
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number
(43) International Publication Date
29 December 2010 (29.12.2010) WO 2010/151496 Al

(51) International Patent Classification: Santa Clara, CA 95054 (US). MIRANI, Rajiv [IN/US];
H04L 12/56 (2006.01) 27 Farrwood Dirive, Andover, MD 01810 (US).

(21) International Application Number: (74) Agent: MISIC, Mead; Choate, Hall & Stewart LLP, Two
PCT/US2010/039213 International Place, Boston, MA 021 10 (US).

(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
18 June 2010 (18.06.2010) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

61/219,264 22 June 2009 (22.06.2009) US ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(71) Applicant (for all designated States except US): CITRIX NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,

SYSTEMS, INC. [US/US]; 85 1 West Cypress Creek SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

Road, Fort Lauderdale, FL 33309 (US). TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(72) Inventors; and (84) Designated States (unless otherwise indicated, for every

(75) Inventors/Applicants (for US only): AVDANIN, Roman kind of regional protection available): ARIPO (BW, GH,

[US/US]; c/o C ΓTRIX SYSTEMS, INC., 4988 Great GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

America Parkway, Santa Clara, CA 95054 (US). BOTS, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

Henk [US/US]; c/o CURIX SYSTEMS, INC., 4988 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

Great America Parkway, Sabta Clara, CA 95054 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

TALLA, Ramanjaneyulu, Y. [IN/IN]; c/o CITRIX SY S LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,

TEMS, INC., 4988 Great America Parkway, Santa Clara, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

CA 95054 (US). CHAUHAN, Abhishek [US/US]; c/o GW, ML, MR, NE, SN, TD, TG).

CITRIX SYSTEMS, INC., 4988 Great America Parkway,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR PLATFORM RATE LIMITING

License

FIG. 6A

(57) Abstract: The present disclosure presents systems and methods for controlling network traffic traversing an intermediary de
vice based on a license or a permit granted for the intermediary device. The systems and methods control a rate of a traffic of a de
vice in accordance with a rate limit identified by a rate limiting license. A rate limiting manager of an intermediary device that
processes network traffic between a plurality of clients and a plurality of servers, may identify presence of a rate limiting license
that further identifies a performance level. The rate limiting manager may establish a rate limit based on the performance level of
the rate limiting license. A throttler of the intermediary may control a rate of receiving network packets in accordance with the rate
limit.

Published:

SYSTEMS AND METHODS FOR PLATFORM RATE LIMITING

Related Applications

This present application claims priority to a U.S. Provisional Application No.

61/219,264, entitled "Systems and Methods for Platform Rate Limiting", filed on June 22,

2009, which is incorporated herein by reference in its entirety.

Field of the Invention

The present application generally relates to data communication networks. In

particular, the present application relates to systems and methods for controlling a rate of a

traffic according to a license.

Background of the Invention

An enterprise may provide a service to users accessing servers from client machines

via intermediaries deployed by the enterprise between the clients and servers. The

intermediaries may manage and control the network traffic to enhance the user experience.

The enterprise may, for a variety of reasons, determine to control the flow of the network

traffic that traverses the intermediaries. The enterprise may further determine to control the

flow of the network traffic receiving the intermediaries.

Brief Summary of the Invention

The present application is directed towards systems and methods for controlling

network traffic traversing an intermediary device based on a license or a permit granted for

the intermediary device. The present application is also directed towards systems and

methods for controlling a rate of a traffic being received by an intermediary device in

accordance with a rate limit identified by a license or permit. By controlling the rate of the

traffic being received by the intermediary, the rate at which the traffic is processed and the

resources of the intermediary are utilized may also be controlled.

In some aspects, the present application is directed to a method for controlling a rate

of a traffic of a device in accordance with a rate limit identified by a rate limiting license. A

rate limiting manager of an intermediary device that processes network traffic between a

plurality of clients and a plurality of servers, may identify presence of a rate limiting license

identifying a performance level. The rate limiting manager may establish a rate limit based

on the performance level of the rate limiting license. A throttler of the intermediary may

control a rate of receiving network packets in accordance with the rate limit.

The rate limiting manager may identify the rate limiting license is not present and

establish a set of one or more rate limit parameters for the rate limit for a lower performance

level. The lower performance level may include the throttler controlling the rate of receiving

network packets at a slower rate than a rate for identified rate limiting licenses. In some

embodiments, the rate limiting manager identifies a type of hardware platform of the

intermediary device. The rate limiting manager establishes the rate limit based on the type of

hardware platform and the performance level. In some embodiments, the rate limiting

manager establishes a maximum size of a token bucket in milliseconds based on the rate limit

for the performance level of the rate limiting license. The token bucket may determine the

maximum total number of tokens used by the throttler to identify the number of data packets

to propagate or throttle in a burst and not in accordance with the rate limit. In some

embodiments, the throttler receives a network packet, determines that the token bucket has

reached the maximum size and discards the network packet in response to the determination.

In other embodiments, the throttler receives a network packet, determines that the token

bucket has reached the maximum size and waits until a next available token to propagate or

throttle a next data packet.

In some embodiments, the rate limiting manager establishes a throughput rate limit in

bits per second based on the rate limit for the performance level of the rate limiting license.

In further embodiments, a token generator generates a token for a token bucket at a rate

specified by the throughput rate limit. In yet further embodiments, the rate limiting manager

establishes a packet rate in packets per second based on the rate limit for the performance

level of the rate limiting license. In some embodiments, the throttler receives a network

packet having a number of bytes, and removes, or sends an instruction to remove, a number

of tokens from a token bucket equal to the number of bytes. In some embodiments, the

throttler receives a network packet having a number of bytes, determines that a number of

tokens in a token bucket is less than the number of bytes and does not remove a token from

the token bucket. In some embodiments, the throttler provides the network packet to an

excess packet handler.

In other aspects, the present application is directed to a system for controlling a rate of

a traffic of a device in accordance with a rate limit identified by a rate limiting license. The

system may include a rate limiting manager of an intermediary device that processes network

traffic between a plurality of clients and a plurality of servers identifying presence of a rate

limiting license identifying a performance level. The rate limiting manager may establish a

rate limit based on the performance level of the rate limiting license. A throttler of the

intermediary may controlling a rate of receiving network packets in accordance with the rate

limit.

The details of various embodiments of the invention are set forth in the accompanying

drawings and the description below.

Brief Description of the Figures

The foregoing and other objects, aspects, features, and advantages of the invention

will become more apparent and better understood by referring to the following description

taken in conjunction with the accompanying drawings, in which:

FIG. IA is a block diagram of an embodiment of a network environment for a client

to access a server via an appliance;

FIG. IB is a block diagram of an embodiment of an environment for delivering a

computing environment from a server to a client via an appliance;

FIG. 1C is a block diagram of another embodiment of an environment for delivering a

computing environment from a server to a client via an appliance;

FIG. ID is a block diagram of another embodiment of an environment for delivering a

computing environment from a server to a client via an appliance;

FIGs. IE - IH are block diagrams of embodiments of a computing device;

FIG. 2A is a block diagram of an embodiment of an appliance for processing

communications between a client and a server;

FIG. 2B is a block diagram of another embodiment of an appliance for optimizing,

accelerating, load-balancing and routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for communicating with a

server via the appliance;

FIG. 4A is a block diagram of an embodiment of a virtualization environment;

FIG. 4B is a block diagram of another embodiment of a virtualization environment;

FIG. 4C is a block diagram of an embodiment of a virtualized appliance;

FIG. 5A are block diagrams of embodiments of approaches to implementing

parallelism in a multi-core system;

FIG. 5B is a block diagram of an embodiment of a system utilizing a multi-core

system;

FIG. 5C is a block diagram of another embodiment of an aspect of a multi-core

system;

FIG. 6A are block diagrams of an embodiments of a system for controlling a rate of

traffic traversing an intermediary device; and

FIG. 6B is a flow diagram of an embodiment of steps of a method for controlling a

rate of traffic traversing an intermediary device.

In the drawings, like reference numbers generally indicate identical, functionally

similar, and/or structurally similar elements.

Detailed Description of the Invention

For purposes of reading the description of the various embodiments below, the

following descriptions of the sections of the specification and their respective contents may

be helpful:

- Section A describes a network environment and computing environment

which may be useful for practicing embodiments described herein;

Section B describes embodiments of systems and methods for delivering a

computing environment to a remote user;

Section C describes embodiments of systems and methods for accelerating

communications between a client and a server;

Section D describes embodiments of systems and methods for virtualizing an

application delivery controller;

Section E describes embodiments of systems and methods for providing a

multi-core architecture and environment;

- Section F describes embodiments of systems and methods for controlling a

rate of traffic traversing an intermediary device

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the systems and methods of an

appliance and/or client, it may be helpful to discuss the network and computing environments

in which such embodiments may be deployed. Referring now to Figure IA, an embodiment

of a network environment is depicted. In brief overview, the network environment comprises

one or more clients 102a-102n (also generally referred to as local machine(s) 102, or client(s)

102) in communication with one or more servers 106a-106n (also generally referred to as

server(s) 106, or remote machine(s) 106) via one or more networks 104, 104' (generally

referred to as network 104). In some embodiments, a client 102 communicates with a server

106 via an appliance 200.

Although FIG. IA shows a network 104 and a network 104' between the clients 102

and the servers 106, the clients 102 and the servers 106 may be on the same network 104.

The networks 104 and 104' can be the same type of network or different types of networks.

The network 104 and/or the network 104' can be a local-area network (LAN), such as a

company Intranet, a metropolitan area network (MAN), or a wide area network (WAN), such

as the Internet or the World Wide Web. In one embodiment, network 104' may be a private

network and network 104 may be a public network. In some embodiments, network 104 may

be a private network and network 104' a public network. In another embodiment, networks

104 and 104' may both be private networks. In some embodiments, clients 102 may be

located at a branch office of a corporate enterprise communicating via a WAN connection

over the network 104 to the servers 106 located at a corporate data center.

The network 104 and/or 104' be any type and/or form of network and may include

any of the following: a point to point network, a broadcast network, a wide area network, a

local area network, a telecommunications network, a data communication network, a

computer network, an ATM (Asynchronous Transfer Mode) network, a SONET

(Synchronous Optical Network) network, a SDH (Synchronous Digital Hierarchy) network, a

wireless network and a wireline network. In some embodiments, the network 104 may

comprise a wireless link, such as an infrared channel or satellite band. The topology of the

network 104 and/or 104' may be a bus, star, or ring network topology. The network 104

and/or 104' and network topology may be of any such network or network topology as

known to those ordinarily skilled in the art capable of supporting the operations described

herein.

As shown in FIG. IA, the appliance 200, which also may be referred to as an interface

unit 200 or gateway 200, is shown between the networks 104 and 104'. In some

embodiments, the appliance 200 may be located on network 104. For example, a branch

office of a corporate enterprise may deploy an appliance 200 at the branch office. In other

embodiments, the appliance 200 may be located on network 104'. For example, an appliance

200 may be located at a corporate data center. In yet another embodiment, a plurality of

appliances 200 may be deployed on network 104. In some embodiments, a plurality of

appliances 200 may be deployed on network 104'. In one embodiment, a first appliance 200

communicates with a second appliance 200'. In other embodiments, the appliance 200 could

be a part of any client 102 or server 106 on the same or different network 104,104' as the

client 102. One or more appliances 200 may be located at any point in the network or

network communications path between a client 102 and a server 106.

In some embodiments, the appliance 200 comprises any of the network devices

manufactured by Citrix Systems, Inc. of Ft. Lauderdale Florida, referred to as Citrix

NetScaler devices. In other embodiments, the appliance 200 includes any of the product

embodiments referred to as WebAccelerator and BigIP manufactured by F5 Networks, Inc. of

Seattle, Washington. In another embodiment, the appliance 205 includes any of the DX

acceleration device platforms and/or the SSL VPN series of devices, such as SA 700, SA

2000, SA 4000, and SA 6000 devices manufactured by Juniper Networks, Inc. of Sunnyvale,

California. In yet another embodiment, the appliance 200 includes any application

acceleration and/or security related appliances and/or software manufactured by Cisco

Systems, Inc. of San Jose, California, such as the Cisco ACE Application Control Engine

Module service software and network modules, and Cisco AVS Series Application Velocity

System.

