instances, the packet engine(s) 548A-N can distribute functions or data among the processing
cores 505A-N so that the distribution is according to the parallelism or distribution scheme.
In some embodiments, a single packet engine(s) 548A-N carries out aload balancing scheme,
while in other embodiments one or more packet engine(s) 548A-N carry out aload balancing
scheme. Each core 505A-N, in one embodiment, can be associated with aparticular packet
engine 548 such that load balancing can be carried out by the packet engine. Load balancing
may in this embodiment, require that each packet engine 548A-N associated with a core 505
communicate with the other packet engines associated with cores so that the packet engines
548A-N can collectively determine where to distribute load. One embodiment of this process
can include an arbiter that receives votes from each packet engine for load. The arbiter can
distribute load to each packet engine 548A-N based in part on the age of the engine's vote
and in some cases apriority value associated with the current amount of load on an engine's
associated core 505.

Any of the packet engines running on the cores may run in user mode, kernel or any
combination thereof. In some embodiments, the packet engine operates as an application or
program running isuser or application space. Inthese embodiments, the packet engine may
use any type and form of interface to access any functionality provided by the kernel. In
some embodiments, the packet engine operates in kernel mode or as part of the kernel. In
some embodiments, afirst portion of the packet engine operates in user mode while a second
portion of the packet engine operates in kernel mode. In some embodiments, afirst packet
engine on afirst core executes in kernel mode while a second packet engine on a second core
executes in user mode. In some embodiments, the packet engine or any portions thereof
operates on or in conjunction with the NIC or any drivers thereof.

In some embodiments the memory bus 556 can be any type and form of memory or
computer bus. While a single memory bus 556 is depicted in FIG. 5B, the system 545 can
comprise any number of memory buses 556. In one embodiment, each packet engine 548 can

be associated with one or more individual memory buses 556.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
58

The NIC 552 can in some embodiments be any of the network interface cards or
mechanisms described herein. The NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of network 104. While asingle
NIC 552 isillustrated, the system 545 can comprise any number of NICs 552. In some
embodiments, each core 505A-N can be associated with one or more single NICs 552. Thus,
each core 505 can be associated with a single NIC 552 dedicated to aparticular core 505.
The cores 505A-N can comprise any of the processors described herein. Further, the cores
505A-N can be configured according to any of the core 505 configurations described herein.
Still further, the cores 505A-N can have any of the core 505 functionalities described herein.
While FIG. 5B illustrates seven cores 505A-G, any number of cores 505 can be included
within the system 545. In particular, the system 545 can comprise "N" cores, where "N" isa
whole number greater than zero.

A core may have or use memory that is allocated or assigned for use to that core.
The memory may be considered private or local memory of that core and only accessible by
that core. A core may have or use memory that is shared or assigned to multiple cores. The
memory may be considered public or shared memory that is accessible by more than one
core. A core may use any combination of private and public memory. With separate address
spaces for each core, some level of coordination is eliminated from the case of using the same
address space. With a separate address space, a core can perform work on information and
datain the core's own address space without worrying about conflicts with other cores. Each
packet engine may have a separate memory pool for TCP and/or SSL connections.

Further referring to FIG. 5B, any of the functionality and/or embodiments of the cores
505 described above in connection with FIG. 5A can be deployed in any embodiment of the
virtualized environment described above in connection with FIGs. 4A and 4B. Instead of the
functionality of the cores 505 being deployed in the form of aphysical processor 505, such
functionality may be deployed in avirtualized environment 400 on any computing device
100, such as aclient 102, server 106 or appliance 200. In other embodiments, instead of the
functionality of the cores 505 being deployed in the form of an appliance or a single device,
the functionality may be deployed across multiple devices in any arrangement. For example,
one device may comprise two or more cores and another device may comprise two or more
cores. For example, amulti-core system may include acluster of computing devices, a server
farm or network of computing devices. In some embodiments, instead of the functionality of
the cores 505 being deployed in the form of cores, the functionality may be deployed on a

plurality of processors, such asaplurality of single core processors.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
59

In one embodiment, the cores 505 may be any type and form of processor. In some
embodiments, a core can function substantially similar to any processor or central processing
unit described herein. In some embodiment, the cores 505 may comprise any portion of any
processor described herein. While FIG. 5A illustrates seven cores, there can exist any "N"
number of cores within an appliance 200, where "N" is any whole number greater than one.
In some embodiments, the cores 505 can be installed within acommon appliance 200, while
in other embodiments the cores 505 can be installed within one or more appliance(s) 200
communicatively connected to one another. The cores 505 can in some embodiments
comprise graphics processing software, while in other embodiments the cores 505 provide
general processing capabilities. The cores 505 can beinstalled physically near each other
and/or can be communicatively connected to each other. The cores may be connected by any
type and form of bus or subsystem physically and/or communicatively coupled to the cores
for transferring data between to, from and/or between the cores.

While each core 505 can comprise software for communicating with other cores, in
some embodiments a core manager (not shown) can facilitate communication between each
core 505. In some embodiments, the kernel may provide core management. The cores may
interface or communicate with each other using avariety of interface mechanisms. In some
embodiments, core to core messaging may be used to communicate between cores, such as a
first core sending amessage or datato a second core via abus or subsystem connecting the
cores. In some embodiments, cores may communicate via any type and form of shared
memory interface. In one embodiment, there may be one or more memory locations shared
among all the cores. In some embodiments, each core may have separate memory locations
shared with each other core. For example, afirst core may have afirst shared memory with a
second core and a second share memory with athird core. In some embodiments, cores may
communicate via any type of programming or API, such as function callsviathe kernel. In
some embodiments, the operating system may recognize and support multiple core devices
and provide interfaces and API for inter-core communications.

The flow distributor 550 can be any application, program, library, script, task,
service, process or any type and form of executable instructions executing on any type and
form of hardware. In some embodiments, the flow distributor 550 may any design and
construction of circuitry to perform any of the operations and functions described herein. In
some embodiments, the flow distributor distribute, forwards, routes, controls and/ors manage
the distribution of data packets among the cores 505 and/or packet engine or VIPs running on

the cores.. The flow distributor 550, in some embodiments, can bereferred to as an interface

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
60

master. In one embodiment, the flow distributor 550 comprises a set of executable
instructions executing on a core or processor of the appliance 200. In another embodiment,
the flow distributor 550 comprises a set of executable instructions executing on a computing
machine in communication with the appliance 200. In some embodiments, the flow
distributor 550 comprises a set of executable instructions executing on aNIC, such as
firmware. In still other embodiments, the flow distributor 550 comprises any combination of
software and hardware to distribute data packets among cores or processors. In one
embodiment, the flow distributor 550 executes on at least one of the cores 505A-N, while in
other embodiments a separate flow distributor 550 assigned to each core 505A-N executes on
an associated core 505A-N. The flow distributor may use any type and form of statistical or
probabilistic algorithms or decision making to balance the flows across the cores. The
hardware of the appliance, such as aNIC, or the kernel may be designed and constructed to
support sequential operations across the NICs and/or cores.

In embodiments where the system 545 comprises one or more flow distributors 550,
each flow distributor 550 can be associated with aprocessor 505 or apacket engine 548. The
flow distributors 550 can comprise an interface mechanism that allows each flow distributor
550 to communicate with the other flow distributors 550 executing within the system 545. In
one instance, the one or more flow distributors 550 can determine how to balance load by
communicating with each other. This process can operate substantially similarly to the
process described above for submitting votes to an arbiter which then determines which flow
distributor 550 should receive the load. In other embodiments, afirst flow distributor 550
can identify the load on an associated core and determine whether to forward afirst data
packet to the associated core based on any of the following criteria: the load on the associated
core is above apredetermined threshold; the load on the associated core isbelow a
predetermined threshold; the load on the associated core is less than the load on the other
cores; or any other metric that can be used to determine where to forward data packets based
in part on the amount of load on aprocessor.

The flow distributor 550 can distribute network traffic among the cores 505 according
to adistribution, computing or load balancing scheme such as those described herein. In one
embodiment, the flow distributor can distribute network traffic according to any one of a
functional parallelism distribution scheme 550, a data parallelism load distribution scheme
540, aflow-based data parallelism distribution scheme 520, or any combination of these
distribution scheme or any load balancing scheme for distributing load among multiple

processors. The flow distributor 550 can therefore act as a load distributor by taking in data

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
61

packets and distributing them across the processors according to an operative load balancing
or distribution scheme. In one embodiment, the flow distributor 550 can comprise one or
more operations, functions or logic to determine how to distribute packers, work or load
accordingly. In still other embodiments, the flow distributor 550 can comprise one or more
sub operations, functions or logic that can identify a source address and a destination address
associated with a data packet, and distribute packets accordingly.

In some embodiments, the flow distributor 550 can comprise areceive-side scaling
(RSS) network driver, module 560 or any type and form of executable instructions which
distribute data packets among the one or more cores 505. The RSS module 560 can comprise
any combination of hardware and software, In some embodiments, the RSS module 560
works in conjunction with the flow distributor 550 to distribute data packets across the cores
505A-N or among multiple processors in amulti-processor network. The RSS module 560
can execute within the NIC 552 in some embodiments, and in other embodiments can execute
on any one of the cores 505.

In some embodiments, the RSS module 560 uses the MICROSOFT receive-side-
scaling (RSS) scheme. In one embodiment, RSS is aMicrosoft Scalable Networking
initiative technology that enables receive processing to be balanced across multiple
processors in the system while maintaining in-order delivery of the data. The RSS may use
any type and form of hashing scheme to determine a core or processor for processing a
network packet.

The RSS module 560 can apply any type and form hash function such asthe Toeplitz
hash function. The hash function may be applied to the hash type or any the sequence of
values. The hash function may be a secure hash of any security level or is otherwise
cryptographically secure. The hash function may use ahash key. The size of thekey is
dependent upon the hash function. For the Toeplitz hash, the size may be 40 bytes for IPv6
and 16 bytes for |Pv4.

The hash function may be designed and constructed based on any one or more criteria
or design goals. In some embodiments, a hash function may be used that provides an even
distribution of hash result for different hash inputs and different hash types, including
TCP/1Pv4, TCP/IPv6, IPv4, and IPv6 headers. In some embodiments, a hash function may
be used that provides a hash result that is evenly distributed when a small number of buckets
are present (for example, two or four). In some embodiments, hash function may be used that
provides ahash result that israndomly distributed when a large number of buckets were

present (for example, 64 buckets). In some embodiments, the hash function is determined

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
62

based on alevel of computational or resource usage. In some embodiments, the hash
function is determined based on ease or difficulty of implementing the hash in hardware. In
some embodiments, the hash function is determined based on the ease or difficulty of a
malicious remote host to send packets that would al hash to the same bucket.

The RSS may generate hashes from any type and form of input, such as a sequence of
values. This sequence of values can include any portion of the network packet, such as any
header, field or payload of network packet, or portions thereof. In some embodiments, the
input to the hash may bereferred to as a hash type and include any tuples of information
associated with anetwork packet or data flow, such as any of the following: afour tuple
comprising a least two I P addresses and two ports; afour tuple comprising any four sets of
values; asix tuple; atwo tuple; and/or any other sequence of numbers or values. The
following are example of hash types that may be used by RSS:

- 4-tuple of source TCP Port, source IP version 4 (IPv4) address, destination TCP Port,
and destination 1Pv4 address.

- 4-tuple of source TCP Port, source IP version 6 (IPv6) address, destination TCP Port,
and destination 1Pv6 address.

- 2-tuple of source IPv4 address, and destination IPv4 address.
- 2-tuple of source IPv6 address, and destination |Pv6 address.