In one embodiment, the system may include multiple, logically-grouped servers 106.

In these embodiments, the logical group of servers may be referred to as a server farm 38. In

some of these embodiments, the serves 106 may be geographically dispersed. In some cases,

a farm 38 may be administered as a single entity. In other embodiments, the server farm 38

comprises a plurality of server farms 38. In one embodiment, the server farm executes one or

more applications on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous. One or more of the

servers 106 can operate according to one type of operating system platform (e.g., WINDOWS

NT, manufactured by Microsoft Corp. of Redmond, Washington), while one or more of the

other servers 106 can operate on according to another type of operating system platform (e.g.,

Unix or Linux). The servers 106 of each farm 38 do not need to be physically proximate to

another server 106 in the same farm 38. Thus, the group of servers 106 logically grouped as

a farm 38 may be interconnected using a wide-area network (WAN) connection or medium-

area network (MAN) connection. For example, a farm 38 may include servers 106 physically

located in different continents or different regions of a continent, country, state, city, campus,

or room. Data transmission speeds between servers 106 in the farm 38 can be increased if the

servers 106 are connected using a local-area network (LAN) connection or some form of

direct connection.

Servers 106 may be referred to as a file server, application server, web server, proxy

server, or gateway server. In some embodiments, a server 106 may have the capacity to

function as either an application server or as a master application server. In one embodiment,

a server 106 may include an Active Directory. The clients 102 may also be referred to as

client nodes or endpoints. In some embodiments, a client 102 has the capacity to function as

both a client node seeking access to applications on a server and as an application server

providing access to hosted applications for other clients 102a-102n.

In some embodiments, a client 102 communicates with a server 106. In one

embodiment, the client 102 communicates directly with one of the servers 106 in a farm 38.

In another embodiment, the client 102 executes a program neighborhood application to

communicate with a server 106 in a farm 38. In still another embodiment, the server 106

provides the functionality of a master node. In some embodiments, the client 102

communicates with the server 106 in the farm 38 through a network 104. Over the network

104, the client 102 can, for example, request execution of various applications hosted by the

servers 106a-106n in the farm 38 and receive output of the results of the application

execution for display. In some embodiments, only the master node provides the functionality

required to identify and provide address information associated with a server 106' hosting a

requested application.

In one embodiment, the server 106 provides functionality of a web server. In another

embodiment, the server 106a receives requests from the client 102, forwards the requests to a

second server 106b and responds to the request by the client 102 with a response to the

request from the server 106b. In still another embodiment, the server 106 acquires an

enumeration of applications available to the client 102 and address information associated

with a server 106 hosting an application identified by the enumeration of applications. In yet

another embodiment, the server 106 presents the response to the request to the client 102

using a web interface. In one embodiment, the client 102 communicates directly with the

server 106 to access the identified application. In another embodiment, the client 102

receives application output data, such as display data, generated by an execution of the

identified application on the server 106.

Referring now to FIG. IB, an embodiment of a network environment deploying

multiple appliances 200 is depicted. A first appliance 200 may be deployed on a first

network 104 and a second appliance 200' on a second network 104'. For example a

corporate enterprise may deploy a first appliance 200 at a branch office and a second

appliance 200' at a data center. In another embodiment, the first appliance 200 and second

appliance 200' are deployed on the same network 104 or network 104. For example, a first

appliance 200 may be deployed for a first server farm 38, and a second appliance 200 may be

deployed for a second server farm 38'. In another example, a first appliance 200 may be

deployed at a first branch office while the second appliance 200' is deployed at a second

branch office'. In some embodiments, the first appliance 200 and second appliance 200'

work in cooperation or in conjunction with each other to accelerate network traffic or the

delivery of application and data between a client and a server

Referring now to FIG. 1C, another embodiment of a network environment deploying

the appliance 200 with one or more other types of appliances, such as between one or more

WAN optimization appliance 205, 205' is depicted. For example a first WAN optimization

appliance 205 is shown between networks 104 and 104' and a second WAN optimization

appliance 205' may be deployed between the appliance 200 and one or more servers 106. By

way of example, a corporate enterprise may deploy a first WAN optimization appliance 205

at a branch office and a second WAN optimization appliance 205 ' at a data center. In some

embodiments, the appliance 205 may be located on network 104'. In other embodiments, the

appliance 205' may be located on network 104. In some embodiments, the appliance 205'

may be located on network 104' or network 104". In one embodiment, the appliance 205

and 205 ' are on the same network. In another embodiment, the appliance 205 and 205 ' are

on different networks. In another example, a first WAN optimization appliance 205 may be

deployed for a first server farm 38 and a second WAN optimization appliance 205' for a

second server farm 38'

In one embodiment, the appliance 205 is a device for accelerating, optimizing or

otherwise improving the performance, operation, or quality of service of any type and form of

network traffic, such as traffic to and/or from a WAN connection. In some embodiments, the

appliance 205 is a performance enhancing proxy. In other embodiments, the appliance 205 is

any type and form of WAN optimization or acceleration device, sometimes also referred to as

a WAN optimization controller. In one embodiment, the appliance 205 is any of the product

embodiments referred to as WANScaler manufactured by Citrix Systems, Inc. of Ft.

Lauderdale, Florida. In other embodiments, the appliance 205 includes any of the product

embodiments referred to as BIG-IP link controller and WANj et manufactured by F5

Networks, Inc. of Seattle, Washington. In another embodiment, the appliance 205 includes

any of the WX and WXC WAN acceleration device platforms manufactured by Juniper

Networks, Inc. of Sunnyvale, California. In some embodiments, the appliance 205 includes

any of the steelhead line of WAN optimization appliances manufactured by Riverbed

Technology of San Francisco, California. In other embodiments, the appliance 205 includes

any of the WAN related devices manufactured by Expand Networks Inc. of Roseland, New

Jersey. In one embodiment, the appliance 205 includes any of the WAN related appliances

manufactured by Packeteer Inc. of Cupertino, California, such as the PacketShaper, iShared,

and SkyX product embodiments provided by Packeteer. In yet another embodiment, the

appliance 205 includes any WAN related appliances and/or software manufactured by Cisco

Systems, Inc. of San Jose, California, such as the Cisco Wide Area Network Application

Services software and network modules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides application and data acceleration

services for branch-office or remote offices. In one embodiment, the appliance 205 includes

optimization of Wide Area File Services (WAFS). In another embodiment, the appliance 205

accelerates the delivery of files, such as via the Common Internet File System (CIFS)

protocol. In other embodiments, the appliance 205 provides caching in memory and/or

storage to accelerate delivery of applications and data. In one embodiment, the appliance 205

provides compression of network traffic at any level of the network stack or at any protocol

or network layer. In another embodiment, the appliance 205 provides transport layer protocol

optimizations, flow control, performance enhancements or modifications and/or management

to accelerate delivery of applications and data over a WAN connection. For example, in one

embodiment, the appliance 205 provides Transport Control Protocol (TCP) optimizations. In

other embodiments, the appliance 205 provides optimizations, flow control, performance

enhancements or modifications and/or management for any session or application layer

protocol.

In another embodiment, the appliance 205 encoded any type and form of data or

information into custom or standard TCP and/or IP header fields or option fields of network

packet to announce presence, functionality or capability to another appliance 205 ' . In

another embodiment, an appliance 205 ' may communicate with another appliance 205 ' using

data encoded in both TCP and/or IP header fields or options. For example, the appliance may

use TCP option(s) or IP header fields or options to communicate one or more parameters to

be used by the appliances 205, 205' in performing functionality, such as WAN acceleration,

or for working in conjunction with each other.

In some embodiments, the appliance 200 preserves any of the information encoded in

TCP and/or IP header and/or option fields communicated between appliances 205 and 205 ' .

For example, the appliance 200 may terminate a transport layer connection traversing the

appliance 200, such as a transport layer connection from between a client and a server

traversing appliances 205 and 205 ' . In one embodiment, the appliance 200 identifies and

preserves any encoded information in a transport layer packet transmitted by a first appliance

205 via a first transport layer connection and communicates a transport layer packet with the

encoded information to a second appliance 205 ' via a second transport layer connection.

Referring now to FIG. ID, a network environment for delivering and/or operating a

computing environment on a client 102 is depicted. In some embodiments, a server 106

includes an application delivery system 190 for delivering a computing environment or an

application and/or data file to one or more clients 102. In brief overview, a client 10 is in

communication with a server 106 via network 104, 104' and appliance 200. For example, the

client 102 may reside in a remote office of a company, e.g., a branch office, and the server

106 may reside at a corporate data center. The client 102 comprises a client agent 120, and a

computing environment 15. The computing environment 15 may execute or operate an

application that accesses, processes or uses a data file. The computing environment 15,

application and/or data file may be delivered via the appliance 200 and/or the server 106.

In some embodiments, the appliance 200 accelerates delivery of a computing

environment 15, or any portion thereof, to a client 102. In one embodiment, the appliance

200 accelerates the delivery of the computing environment 15 by the application delivery

system 190. For example, the embodiments described herein may be used to accelerate

delivery of a streaming application and data file processable by the application from a central

corporate data center to a remote user location, such as a branch office of the company. In

another embodiment, the appliance 200 accelerates transport layer traffic between a client

102 and a server 106. The appliance 200 may provide acceleration techniques for

accelerating any transport layer payload from a server 106 to a client 102, such as: 1)

transport layer connection pooling, 2) transport layer connection multiplexing, 3) transport

control protocol buffering, 4) compression and 5) caching. In some embodiments, the

appliance 200 provides load balancing of servers 106 in responding to requests from clients

102. In other embodiments, the appliance 200 acts as a proxy or access server to provide

access to the one or more servers 106. In another embodiment, the appliance 200 provides a

secure virtual private network connection from a first network 104 of the client 102 to the

second network 104' of the server 106, such as an SSL VPN connection. It yet other

embodiments, the appliance 200 provides application firewall security, control and

management of the connection and communications between a client 102 and a server 106.

In some embodiments, the application delivery management system 190 provides

application delivery techniques to deliver a computing environment to a desktop of a user,

remote or otherwise, based on a plurality of execution methods and based on any

authentication and authorization policies applied via a policy engine 195. With these

techniques, a remote user may obtain a computing environment and access to server stored

applications and data files from any network connected device 100. In one embodiment, the

application delivery system 190 may reside or execute on a server 106. In another

embodiment, the application delivery system 190 may reside or execute on a plurality of

servers 106a-106n. In some embodiments, the application delivery system 190 may execute

in a server farm 38. In one embodiment, the server 106 executing the application delivery

system 190 may also store or provide the application and data file. In another embodiment, a

first set of one or more servers 106 may execute the application delivery system 190, and a

different server 106n may store or provide the application and data file. In some

embodiments, each of the application delivery system 190, the application, and data file may

reside or be located on different servers. In yet another embodiment, any portion of the

application delivery system 190 may reside, execute or be stored on or distributed to the

appliance 200, or a plurality of appliances.

The client 102 may include a computing environment 15 for executing an application

that uses or processes a data file. The client 102 via networks 104, 104' and appliance 200

may request an application and data file from the server 106. In one embodiment, the

appliance 200 may forward a request from the client 102 to the server 106. For example, the

client 102 may not have the application and data file stored or accessible locally. In response

to the request, the application delivery system 190 and/or server 106 may deliver the

application and data file to the client 102. For example, in one embodiment, the server 106

may transmit the application as an application stream to operate in computing environment

15 on client 102.

In some embodiments, the application delivery system 190 comprises any portion of

the Citrix Access Suite™ by Citrix Systems, Inc., such as the MetaFrame or Citrix

Presentation Server™ and/or any of the Microsoft® Windows Terminal Services

manufactured by the Microsoft Corporation. In one embodiment, the application delivery

system 190 may deliver one or more applications to clients 102 or users via a remote-display

protocol or otherwise via remote -based or server-based computing. In another embodiment,

the application delivery system 190 may deliver one or more applications to clients or users

via steaming of the application.

In one embodiment, the application delivery system 190 includes a policy engine 195

for controlling and managing the access to, selection of application execution methods and

the delivery of applications. In some embodiments, the policy engine 195 determines the one

or more applications a user or client 102 may access. In another embodiment, the policy

engine 195 determines how the application should be delivered to the user or client 102, e.g.,

the method of execution. In some embodiments, the application delivery system 190

provides a plurality of delivery techniques from which to select a method of application

execution, such as a server-based computing, streaming or delivering the application locally

to the client 120 for local execution.

In one embodiment, a client 102 requests execution of an application program and the

application delivery system 190 comprising a server 106 selects a method of executing the

application program. In some embodiments, the server 106 receives credentials from the

client 102. In another embodiment, the server 106 receives a request for an enumeration of

available applications from the client 102. In one embodiment, in response to the request or

receipt of credentials, the application delivery system 190 enumerates a plurality of

application programs available to the client 102. The application delivery system 190

receives a request to execute an enumerated application. The application delivery system 190

selects one of a predetermined number of methods for executing the enumerated application,

for example, responsive to a policy of a policy engine. The application delivery system 190

may select a method of execution of the application enabling the client 102 to receive

application-output data generated by execution of the application program on a server 106.

The application delivery system 190 may select a method of execution of the application

enabling the local machine 10 to execute the application program locally after retrieving a

plurality of application files comprising the application. In yet another embodiment, the

application delivery system 190 may select a method of execution of the application to stream

the application via the network 104 to the client 102.

A client 102 may execute, operate or otherwise provide an application, which can be

any type and/or form of software, program, or executable instructions such as any type and/or

form of web browser, web-based client, client-server application, a thin-client computing

client, an ActiveX control, or a Java applet, or any other type and/or form of executable

instructions capable of executing on client 102. In some embodiments, the application may

be a server-based or a remote-based application executed on behalf of the client 102 on a

server 106. In one embodiments the server 106 may display output to the client 102 using

any thin-client or remote-display protocol, such as the Independent Computing Architecture

(ICA) protocol manufactured by Citrix Systems, Inc. of Ft. Lauderdale, Florida or the

Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond,

Washington. The application can use any type of protocol and it can be, for example, an

HTTP client, an FTP client, an Oscar client, or a Telnet client. In other embodiments, the

application comprises any type of software related to VoIP communications, such as a soft IP

telephone. In further embodiments, the application comprises any application related to real

time data communications, such as applications for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38 may be running one or more

applications, such as an application providing a thin-client computing or remote display

presentation application. In one embodiment, the server 106 or server farm 38 executes as an

application, any portion of the Citrix Access Suite™ by Citrix Systems, Inc., such as the

MetaFrame or Citrix Presentation Server™, and/or any of the Microsoft® Windows Terminal

Services manufactured by the Microsoft Corporation. In one embodiment, the application is

an ICA client, developed by Citrix Systems, Inc. of Fort Lauderdale, Florida. In other

embodiments, the application includes a Remote Desktop (RDP) client, developed by

Microsoft Corporation of Redmond, Washington. Also, the server 106 may run an

application, which for example, may be an application server providing email services such

as Microsoft Exchange manufactured by the Microsoft Corporation of Redmond,

Washington, a web or Internet server, or a desktop sharing server, or a collaboration server.

In some embodiments, any of the applications may comprise any type of hosted service or

products, such as GoToMeeting™ provided by Citrix Online Division, Inc. of Santa Barbara,

California, WebEx™ provided by WebEx, Inc. of Santa Clara, California, or Microsoft

Office Live Meeting provided by Microsoft Corporation of Redmond, Washington.

Still referring to FIG. ID, an embodiment of the network environment may include a

monitoring server 106A. The monitoring server 106A may include any type and form

performance monitoring service 198. The performance monitoring service 198 may include

monitoring, measurement and/or management software and/or hardware, including data

collection, aggregation, analysis, management and reporting. In one embodiment, the

performance monitoring service 198 includes one or more monitoring agents 197. The

monitoring agent 197 includes any software, hardware or combination thereof for performing

monitoring, measurement and data collection activities on a device, such as a client 102,

server 106 or an appliance 200, 205. In some embodiments, the monitoring agent 197

includes any type and form of script, such as Visual Basic script, or Javascript. In one

embodiment, the monitoring agent 197 executes transparently to any application and/or user

of the device. In some embodiments, the monitoring agent 197 is installed and operated

unobtrusively to the application or client. In yet another embodiment, the monitoring agent

197 is installed and operated without any instrumentation for the application or device.

In some embodiments, the monitoring agent 197 monitors, measures and collects data

on a predetermined frequency. In other embodiments, the monitoring agent 197 monitors,

measures and collects data based upon detection of any type and form of event. For example,

the monitoring agent 197 may collect data upon detection of a request for a web page or

receipt of an HTTP response. In another example, the monitoring agent 197 may collect data

upon detection of any user input events, such as a mouse click. The monitoring agent 197

may report or provide any monitored, measured or collected data to the monitoring service

198. In one embodiment, the monitoring agent 197 transmits information to the monitoring

service 198 according to a schedule or a predetermined frequency. In another embodiment,

the monitoring agent 197 transmits information to the monitoring service 198 upon detection

of an event.

In some embodiments, the monitoring service 198 and/or monitoring agent 197

performs monitoring and performance measurement of any network resource or network

infrastructure element, such as a client, server, server farm, appliance 200, appliance 205, or

network connection. In one embodiment, the monitoring service 198 and/or monitoring

agent 197 performs monitoring and performance measurement of any transport layer

connection, such as a TCP or UDP connection. In another embodiment, the monitoring

service 198 and/or monitoring agent 197 monitors and measures network latency. In yet one

embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures

bandwidth utilization.

In other embodiments, the monitoring service 198 and/or monitoring agent 197

monitors and measures end-user response times. In some embodiments, the monitoring

service 198 performs monitoring and performance measurement of an application. In another

embodiment, the monitoring service 198 and/or monitoring agent 197 performs monitoring

and performance measurement of any session or connection to the application. In one

embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures

performance of a browser. In another embodiment, the monitoring service 198 and/or

monitoring agent 197 monitors and measures performance of HTTP based transactions. In

some embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and

measures performance of a Voice over IP (VoIP) application or session. In other

embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and

measures performance of a remote display protocol application, such as an ICA client or RDP

client. In yet another embodiment, the monitoring service 198 and/or monitoring agent 197

monitors and measures performance of any type and form of streaming media. In still a

further embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and

measures performance of a hosted application or a Software-As-A-Service (SaaS) delivery

model.

In some embodiments, the monitoring service 198 and/or monitoring agent 197

performs monitoring and performance measurement of one or more transactions, requests or

responses related to application. In other embodiments, the monitoring service 198 and/or

monitoring agent 197 monitors and measures any portion of an application layer stack, such

as any .NET or J2EE calls. In one embodiment, the monitoring service 198 and/or

monitoring agent 197 monitors and measures database or SQL transactions. In yet another

embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures

any method, function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or monitoring agent 197 performs

monitoring and performance measurement of a delivery of application and/or data from a

server to a client via one or more appliances, such as appliance 200 and/or appliance 205. In

some embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and

measures performance of delivery of a virtualized application. In other embodiments, the

monitoring service 198 and/or monitoring agent 197 monitors and measures performance of

delivery of a streaming application. In another embodiment, the monitoring service 198

and/or monitoring agent 197 monitors and measures performance of delivery of a desktop

application to a client and/or the execution of the desktop application on the client. In another

embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures

performance of a client/server application.

In one embodiment, the monitoring service 198 and/or monitoring agent 197 is

designed and constructed to provide application performance management for the application

delivery system 190. For example, the monitoring service 198 and/or monitoring agent 197

may monitor, measure and manage the performance of the delivery of applications via the

Citrix Presentation Server. In this example, the monitoring service 198 and/or monitoring

agent 197 monitors individual ICA sessions. The monitoring service 198 and/or monitoring

agent 197 may measure the total and per session system resource usage, as well as application

and networking performance. The monitoring service 198 and/or monitoring agent 197 may

identify the active servers for a given user and/or user session. In some embodiments, the

monitoring service 198 and/or monitoring agent 197 monitors back-end connections between

the application delivery system 190 and an application and/or database server. The

monitoring service 198 and/or monitoring agent 197 may measure network latency, delay and

volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or monitoring agent 197

measures and monitors memory usage for the application delivery system 190, such as total

memory usage, per user session and/or per process. In other embodiments, the monitoring

service 198 and/or monitoring agent 197 measures and monitors CPU usage the application

delivery system 190, such as total CPU usage, per user session and/or per process. In another

embodiments, the monitoring service 198 and/or monitoring agent 197 measures and

monitors the time required to log-in to an application, a server, or the application delivery

system, such as Citrix Presentation Server. In one embodiment, the monitoring service 198

and/or monitoring agent 197 measures and monitors the duration a user is logged into an

application, a server, or the application delivery system 190. In some embodiments, the

monitoring service 198 and/or monitoring agent 197 measures and monitors active and

inactive session counts for an application, server or application delivery system session. In

yet another embodiment, the monitoring service 198 and/or monitoring agent 197 measures

and monitors user session latency.

In yet further embodiments, the monitoring service 198 and/or monitoring agent 197

measures and monitors measures and monitors any type and form of server metrics. In one

embodiment, the monitoring service 198 and/or monitoring agent 197 measures and monitors

metrics related to system memory, CPU usage, and disk storage. In another embodiment, the

monitoring service 198 and/or monitoring agent 197 measures and monitors metrics related to

page faults, such as page faults per second. In other embodiments, the monitoring service

198 and/or monitoring agent 197 measures and monitors round-trip time metrics. In yet

another embodiment, the monitoring service 198 and/or monitoring agent 197 measures and

monitors metrics related to application crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and monitoring agent 198 includes

any of the product embodiments referred to as EdgeSight manufactured by Citrix Systems,

Inc. of Ft. Lauderdale, Florida. In another embodiment, the performance monitoring service

198 and/or monitoring agent 198 includes any portion of the product embodiments referred to

as the TrueView product suite manufactured by the Symphoniq Corporation of Palo Alto,

California. In one embodiment, the performance monitoring service 198 and/or monitoring

agent 198 includes any portion of the product embodiments referred to as the TeaLeaf CX

product suite manufactured by the TeaLeaf Technology Inc. of San Francisco, California. In

other embodiments, the performance monitoring service 198 and/or monitoring agent 198

includes any portion of the business service management products, such as the BMC

Performance Manager and Patrol products, manufactured by BMC Software, Inc. of Houston,

Texas.

The client 102, server 106, and appliance 200 may be deployed as and/or executed on

any type and form of computing device, such as a computer, network device or appliance

capable of communicating on any type and form of network and performing the operations

described herein. FIGs. IE and IF depict block diagrams of a computing device 100 useful

for practicing an embodiment of the client 102, server 106 or appliance 200. As shown in

FIGs. IE and IF, each computing device 100 includes a central processing unit 101, and a

main memory unit 122. As shown in FIG. IE, a computing device 100 may include a visual

display device 124, a keyboard 126 and/or a pointing device 127, such as a mouse. Each

computing device 100 may also include additional optional elements, such as one or more

input/output devices 130a-130b (generally referred to using reference numeral 130), and a

cache memory 140 in communication with the central processing unit 101.

The central processing unit 101 is any logic circuitry that responds to and processes

instructions fetched from the main memory unit 122. In many embodiments, the central

processing unit is provided by a microprocessor unit, such as: those manufactured by Intel

Corporation of Mountain View, California; those manufactured by Motorola Corporation of

Schaumburg, Illinois; those manufactured by Transmeta Corporation of Santa Clara,

California; the RS/6000 processor, those manufactured by International Business Machines

of White Plains, New York; or those manufactured by Advanced Micro Devices of

Sunnyvale, California. The computing device 100 may be based on any of these processors,

or any other processor capable of operating as described herein.