- 2-tuple of source IPv6 address, and destination IPv6 address, including support for
parsing IPv6 extension headers.

The hash result or any portion thereof may used to identify a core or entity, such asa
packet engine or VIP, for distributing anetwork packet. In some embodiments, one or more
hash bits or mask are applied to the hash result. The hash bit or mask may be any number of
bits or bytes. A NIC may support any number of bits, such as seven bits. The network stack
may set the actual number of bits to be used during initialization. The number will be
between 1and 7, inclusive.

The hash result may be used to identify the core or entity via any type and form of
table, such as abucket table or indirection table. In some embodiments, the number of hash-
result bits are used to index into the table. The range of the hash mask may effectively define
the size of the indirection table. ny portion of the hash result or the hast result itself may be
used to index the indirection table. The values in the table may identify any of the cores or

processor, such as by a core or processor identifier. In some embodiments, all of the cores of

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
63

the multi-core system are identified in the table. In other embodiments, a port of the cores of
the multi-core system are identified in the table. The indirection table may comprise any
number of buckets for example 2 to 128 buckets that may be indexed by a hash mask. Each
bucket may comprise arange of index values that identify acore or processor. In some
embodiments, the flow controller and/or RSS module may rebal ance the network rebalance
the network load by changing the indirection table.

In some embodiments, the multi-core system 575 does not include a RSS driver or
RSS module 560. In some of these embodiments, a software steering module (not shown) or
a software embodiment of the RSS module within the system can operate in conjunction with
or as part of the flow distributor 550 to steer packets to cores 505 within the multi-core
system 575.

The flow distributor 550, in some embodiments, executes within any module or
program on the appliance 200, on any one of the cores 505 and on any one of the devices or
components included within the multi-core system 575. In some embodiments, the flow
distributor 550" can execute on the first core 505A , while in other embodiments the flow
distributor 550" can execute on the NIC 552. In still other embodiments, an instance of the
flow distributor 550" can execute on each core 505 included in the multi-core system 575. In
this embodiment, each instance of the flow distributor 550' can communicate with other
instances of the flow distributor 550" to forward packets back and forth across the cores 505.
There exist situations where aresponse to arequest packet may not be processed by the same
core, i.e. the first core processes the request while the second core processes the response. In
these situations, the instances of the flow distributor 550" can intercept the packet and
forward it to the desired or correct core 505, i.e. aflow distributor instance 550' can forward
the response to the first core. Multiple instances of the flow distributor 550" can execute on
any number of cores 505 and any combination of cores 505.

The flow distributor may operate responsive to any one or more rules or policies. The
rules may identify a core or packet processing engine to receive anetwork packet, data or
dataflow. Therules may identify any type and form of tuple information related to a
network packet, such as a 4-tuple of source and destination | P address and source and
destination ports. Based on areceived packet matching the tuple specified by the rule, the
flow distributor may forward the packet to a core or packet engine. In some embodiments,
the packet isforwarded to a core via shared memory and/or coreto core messaging.

Although FIG. 5B illustrates the flow distributor 550 as executing within the multi-

core system 575, in some embodiments the flow distributor 550 can execute on a computing

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
64

device or appliance remotely located from the multi-core system 575. In such an
embodiment, the flow distributor 550 can communicate with the multi-core system 575 to
take in data packets and distribute the packets across the one or more cores 505. The flow
distributor 550 can, in one embodiment, receive data packets destined for the appliance 200,
apply adistribution scheme to the received data packets and distribute the data packets to the
one or more cores 505 of the multi-core system 575. In one embodiment, the flow distributor
550 can beincluded in arouter or other appliance such that the router can target particular
cores 505 by altering meta data associated with each packet so that each packet istargeted
towards a sub-node of the multi-core system 575. In such an embodiment, CISCO'S vn-tag
mechanism can be used to ater or tag each packet with the appropriate meta data.

Illustrated in FIG. 5C is an embodiment of amulti-core system 575 comprising one or
more processing cores 505A-N. In brief overview, one of the cores 505 can be designated as
acontrol core 505A and can be used as a control plane 570 for the other cores 505. The other
cores may be secondary cores which operate in a data plane while the control core provides
the control plane. The cores 505A-N may share aglobal cache 580. While the control core
provides acontrol plane, the other cores in the multi-core system form or provide a data
plane. These cores perform data processing functionality on network traffic while the control
provides initialization, configuration and control of the multi-core system.

Further referring to FIG. 5C, and in more detail, the cores 505A-N aswell asthe
control core 505A can be any processor described herein. Furthermore, the cores 505A-N
and the control core 505A can be any processor able to function within the system 575
described in FIG. 5C. Still further, the cores 505A-N and the control core 505A can be any
core or group of cores described herein. The control core may be a different type of core or
processor than the other cores. In some embodiments, the control may operate a different
packet engine or have a packet engine configured differently than the packet engines of the
other cores.

Any portion of the memory of each of the cores may be alocated to or used for a
global cache that is shared by the cores. In brief overview, apredetermined percentage or
predetermined amount of each of the memory of each core may be used for the globa cache.
For example, 50% of each memory of each code may be dedicated or alocated to the shared
global cache. That is, in the illustrated embodiment, 2GB of each core excluding the control
plane core or core 1 may be used to form a28GB shared globa cache. The configuration of
the control plane such asvia the configuration services may determine the amount of memory

used for the shared global cache. In some embodiments, each core may provide a different

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
65

amount of memory for use by the global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some embodiments, any of the cores may
also have alocal cache in memory not allocated to the global shared memory. Each of the
cores may store any portion of network traffic to the global shared cache. Each of the cores
may check the cache for any content to use in arequest or response. Any of the cores may
obtain content from the global shared cache to use in a data flow, request or response.

The global cache 580 can be any type and form of memory or storage element, such
as any memory or storage element described herein. In some embodiments, the cores 505
may have access to apredetermined amount of memory (i.e. 32 GB or any other memory
amount commensurate with the system 575). The global cache 580 can be allocated from
that predetermined amount of memory while the rest of the available memory can be
allocated among the cores 505. In other embodiments, each core 505 can have a
predetermined amount of memory. The global cache 580 can comprise an amount of the
memory allocated to each core 505. This memory amount can be measured in bytes, or can
be measured as a percentage of the memory allocated to each core 505. Thus, the global
cache 580 can comprise 1 GB of memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associated with each core 505. In some
embodiments, only aportion of the cores 505 provide memory to the global cache 580, while
in other embodiments the global cache 580 can comprise memory not allocated to the cores
505.

Each core 505 can use the global cache 580 to store network traffic or cache data. In
some embodiments, the packet engines of the core use the global cache to cache and use data
stored by the plurality of packet engines. For example, the cache manager of FIG. 2A and
cache functionality of FIG. 2B may use the global cache to share data for acceleration. For
example, each of the packet engines may store responses, such as HTML data, to the global
cache. Any of the cache managers operating on a core may access the global cache to server
caches responses to client requests.

In some embodiments, the cores 505 can use the global cache 580 to store aport
allocation table which can be used to determine data flow based in part on ports. In other
embodiments, the cores 505 can use the global cache 580 to store an address lookup table or
any other table or list that can be used by the flow distributor to determine where to direct
incoming and outgoing data packets. The cores 505 can, in some embodiments read from
and write to cache 580, while in other embodiments the cores 505 can only read from or write

to cache 580. The cores may use the global cache to perform core to core communications.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
66

The global cache 580 may be sectioned into individual memory sections where each
section can be dedicated to aparticular core 505. In one embodiment, the control core 505A
can receive a greater amount of available cache, while the other cores 505 can receiving
varying amounts or access to the global cache 580.

In some embodiments, the system 575 can comprise a control core 505A. While FIG.
5C illustrates core 1505A asthe control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a single control core is depicted, the
system 575 can comprise one or more control cores each having alevel of control over the
system. In some embodiments, one or more control cores can each control aparticular aspect
of the system 575. For example, one core can control deciding which distribution scheme to
use, while another core can determine the size of the global cache 580.

The control plane of the multi-core system may bethe designation and configuration
of a core as the dedicated management core or as amaster core. This control plane core may
provide control, management and coordination of operation and functionality the plurality of
cores in the multi-core system. This control plane core may provide control, management
and coordination of allocation and use of memory of the system among the plurality of cores
in the multi-core system, including initialization and configuration of the same. In some
embodiments, the control plane includes the flow distributor for controlling the assignment of
data flows to cores and the distribution of network packets to cores based on data flows. In
some embodiments, the control plane core runs a packet engine and in other embodiments,
the control plane core is dedicated to management and control of the other cores of the
system.

The control core 505A can exercise alevel of control over the other cores 505 such as
determining how much memory should be allocated to each core 505 or determining which
core 505 should be assigned to handle a particular function or hardware/software entity. The
control core 505A, in some embodiments, can exercise control over those cores 505 within
the control plan 570. Thus, there can exist processors outside of the control plane 570 which
are not controlled by the control core 505A . Determining the boundaries of the control plane
570 can include maintaining, by the control core 505A or agent executing within the system
575, alist of those cores 505 controlled by the control core 505A. The control core 505A can
control any of the following: initialization of a core; determining when a core isunavailable;
re-distributing load to other cores 505 when one core fails; determining which distribution
scheme to implement; determining which core should receive network traffic; determining

how much cache should be allocated to each core; determining whether to assign aparticular

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
67

function or element to aparticular core; determining whether to permit cores to communicate
with one another; determining the size of the global cache 580; and any other determination

of afunction, configuration or operation of the cores within the system 575.

F. Systems and Methods for Maintaining Operation of a Multi-Core Network Appliance

Upon Failover

Referring now to FIG. 6A, an embodiment of asystem for controlling arate of a
traffic traversing an intermediary 200 isillustrated. In brief overview, FIG. 6A depicts an
intermediary 200 comprising arate limiting manager (RLM) 605 in communication with a
rate limiting license 660 which identifies aperformance level 665. Data packets 601 are
received by the RLM 605 and flow rate controlled by athrottler 625 of the RLM 605. Data
packets 601 that are propagated or throttled by the throttler 625 are sent out of the RLM 605
towards the packet engines 548A-N which operate on the cores 505A-N. RLM 605 further
includes atoken generator 610 for generating tokens 602 at atoken rate 615 into atoken
bucket 620 which holds or keeps a count of all the tokens 602. An excess handler 630 of the
RLM 605 handles any data packets 601 that are not received or not rate controlled by the
throttler 625. RLM 605 further includes aplurality of performance level settings 640A -
640N. Each performance level setting (PLS) 640 may comprise arate limit settings 645
which may have abucket settings 646 and athroughput rate 650 comprising abytes per
second (BPS) limit 651 and a packet per second (PPL) limit 652. Asillustrated by FIG. 6A,
RLM 605 may set, configure and manage arate of flow of data packets 601 traversing the
throttle 625 at arate limit that isidentified by aperformance level 665 of the rate limiting
license 660. Therate limit for propagating data packets 601 may be controlled by a number
of tokens 602 which may need to be available for each propagated data packet 601 .