Main memory unit 122 may be one or more memory chips capable of storing data and

allowing any storage location to be directly accessed by the microprocessor 101, such as

Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM),

Dynamic random access memory (DRAM), Fast Page Mode DRAM (FPM DRAM),

Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM), Extended Data

Output DRAM (EDO DRAM), Burst Extended Data Output DRAM (BEDO DRAM),

Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC SRAM, PClOO

SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM),

SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM

(FRAM). The main memory 122 may be based on any of the above described memory chips,

or any other available memory chips capable of operating as described herein. In the

embodiment shown in FIG. IE, the processor 101 communicates with main memory 122 via

a system bus 150 (described in more detail below). FIG. IF depicts an embodiment of a

computing device 100 in which the processor communicates directly with main memory 122

via a memory port 103. For example, in FIG. IF the main memory 122 may be DRDRAM.

FIG. IF depicts an embodiment in which the main processor 101 communicates

directly with cache memory 140 via a secondary bus, sometimes referred to as a backside

bus. In other embodiments, the main processor 101 communicates with cache memory 140

using the system bus 150. Cache memory 140 typically has a faster response time than main

memory 122 and is typically provided by SRAM, BSRAM, or EDRAM. In the embodiment

shown in FIG. IF, the processor 101 communicates with various I/O devices 130 via a local

system bus 150. Various busses may be used to connect the central processing unit 101 to

any of the I/O devices 130, including a VESA VL bus, an ISA bus, an EISA bus, a

MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X bus, a PCI-Express bus, or a

NuBus. For embodiments in which the I/O device is a video display 124, the processor 101

may use an Advanced Graphics Port (AGP) to communicate with the display 124. FIG. IF

depicts an embodiment of a computer 100 in which the main processor 101 communicates

directly with I/O device 130b via HyperTransport, Rapid I/O, or InfiniBand. FIG. IF also

depicts an embodiment in which local busses and direct communication are mixed: the

processor 101 communicates with I/O device 130b using a local interconnect bus while

communicating with I/O device 130a directly.

The computing device 100 may support any suitable installation device 116, such as a

floppy disk drive for receiving floppy disks such as 3 .5-inch, 5 .25-inch disks or ZIP disks, a

CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape drives of various formats, USB

device, hard-drive or any other device suitable for installing software and programs such as

any client agent 120, or portion thereof. The computing device 100 may further comprise a

storage device 128, such as one or more hard disk drives or redundant arrays of independent

disks, for storing an operating system and other related software, and for storing application

software programs such as any program related to the client agent 120. Optionally, any of the

installation devices 116 could also be used as the storage device 128. Additionally, the

operating system and the software can be run from a bootable medium, for example, a

bootable CD, such as KNOPPIX®, a bootable CD for GNU/Linux that is available as a

GNU/Linux distribution from knoppix.net.

Furthermore, the computing device 100 may include a network interface 118 to

interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet

through a variety of connections including, but not limited to, standard telephone lines, LAN

or WAN links (e.g., 802.1 1, Tl, T3, 56kb, X.25), broadband connections (e.g., ISDN, Frame

Relay, ATM), wireless connections, or some combination of any or all of the above. The

network interface 118 may comprise a built-in network adapter, network interface card,

PCMCIA network card, card bus network adapter, wireless network adapter, USB network

adapter, modem or any other device suitable for interfacing the computing device 100 to any

type of network capable of communication and performing the operations described herein.

A wide variety of I/O devices 13Oa- 13On may be present in the computing device 100. Input

devices include keyboards, mice, trackpads, trackballs, microphones, and drawing tablets.

Output devices include video displays, speakers, inkjet printers, laser printers, and dye-

sublimation printers. The I/O devices 130 may be controlled by an I/O controller 123 as

shown in FIG. IE. The I/O controller may control one or more I/O devices such as a

keyboard 126 and a pointing device 127, e.g., a mouse or optical pen. Furthermore, an I/O

device may also provide storage 128 and/or an installation medium 116 for the computing

device 100. In still other embodiments, the computing device 100 may provide USB

connections to receive handheld USB storage devices such as the USB Flash Drive line of

devices manufactured by Twintech Industry, Inc. of Los Alamitos, California.

In some embodiments, the computing device 100 may comprise or be connected to

multiple display devices 124a-124n, which each may be of the same or different type and/or

form. As such, any of the I/O devices 13 Oa- 13On and/or the I/O controller 123 may comprise

any type and/or form of suitable hardware, software, or combination of hardware and

software to support, enable or provide for the connection and use of multiple display devices

124a-124n by the computing device 100. For example, the computing device 100 may

include any type and/or form of video adapter, video card, driver, and/or library to interface,

communicate, connect or otherwise use the display devices 124a-124n. In one embodiment, a

video adapter may comprise multiple connectors to interface to multiple display devices

124a-124n. In other embodiments, the computing device 100 may include multiple video

adapters, with each video adapter connected to one or more of the display devices 124a-124n.

In some embodiments, any portion of the operating system of the computing device 100 may

be configured for using multiple displays 124a-124n. In other embodiments, one or more of

the display devices 124a-124n may be provided by one or more other computing devices,

such as computing devices 100a and 100b connected to the computing device 100, for

example, via a network. These embodiments may include any type of software designed and

constructed to use another computer's display device as a second display device 124a for the

computing device 100. One ordinarily skilled in the art will recognize and appreciate the

various ways and embodiments that a computing device 100 may be configured to have

multiple display devices 124a-124n.

In further embodiments, an I/O device 130 may be a bridge 170 between the system

bus 150 and an external communication bus, such as a USB bus, an Apple Desktop Bus, an

RS-232 serial connection, a SCSI bus, a FireWire bus, a FireWire 800 bus, an Ethernet bus,

an AppleTalk bus, a Gigabit Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI bus,

a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a FibreChannel bus, or a Serial

Attached small computer system interface bus.

A computing device 100 of the sort depicted in FIGs. IE and IF typically operate

under the control of operating systems, which control scheduling of tasks and access to

system resources. The computing device 100 can be running any operating system such as

any of the versions of the Microsoft® Windows operating systems, the different releases of

the Unix and Linux operating systems, any version of the Mac OS® for Macintosh

computers, any embedded operating system, any real-time operating system, any open source

operating system, any proprietary operating system, any operating systems for mobile

computing devices, or any other operating system capable of running on the computing

device and performing the operations described herein. Typical operating systems include:

WINDOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,

WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP, all of which are manufactured by

Microsoft Corporation of Redmond, Washington; MacOS, manufactured by Apple Computer

of Cupertino, California; OS/2, manufactured by International Business Machines of

Armonk, New York; and Linux, a freely-available operating system distributed by Caldera

Corp. of Salt Lake City, Utah, or any type and/or form of a Unix operating system, among

others.

In other embodiments, the computing device 100 may have different processors,

operating systems, and input devices consistent with the device. For example, in one

embodiment the computer 100 is a Treo 180, 270, 1060, 600 or 650 smart phone

manufactured by Palm, Inc. In this embodiment, the Treo smart phone is operated under the

control of the PalmOS operating system and includes a stylus input device as well as a five-

way navigator device. Moreover, the computing device 100 can be any workstation, desktop

computer, laptop or notebook computer, server, handheld computer, mobile telephone, any

other computer, or other form of computing or telecommunications device that is capable of

communication and that has sufficient processor power and memory capacity to perform the

operations described herein.

As shown in FIG. IG, the computing device 100 may comprise multiple processors

and may provide functionality for simultaneous execution of instructions or for simultaneous

execution of one instruction on more than one piece of data. In some embodiments, the

computing device 100 may comprise a parallel processor with one or more cores. In one of

these embodiments, the computing device 100 is a shared memory parallel device, with

multiple processors and/or multiple processor cores, accessing all available memory as a

single global address space. In another of these embodiments, the computing device 100 is a

distributed memory parallel device with multiple processors each accessing local memory

only. In still another of these embodiments, the computing device 100 has both some

memory which is shared and some memory which can only be accessed by particular

processors or subsets of processors. In still even another of these embodiments, the

computing device 100, such as a multi-core microprocessor, combines two or more

independent processors into a single package, often a single integrated circuit (IC). In yet

another of these embodiments, the computing device 100 includes a chip having a CELL

BROADBAND ENGINE architecture and including a Power processor element and a

plurality of synergistic processing elements, the Power processor element and the plurality of

synergistic processing elements linked together by an internal high speed bus, which may be

referred to as an element interconnect bus.

In some embodiments, the processors provide functionality for execution of a single

instruction simultaneously on multiple pieces of data (SIMD). In other embodiments, the

processors provide functionality for execution of multiple instructions simultaneously on

multiple pieces of data (MIMD). In still other embodiments, the processor may use any

combination of SIMD and MIMD cores in a single device.

In some embodiments, the computing device 100 may comprise a graphics processing

unit. In one of these embodiments, depicted in FIG. IH, the computing device 100 includes

at least one central processing unit 101 and at least one graphics processing unit. In another

of these embodiments, the computing device 100 includes at least one parallel processing unit

and at least one graphics processing unit. In still another of these embodiments, the

computing device 100 includes a plurality of processing units of any type, one of the plurality

of processing units comprising a graphics processing unit.

In some embodiments, a first computing device 100a executes an application on

behalf of a user of a client computing device 100b. In other embodiments, a computing

device 100a executes a virtual machine, which provides an execution session within which

applications execute on behalf of a user or a client computing devices 100b. In one of these

embodiments, the execution session is a hosted desktop session. In another of these

embodiments, the computing device 100 executes a terminal services session. The terminal

services session may provide a hosted desktop environment. In still another of these

embodiments, the execution session provides access to a computing environment, which may

comprise one or more of: an application, a plurality of applications, a desktop application,

and a desktop session in which one or more applications may execute.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appliance 200. The architecture of

the appliance 200 in FIG. 2A is provided by way of illustration only and is not intended to be

limiting. As shown in FIG. 2, appliance 200 comprises a hardware layer 206 and a software

layer divided into a user space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon which programs and

services within kernel space 204 and user space 202 are executed. Hardware layer 206 also

provides the structures and elements which allow programs and services within kernel space

204 and user space 202 to communicate data both internally and externally with respect to

appliance 200. As shown in FIG. 2, the hardware layer 206 includes a processing unit 262

for executing software programs and services, a memory 264 for storing software and data,

network ports 266 for transmitting and receiving data over a network, and an encryption

processor 260 for performing functions related to Secure Sockets Layer processing of data

transmitted and received over the network. In some embodiments, the central processing unit

262 may perform the functions of the encryption processor 260 in a single processor.

Additionally, the hardware layer 206 may comprise multiple processors for each of the

processing unit 262 and the encryption processor 260. The processor 262 may include any of

the processors 101 described above in connection with FIGs. IE and IF. For example, in one

embodiment, the appliance 200 comprises a first processor 262 and a second processor 262'.

In other embodiments, the processor 262 or 262' comprises a multi-core processor.

Although the hardware layer 206 of appliance 200 is generally illustrated with an

encryption processor 260, processor 260 may be a processor for performing functions related

to any encryption protocol, such as the Secure Socket Layer (SSL) or Transport Layer

Security (TLS) protocol. In some embodiments, the processor 260 may be a general purpose

processor (GPP), and in further embodiments, may have executable instructions for

performing processing of any security related protocol.

Although the hardware layer 206 of appliance 200 is illustrated with certain elements

in FIG. 2, the hardware portions or components of appliance 200 may comprise any type and

form of elements, hardware or software, of a computing device, such as the computing device

100 illustrated and discussed herein in conjunction with FIGs. IE and IF. In some

embodiments, the appliance 200 may comprise a server, gateway, router, switch, bridge or

other type of computing or network device, and have any hardware and/or software elements

associated therewith.

The operating system of appliance 200 allocates, manages, or otherwise segregates

the available system memory into kernel space 204 and user space 204. In example software

architecture 200, the operating system may be any type and/or form of Unix operating system

although the invention is not so limited. As such, the appliance 200 can be running any

operating system such as any of the versions of the Microsoft® Windows operating systems,

the different releases of the Unix and Linux operating systems, any version of the Mac OS®

for Macintosh computers, any embedded operating system, any network operating system,

any real-time operating system, any open source operating system, any proprietary operating

system, any operating systems for mobile computing devices or network devices, or any other

operating system capable of running on the appliance 200 and performing the operations

described herein.

The kernel space 204 is reserved for running the kernel 230, including any device

drivers, kernel extensions or other kernel related software. As known to those skilled in the

art, the kernel 230 is the core of the operating system, and provides access, control, and

management of resources and hardware-related elements of the application 104. In

accordance with an embodiment of the appliance 200, the kernel space 204 also includes a

number of network services or processes working in conjunction with a cache manager 232,

sometimes also referred to as the integrated cache, the benefits of which are described in

detail further herein. Additionally, the embodiment of the kernel 230 will depend on the

embodiment of the operating system installed, configured, or otherwise used by the device

200.

In one embodiment, the device 200 comprises one network stack 267, such as a

TCP/IP based stack, for communicating with the client 102 and/or the server 106. In one

embodiment, the network stack 267 is used to communicate with a first network, such as

network 108, and a second network 110. In some embodiments, the device 200 terminates a

first transport layer connection, such as a TCP connection of a client 102, and establishes a

second transport layer connection to a server 106 for use by the client 102, e.g., the second

transport layer connection is terminated at the appliance 200 and the server 106. The first

and second transport layer connections may be established via a single network stack 267. In

other embodiments, the device 200 may comprise multiple network stacks, for example 267

and 267', and the first transport layer connection may be established or terminated at one

network stack 267, and the second transport layer connection on the second network stack

267'. For example, one network stack may be for receiving and transmitting network packet

on a first network, and another network stack for receiving and transmitting network packets

on a second network. In one embodiment, the network stack 267 comprises a buffer 243 for

queuing one or more network packets for transmission by the appliance 200.

As shown in FIG. 2, the kernel space 204 includes the cache manager 232, a high

speed layer 2-7 integrated packet engine 240, an encryption engine 234, a policy engine 236

and multi-protocol compression logic 238. Running these components or processes 232,

240, 234, 236 and 238 in kernel space 204 or kernel mode instead of the user space 202

improves the performance of each of these components, alone and in combination. Kernel

operation means that these components or processes 232, 240, 234, 236 and 238 run in the

core address space of the operating system of the device 200. For example, running the

encryption engine 234 in kernel mode improves encryption performance by moving

encryption and decryption operations to the kernel, thereby reducing the number of

transitions between the memory space or a kernel thread in kernel mode and the memory

space or a thread in user mode. For example, data obtained in kernel mode may not need to

be passed or copied to a process or thread running in user mode, such as from a kernel level

data structure to a user level data structure. In another aspect, the number of context switches

between kernel mode and user mode are also reduced. Additionally, synchronization of and

communications between any of the components or processes 232, 240, 235, 236 and 238 can

be performed more efficiently in the kernel space 204.

In some embodiments, any portion of the components 232, 240, 234, 236 and 238

may run or operate in the kernel space 204, while other portions of these components 232,

240, 234, 236 and 238 may run or operate in user space 202. In one embodiment, the

appliance 200 uses a kernel-level data structure providing access to any portion of one or

more network packets, for example, a network packet comprising a request from a client 102

or a response from a server 106. In some embodiments, the kernel-level data structure may

be obtained by the packet engine 240 via a transport layer driver interface or filter to the

network stack 267. The kernel-level data structure may comprise any interface and/or data

accessible via the kernel space 204 related to the network stack 267, network traffic or

packets received or transmitted by the network stack 267. In other embodiments, the kernel-

level data structure may be used by any of the components or processes 232, 240, 234, 236

and 238 to perform the desired operation of the component or process. In one embodiment, a

component 232, 240, 234, 236 and 238 is running in kernel mode 204 when using the kernel-

level data structure, while in another embodiment, the component 232, 240, 234, 236 and 238

is running in user mode when using the kernel-level data structure. In some embodiments,

the kernel-level data structure may be copied or passed to a second kernel-level data

structure, or any desired user-level data structure.

The cache manager 232 may comprise software, hardware or any combination of

software and hardware to provide cache access, control and management of any type and

form of content, such as objects or dynamically generated objects served by the originating

servers 106. The data, objects or content processed and stored by the cache manager 232

may comprise data in any format, such as a markup language, or communicated via any

protocol. In some embodiments, the cache manager 232 duplicates original data stored

elsewhere or data previously computed, generated or transmitted, in which the original data

may require longer access time to fetch, compute or otherwise obtain relative to reading a

cache memory element. Once the data is stored in the cache memory element, future use can

be made by accessing the cached copy rather than refetching or recomputing the original

data, thereby reducing the access time. In some embodiments, the cache memory element

may comprise a data object in memory 264 of device 200. In other embodiments, the cache

memory element may comprise memory having a faster access time than memory 264. In

another embodiment, the cache memory element may comprise any type and form of storage

element of the device 200, such as a portion of a hard disk. In some embodiments, the

processing unit 262 may provide cache memory for use by the cache manager 232. In yet

further embodiments, the cache manager 232 may use any portion and combination of

memory, storage, or the processing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic, functions, rules, or

operations to perform any embodiments of the techniques of the appliance 200 described

herein. For example, the cache manager 232 includes logic or functionality to invalidate

objects based on the expiration of an invalidation time period or upon receipt of an

invalidation command from a client 102 or server 106. In some embodiments, the cache

manager 232 may operate as a program, service, process or task executing in the kernel space

204, and in other embodiments, in the user space 202. In one embodiment, a first portion of

the cache manager 232 executes in the user space 202 while a second portion executes in the

kernel space 204. In some embodiments, the cache manager 232 can comprise any type of

general purpose processor (GPP), or any other type of integrated circuit, such as a Field

Programmable Gate Array (FPGA), Programmable Logic Device (PLD), or Application

Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an intelligent statistical engine or

other programmable application(s). In one embodiment, the policy engine 236 provides a

configuration mechanism to allow a user to identify, specify, define or configure a caching

policy. Policy engine 236, in some embodiments, also has access to memory to support data

structures such as lookup tables or hash tables to enable user-selected caching policy

decisions. In other embodiments, the policy engine 236 may comprise any logic, rules,

functions or operations to determine and provide access, control and management of objects,

data or content being cached by the appliance 200 in addition to access, control and

management of security, network traffic, network access, compression or any other function

or operation performed by the appliance 200. Further examples of specific caching policies

are further described herein.

The encryption engine 234 comprises any logic, business rules, functions or

operations for handling the processing of any security related protocol, such as SSL or TLS,

or any function related thereto. For example, the encryption engine 234 encrypts and

decrypts network packets, or any portion thereof, communicated via the appliance 200. The

encryption engine 234 may also setup or establish SSL or TLS connections on behalf of the

client 102a-102n, server 106a-106n, or appliance 200. As such, the encryption engine 234

provides offloading and acceleration of SSL processing. In one embodiment, the encryption

engine 234 uses a tunneling protocol to provide a virtual private network between a client

102a-102n and a server 106a-106n. In some embodiments, the encryption engine 234 is in

communication with the Encryption processor 260. In other embodiments, the encryption

engine 234 comprises executable instructions running on the Encryption processor 260.

The multi-protocol compression engine 238 comprises any logic, business rules,

function or operations for compressing one or more protocols of a network packet, such as

any of the protocols used by the network stack 267 of the device 200. In one embodiment,

multi-protocol compression engine 238 compresses bi-directionally between clients 102a-

102n and servers 106a-106n any TCP/IP based protocol, including Messaging Application

Programming Interface (MAPI) (email), File Transfer Protocol (FTP), HyperText Transfer

Protocol (HTTP), Common Internet File System (CIFS) protocol (file transfer), Independent

Computing Architecture (ICA) protocol, Remote Desktop Protocol (RDP), Wireless

Application Protocol (WAP), Mobile IP protocol, and Voice Over IP (VoIP) protocol. In

other embodiments, multi-protocol compression engine 238 provides compression of

Hypertext Markup Language (HTML) based protocols and in some embodiments, provides

compression of any markup languages, such as the Extensible Markup Language (XML). In

one embodiment, the multi-protocol compression engine 238 provides compression of any

high-performance protocol, such as any protocol designed for appliance 200 to appliance 200

communications. In another embodiment, the multi-protocol compression engine 238

compresses any payload of or any communication using a modified transport control

protocol, such as Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-

SACK), TCP with large windows (TCP-LW), a congestion prediction protocol such as the

TCP-Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238 accelerates performance for users

accessing applications via desktop clients, e.g., Microsoft Outlook and non-Web thin clients,

such as any client launched by popular enterprise applications like Oracle, SAP and Siebel,

and even mobile clients, such as the Pocket PC. In some embodiments, the multi-protocol

compression engine 238 by executing in the kernel mode 204 and integrating with packet

processing engine 240 accessing the network stack 267 is able to compress any of the

protocols carried by the TCP/IP protocol, such as any application layer protocol.

High speed layer 2-7 integrated packet engine 240, also generally referred to as a

packet processing engine or packet engine, is responsible for managing the kernel-level

processing of packets received and transmitted by appliance 200 via network ports 266. The

high speed layer 2-7 integrated packet engine 240 may comprise a buffer for queuing one or

more network packets during processing, such as for receipt of a network packet or

transmission of a network packet. Additionally, the high speed layer 2-7 integrated packet

engine 240 is in communication with one or more network stacks 267 to send and receive

network packets via network ports 266. The high speed layer 2-7 integrated packet engine

240 works in conjunction with encryption engine 234, cache manager 232, policy engine 236

and multi-protocol compression logic 238. In particular, encryption engine 234 is configured

to perform SSL processing of packets, policy engine 236 is configured to perform functions

related to traffic management such as request-level content switching and request-level cache

redirection, and multi-protocol compression logic 238 is configured to perform functions

related to compression and decompression of data.

The high speed layer 2-7 integrated packet engine 240 includes a packet processing

timer 242. In one embodiment, the packet processing timer 242 provides one or more time

intervals to trigger the processing of incoming, i.e., received, or outgoing, i.e., transmitted,

network packets. In some embodiments, the high speed layer 2-7 integrated packet engine

240 processes network packets responsive to the timer 242. The packet processing timer 242

provides any type and form of signal to the packet engine 240 to notify, trigger, or

communicate a time related event, interval or occurrence. In many embodiments, the packet

processing timer 242 operates in the order of milliseconds, such as for example 100ms, 50ms

or 25ms. For example, in some embodiments, the packet processing timer 242 provides time

intervals or otherwise causes a network packet to be processed by the high speed layer 2-7

integrated packet engine 240 at a 10 ms time interval, while in other embodiments, at a 5 ms

time interval, and still yet in further embodiments, as short as a 3, 2, or 1 ms time interval.

The high speed layer 2-7 integrated packet engine 240 may be interfaced, integrated or in

communication with the encryption engine 234, cache manager 232, policy engine 236 and

multi-protocol compression engine 238 during operation. As such, any of the logic,

functions, or operations of the encryption engine 234, cache manager 232, policy engine 236

and multi-protocol compression logic 238 may be performed responsive to the packet

processing timer 242 and/or the packet engine 240. Therefore, any of the logic, functions, or

operations of the encryption engine 234, cache manager 232, policy engine 236 and multi

protocol compression logic 238 may be performed at the granularity of time intervals

provided via the packet processing timer 242, for example, at a time interval of less than or

equal to 10ms. For example, in one embodiment, the cache manager 232 may perform

invalidation of any cached objects responsive to the high speed layer 2-7 integrated packet

engine 240 and/or the packet processing timer 242. In another embodiment, the expiry or

invalidation time of a cached object can be set to the same order of granularity as the time

interval of the packet processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the memory area or portion of the

operating system used by user mode applications or programs otherwise running in user

mode. A user mode application may not access kernel space 204 directly and uses service

calls in order to access kernel services. As shown in FIG. 2, user space 202 of appliance 200

includes a graphical user interface (GUI) 210, a command line interface (CLI) 212, shell

services 214, health monitoring program 216, and daemon services 218. GUI 210 and CLI

212 provide a means by which a system administrator or other user can interact with and

control the operation of appliance 200, such as via the operating system of the appliance 200.