Referring to FIG. 6A in agreater detail, rate limiting license 660 may include any
type and form of hardware, software or any combination of hardware and software for
providing alicense, authorization or apermit to control arate of network traffic received
and/or transmitted via an appliance 200. In some embodiments, rate limiting license 660
includes any type and form of aprogram, an application, an executable, a script, a function, a
unit or adevice for providing alicense or permit. In other embodiments, rate limiting license
660 is a component of asoftware installed on the appliance 200. In further embodiments,
rate limiting license 660 includes afile, program, script or an executable that isinstalled or
enabled by an operator, administrator or a service provider for the appliance 200. In some

embodiments, rate limiting license 660 includes athird party software. Rate limiting license

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
68

660 may include alicense file validation. Intermediary 200 may use afile for validating a
license and use alink, aURL or adirectory path to validate the rate limiting license 600. In
some embodiments, arate limiting license 660 may be confirmed or verified via aremote
database or link, such as for example M S Windows license verification model. Rate limiting
license 600 may include contents which upon testing or inspection by the intermediary may
bevalidated asthe rate limiting license 600. In some embodiments, rate limiting license 660
includes aunique identifier or a serial number for the appliance 200 or for any service
provided by the appliance. In some embodiments, rate limiting license 660 may include a
data structure, an object or an entry in adatabase. The data structure, object or the entry may
identify or provide alicense for an entity.

In further embodiments, rate limiting license 660 includes a component, unit, function
or aprogram that controls a specific performance level. The specific performance level may
correspond to a configuration or operation of the appliance 200 in accordance with a
predetermined set of parameters or settings. In some embodiments, rate limiting license 660
enables the appliance to be operate only a a single performance level. In other embodiments,
rate limiting license 660 enables aplurality of performance levels for the appliance. In
further embodiments, rate limiting license 660 disables all except one performance level for
the appliance 200. Rate limiting license 660 may include, provide or identify one or more
performance levels, such asthe performance level 665.

Performance level 665 may be any data or information for identifying or specifying a
level of performance of hardware, software or hardware and software for an appliance 200, or
any portion thereof. The level of performance may include arange or alimitation for arate
of receipt/transmit of network traffic or arate of processing of data packets, data or a data
stream traversing an appliance 200. Performance level 665 may beidentified via afile, an
executable, aprogram, an application, a script, function, an algorithm, aunit or adevice. In
some embodiments, performance level 665 includes an encryption/decryption key for
decrypting and enabling a predetermined performance level to be used by the appliance 200.
In other embodiments, performance level 665 includes akeyword or an instruction used by
RLM 605 to identify apredetermined set of performance level settings 645. In some
embodiments, performance level 665 includes an algorithm, application, executable or unit
that enables access to a set of instructions and settings that enable alevel of performance of
the appliance 200. Performance level 665 may comprise any number of configuration

settings and values, instructions, configuration files and executables, data values and any

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
69

other type and form of hardware or software to specify, identify and enable the appliance 200
to function or operate at alevel specified by the performance level 665.

Performance level 665 may include or specify any type and form of information for
identifying alevel of performance or alevel of operation of the appliance 200. In some
embodiments, performance level 665 includes an information about data flow rate threshold
or alimitation for the receipt and/or transmit of data in bytes of data per second or in data
packets per second. The information about data flow rate may include aflow limit or an
upper limit threshold for the performance, or the datarate flow, for the appliance 200. In
some embodiments, the information about data flow rate includes alower limit threshold for
the performance, or the rate flow of data, of the appliance 200.

Rate limiting license 660 or the performance level 665 may identify or specify any
one performance level of aplurality of performance levels supported by the appliance, such
performance level 5500. Each of the performance levels may identify amodel or type of the
appliance 200. Each of the performance levels may be associated with apredetermined
threshold of performance or rate of performance or processing of the network packets. For
example, in some embodiments, performance level 5500 limits the maximum rate of flow of
the data packets traversing the appliance 200 at 5500 packets per second. In other
embodiments, performance level 5500 limits the maximum rate of flow of the data packets
traversing the appliance 200 at 5500 bytes per second. Rate limiting license 660 or the
performance level 665 may identify or specify performance level 7500. In some
embodiments, performance level 7500 limits the maximum rate of flow of the data packets
traversing the appliance 200 at 7500 packets per second. In other embodiments, performance
level 7500 limits the maximum rate of flow of the data packets traversing the appliance 200
at 7500 bytes per second. Rate limiting license 660 or the performance level 665 may
identify or specify performance level 9500. In some embodiments, performance level 9500
limits the maximum rate of flow of the data packets traversing the appliance 200 at 9500
packets per second. In other embodiments, performance level 9500 limits the maximum rate
of flow of the data packets traversing the appliance 200 a 9500 bytes per second. Rate
limiting license 660 or the performance level 665 may identify or specify performance level
10500. In some embodiments, performance level 10500 limits the maximum rate of flow of
the data packets traversing the appliance 200 at 10500 packets per second. In other
embodiments, performance level 10500 limits the maximum rate of flow of the data packets
traversing the appliance 200 at 10500 bytes per second. Rate limiting license 660 or the

performance level 665 may identify or specify performance level 12500. In some

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
70

embodiments, performance level limits the maximum rate of flow of the data packets
traversing the appliance 200 at 12500 packets per second. In other embodiments,
performance level 12500 limits the maximum rate of flow of the data packets traversing the
appliance 200 a 12500 bytes per second.

Data packets 601 may include any type and form of data and any type and form of
units, groups or elements of data. Data packets 601 may include any information, signal or
transmission traversing an appliance 200. Data packets 601 may also include any type and
form of formatted or non-formatted data. In some embodiments, data packets 601 are
formatted units or chunks of data carried by apacket mode computer network. The formatted
units or chunks of data may be of a same size or avarying size. In further embodiments, data
packets 601 are formatted or formed network data packets for anetwork 104. Data packets
601 may include aheader or an envelope. Data packets 601 may also include one or more
data bits or bytes. In some embodiments, data packets 601 are formed or organized into
groups that include 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 196 or 256 bits. Data packets 601
may include 1, 2,4, 8, 16, 24, 32, 48, 64, 96, 128, 196, 256, 512 or 1024 bytes. Data packets
601 may also include 1, 2,4, 8, 16, 24, 32, 48, 64, 96, 128, 196, 256, 512 or 1024
Megabytes.

Data packets 601 may be formed into a stream of data packets or a stream of data bits.
Data packets 601 of a stream of data may be of asame or asimilar size. In some
embodiments, data packets 601 of a stream of data are of varying sizes. Data packets 601
may be formatted in any number of ways. Some data packets 601 may be formatted in
accordance a communication protocol, such as TCP, IP, UDP, HTTP, DHCP, POP3, SMPT,
Citrix XenApp, Citrix ICA protocol or any other type and form of communication protocol
for any communication layer or level. In some embodiments, data packets 601 include
compressed data packets. Some data packets 601, in other embodiments, may be not
compressed. In some embodiments, data packets 601 are formatted network packets, such as
TCP/IP data packets. Data packets 601 may include any number of data bits or bytes. In
some embodiments, data packets 601 include a data bit or a data byte. In some embodiments,
data packets 601 comprise one or more data bits, or a stream of data bits. In further
embodiments, data packets 601 includes abyte. In further embodiments, data packets 601
include aplurality of bytes. In some embodiments, data packets 601 include arequest from a
client 102. In other embodiments, data packets 601 include aresponse from aserver 106.

Data packets 601 may include any number of formatted or non-formatted data groups, chunks

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
71

or units of data. Data packets 601 may also include any number of bits, bytes, characters or
any other units of information transmitted via anetwork 104 or via an appliance 200.

Rate limiting manager 605, also known as RLM 605, may include any type and form
of algorithms or functions for managing or controlling arate of operation, process or
propagation of the network packets in accordance with the performance level identified by
the license. RLM 605 may use instructions from the rate limiting license 660 to set up and
configure the operation and function of the appliance 200 to process data packets of the
network traffic & apredetermined rate. By way of example, RLM 605 may use atoken
based system to control the rate a which data packets of the network traffic are received by
one or more packet engines 548. The token based system may include atoken generator that
generates tokens 602 at atoken rate 615. The token based system may further include a
token bucket 620 maintaining and keeping atrack of the tokens available and athrottler 625
which receives and propagates data packets 601 conditioned by availability of tokens 602.
A's such the token based system controls the throughput of the data packets 601 by throttling
of the data packets 601 at arate of available tokens 602. The token based system may further
include aperformance level settings 640A-640N for each different performance level 665
that the license may identify. The performance level settings 640A-640N may identify
various speeds or rates of processing of the data packets 601 by the RLM 605. Each
performance level settings 640 may further include rate limit settings 645 that includes a
bucket settings 646 and athroughput rate 650. The throughput rate 650 may also include a
bytes per second limit 651 and packets per second limit 652. RLM 605 may identify a
performance level settings 645 for the appliance 200 in response to the performance level 665
of the rate limiting license and operate in accordance with the identified settings. In some
embodiments where the performance level 665 isnot identified, RLM 605 may identify a
default performance level settings 640 according to which the appliance 200 may operate. In
some embodiments, the default performance level settings comprises the settings with the
slowest rate of operation, propagation and throughput. RLM 605 may be operating on a
single-core system or amulti-core system. In asingle core system, RLM 605 may operate on
the main central processing unit (CPU). In amulti-core system, RLM 605 may operate on a
single or aplurality of cores 505. RLM 605 may be configured to operate on each core 505
to control the throughput rate for each packet engine 548 on each of the cores 505.

Rate limiting manager 605, aso referred to as RLM 605, may include any hardware,
software or any combination of hardware and software for initiating, establishing, managing,

controlling and/or implementing rate limiting of datatraffic. RLM 605 may include any

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
72

number of files, scripts, programs, applications, functions, algorithms, libraries, units, devices
or executables for performing any function for limiting the rate of any data traffic traversing
the appliance 200. RLM 605 may include any number of processors or processing units,
logic circuits, analog or digital circuits for initiating, establishing, managing, controlling and
implementing rate control of the data traffic. 1n some embodiments, rate limiting manager
605 comprises any functionality, logic, circuitry, software or applications for controlling the
flow of data packets received by the appliance 200. Rate limiting manager 605 may further
include any number of RLM 605 components, such as any number of the token generators
610, token rates 615, tokens 602, token buckets 620, data packets 601, throttlers 625, excess
handlers 630, performance levels 640A-N, rate limit settings 645, bucket settings 646,
throughput rates 650, BPS limits 651 and PPS limits 652. RLM may initiate and configure a
set of RLM 605 components for each of the packet engines 548 on each of the plurality of
cores 505A-N. An appliance 200 may initiate, configure, set up and implement any number
of RLMs 605 for any number of PEs 548 which may run or operate on any number of cores
505A-N.

RLM 605 may include any functionality for controlling, managing, monitoring,
accelerating or decelerating the flow or propagation of data packets 601. In some
embodiments, RLM 605 comprises controllers, functions or units that control, organize and
manage aflow of data packets 601. RLM 605 may include one or more gqueues for receiving
or storing incoming data packets 601. RLM 605 may further use or interface with any of the
existing queues of the intermediary 200. The queues accessed, monitored, managed or used
by the RLM 605 may correspond to any number of network interface cards (NICs) or data
ports that receive data packets 601 from one or more clients 102 or servers 106. Queues used
and managed by the RLM may include queues, such as areceiving queue at the NICs or
ports, SSL queues, queues storing compressed network traffic, queues storing decompressed
network traffic, queues storing data specific applications, servers or clients, queues for the
VIPs or virtual servers 270, queues for any component of the intermediary 200 or any
network traffic for any component of the appliance 200. Similarly, RLM 605 may include
one or more queues for receiving and storing data packets 601 that are being received by the
throttler 625. In some embodiments, RLM 605 stores information or data packets 601 from
the queues intended for one or more packet engines 548 on one or more cores 505. In some
embodiments, RLM 605 includes any component, unit or function for searching for and
identifying rate limiting license 660. RLM 605 may include functionality for communicating

with the rate limiting license 660 and identifying performance level 665 information. RLM

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
73

605 may include functionality or means for recognizing and identifying the performance level
660. RLM 605 may further include functionality or means for implementing rate limit
settings for the appliance 200 based on, or responsive to, the information identified by the
performance level 660. RLM 605 may further include any functionality for generating
operation and configuration settings for the appliance 200 to implement the rate limit
identified by the performance level 665 of the rate limiting license 660.