The GUI 210 or CLI 212 can comprise code running in user space 202 or kernel space 204.

The GUI 210 may be any type and form of graphical user interface and may be presented via

text, graphical or otherwise, by any type of program or application, such as a browser. The

CLI 212 may be any type and form of command line or text-based interface, such as a

command line provided by the operating system. For example, the CLI 212 may comprise a

shell, which is a tool to enable users to interact with the operating system. In some

embodiments, the CLI 212 may be provided via a bash, csh, tcsh, or ksh type shell. The shell

services 214 comprises the programs, services, tasks, processes or executable instructions to

support interaction with the appliance 200 or operating system by a user via the GUI 210

and/or CLI 212.

Health monitoring program 216 is used to monitor, check, report and ensure that

network systems are functioning properly and that users are receiving requested content over

a network. Health monitoring program 216 comprises one or more programs, services, tasks,

processes or executable instructions to provide logic, rules, functions or operations for

monitoring any activity of the appliance 200. In some embodiments, the health monitoring

program 216 intercepts and inspects any network traffic passed via the appliance 200. In

other embodiments, the health monitoring program 216 interfaces by any suitable means

and/or mechanisms with one or more of the following: the encryption engine 234, cache

manager 232, policy engine 236, multi-protocol compression logic 238, packet engine 240,

daemon services 218, and shell services 214. As such, the health monitoring program 216

may call any application programming interface (API) to determine a state, status, or health

of any portion of the appliance 200. For example, the health monitoring program 216 may

ping or send a status inquiry on a periodic basis to check if a program, process, service or task

is active and currently running. In another example, the health monitoring program 216 may

check any status, error or history logs provided by any program, process, service or task to

determine any condition, status or error with any portion of the appliance 200.

Daemon services 218 are programs that run continuously or in the background and

handle periodic service requests received by appliance 200. In some embodiments, a daemon

service may forward the requests to other programs or processes, such as another daemon

service 218 as appropriate. As known to those skilled in the art, a daemon service 218 may

run unattended to perform continuous or periodic system wide functions, such as network

control, or to perform any desired task. In some embodiments, one or more daemon services

218 run in the user space 202, while in other embodiments, one or more daemon services 218

run in the kernel space.

Referring now to FIG. 2B, another embodiment of the appliance 200 is depicted. In

brief overview, the appliance 200 provides one or more of the following services,

functionality or operations: SSL VPN connectivity 280, switching/load balancing 284,

Domain Name Service resolution 286, acceleration 288 and an application firewall 290 for

communications between one or more clients 102 and one or more servers 106. Each of the

servers 106 may provide one or more network related services 270a-270n (referred to as

services 270). For example, a server 106 may provide an http service 270. The appliance

200 comprises one or more virtual servers or virtual internet protocol servers, referred to as a

vServer, VIP server, or just VIP 275a-275n (also referred herein as vServer 275). The

vServer 275 receives, intercepts or otherwise processes communications between a client 102

and a server 106 in accordance with the configuration and operations of the appliance 200.

The vServer 275 may comprise software, hardware or any combination of software

and hardware. The vServer 275 may comprise any type and form of program, service, task,

process or executable instructions operating in user mode 202, kernel mode 204 or any

combination thereof in the appliance 200. The vServer 275 includes any logic, functions,

rules, or operations to perform any embodiments of the techniques described herein, such as

SSL VPN 280, switching/load balancing 284, Domain Name Service resolution 286,

acceleration 288 and an application firewall 290. In some embodiments, the vServer 275

establishes a connection to a service 270 of a server 106. The service 275 may comprise any

program, application, process, task or set of executable instructions capable of connecting to

and communicating to the appliance 200, client 102 or vServer 275. For example, the service

275 may comprise a web server, http server, ftp, email or database server. In some

embodiments, the service 270 is a daemon process or network driver for listening, receiving

and/or sending communications for an application, such as email, database or an enterprise

application. In some embodiments, the service 270 may communicate on a specific IP

address, or IP address and port.

In some embodiments, the vServer 275 applies one or more policies of the policy

engine 236 to network communications between the client 102 and server 106. In one

embodiment, the policies are associated with a vServer 275. In another embodiment, the

policies are based on a user, or a group of users. In yet another embodiment, a policy is

global and applies to one or more vServers 275a-275n, and any user or group of users

communicating via the appliance 200. In some embodiments, the policies of the policy

engine have conditions upon which the policy is applied based on any content of the

communication, such as internet protocol address, port, protocol type, header or fields in a

packet, or the context of the communication, such as user, group of the user, vServer 275,

transport layer connection, and/or identification or attributes of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or interfaces with the policy

engine 236 to determine authentication and/or authorization of a remote user or a remote

client 102 to access the computing environment 15, application, and/or data file from a server

106. In another embodiment, the appliance 200 communicates or interfaces with the policy

engine 236 to determine authentication and/or authorization of a remote user or a remote

client 102 to have the application delivery system 190 deliver one or more of the computing

environment 15, application, and/or data file. In yet another embodiment, the appliance 200

establishes a VPN or SSL VPN connection based on the policy engine's 236 authentication

and/or authorization of a remote user or a remote client 102 In one embodiment, the

appliance 200 controls the flow of network traffic and communication sessions based on

policies of the policy engine 236. For example, the appliance 200 may control the access to

a computing environment 15, application or data file based on the policy engine 236.

In some embodiments, the vServer 275 establishes a transport layer connection, such

as a TCP or UDP connection with a client 102 via the client agent 120. In one embodiment,

the vServer 275 listens for and receives communications from the client 102. In other

embodiments, the vServer 275 establishes a transport layer connection, such as a TCP or

UDP connection with a client server 106. In one embodiment, the vServer 275 establishes

the transport layer connection to an internet protocol address and port of a server 270 running

on the server 106. In another embodiment, the vServer 275 associates a first transport layer

connection to a client 102 with a second transport layer connection to the server 106. In

some embodiments, a vServer 275 establishes a pool of transport layer connections to a

server 106 and multiplexes client requests via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL VPN connection 280

between a client 102 and a server 106. For example, a client 102 on a first network 102

requests to establish a connection to a server 106 on a second network 104'. In some

embodiments, the second network 104' is not routable from the first network 104. In other

embodiments, the client 102 is on a public network 104 and the server 106 is on a private

network 104', such as a corporate network. In one embodiment, the client agent 120

intercepts communications of the client 102 on the first network 104, encrypts the

communications, and transmits the communications via a first transport layer connection to

the appliance 200. The appliance 200 associates the first transport layer connection on the

first network 104 to a second transport layer connection to the server 106 on the second

network 104. The appliance 200 receives the intercepted communication from the client

agent 102, decrypts the communications, and transmits the communication to the server 106

on the second network 104 via the second transport layer connection. The second transport

layer connection may be a pooled transport layer connection. As such, the appliance 200

provides an end-to-end secure transport layer connection for the client 102 between the two

networks 104, 104'.

In one embodiment, the appliance 200 hosts an intranet internet protocol or IntranetIP

282 address of the client 102 on the virtual private network 104. The client 102 has a local

network identifier, such as an internet protocol (IP) address and/or host name on the first

network 104. When connected to the second network 104' via the appliance 200, the

appliance 200 establishes, assigns or otherwise provides an IntranetIP address 282, which is a

network identifier, such as IP address and/or host name, for the client 102 on the second

network 104'. The appliance 200 listens for and receives on the second or private network

104' for any communications directed towards the client 102 using the client's established

IntranetIP 282. In one embodiment, the appliance 200 acts as or on behalf of the client 102 on

the second private network 104. For example, in another embodiment, a vServer 275 listens

for and responds to communications to the IntranetIP 282 of the client 102. In some

embodiments, if a computing device 100 on the second network 104' transmits a request, the

appliance 200 processes the request as if it were the client 102. For example, the appliance

200 may respond to a ping to the client's IntranetIP 282. In another example, the appliance

may establish a connection, such as a TCP or UDP connection, with computing device 100

on the second network 104 requesting a connection with the client's IntranetIP 282.

In some embodiments, the appliance 200 provides one or more of the following

acceleration techniques 288 to communications between the client 102 and server 106: 1)

compression; 2) decompression; 3) Transmission Control Protocol pooling; 4) Transmission

Control Protocol multiplexing; 5) Transmission Control Protocol buffering; and 6) caching.

In one embodiment, the appliance 200 relieves servers 106 of much of the processing load

caused by repeatedly opening and closing transport layers connections to clients 102 by

opening one or more transport layer connections with each server 106 and maintaining these

connections to allow repeated data accesses by clients via the Internet. This technique is

referred to herein as "connection pooling".

In some embodiments, in order to seamlessly splice communications from a client

102 to a server 106 via a pooled transport layer connection, the appliance 200 translates or

multiplexes communications by modifying sequence number and acknowledgment numbers

at the transport layer protocol level. This is referred to as "connection multiplexing". In

some embodiments, no application layer protocol interaction is required. For example, in the

case of an in-bound packet (that is, a packet received from a client 102), the source network

address of the packet is changed to that of an output port of appliance 200, and the destination

network address is changed to that of the intended server. In the case of an outbound packet

(that is, one received from a server 106), the source network address is changed from that of

the server 106 to that of an output port of appliance 200 and the destination address is

changed from that of appliance 200 to that of the requesting client 102. The sequence

numbers and acknowledgment numbers of the packet are also translated to sequence numbers

and acknowledgement numbers expected by the client 102 on the appliance's 200 transport

layer connection to the client 102. In some embodiments, the packet checksum of the

transport layer protocol is recalculated to account for these translations.

In another embodiment, the appliance 200 provides switching or load-balancing

functionality 284 for communications between the client 102 and server 106. In some

embodiments, the appliance 200 distributes traffic and directs client requests to a server 106

based on layer 4 or application-layer request data. In one embodiment, although the network

layer or layer 2 of the network packet identifies a destination server 106, the appliance 200

determines the server 106 to distribute the network packet by application information and

data carried as payload of the transport layer packet. In one embodiment, the health

monitoring programs 216 of the appliance 200 monitor the health of servers to determine the

server 106 for which to distribute a client's request. In some embodiments, if the appliance

200 detects a server 106 is not available or has a load over a predetermined threshold, the

appliance 200 can direct or distribute client requests to another server 106.

In some embodiments, the appliance 200 acts as a Domain Name Service (DNS)

resolver or otherwise provides resolution of a DNS request from clients 102. In some

embodiments, the appliance intercepts a DNS request transmitted by the client 102. In one

embodiment, the appliance 200 responds to a client's DNS request with an IP address of or

hosted by the appliance 200. In this embodiment, the client 102 transmits network

communication for the domain name to the appliance 200. In another embodiment, the

appliance 200 responds to a client's DNS request with an IP address of or hosted by a second

appliance 200'. In some embodiments, the appliance 200 responds to a client's DNS request

with an IP address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides application firewall

functionality 290 for communications between the client 102 and server 106. In one

embodiment, the policy engine 236 provides rules for detecting and blocking illegitimate

requests. In some embodiments, the application firewall 290 protects against denial of

service (DoS) attacks. In other embodiments, the appliance inspects the content of intercepted

requests to identify and block application-based attacks. In some embodiments, the

rules/policy engine 236 comprises one or more application firewall or security control

policies for providing protections against various classes and types of web or Internet based

vulnerabilities, such as one or more of the following: 1) buffer overflow, 2) CGI-BIN

parameter manipulation, 3) form/hidden field manipulation, 4) forceful browsing, 5) cookie

or session poisoning, 6) broken access control list (ACLs) or weak passwords, 7) cross-site

scripting (XSS), 8) command injection, 9) SQL injection, 10) error triggering sensitive

information leak, 11) insecure use of cryptography, 12) server misconf ϊguration, 13) back

doors and debug options, 14) website defacement, 15) platform or operating systems

vulnerabilities, and 16) zero-day exploits. In an embodiment, the application firewall 290

provides HTML form field protection in the form of inspecting or analyzing the network

communication for one or more of the following: 1) required fields are returned, 2) no added

field allowed, 3) read-only and hidden field enforcement, 4) drop-down list and radio button

field conformance, and 5) form-field max-length enforcement. In some embodiments, the

application firewall 290 ensures cookies are not modified. In other embodiments, the

application firewall 290 protects against forceful browsing by enforcing legal URLs.