Queues that are managed or accessed by the RLM 605 may be configured in avariety
of ways. RLM 605 may manage, interface with or receive data packets from any number of
gueues, such asthe NICs queues or SSL queues. The gueues may configured to receive
network traffic until their capacity isreached. In some embodiments, queues receiving
network traffic are configured to drop, or tail drop, any additional network packets that
cannot be accepted by the queue. In some embodiments, the NIC drops or tail drops packets.
In further embodiments, if an amount of network packets received exceeds apredetermined
threshold, the network packets may be dropped or not accepted by the queues. In further
embodiments, when data packets are tail-dropped, data packets may be resent by the sender at
alater time when queues are available to accept additional data packets.

A token 602 may include any value, character, number, count, object or any
combination of hardware and software to be used for counting, maintaining or keeping a
track of anumber of data packets 601 that may be propagated. A token 602 may include any
file, object, character, symbol, value or anumber to be used by any component of the RLM
605, such as athrottler 625 or atoken bucket 620 for maintaining a count. The count
maintained using tokens 602 may be any count, sum or tally for determining an amount or a
number of data packets 602 to be propagated, processed or throttled by the RLM 605. Token
602 may include an object, an executable or afile. In further embodiments, token 602
includes a cookie. In yet further embodiments, token 602 includes a set of characters, values
and parameters identifying a specific data packet 601, or a specific type of datapacket 601.
Token 602 identifying a specific data packet 601 or a specific data packet type may be used
by athrottler 625 for propagating such adata packet 601. In some embodiments, one or more
tokens 602 comprise a count or a summation value. In further embodiments, one or more
tokens 602 are avalue or anumber inside a counter or an algorithm maintaining a count or a
total for the tokens 602. Tokens 602 may be counted or maintained by an algorithm or an
application that keeps the count of tokens 602 by adding new tokens 602 to the total count or
subtracting existing tokens 602 from the total count. Tokens 602 may be added or counted

up in acounter & atoken generation rate, such astoken rate 615, for each new token 602

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
74

generated. In some embodiments, tokens 602 are counted down or subtracted from atotal
sum of tokens 602 for each data packet 601 that is processed, propagated or throttled by the
throttler 625. In further embodiments, token 602 comprises anumber or avalue that
corresponds to anumber of data packets 601 allowed for processing, propagating or throttling
a present moment. A token 602 may comprise any count, count variable, value, number,
object or component used for counting, keeping count of or tracking anumber of data packets
601 that may be allowed to be propagated by the RLM 605.

Token generator 610 may include any hardware, software or any combination of
hardware and software for generating, managing, adding, subtracting, or otherwise
controlling a count of tokens 602. Token generator 610 may include any number of files,
scripts, programs, applications, functions, algorithms, processing units, logic circuits, analog
or digital circuits or executables for producing, managing, adding or subtracting tokens 602.
Token generator 610 may comprise any functionality and means for generating, maintaining
and keeping atrack of atotal count or atotal number of tokens 602 available. Token
generator 610 may subtracts atoken 602 or a count for each data packet 601 that propagates,
processes or throttles through the RLM 605. In such embodiments, token generator 610 may
add atoken 602 or a count for each period of time defined by atoken rate 615 (1/ (token
rate) in tokens/second) for which a data packet 601 isnot propagated, processed or throttled
through the RLM 605. Token generator 610 may also add atoken 602 or a count for each
data packet 601 that propagates, processes or throttles through the RLM 605. In such
embodiments, token generator 610 subtracts atoken 602 or a count for each period of time
defined by atoken rate 615 for which a data packet 601 isnot propagated, processed or
throttled through the RLM 605. Token generator 610 may add or generates any number of
tokens 602 as defined by the token rate 615. In some embodiments, token generator 610 may
subtract, count down or terminate any number of tokens 602 as defined by the token rate 615.
Token generator 610 may include aprogram, an application or an algorithm counting, or
maintaining a count. Token generator 610 may maintain anumber of counts or tokens 602
available a each moment. In some embodiments, token generator 610 generates or adds a
number of tokens to atotal number of tokens 602. In some embodiments, token generator
610 subtracts or terminates anumber of tokens 602 from atotal number of tokens 602.
Adding, subtracting, generating or terminating or any other action performed by the token
generator 610 on the tokens 602 may be responsive to atiming counter defined by atoken

rate 615. In some embodiments, adding, subtracting, generating or terminating or any other

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
75

action performed by the token generator 610 on the tokens 602 isresponsive to a data packet
602 propagated, processed or throttled by the RLM 605.

Token rate 615 may be any rate at which tokens 602 are established, counted or
generated. Token rate 615 may include any hardware, software or any combination of
hardware and software for establishing or generating arate, atempo or apace for production,
counting or generating tokens 602. Token rate 615 may include an application, an algorithm,
an executable or a counter for maintaining and managing arate a which tokens 602 are
generated or terminated. In some embodiments, token rate 615 includes arate for generating
or increasing anumber of tokens 602 in tokens 602 per second. In other embodiments, token
rate 615 includes arate of adding a count or counting up a counter that corresponds to atotal
number of tokens 602. In further embodiments, token rate 615 includes arate for terminating
or decreasing anumber of tokens 602 in tokens 602 per second. In other embodiments, token
rate 615 includes arate of subtracting a count or counting down a counter that corresponds to
atotal number of tokens 602. In some embodiments, token rate 615 comprises any rate
between 1and 100 bytes per second, such as 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100
tokens 602 per second. In other embodiments, token rate 615 includes any range of rates
between 100 and 1000 tokens 602 per second, such as 100, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 tokens 602 per second. In further
embodiments, token rate 615 includes any range of rates between 1000 and 10000 tokens 602
per second, such as 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000,
6500, 7000, 7500, 8000, 8500, 9000, 9500 or 10000 tokens 602 per second. In yet further
embodiments, token rate 615 includes any range of rates between 10,000 and 100000 tokens
602 per second, such as 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000,
55000, 60000, 65000, 70000, 75000, 80000, 85000, 90000, 95000 or 100000 tokens 602 per
second. In still further embodiments, token rate 615 includes any range of rates between
100,000 and 1,000,000 tokens 602 per second, such as 100000, 150000, 200000, 250000,
300000, 350000, 400000, 450000, 500000, 550000, 600000, 650000, 700000, 750000,
800000, 850000, 900000, 950000 or 1000000 tokens 602 per second. In yet further
embodiments, token rate 615 includes any range of rates between 1,000,000 and
1,000,000,000 tokens 602 per second, such as 1,000,000, 5,000,000, 10,000,000, 50,000,000,
100,000,000, 500,000,000 or 1,000,000,000 tokens 602 per second. Token rate 615 may be
used for managing or controlling the rate of propagation, processing or throttling of data
packets 602 through the throttler 625. Token rate 615 may be created by the token generator

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
76

610 responsive to any information or settings from any of the rate limiting license 660 or any
performance level settings 640.

Token bucket 620 may include any hardware, software or any combination of
hardware and software for managing and maintaining atotal count or atotal tally of available
tokens 602. Token bucket 620 may include any logic, application, function or an algorithm
for maintaining atotal number or tally of tokens 602. Token bucket 620 may include any
logic, application, function or an algorithm for establishing a maximum size for the token
bucket 620. Token bucket 620 may refuse to accept additional tokens 602 once a maximum
size for the tokens has been reached. In some embodiments, token bucket 620 establishes the
maximum size of the token bucket 620 responsive to information from aPLS 640 or a
performance level 665. Token bucket 620 may include any functionality, logic, or means for
disabling additional tokens 602 from being generated or being added to the token bucket 620
once athreshold is exceeded. In further embodiments, token bucket 620 comprises alimit or
athreshold for aminima number of tokens 602 that may be generated. In such
embodiments, token bucket 620 includes any functionality, logic, or means for ensuring that
no additional tokens 602 are subtracted or terminated after the threshold has been exceeded.
Token bucket 620 may include, keep atrack of, or keep a count of any number of tokens 602
that are available. In some embodiments, token bucket 620 subtracts atoken 602 for each
data packet 601 that is processed, propagated or throttled via athrottler 625. In other
embodiments, token bucket 620 adds atoken 602 for each data packet 601 that is processed,
propagated or throttled via athrottler 625. Token bucket 620 may provide any number of
tokens 602 to the throttler 625 in response to the request from the throttler 625 to send the
tokens 602. Token bucket 620 may also refuse to provide tokens 602 to the throttler 625
responsive to arule, logic or threshold limit. Token bucket 620 may use any function,
device, unit or an algorithm to maintain and monitor any token 602 or the total number of
available tokens 602.

Throttler 625 may include any hardware, software or any combination of hardware
and software for establishing, controlling and managing the flow of any data packets 601 that
are propagating, processing or throttling viaRLM 605. Throttler 625 may include any
number of files, programs, applications, functions, algorithms, components, processing units
or logic circuits for propagating, processing, throttling or controlling the flow of any data
packets 601 according to athroughput rate 650. Throttler 625 may process, propagate,
throttle any number of data packets 601 responsive to availability of tokens 602 in atoken
bucket 620. Data packets 601 to bethrottled or processed by the throttler 625 may be stored

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
77

in one or more queues. The queues may receive incoming data packets 601 from one or more
network interface cards. Throttler 625 may receive incoming data packets 601 from one or
more queues and throttle, propagate or process the data packets 601 at the rate limit.

Throttler 625 may utilize logic, functions, algorithms or units for determining or monitoring
the total number or atotal count of tokens 602 available in the token bucket 620. Throttler
625 may comprise any functionality for propagating data packets 601 responsive to
availability of tokens 602 in the token bucket 620. In some embodiments, throttler 625
comprises functionality for propagating data packets 601 based on BPS limit 651. In other
embodiments, throttler 625 comprises functionality for propagating data packets 601 based
on PPS limit 651. In further embodiments, throttler 625 comprises functionality for
propagating or throttling data packets 601 based on any type and form of throughput rate 650
or token rate 615. Throttler 625 may include any means or functionality for propagating or
throttling data packet 601 based on any combination of availability of tokens 602, throughput
rate 650, BPS limit 651, PPS limit 652 and any PLS 640A-N.

Throttler 625 may propagate, process or throttle any number of data packets 601
responsive to availability of tokens 602. In some embodiments, throttler 625 determines to
propagate a number of data packets 601 to one or more packet engines 548 on one or more
cores 505 in response to anumber of tokens 602 being available in the token bucket 620. In
some embodiments, throttler 625 determines that a specific number of data packets 601 is
waiting at a queue to be propagated to one or more packet engines 548. Throttler 625 may
further determine that the total number of tokens 602 available in the token bucket 620
exceeds the number of data packets 601 awaiting the propagation. Throttler 625 may
propagate the data packets 601 responsive to the tokens 602 being available for each data
packet 601 propagated. In some embodiments, if the number of available tokens 602 does
not exceed the number of data packets 601, throttler 625 may not propagate the data packets.
In further embodiments, once the data packets 601 are propagated or throttled, the throttler
625 may send a signa to the token bucket 620 to decrease the number of available tokens 602
by the number of data packets 601 propagated. In further embodiments, throttler 625
propagates the data packets 601 one at atime, while waiting to receive anew token 602 from
the token generator 610. Token rate 615 a which the token generator 610 generates tokens
602 may determine the throughput rate 650 a which the throttler 625 propagates a data
packet 601. Following the propagation of each data packet 601, throttler 625 may send an

instruction to the token bucket to count down, decrease or otherwise adjust the number or

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
78

tally of the available tokens 602. In other embodiments, token rate 615 a which the token
generator 610 generates tokens 602 is determined by the throughput rate 650.

Throttler 625 may control the flow of the data packets 601 by using atoken 602 in
correspondence to each byte or bit of data packets 601 propagated by the throttler 625. In
such embodiments, throttler 625 controls the flow of the data packets 601 based on the
number of bytes or bits of the data packets 601 propagated. For example, throttler 625 may
throttler or propagate data packets 601 towards one or more PEs 548, responsive to
availability of tokens 602 for each byte or bit of data packets 601 propagated. Following the
propagation of the data packets 601 based on the number of bits or bytes, the total number of
tokens 602 available in the token bucket 620 may decrease or adjust accordingly to reflect the
correct total sum of available tokens 602. In some embodiments, throttler 625 may determine
that atoken bucket 620 comprises no tokens 602. In such embodiments, throttler 625 readies
adata packet 601 for propagation and awaits arrival of the next token 602. Upon arrival of
the token 602 the next token 602, throttler 625 propagates the data packet 601. The token
602 may be dropped, discounted or subtracted from the count of the total number of available
tokens 602 responsive to the data packet 601 being propagated. Throttler 625 may ready
another datapacket 601 for transmission and await another available token 602 to implement
the propagation. In some embodiments, throttler 625 decides that data packets 601 have been
waiting for propagation for aperiod of time that exceeds a predetermined threshold.

Throttler 625 may then drop, flush or erase data packets 601 stored in the queues awaiting the
propagation. In some embodiments, throttler 625 sends the data packets 601 whose waiting
period has exceeded the threshold to excess handler 630.

Excess handler 630 may include any hardware, software or any combination of
hardware and software for controlling and managing data packets 601 sent to the excess
handler from the throttler 625. Excess handler 630 may include any number of files,
programs, applications, functions, algorithms, components, processing units or logic circuits
for propagating, processing, terminating, refreshing or erasing any data packets 601. Excess
handler 630 may send, transmit out, reject or erase any number of data packets 601
responsive to instructions from the PLS 640. Excess handler 630 may terminate or flush data
packets 601. In some embodiments, excess handler 630 sends the data packets 601 back to
the original sender of the data packets 601. In further embodiments, excess handler 630
sends aresponse to the original sender of the data packets 601 requesting from the sender to
resend the data packets 601 again. In further embodiments, excess handler 630 stores the

data packets 601 received into a storage or amemory. In still further embodiments, excess

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
79

handler 630 reformats or processes the data packets 601 and sends the data packets back to
the queue of the throttler 625 for processing. In still further embodiments, excess handler
630 forwards the data packets 601 to an additional throttler 625 that uses an additional set of
tokens 602 from another token bucket 620. Following the receipt of the data packets 601
from the excess handler 630, the additional throttler 625 propagates or throttles the data
packets to one or more PES 548 responsive to availability of the additional set of tokens 602
in the another token bucket 620.

Excess handler 630 may process any data packets 601 not throttled by the throttler
625 in accordance with any number of processes and procedures. In some embodiments,
excess handler 630 discards the data packets 601 that are not received or processed by the
throttler 625. For example, the queues storing data packets 601 may be flushed out if there
are no tokens 602 for processing the data packets 601. In further embodiments, excess
handler 630 stores or maintains excess data packets 601 until the tokens 602 become
available. In still further embodiments, excess handler 630 maintains another token bucket
for handling excess data packets 601 . Excess handler 630 may use active queue management
to handle any data packets 601 that are not processed, throttled or propagated by the throttler
625. Excess handler 630 may include an algorithm or a function to use one or more
proportional integrals to calculate the number of data packets 601 to be flushed or handled in
an dternative matter, such asthe additional token bucket. Excess handler 630 may use
probability functions or algorithms to calculate the probability of the data packets 601 being
dropped or flushed from the queues. Active queue management may also employ current
gueue length, size of data packets, the number of data packets, token and throughput rates and
BPS and PPS limits to compute the probability of data packets 601 being dropped or flushed.
In some embodiments, active queue management may use current queue length, size of data
packets, the number of data packets, token and throughput rates and BPS and PPS limits to
compute the probability to perform additional processes, such as additional token bucket for
processing the non-throttled data packets 601. Active queue management may determine to
proceed with processing of the data packets 601 for which the probability of being dropped
exceeds a predetermined threshold.

Performance level settings 640, also referred to as PLS 640, may include any
hardware, software or any combination of hardware and software for setting or configuring
operation of the appliance 200. PLS 640 may include any number of files, scripts, programs,
applications, functions, algorithms, processing units, logic circuits, analog or digital circuits

or executables for configuring or setting operation or functionality of any number of

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
80

components of the appliance 200. PLS 640 may include any functionality for configuring or
setting the performance level or operation of the appliance 200 in accordance with
information identified by the performance level 665. In some embodiments, PLS 640
includes a compilation of configuration and operation settings for configuring or maintaining
the rate of flow of the data packets 601 traversing the appliance a apredetermined level.
PLS 640 may comprise one or more settings, parameters input values, instructions and
commands for one or more components of the intermediary 200 or the RLM 605. In some
embodiments, PLS 640 includes parameters, inputs, instructions and settings for any one of,
or any combination of, the token generator 610, token rate 615, throttler 625, token bucket
620 and excess handler 630. The parameters, inputs, instructions and settings may include
any combination of values, configuration points and commands for any number of
components of the RLM 605 to maintain arate of flow of data packets 601 within a
predetermined level or threshold.

PLS 640 may include any type and form of functionality for storing, identifying,
setting and configuring any parameters, settings and instructions for any part or component of
the RLM 605. In some embodiments, PLS 640 includes settings, parameters and instructions
for atoken generator 610 to generate tokens 602 at apredetermined rate. In further
embodiments, PLS 640 includes settings, parameters and instructions identifying or
specifying atoken rate 615. PLS 640 may include settings, parameters and instructions for
specifying or identifying atype of tokens 602 to be generated. In some embodiments, PLS
640 includes settings, parameters and instructions for generating tokens 602 for data packets
601. In some embodiments, PLS 640 includes settings, parameters and instructions for
generating tokens 602 for data bytes or data bits of the data packets 601. PLS 640 may
include settings, parameters and instructions for initiating, generating and maintaining a
token bucket 620 which may include amaximum token size of any number of tokens 602. In
some embodiments, PLS 640 includes settings, parameters and instructions to establish and
maintain atoken bucket 620 that comprises any number of tokens 602, such as anywhere
between 100 and 1000, 1000 and 100000 or 100000 and 10,000,000 tokens. In some
embodiments, PLS 640 includes settings, parameters and instructions that generate athrottle
625. In further embodiments, PLS 640 includes settings, parameters and instructions that set
up, initiate and maintain the operation of throttle 625 to throttle or control rate or flow of data
packets 601 at any rate or speed. In some embodiments, PLS 640 includes settings,
parameters and instructions that initiate, establish, control and maintain an excess handler

630. In further embodiments, PLS 640 includes settings, parameters and instructions that

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
81

control and maintain operation of excess handler 630 to handle, operate on or process any
data packets 601 that are not processed or throttled by throttler 625.

PLS 640 may further include any additional settings, instructions or parameters for
using additional methods for controlling of rate of propagation or processing. In some
embodiments, PLS 640 includes settings and instructions for limiting amount of memory
visible to the system, or the RLM 605. In further embodiments, PLS 640 includes settings
and instructions for limiting anumber of cores 505 available to the system or the RLM 605.
In still further embodiments, PLS 640 includes settings and instructions for limiting the
number of SSL chips visible to the system. Inyet further embodiments, PLS 640 includes
settings and instructions for adjusting a clock for running of the processors, such as CPUs or
the processors used by the RLM 605. In still further embodiments, PLS 640 includes settings
and instructions for managing processor cache-miss rate. In still further embodiments, PLS
640 includes settings and instructions for tweaking or fine-tuning of the netio pipeline
parameters. In yet further embodiments, PLS 640 includes settings and instructions for
running or operating RLM 605 on aplurality of cores 505. In still further embodiments, PLS
640 includes settings and instructions for running or operating RLM 605 on asingle-
processor (single-core) system.

Rate limit settings 645 may include any hardware, software or any combination of
hardware and software for setting or configuring rate of flow of data packets 601. Rate limit
settings 645 may include any number of files, scripts, programs, applications, functions,
algorithms, processing units, logic circuits, analog or digital circuits or executables for
configuring or setting rate of flow or rate of processing of data packets 601. Rate limit
settings 645 may include any type and form of settings, configuration points or setting points
for any number of components of the RLM 605, such asthe throttler 625, for controlling or
limiting rate of flow or rate of propagation of data packets 601. In some embodiments, rate
limit settings 645 include any number of configuration and operation settings for establishing
and operating atoken generator 610. In further embodiments, rate limit settings 645 include
any number of configuration and operation settings for establishing atoken rate 615. In yet
further embodiments, rate limit settings 645 include any number of configuration and
operation settings for establishing and operating athrottler 625. In still further embodiments,
rate limit settings 645 include any number of configuration and operation settings for
establishing and operating an excess handler 630. Rate limit settings 645 may include any
number files, instructions, data, applications, processing units, hardware or software for

configuring, establishing and operating any of the RLM 605 components to maintain arate of

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
82

flow or propagation of the data 601 through the throttler 625 within performance level
settings identified by the performance level 665 of the rate limiting license 660.

RLS 465 may include any type and form of configuration or operation instructions,
parameters or settings. In some embodiments, RLS 465 sets the limits or thresholds for any
of the throughput rate 650 or token rate 615 based on the hardware platform of the model of
the appliance 200. In further embodiments, RLS 465 sets the limits or thresholds of the
throughput and token rates at aminimum or the slowest rate settings if a performance level
665 isnot identified.

RLS 465 may configure arate limit using a setting, such as:
netscaler.do_rate_limit=l. In such embodiments, setting the netscaler.do_rate limit
variable to non-zero activates or enables the rate limiting settings. In other embodiments, if
the setting is a azero, the rate limiting setting or code is not active. default value is zero, and
means, that rate limiting code is not active.

RLS 465 may configure a size of atoken bucket 620 using another setting, such as:
netscaler.rate_limit_bucket_size=1000. In such embodiments, the size of the token bucket
620 is set in milliseconds. This value may determine size of the maximum burst in traffic
which will be able to pass through throttler 625 without restrictions. This value may identify
amaximum burst that is allowed to propagate or bereceived by the throttler 625.

RLS 465 may configure alimit for athroughput rate 650 using a setting such as:
netscaler.rate_limit_mbits=3072. In such embodiments, the limit or the threshold for
throughput rate is defined in Megabits per second, such as 3072 Mb/s, or 3Gb/s.

RLS 465 may configure apacket rate limit in packets per second using a setting, such
as. netscaler.rate limit_packets=1000000. In such embodiments, packet rate limit is
defined as 1000000 packets per second.