In still yet other embodiments, the application firewall 290 protects any confidential

information contained in the network communication. The application firewall 290 may

inspect or analyze any network communication in accordance with the rules or polices of the

engine 236 to identify any confidential information in any field of the network packet. In

some embodiments, the application firewall 290 identifies in the network communication one

or more occurrences of a credit card number, password, social security number, name, patient

code, contact information, and age. The encoded portion of the network communication may

comprise these occurrences or the confidential information. Based on these occurrences, in

one embodiment, the application firewall 290 may take a policy action on the network

communication, such as prevent transmission of the network communication. In another

embodiment, the application firewall 290 may rewrite, remove or otherwise mask such

identified occurrence or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a performance monitoring

agent 197 as discussed above in conjunction with FIG. ID. In one embodiment, the

appliance 200 receives the monitoring agent 197 from the monitoring service 198 or

monitoring server 106 as depicted in FIG. ID. In some embodiments, the appliance 200

stores the monitoring agent 197 in storage, such as disk, for delivery to any client or server in

communication with the appliance 200. For example, in one embodiment, the appliance 200

transmits the monitoring agent 197 to a client upon receiving a request to establish a transport

layer connection. In other embodiments, the appliance 200 transmits the monitoring agent

197 upon establishing the transport layer connection with the client 102. In another

embodiment, the appliance 200 transmits the monitoring agent 197 to the client upon

intercepting or detecting a request for a web page. In yet another embodiment, the appliance

200 transmits the monitoring agent 197 to a client or a server in response to a request from

the monitoring server 198. In one embodiment, the appliance 200 transmits the monitoring

agent 197 to a second appliance 200' or appliance 205.

In other embodiments, the appliance 200 executes the monitoring agent 197. In one

embodiment, the monitoring agent 197 measures and monitors the performance of any

application, program, process, service, task or thread executing on the appliance 200. For

example, the monitoring agent 197 may monitor and measure performance and operation of

vServers 275A-275N. In another embodiment, the monitoring agent 197 measures and

monitors the performance of any transport layer connections of the appliance 200. In some

embodiments, the monitoring agent 197 measures and monitors the performance of any user

sessions traversing the appliance 200. In one embodiment, the monitoring agent 197

measures and monitors the performance of any virtual private network connections and/or

sessions traversing the appliance 200, such an SSL VPN session. In still further

embodiments, the monitoring agent 197 measures and monitors the memory, CPU and disk

usage and performance of the appliance 200. In yet another embodiment, the monitoring

agent 197 measures and monitors the performance of any acceleration technique 288

performed by the appliance 200, such as SSL offloading, connection pooling and

multiplexing, caching, and compression. In some embodiments, the monitoring agent 197

measures and monitors the performance of any load balancing and/or content switching 284

performed by the appliance 200. In other embodiments, the monitoring agent 197 measures

and monitors the performance of application firewall 290 protection and processing

performed by the appliance 200.

C. Client Agent

Referring now to FIG. 3, an embodiment of the client agent 120 is depicted. The

client 102 includes a client agent 120 for establishing and exchanging communications with

the appliance 200 and/or server 106 via a network 104. In brief overview, the client 102

operates on computing device 100 having an operating system with a kernel mode 302 and a

user mode 303, and a network stack 310 with one or more layers 310a-3 10b. The client 102

may have installed and/or execute one or more applications. In some embodiments, one or

more applications may communicate via the network stack 310 to a network 104. One of the

applications, such as a web browser, may also include a first program 322. For example, the

first program 322 may be used in some embodiments to install and/or execute the client agent

120, or any portion thereof. The client agent 120 includes an interception mechanism, or

interceptor 350, for intercepting network communications from the network stack 310 from

the one or more applications.

The network stack 310 of the client 102 may comprise any type and form of software,

or hardware, or any combinations thereof, for providing connectivity to and communications

with a network. In one embodiment, the network stack 310 comprises a software

implementation for a network protocol suite. The network stack 310 may comprise one or

more network layers, such as any networks layers of the Open Systems Interconnection (OSI)

communications model as those skilled in the art recognize and appreciate. As such, the

network stack 310 may comprise any type and form of protocols for any of the following

layers of the OSI model: 1) physical link layer, 2) data link layer, 3) network layer, 4)

transport layer, 5) session layer, 6) presentation layer, and 7) application layer. In one

embodiment, the network stack 310 may comprise a transport control protocol (TCP) over the

network layer protocol of the internet protocol (IP), generally referred to as TCP/IP. In some

embodiments, the TCP/IP protocol may be carried over the Ethernet protocol, which may

comprise any of the family of IEEE wide-area-network (WAN) or local-area-network (LAN)

protocols, such as those protocols covered by the IEEE 802.3. In some embodiments, the

network stack 310 comprises any type and form of a wireless protocol, such as IEEE 802.1 1

and/or mobile internet protocol.

In view of a TCP/IP based network, any TCP/IP based protocol may be used,

including Messaging Application Programming Interface (MAPI) (email), File Transfer

Protocol (FTP), HyperText Transfer Protocol (HTTP), Common Internet File System (CIFS)

protocol (file transfer), Independent Computing Architecture (ICA) protocol, Remote

Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and

Voice Over IP (VoIP) protocol. In another embodiment, the network stack 310 comprises

any type and form of transport control protocol, such as a modified transport control protocol,

for example a Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-

SACK), TCP with large windows (TCP-LW), a congestion prediction protocol such as the

TCP-Vegas protocol, and a TCP spoofing protocol. In other embodiments, any type and

form of user datagram protocol (UDP), such as UDP over IP, may be used by the network

stack 310, such as for voice communications or real-time data communications.

Furthermore, the network stack 310 may include one or more network drivers

supporting the one or more layers, such as a TCP driver or a network layer driver. The

network drivers may be included as part of the operating system of the computing device 100

or as part of any network interface cards or other network access components of the

computing device 100. In some embodiments, any of the network drivers of the network

stack 310 may be customized, modified or adapted to provide a custom or modified portion

of the network stack 310 in support of any of the techniques described herein. In other

embodiments, the acceleration program 302 is designed and constructed to operate with or

work in conjunction with the network stack 310 installed or otherwise provided by the

operating system of the client 102.

The network stack 310 comprises any type and form of interfaces for receiving,

obtaining, providing or otherwise accessing any information and data related to network

communications of the client 102. In one embodiment, an interface to the network stack 310

comprises an application programming interface (API). The interface may also comprise any

function call, hooking or filtering mechanism, event or call back mechanism, or any type of

interfacing technique. The network stack 310 via the interface may receive or provide any

type and form of data structure, such as an object, related to functionality or operation of the

network stack 310. For example, the data structure may comprise information and data

related to a network packet or one or more network packets. In some embodiments, the data

structure comprises a portion of the network packet processed at a protocol layer of the

network stack 310, such as a network packet of the transport layer. In some embodiments,

the data structure 325 comprises a kernel-level data structure, while in other embodiments,

the data structure 325 comprises a user-mode data structure. A kernel-level data structure

may comprise a data structure obtained or related to a portion of the network stack 310

operating in kernel-mode 302, or a network driver or other software running in kernel-mode

302, or any data structure obtained or received by a service, process, task, thread or other

executable instructions running or operating in kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may execute or operate in

kernel-mode 302, for example, the data link or network layer, while other portions execute or

operate in user-mode 303, such as an application layer of the network stack 310. For

example, a first portion 310a of the network stack may provide user-mode access to the

network stack 310 to an application while a second portion 310a of the network stack 310

provides access to a network. In some embodiments, a first portion 310a of the network stack

may comprise one or more upper layers of the network stack 310, such as any of layers 5-7.

In other embodiments, a second portion 310b of the network stack 310 comprises one or

more lower layers, such as any of layers 1-4. Each of the first portion 310a and second

portion 310b of the network stack 310 may comprise any portion of the network stack 310, at

any one or more network layers, in user-mode 203, kernel-mode, 202, or combinations

thereof, or at any portion of a network layer or interface point to a network layer or any

portion of or interface point to the user-mode 203 and kernel-mode 203. .

The interceptor 350 may comprise software, hardware, or any combination of

software and hardware. In one embodiment, the interceptor 350 intercept a network

communication at any point in the network stack 310, and redirects or transmits the network

communication to a destination desired, managed or controlled by the interceptor 350 or

client agent 120. For example, the interceptor 350 may intercept a network communication

of a network stack 310 of a first network and transmit the network communication to the

appliance 200 for transmission on a second network 104. In some embodiments, the

interceptor 350 comprises any type interceptor 350 comprises a driver, such as a network

driver constructed and designed to interface and work with the network stack 310. In some

embodiments, the client agent 120 and/or interceptor 350 operates at one or more layers of

the network stack 310, such as at the transport layer. In one embodiment, the interceptor 350

comprises a filter driver, hooking mechanism, or any form and type of suitable network

driver interface that interfaces to the transport layer of the network stack, such as via the

transport driver interface (TDI). In some embodiments, the interceptor 350 interfaces to a

first protocol layer, such as the transport layer and another protocol layer, such as any layer

above the transport protocol layer, for example, an application protocol layer. In one

embodiment, the interceptor 350 may comprise a driver complying with the Network Driver

Interface Specification (NDIS), or a NDIS driver. In another embodiment, the interceptor

350 may comprise a mini-filter or a mini-port driver. In one embodiment, the interceptor 350,

or portion thereof, operates in kernel-mode 202. In another embodiment, the interceptor 350,

or portion thereof, operates in user-mode 203. In some embodiments, a portion of the

interceptor 350 operates in kernel-mode 202 while another portion of the interceptor 350

operates in user-mode 203. In other embodiments, the client agent 120 operates in user-mode

203 but interfaces via the interceptor 350 to a kernel-mode driver, process, service, task or

portion of the operating system, such as to obtain a kernel-level data structure 225. In further

embodiments, the interceptor 350 is a user-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any transport layer connection

requests. In these embodiments, the interceptor 350 execute transport layer application

programming interface (API) calls to set the destination information, such as destination IP

address and/or port to a desired location for the location. In this manner, the interceptor 350

intercepts and redirects the transport layer connection to a IP address and port controlled or

managed by the interceptor 350 or client agent 120. In one embodiment, the interceptor 350

sets the destination information for the connection to a local IP address and port of the client

102 on which the client agent 120 is listening. For example, the client agent 120 may

comprise a proxy service listening on a local IP address and port for redirected transport layer

communications. In some embodiments, the client agent 120 then communicates the

redirected transport layer communication to the appliance 200.

In some embodiments, the interceptor 350 intercepts a Domain Name Service (DNS)

request. In one embodiment, the client agent 120 and/or interceptor 350 resolves the DNS

request. In another embodiment, the interceptor transmits the intercepted DNS request to the

appliance 200 for DNS resolution. In one embodiment, the appliance 200 resolves the DNS

request and communicates the DNS response to the client agent 120. In some embodiments,

the appliance 200 resolves the DNS request via another appliance 200' or a DNS server 106.

In yet another embodiment, the client agent 120 may comprise two agents 120 and

120'. In one embodiment, a first agent 120 may comprise an interceptor 350 operating at the

network layer of the network stack 310. In some embodiments, the first agent 120 intercepts

network layer requests such as Internet Control Message Protocol (ICMP) requests (e.g., ping

and traceroute). In other embodiments, the second agent 120' may operate at the transport

layer and intercept transport layer communications. In some embodiments, the first agent

120 intercepts communications at one layer of the network stack 210 and interfaces with or

communicates the intercepted communication to the second agent 120'.