RLS 465 may also allow confirmation of the values set. Such confirmations may be
initiated using an instruction, such as: dmesg \grep platform

RLS 465 may further configure or set rate limiting parameters, using instructions,
such as: nsapimgr - B "w ns rl_bucket_size 0x400" - for setting atoken bucket 620 sizein
milliseconds using hexadecimal values, nsapimgr - B "w ns rl_mbits 0Oxcoo" - for setting
throughput rate in megabits per second, using hexadecimal values, and nsapimgr -B "w
ns rl_packets OxF4240" - for setting a packet rate in packets per second, also using
hexadecimal values.

Bucket settings 646 may include any hardware, software or any combination of

hardware and software for setting or configuring of token bucket 620. Bucket settings 646

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
83

may include any number of files, scripts, programs, applications, functions, algorithms,
processing units, logic circuits, analog or digital circuits or executables for configuring or
setting any components features or functions of the token bucket 620. Bucket settings 646
may configure or set up atype or operation of the token bucket 620. In some embodiments,
bucket settings 646 configure or set up the token bucket 620 as a bucket that stores a
predetermined amount of tokens 602. Bucket settings 646 may configure or set up the token
bucket 620 to enable aburst of data having anumber of data packets 601 which does not
exceed the number of tokens 602 stored in the token bucket 620 to be throttled or processed
by the throttler 625 without slowing the data 601 down. In further embodiments, bucket
settings 646 may maintain the rate of generating tokens 602 by the token generator 610 a a
predetermined token rate 615. In some embodiments, token rate 615 may be any rate of
generating tokens 602, such as 10, 50, 100, 500, 1000, 2000, 5000, 7000, 10000, 15000,
20000, 30000, 50000, 100000 or 1000000 tokens/second. In some embodiments, bucket
settings 646 configure or set up the token bucket 620 as a bucket that does not store a
predetermined amount of tokens 602. Instead, token bucket 620 may be set by the bucket
settings 646 to simply hold atoken 602 for apredetermined amount of time. The token
bucket 620 may be configured to drop the token 602 after the predetermined amount of time
expires and wait for the next token 602. Bucket settings 646 may configure or set up the
token bucket 620 not to enable aburst of data greater than a predetermined rate limit of data
to bethrottled. Instead, bucket settings 646 may set up the token bucket to generate tokens
602 at apredetermined rate to ensure that data packets 601 are throttled or processed by the
throttler 625 a the predetermined rate limit, such as the throughput rate.

Throughput rate 650 may comprise any limit, threshold or a configuration setting for a
rate of processing or throttling of data packets 601 traversing the appliance 200. Throughput
rate 650 may include arate or propagation in packets per second or bytes per second of data
packets 601. Throughput rate 650 may include any hardware, software or any combination of
hardware and software for setting or configuring of token bucket 620. Throughput rate 650
may include any number of files, scripts, programs, applications, functions, algorithms,
processing units, logic circuits, analog or digital circuits or executables for configuring or
setting rate of processing or throttling of data packets 601. In some embodiments, throughput
rate 650 includes athreshold for arate of propagation of data packets 601. In some
embodiments, throughput rate 650 isidentified in terms of data packets 601 to be processed,
propagated or throttled per second. In other embodiments, throughput rate 650 isidentified
in terms of anumber of packets or chunks of data packets 601 to be processed, propagated or

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
84

throttled per second. In further embodiments, throughput rate 650 isidentified in terms of a
number of bits of data packets 601 to be propagated, processed or throttled per second. In yet
further embodiments, throughput rate 650 isidentified in terms of anumber of requests of a
client 102 to be propagated, processed or throttled per second. In still further embodiments,
throughput rate 650 isidentified in terms of anumber of responses of a server 106 to be
propagated, processed or throttled per second. In yet further embodiments, throughput rate
650 isidentified in terms of anumber of transmissions for a specific destination to be
processed, propagated or throttled per second. In still further embodiments, throughput rate
650 isidentified in terms of anumber of transmission from a specific source to be processed,
propagated or throttled per second. In yet further embodiments, throughput rate 650 is
identified in terms of anumber of data packets 601, data bits, data bytes or transmissions to
be throttled, processed or propagated and forwarded to a specific PE 548 or a specific core
505 of the appliance 200. Throughput rate 650 may include any type and form of
propagation rate for data packets 601 traversing the appliance 200.

Bytes per second limit 651, also referred to as BPS limit 651, may comprise any limit,
threshold or a configuration setting in bytes per second for arate of processing or throttling of
data packets 601. BPS limit 651 may include any rate of propagation in bytes per second.
BPS limit 651 may include any limit or threshold for amaximum rate of propagation in bytes
per second. In some embodiments, BPS limit 651includes or identifies any rate between 1
byte per second and 1terabyte per second. In some embodiments, BPS limit 651includes
any range of rates between 1and 100 bytes per second, such as 1, 10, 20, 30, 40, 50, 60, 70,
80, 90 or 100 bytes per second. In other embodiments, BPS limit 651 includes any range of
rates between 100 and 1000 bytes per second, such as 100, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 bytes per second. In further
embodiments, BPS limit 651 includes any range of rates between 1000 and 10000 bytes per
second, such as 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500,
7000, 7500, 8000, 8500, 9000, 9500 or 10000 bytes per second. In yet further embodiments,
BPS limit 651 includes any range of rates between 10,000 and 100000 bytes per second, such
as 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000,
70000, 75000, 80000, 85000, 90000, 95000 or 100000 bytes per second. In still further
embodiments, BPS limit 651 includes any range of rates between 100,000 and 1,000,000
bytes per second, such as 100000, 150000, 200000, 250000, 300000, 350000, 400000,
450000, 500000, 550000, 600000, 650000, 700000, 750000, 800000, 850000, 900000,
950000 or 1000000 bytes per second. In yet further embodiments, BPS limit 651 includes

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
85

any range of rates between 1,000,000 and 1,000,000,000 bytes per second, such as 1,000,000,
5,000,000, 10,000,000, 50,000,000, 100,000,000, 500,000,000 or 1,000,000,000 bytes per
second. Throughput rate 650 may include any hardware, software or any combination of
hardware and software for setting or configuring of token bucket 620.

Packets per second limit 652, also referred to as PPS limit 652, may comprise any
limit, threshold or a configuration setting in packets per second for arate of processing or
throttling of data packets 601. PPS limit 652 may include any rate of propagation in packets
per second. PPS limit 652 may include any limit or threshold for amaximum rate of
propagation in packets per second. In some embodiments, PPS limit 652 includes or
identifies any rate between 1packet per second and 1,000,000,000 packets per second. In
some embodiments, PPS limit 652 includes any range of rates between 1and 100 packets per
second, such as 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 packets per second. In other
embodiments, PPS limit 652 includes any range of rates between 100 and 1000 packets per
second, such as 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800,
850, 900, 950 or 1000 packets per second. In further embodiments, PPS limit 652 includes
any range of rates between 1000 and 10000 packets per second, such as 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500
or 10000 packets per second. Inyet further embodiments, PPS limit 652 includes any range
of rates between 10,000 and 100000 packets per second, such as 10000, 15000, 20000,
25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 70000, 75000, 80000,
85000, 90000, 95000 or 100000 packets per second. In still further embodiments, PPS limit
652 includes any range of rates between 100,000 and 1,000,000 packets per second, such as
100000, 150000, 200000, 250000, 300000, 350000, 400000, 450000, 500000, 550000,
600000, 650000, 700000, 750000, 800000, 850000, 900000, 950000 or 1000000 packets per
second. Inyet further embodiments, PPS limit 652 includes any range of rates between
1,000,000 and 1,000,000,000 packets per second, such as 1,000,000, 5,000,000, 10,000,000,
50,000,000, 100,000,000, 500,000,000 or 1,000,000,000 packets per second.

Referring now to FIG. 6B, embodiments of steps of amethod for controlling arate of
traffic of adevice in accordance with arate limit identified by arate limiting license is
illustrated. In brief overview, at step 605 arate limiting manager 605 of an intermediary 200
identifies presence of arate limiting license 660 that identifies aperformance level 665. At
step 610, the rate limiting manager 605 establishes arate limit, such as atoken rate 615,
based on the performance level 665. At step 615, atoken generator 610 generates tokens 602
for atoken bucket 620 in accordance with the rate limit. At step 620, the intermediary 200

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
86

receives aplurality of network packets, such as data packets 601. At step 625, athrottler 625
identifies, from the token bucket 620, tokens 602 for the plurality of network packets. At
step 630, the throttler 630 controls arate of receiving of the network packets, such asthe
throughput rate 650, based on the rate limit. At step 635, the rate limiting manager 605
transmits the throttled network packets to one or more packet engines 548 and transmits the
network packets that were not throttled to an excess handler 630. At step 640, the rate
[imiting manager 605 transmits the network packets that were not throttled to an excess
handler 630.

In further overview of FIG. 6B, at step 605 arate limiting manager 605 of an
intermediary 200 identifies presence of arate limiting license 660 which includes an
information about a performance of the intermediary 200. In some embodiments, arate
limiting manager (RLM) 605 of the intermediary 200 identifies apresence of arate limiting
license 660. In other embodiments, RLM 605 identifies a component of arate limiting
license 660. In yet further embodiments, RLM 605 receives afile or amessage from the rate
limiting license 660 comprising information about a performance of the intermediary 220.
Rate limiting license 660 may sand to the RLM 605 any information about aperformance
level 665 for the appliance 200. The information about the performance level 665 may
include any information about throughput rate 650 or apropagation or throttling rate of data
packets 601. The information identifying the performance level 665 may include any
number, value or aparameter uniquely identifying the performance level 665 from any other
performance level 665. The performance level 665 may be matched by the RLM 605 with a
corresponding performance level settings 640. The performance level 665 may include any
information regarding the rate of throughput, propagation, throttling or processing of the data
packets 601 by the intermediary 200. In some embodiments, performance level 665 includes
amaximum threshold rate of throughput or propagation for processing or throttling data
packets 601 viathe throttler 625. In further embodiments, performance level 665 includes
information identifying the rate of generating tokens 602. In still further embodiments,
performance level 665 includes information identifying the maximum number of tokens 602
to be stored in atoken bucket 620.

At step 610, the rate limiting manager 605 establishes arate limit based on the
performance level 665. RLM 605 may establish arate limit based on the PLS 640 that is
identified by the information from the performance level 665. In some embodiments, PLS
640 generates configuration and operation settings for the RLM based on the information
from the performance level 665. RLM 605 may establish or determine arate limit responsive

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
87

to configuration and operation settings from the PLS 640. RLM 605 may establishes any rate
limiting or placing athreshold for controlling throughput, propagation or throttling of data
packets 601. In some embodiments, RLM 605 establishes athroughput rate 650. In other
embodiments, RLM 605 establishes atoken rate 615. In further embodiments, RLM 605
establishes a BPS limit 651. In yet further embodiments, RLM 605 establishes a PPS limit
652. In further embodiments, RLM 605 establishes one or more bucket settings 646 for a
token bucket 620. In some embodiments, RLM 605 establishes a maximum token 602
number to be allowed by the token bucket 620. RLM 605 may utilize PLS 640 to identify or
establish any rates or rate limits for the RLM 605. In some embodiments, RLM 605
identifies or establishes amaximum or aminimum threshold or limit for atoken rate 615. In
other embodiments, RLM 605 identifies or establishes amaximum or aminimum threshold
or limit for athroughput rate 615.

At step 615, atoken generator 610 generates tokens 602 for atoken bucket 620 in
accordance with the rate limit. In some embodiments, token generator 610 generates tokens
602 in accordance with, or based on, the throughput rate 650. In other embodiments, token
generator 610 generates tokens 602 in accordance with, or based on, the token rate 615. In
further embodiments, token generator 610 generates tokens 602 in accordance with, or based
on, the BPS limit 651. In yet further embodiments, token generator 610 generates tokens 602
in accordance with, or based on, PPS limit 652. In still further embodiments, token generator
610 generates tokens 602 in accordance with, or based on, aPLS 640. In some embodiments,
token generator 610 generates tokens 602 in accordance with, or based on, information from
the performance level 665. Inyet further embodiments, token generator 610 generates tokens
602 in accordance with, or based on, the information about hardware platform for the
appliance 200. In still further embodiments, token generator 610 generates tokens 602 in
accordance with, or based on, bucket settings 645, such as atoken bucket 620 size limit.
Token generator 610 may generate tokens 602 responsive to atype of data packets 601
traversing the appliance 200. Token generator 610 may generate tokens 602 responsive to
any information from any of the RLM 605 components, such asthe PLS 640, token bucket
620, throttler 625 or an excess handler 630.

At step 620, the intermediary 200 receives aplurality of network packets, such as data
packets 601. In some embodiments, the intermediary 200 receives one or more requests from
aclient 102. In other embodiments, the intermediary 200 receives one or more responses to
client 102 requests from a server 106. In further embodiments, the intermediary 200 receives

one or more data bits or data bytes. In still further embodiments, the intermediary 200

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
88

receives one or more streams of data, such as stream data of audio or video streams. In some
embodiments, the intermediary 200 receives one or more data packets 601. In further
embodiments, the intermediary 200 receives anetwork data packet, such as a data packet
traversing the network 104. The received plurality of network data packets may be received
by the intermediary 200 and stored in one or more queues, registers or storages. The received
plurality of network data packets may be forwarded to the throttler 625 for further processing,
propagating or forwarding.

At step 625, athrottler 625 identifies, from atoken bucket 620, tokens 602 for the
plurality of network packets. In some embodiments, throttler 625 identifies a number of
tokens 602 available in the token bucket 620. In other embodiments, throttler 625 identifies
specific tokens 602 to be used for processing or propagating specific data packets 601. In
further embodiments, throttler 625 identifies a current count or sum of the tokens 602
available. In further embodiments, throttler 625 requests from the token bucket 620 atotal
sum of tokens 602 currently available. Token bucket 620 may respond to the throttler 625
with aresponse identifying the total sum or atotal number of currently available tokens 602.
In some embodiments, throttler 625 identifies if there is at least one token 602 available in
the token bucket 620. In further embodiments, throttler 625 identifies if there isat least one
token 602 above aminimum threshold for the number of tokens available in the token bucket
620. Throttler 625 may identify each token 602 for each data packet 601 awaiting the
propagation or processing. In some embodiments, throttler 625 identifies specific tokens 602
for specific data packets 601 based on the type of tokens 602 and types of data packets 601.
Throttler 625 may assign one or more tokens 602 for one or more network packets, such as
data packets 601. In some embodiments, throttler 625 assigns one or more tokens 602 from
the token bucket 620 to a data packet 601. In other embodiments, throttler 625 assigns a
token 602 for one or more data packets 601. In further embodiments, throttler 625 assigns a
token for each predetermined amount of bits, bytes or megabytes of the network packets or
data packets 601. In still further embodiments, throttler 625 assigns one or more tokens for
each hit, byte or megabyte of the network traffic or data packets 601 .

At step 630, throttler 625 controls arate of receiving, propagating or throttling of
network packets based on any rate limit. In some embodiments, throttler 625 controls arate
of receiving or propagating of network packets, such asthe data packets 601, based on the
established rate limit. In some embodiments, throttler 625 controls arate of receiving,
propagating or throttling of the data packets 601 based on the throughput rate 650. In other

embodiments, throttler 625 controls arate of receiving, propagating or throttling of the data

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
89

packets 601 based on the bytes per second (BPS) limit 651. In other embodiments, throttler
625 controls arate of receiving, propagating or throttling of the data packets 601 based on the
packet per second (PPS) limit 652. In further embodiments, throttler 625 controls arate of
receiving, propagating or throttling of the data packets 601 based on the combination of BPS
and PPS limits. In some embodiments, athrottler 625 receives, throttles or propagates data
packets 601 based on arate that does not exceed apredetermined packets per second limit
652 in addition to not exceeding another predetermined bytes per second limit 651. A throttle
625 may propagate, process or receive data packets 601 based on any rate of bytes per second
or packets per second provided that the rate does not exceed a BPS or PPS limit. In some
embodiments, throttle 625 propagates, processes or receives data packets 601 based on any
rate of bytes per second that does not exceed abytes per second limit 652. In still further
embodiments, throttle 625 propagates, processes or receives data packets 601 based on a
token rate 615. The token rate 615 may further be based on any one of the BPS limit 651 or
PPS limit 652. The token rate 615 may also be based on the combination of BPS limit 651
and PPS limit 652. Throttler 625 may throttle, propagate or receive the network packets a
any rate based on any combination of any of the token bucket 620 maximum size, token rate
615, throughput rate 650, BPS limit 651 and PPS limit 652.

At step 635, the rate limiting manager 605 transmits data packets 601 that were
received, propagated or throttled by the throttler 625 to one or more packet engines 548. In
some embodiments, RLM 605 transmits the data packets 601 from the throttler 625 to a PE
548. In other embodiments, RLM 605 transmits some data packets 601 to a PE 548 identified
by the data packets 601. In further embodiments, RLM 605 transmits subsets of data packets
601 to some specific or predetermined PEs 548. The subsets of data packets 601 may include
any number of data packets. Such data packets may be distributed across any number of PEs
548 operating on any number of cores 505. In further embodiments, RLM 605 distributes the
data packets 601 to the intended or packet engines 548 based on the information from the
data packets 601 or from the appliance 200.

At step 640, the rate limiting manager 605 transmits data packets 601 that were not
received, propagated or throttled by the throttler 625 to an excess handler 630. In some
embodiments, RLM 605 determines that one or more data packets 601 are pending at the
throttler 625 for aperiod of time that exceeds apredetermined threshold. RLM 605 may
transmit or forward the one or more data packets to the excess handler 630 based on the
determination. In some embodiments throttler 623 determines that some data packets 601

need to be forwarded to the excess handler 630. In further embodiments, excess handler 630

WO 2010/151496 PCT/US2010/039213
90

monitors performance of the throttler 625 and determines which data packets 601 need to be
processed by the excess handler 630. In some embodiments, data packets 601 that were not
received or propagated by the throttler 625 are sent to the excess handler 630 for discarding
or erasing. In further embodiments, data packets 601 that were not received or propagated by
the throttler 625 are sent to the excess handler 630 for further processing or analyzing. In still
further embodiments, data packets 601 that were not received or propagated by the throttler
625 are sent to the excess handler 630 which notifies the sender of the data packets 601 that
data packets 601 are not received. Excess handler 630 may request the sender of the data
packets 601 to resend the data packets that were received by the handler 625.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
91

We Claim:

1. A method for controlling arate of atraffic of a device in accordance with arate limit
identified by arate limiting license, the method comprising:

a) identifying, by arate limiting manager of an intermediary device, presence
of arate limiting license, the intermediary device processing network traffic between
aplurality of clients and aplurality of servers, the rate limiting license identifying a
performance level;

b) establishing, by the rate limiting manager, arate limit based on the
performance level of the rate limiting license; and

c) controlling, by athrottler of the intermediary, arate of receiving network
packets in accordance with the rate limit.

2. The method of claim 1, wherein step (a) further comprises identifying, by the rate
limiting manager, the rate limiting license is not present, and wherein step (b) comprises
establishing a set of one or more rate limit parameters for the rate limit for alower
performance level.

3. The method of claim 1, wherein step (a) further comprises identifying, by the rate
l[imiting manager, atype of hardware platform of the intermediary device, and wherein step
(b) further comprises establishing the rate limit based on the type of hardware platform and
the performance level.

4. The method of claim 1, wherein step (b) further comprises establishing, by the rate
[imiting manager, amaximum size of atoken bucket in milliseconds based on the rate limit
for the performance level of the rate limiting license.

5. The method of claim 4, wherein step (c) further comprises receiving, by the throttler,
anetwork packet, determining that the token bucket has reached the maximum size and
discarding the network packet in response to the determination.

6. The method of claim 1, wherein step (b) further comprises establishing, by the rate
l[imiting manager, athroughput rate limit in bits per second based on the rate limit for the
performance level of the rate limiting license.

7. The method of claim 6, wherein step (c) further comprises generating, by atoken
generator, atoken for atoken bucket at arate specified by the throughput rate limit.

8. The method of claim 1, wherein step (b) further comprises establishing, by the rate
limiting manager, a packet rate in packets per second based on the rate limit for the

performance level of the rate limiting license.

10

15

20

25

30

WO 2010/151496 PCT/US2010/039213
92

9. The method of claim 8, wherein step (c) further comprises receiving, by the throttler,
anetwork packet having anumber of bytes, and removing, by the throttler, anumber of
tokens from atoken bucket equal to the number of bytes.

10. The method of claim 8, wherein step (c) further comprises receiving, by the throttler,
anetwork packet having anumber of bytes, determining, by the throttler, that a number of
tokens in atoken bucket is less than the number of bytes and not removing atoken from the
token bucket.

11. Themethod of claim 10, further comprises providing, by the throttler, the network
packet to an excess packet handler.

12. A system for controlling arate of atraffic of adevice in accordance with arate limit
identified by arate limiting license, the system comprising:
arate limiting manager of an intermediary device identifying presence of a
rate limiting license, the intermediary device processing network traffic between a
plurality of clients and aplurality of servers, the rate limiting license identifying a
performance level;
the rate limiting manager establishing arate limit based on the performance
level of the rate limiting license; and
athrottler of the intermediary controlling arate of receiving network packets
in accordance with the rate limit.
13. The system of claim 12, further comprising the rate limiting manager identifying the
rate limiting license is not present and establishing a set of one or more rate limit parameters
for the rate limit for alower performance level.
14. The system of claim 12, further comprising the rate limiting manager identifying a
type of hardware platform of the intermediary device and establishing the rate limit based on
the type of hardware platform and the performance level.
15. The system of claim 12, further comprising the rate limiting manager establishing a
maximum size of atoken bucket in milliseconds based on the rate limit for the performance
level of the rate limiting license.
16. The system of claim 15, further comprising the throttler receiving anetwork packet,
determining that the token bucket has reached the maximum size and discarding the network
packet in response to the determination.

10

15

WO 2010/151496 PCT/US2010/039213
93

17. The system of claim 12, further comprising the rate limiting manager establishing a
throughput rate limit in bits per second based on the rate limit for the performance level of
the rate limiting license.

18. The system of claim 17, further comprising atoken generator generating atoken for a
token bucket a arate specified by the throughput rate limit.

19. The system of claim 12, further comprising the rate limiting manager establishing a
packet rate in packets per second based on the rate limit for the performance level of the rate
limiting license.

20. The system of claim 19, further comprising the throttler receiving anetwork packet
having anumber of bytes and removing anumber of tokens from atoken bucket equal to the
number of bytes.

21 The system of claim 19, further comprising the throttler receiving anetwork packet
having anumber of bytes, determining that anumber of tokens in atoken bucket isless than
the number of bytes and not removing atoken from the token bucket.

22. The system of claim 21, further comprising the throttler providing the network packet

to an excess packet handler.

PCT/US2010/039213

WO 2010/151496

1/18

ugQ| J9AIdg

0

0

0
q901 J9AI3g

A Tor
Pl YIOM}BN
eg0| J9AI0S

8¢

Vi 'DId

002
9ouerddy

vol
YIom)eN

uzol udld

qzol usid

eZOl Ul

PCT/US2010/039213

WO 2010/151496

2/18

ugg| Joalag

0
0

q90l JdAIsg
002
souenddy
““ru“

I
|

B9Q| JaAIaS

a1 ‘DId

002
aouejddy

uzol justig

qzol sl

ECOL JUallD

=12

PCT/US2010/039213

WO 2010/151496

3/18

uggQ| Joniag

q901 JeAaleg

B9Q| JoAlOS

(a01r9p uonezIWRdQ)

NYM
.60Z 2ouelddy

DN .anN uzol ualo

(s9189p uoneziundQ)
00e NYM
aouel|ddy y G0z @ouelddy

1 | 1 |
" 1T—H

| g

ECOL uS=l)

—1

PCT/US2010/039213

WO 2010/151496

4/18

901) 19AIRS

V90l Jenleg

961 9aIAIeS
Buriojuow
souewlopad

161
sbe Buliojuow

souewlopad

G6l
auibu3 Adljod

061 WeisAg
Aaneg
uoneo|ddy

8|l elEQ

uoneo||ddy

wor
HIOMIBN

al ‘oSid

002
oouelddy

¥o1
ylomjaN

20l D

0cl
jusby jusl|D

ol ejeg

| JuswuoJiAug
Bunndwo)

i
uoneolddy m
i

WO 2010/151496

5/18

PCT/US2010/039213

v
0S
Software
122 Client 120
- 101 - Agent e
CPU Main
Memory { Storage
) |
123
N Display
/10 device(s) Installation Network
CTRL \- Device Interface
126\ / \ 12 124a-n 116 _118

Keyboard

Pointing
Device

FIG. IE

WO 2010/151496 PCT/US2010/039213
' 6/18

/‘101
—140
Main
Processor Cache
/—122
I/O | I/O |Memory Main
Port |Port P\ort Memory /—130b
—103 1/O
Device

Bridge|—/—170

FIG. IF

WO 2010/151496 PCT/US2010/039213
7/18

101
K
PPU
P1 P2
P3 P(N)
FlG. I1G
101
K
CPU
I o1
GPU

FIG. IH

PCT/US2010/039213

WO 2010/151496

8/18

Ve OId

— — — — i 0%
99¢ suod ¥9¢ .C9¢ c9¢ m 108$800.d m 90¢
IOMIBN AJowsy 10S8s820.1d 108s800.14 ' uondhoug | aJempJeH
192 YoBIS
WIOMIBN
_/. Vez
_ auibu3 uondAioug
eve 433ng Zye jewiy
0%z auibug 19)0ed parelbajy|
/-g Joke paads-ybiH 57 0z
aoed
- [oulay jou ._om_
¢ce
— Jobeuep
gez uoissaidwoy || 98¢ ouibu3 \ ayoen
[09030Jd-R N Aoijod
81 ¢ S90IADS uowae(] WajsAg .
— aoedg
sweibold iz 1454 012 osn
S82IAI9S |IPUS [te) N9

Buuoyuoly yyesH

PCT/US2010/039213

WO 2010/151496

9/18

ugQ} JonIdg

U0/¢ 80IM9S

q90| 19Aleg

40.¢ 8diMeg

€90 JoAnlag

A RS

Vol
HomjaN

ac ‘OIAd

00z 2ouenddy

161
sbe Bulojuow

06¢ M4 ddy

88¢C UoNlela|aooy

98Z SNA

8¢ buiyoumsg

Z8Z dl 1eueiy|

08Z NdA 1SS

UGJZ V Jenlagh

BG/Z V Jonagh

¥0L
HiomaN

uzol sl

ugzl
jusby jusl)

2ol ualg

a0z
jusby jual)

BZ0L Ul

B0C)
eby ualD

FIG. 3

WO 2010/151496 PCT/US2010/039213
10/18
10/18
Client 102
i user mode 303 :
i 1t Program
i App 1 App 2 322 i
i App N :
i v A\ 4 v i
§ 310a i
i monitoring i
i agent/script 197 !
E Network :
E Stack Streaming Client :
i 310 306 i
:r‘ < > Collection Agent --.i
5 304 ;
i API/ data]
; structure 325 Acceleration !
i Program 302 i
i interceptor i
i 350 :
' Client Agent 120 i
: 310 :
E Kernel mode 302 i
L 100

WO 2010/151496

11/18

PCT/US2010/039213

device 100 —\

virtualized environment 400

VIRTUALIZATION LAYER

Virtual Machine 406a

Control
Operating
System
405

Tools
Stack 404

Virtual Machine 406b

Guest
Operating
System

410a

Virtual Machine 406¢

Guest
Operating
System

410b

HYPERVISOR LAYER

Hypervisor 401

HARDWARE LAYER

Physical Disk(s) 428

Physical CPU(s) 421

FIG. 44

WO 2010/151496

12/18

Computing Device 100a

PCT/US2010/039213

Computing Device 100b

Virtual Machine Virtual Virtual Machine Virtual
4062 Machine 406b 406¢ Machine 406d
Control OS Guest Control OS Guest
405a Operating 405b Operating
System < > System
Management 410a Management 410b
component component
404a I 404b -I
Fm======== 1 === ===
! Virtual ! ! Virtual
1 1 1
t 1 Resources : t : Resources
1
rypervisor | || 4322 2422 | rypervisor | ,wli 4320 4420
401a 401b

\

Physical Resources
421a, 428a

]

Physical Resources
421Db, 428b

Computing Device 100c

Virtual Machine 450e

Guest Operating System 410c

—_—— e e e e e — — — = ————

Virtual Machine
406f

Hypetvisor 401

Control OS
405c¢

Management
component
404a

FIG. 4B

WO 2010/151496

Intranet IP 282

Switching 284

DNS 286

Acceleration 288

App FW 290

monitoring agent
197

PCT/US2010/039213
13/18
virtualized application delivery controller 450
vServer A 275a vServer A 275a
vServer A 275n vServer A 275n
SSL VPN 280 SSL VPN 280

Intranet |IP 282

Switching 284

DNS 28

Acceleration 288

App FW 290

monitoring agent
197

virtualized environment 400

computing device 100

FIG. 4C

515

515

WO 2010/151496 PCT/US2010/039213
14/18
___________ Functional
510C Parallelism
500
3707 R S S st e yrdd
5108 TCP
NW 515
116} SSL SR 4
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N
000
505A 505B 505C 505D 505E 505F 505G 505N
reeemenanen, Data
rmmcmcacecceal Parallelism 540
vipy §TT VIP3 reeccencenan
275C NIC1
275A | vIP2 L e
275B :
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N
000
S05A 505B 505C 505D 505E 505F 505G 505N
Flow-Based Data
Parallelism _ 520
----------- e mmmamacan d -----------.___--------. LT T
........... 3 515B 5150 beacaccccened 2] ipr 515F
SI3A s1spf SLSE 156G 515N
Corc 1 Corc 2 Corc 3 Corc 4 Corc 5 Corc 6 Corc 7 Corc N
(-2 - -]
S05A 505B 505C 505D 505E 505F 505G 505N

FIG. 54

WO 2010/151496

PCT/US2010/039213
15/18
545
Memory Bus 556
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N
548A 5488 548C 548D 548E 548F 548G 548N
Packet Packet Packet Packet Packet Packet Packet F’acI(et
Engine Engine Engine Engine Engine Engine Engine Engine
A B c D E F G N
L I HL |]! I WL . I
Flow I Flow I Flow I Flow I Flow I Flow I Flow | Flow
| Dist, | pist. | |' Dist. | |! pist. | |! pist. | |! pist. | |! Dist. | Dist. |
559" | | 550 | | 550 | | 550 | | 550 | | 550 | | 550 | | 550 |
505A 505B 505C 505D 505E 505F 505G
RSS Module 560' Flow Distributor
i 552
-—_———
| 550" | 560
Flow | NIC RSS Module
| Distributor
—_——

FIG. 5B

PCT/US2010/039213

WO 2010/151496

16/18

I8 DIA
T
I I
08S 8yoe [eqolD "

NSO 9608 4608 3609 asos 2509 acsos) VvSe0s
°coo | (2109 j0u02)| |
NE%) 9100 99100 Gal0D 49109 0109 zalon | L8109 “
! |
| suey |
“ onuod
b e — J

G1S

PCT/US2010/039213

WO 2010/151496

17/18

V9 OId

Vv8Pys 3d

VG0g 8100

G99 [one]
aouewlouad

099
9sus9I] Buniwi 1By

INO ejeq

\

0€9 J9|pueH $S99Xx3

629

NOY9 (S1d)
sbumes |one7] ouBwWIOLSd

190y L

109
19%0Ng Uy o] [s1eyoed BIRQ

Ol 709 Suayo |
@b\

19 8jey usyo|

19 J0)RIBUAL) UBYO0 |

09

269 JwI Sdd

169 w7 Sd9

G9 9)el indybnouy |

919 sbumes 19xong

GP9 sbumas jwi sley

VOv9 (S7d) sbumes
[@AS7 @ouBRWIOUSd

(NTY) Jebeuely Bupwi sjey

00¢ 2ouelddy / Aeipawuaiy|

WO 2010/151496

Step 605

-

Step 610

—

Step 615

—

Step 620

—

Step 625

18/18

a rate limiting manager of an intermediary identifying
presence of a rate limiting license that identifies a
performance level

\

the rate limiting manager establishing a rate limit based on
the performance level

\

a token generator generating tokens for a token bucket in
accordance with the rate limit

\

the intermediary receiving a plurality of network packets

v

N

a throttler identifies, from the token bucket, tokens for the
plurality of network packets

v

Step 630

—

the throttler controlling a rate of receiving of the network
packets based on the rate limit

Step 635

v

—

the rate limiting manager transmits the throttled network
packets to one or more packet engines

Step 640

v

-

the rate limiting manager transmits the non-throttled
network packets an excess handler

FIG. 6B

PCT/US2010/039213

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/039213

A. CLASSIFICATION OF SUBJECT MATTER
INV . HO04L12/56

ADD .

According to International Patent Classification (IPC) orto both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO- | nt ernal , COVPENDEX,

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

I NSPEC, WPl Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No
X US 2002/ 138643 Al (SHIN KANG G [US] ET AL) 1- 22
26 Septenber 2002 (2002-09-26)
paragraph [0001] - paragraph [0094];
figures 1-6
X, P WO 2010/ 068436 Al (CITRI X SYSTEMS |INC 1-22
[US]: KAVATH SANDEEP [US]; KHEMANI PRAKASH
[US]) 17 June 2010 (2010-06-17)
page 1 - page 3, line 16
page 10, line 24 - page 13, line 9
page 31, line 32 - page 33, line 27
page 41, line 1 - page 56, line 6; figures
4A 4B

D Further documents are listed in the continuation of Box C

See patent family annex

Special categories of cited documents

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document refertng to an oral disclosure, use, exhibition or
other means

"P" document published pnor to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the pmnciple or theory underlying the
invention

"X" document of particular relevance, the claimed invention

cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

ments, such combination being obvious to a person skilled

in the art

"&" document member of the same patent family

Dale of the actual completion of the international search

15 September 2010

Date of mailing of the international search report

22/ 09/ 2010

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Riswilk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer

Garcia Bol 0s, Ruth

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/ US2010/ 039213

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002138643 Al 26- 09- 2002 NONE
WO 2010068436 Al 17-06-2010 us 2010131668 Al 27-05-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	front-page
	description
	claims
	drawings
	wo-search-report