The client agent 120 and/or interceptor 350 may operate at or interface with a protocol

layer in a manner transparent to any other protocol layer of the network stack 310. For

example, in one embodiment, the interceptor 350 operates or interfaces with the transport

layer of the network stack 310 transparently to any protocol layer below the transport layer,

such as the network layer, and any protocol layer above the transport layer, such as the

session, presentation or application layer protocols. This allows the other protocol layers of

the network stack 310 to operate as desired and without modification for using the interceptor

350. As such, the client agent 120 and/or interceptor 350 can interface with the transport

layer to secure, optimize, accelerate, route or load-balance any communications provided via

any protocol carried by the transport layer, such as any application layer protocol over

TCP/IP.

Furthermore, the client agent 120 and/or interceptor may operate at or interface with

the network stack 310 in a manner transparent to any application, a user of the client 102, and

any other computing device, such as a server, in communications with the client 102. The

client agent 120 and/or interceptor 350 may be installed and/or executed on the client 102 in a

manner without modification of an application. In some embodiments, the user of the client

102 or a computing device in communications with the client 102 are not aware of the

existence, execution or operation of the client agent 120 and/or interceptor 350. As such, in

some embodiments, the client agent 120 and/or interceptor 350 is installed, executed, and/or

operated transparently to an application, user of the client 102, another computing device,

such as a server, or any of the protocol layers above and/or below the protocol layer

interfaced to by the interceptor 350.

The client agent 120 includes an acceleration program 302, a streaming client 306, a

collection agent 304, and/or monitoring agent 197. In one embodiment, the client agent 120

comprises an Independent Computing Architecture (ICA) client, or any portion thereof,

developed by Citrix Systems, Inc. of Fort Lauderdale, Florida, and is also referred to as an

ICA client. In some embodiments, the client 120 comprises an application streaming client

306 for streaming an application from a server 106 to a client 102. In some embodiments, the

client agent 120 comprises an acceleration program 302 for accelerating communications

between client 102 and server 106. In another embodiment, the client agent 120 includes a

collection agent 304 for performing end-point detection/scanning and collecting end-point

information for the appliance 200 and/or server 106.

In some embodiments, the acceleration program 302 comprises a client-side

acceleration program for performing one or more acceleration techniques to accelerate,

enhance or otherwise improve a client's communications with and/or access to a server 106,

such as accessing an application provided by a server 106. The logic, functions, and/or

operations of the executable instructions of the acceleration program 302 may perform one or

more of the following acceleration techniques: 1) multi-protocol compression, 2) transport

control protocol pooling, 3) transport control protocol multiplexing, 4) transport control

protocol buffering, and 5) caching via a cache manager. Additionally, the acceleration

program 302 may perform encryption and/or decryption of any communications received

and/or transmitted by the client 102. In some embodiments, the acceleration program 302

performs one or more of the acceleration techniques in an integrated manner or fashion.

Additionally, the acceleration program 302 can perform compression on any of the protocols,

or multiple-protocols, carried as a payload of a network packet of the transport layer protocol.

The streaming client 306 comprises an application, program, process, service, task or

executable instructions for receiving and executing a streamed application from a server 106.

A server 106 may stream one or more application data files to the streaming client 306 for

playing, executing or otherwise causing to be executed the application on the client 102. In

some embodiments, the server 106 transmits a set of compressed or packaged application

data files to the streaming client 306. In some embodiments, the plurality of application files

are compressed and stored on a file server within an archive file such as a CAB, ZIP, SIT,

TAR, JAR or other archive. In one embodiment, the server 106 decompresses, unpackages or

unarchives the application files and transmits the files to the client 102. In another

embodiment, the client 102 decompresses, unpackages or unarchives the application files.

The streaming client 306 dynamically installs the application, or portion thereof, and executes

the application. In one embodiment, the streaming client 306 may be an executable program.

In some embodiments, the streaming client 306 may be able to launch another executable

program.

The collection agent 304 comprises an application, program, process, service, task or

executable instructions for identifying, obtaining and/or collecting information about the

client 102. In some embodiments, the appliance 200 transmits the collection agent 304 to the

client 102 or client agent 120. The collection agent 304 may be configured according to one

or more policies of the policy engine 236 of the appliance. In other embodiments, the

collection agent 304 transmits collected information on the client 102 to the appliance 200.

In one embodiment, the policy engine 236 of the appliance 200 uses the collected information

to determine and provide access, authentication and authorization control of the client's

connection to a network 104.

In one embodiment, the collection agent 304 comprises an end-point detection and

scanning mechanism, which identifies and determines one or more attributes or

characteristics of the client. For example, the collection agent 304 may identify and

determine any one or more of the following client-side attributes: 1) the operating system

an/or a version of an operating system, 2) a service pack of the operating system, 3) a running

service, 4) a running process, and 5) a file. The collection agent 304 may also identify and

determine the presence or versions of any one or more of the following on the client: 1)

antivirus software, 2) personal firewall software, 3) anti-spam software, and 4) internet

security software. The policy engine 236 may have one or more policies based on any one or

more of the attributes or characteristics of the client or client-side attributes.

In some embodiments, the client agent 120 includes a monitoring agent 197 as

discussed in conjunction with FIGs. ID and 2B. The monitoring agent 197 may be any type

and form of script, such as Visual Basic or Java script. In one embodiment, the monitoring

agent 197 monitors and measures performance of any portion of the client agent 120. For

example, in some embodiments, the monitoring agent 197 monitors and measures

performance of the acceleration program 302. In another embodiment, the monitoring agent

197 monitors and measures performance of the streaming client 306. In other embodiments,

the monitoring agent 197 monitors and measures performance of the collection agent 304. In

still another embodiment, the monitoring agent 197 monitors and measures performance of

the interceptor 350. In some embodiments, the monitoring agent 197 monitors and measures

any resource of the client 102, such as memory, CPU and disk.

The monitoring agent 197 may monitor and measure performance of any application

of the client. In one embodiment, the monitoring agent 197 monitors and measures

performance of a browser on the client 102. In some embodiments, the monitoring agent 197

monitors and measures performance of any application delivered via the client agent 120. In

other embodiments, the monitoring agent 197 measures and monitors end user response times

for an application, such as web-based or HTTP response times. The monitoring agent 197

may monitor and measure performance of an ICA or RDP client. In another embodiment, the

monitoring agent 197 measures and monitors metrics for a user session or application session.

In some embodiments, monitoring agent 197 measures and monitors an ICA or RDP session.

In one embodiment, the monitoring agent 197 measures and monitors the performance of the

appliance 200 in accelerating delivery of an application and/or data to the client 102.

In some embodiments and still referring to FIG. 3, a first program 322 may be used to

install and/or execute the client agent 120, or portion thereof, such as the interceptor 350,

automatically, silently, transparently, or otherwise. In one embodiment, the first program 322

comprises a plugin component, such an ActiveX control or Java control or script that is

loaded into and executed by an application. For example, the first program comprises an

ActiveX control loaded and run by a web browser application, such as in the memory space

or context of the application. In another embodiment, the first program 322 comprises a set

of executable instructions loaded into and run by the application, such as a browser. In one

embodiment, the first program 322 comprises a designed and constructed program to install

the client agent 120. In some embodiments, the first program 322 obtains, downloads, or

receives the client agent 120 via the network from another computing device. In another

embodiment, the first program 322 is an installer program or a plug and play manager for

installing programs, such as network drivers, on the operating system of the client 102.

D. Systems and Methods for Providing VirtualizedApplication Delivery Controller

Referring now to FIG. 4A, a block diagram depicts one embodiment of a

virtualization environment 400. In brief overview, a computing device 100 includes a

hypervisor layer, a virtualization layer, and a hardware layer. The hypervisor layer includes a

hypervisor 401 (also referred to as a virtualization manager) that allocates and manages

access to a number of physical resources in the hardware layer (e.g., the processor(s) 421, and

disk(s) 428) by at least one virtual machine executing in the virtualization layer. The

virtualization layer includes at least one operating system 410 and a plurality of virtual

resources allocated to the at least one operating system 410. Virtual resources may include,

without limitation, a plurality of virtual processors 432a, 432b, 432c (generally 432), and

virtual disks 442a, 442b, 442c (generally 442), as well as virtual resources such as virtual

memory and virtual network interfaces. The plurality of virtual resources and the operating

system 410 may be referred to as a virtual machine 406. A virtual machine 406 may include

a control operating system 405 in communication with the hypervisor 401 and used to

execute applications for managing and configuring other virtual machines on the computing

device 100.

In greater detail, a hypervisor 401 may provide virtual resources to an operating

system in any manner which simulates the operating system having access to a physical

device. A hypervisor 401 may provide virtual resources to any number of guest operating

systems 410a, 410b (generally 410). In some embodiments, a computing device 100 executes

one or more types of hypervisors. In these embodiments, hypervisors may be used to emulate

virtual hardware, partition physical hardware, virtualize physical hardware, and execute

virtual machines that provide access to computing environments. Hypervisors may include

those manufactured by VMWare, Inc., of Palo Alto, California; the XEN hypervisor, an open

source product whose development is overseen by the open source Xen.org community;

HyperV, VirtualServer or virtual PC hypervisors provided by Microsoft, or others. In some

embodiments, a computing device 100 executing a hypervisor that creates a virtual machine

platform on which guest operating systems may execute is referred to as a host server. In one

of these embodiments, for example, the computing device 100 is a XEN SERVER provided

by Citrix Systems, Inc., of Fort Lauderdale, FL.

In some embodiments, a hypervisor 401 executes within an operating system

executing on a computing device. In one of these embodiments, a computing device

executing an operating system and a hypervisor 401 may be said to have a host operating

system (the operating system executing on the computing device), and a guest operating

system (an operating system executing within a computing resource partition provided by the

hypervisor 401). In other embodiments, a hypervisor 401 interacts directly with hardware on

a computing device, instead of executing on a host operating system. In one of these

embodiments, the hypervisor 401 may be said to be executing on "bare metal," referring to

the hardware comprising the computing device.

In some embodiments, a hypervisor 401 may create a virtual machine 406a-c

(generally 406) in which an operating system 410 executes. In one of these embodiments, for

example, the hypervisor 401 loads a virtual machine image to create a virtual machine 406.

In another of these embodiments, the hypervisor 401 executes an operating system 410 within

the virtual machine 406. In still another of these embodiments, the virtual machine 406

executes an operating system 410.

In some embodiments, the hypervisor 401 controls processor scheduling and memory

partitioning for a virtual machine 406 executing on the computing device 100. In one of

these embodiments, the hypervisor 401 controls the execution of at least one virtual machine

406. In another of these embodiments, the hypervisor 401 presents at least one virtual

machine 406 with an abstraction of at least one hardware resource provided by the computing

device 100. In other embodiments, the hypervisor 401 controls whether and how physical

processor capabilities are presented to the virtual machine 406.

A control operating system 405 may execute at least one application for managing

and configuring the guest operating systems. In one embodiment, the control operating

system 405 may execute an administrative application, such as an application including a user

interface providing administrators with access to functionality for managing the execution of

a virtual machine, including functionality for executing a virtual machine, terminating an

execution of a virtual machine, or identifying a type of physical resource for allocation to the

virtual machine. In another embodiment, the hypervisor 401 executes the control operating

system 405 within a virtual machine 406 created by the hypervisor 401 . In still another

embodiment, the control operating system 405 executes in a virtual machine 406 that is

authorized to directly access physical resources on the computing device 100. In some

embodiments, a control operating system 405a on a computing device 100a may exchange

data with a control operating system 405b on a computing device 100b, via communications

between a hypervisor 401a and a hypervisor 401b. In this way, one or more computing

devices 100 may exchange data with one or more of the other computing devices 100

regarding processors and other physical resources available in a pool of resources. In one of

these embodiments, this functionality allows a hypervisor to manage a pool of resources

distributed across a plurality of physical computing devices. In another of these

embodiments, multiple hypervisors manage one or more of the guest operating systems

executed on one of the computing devices 100.

In one embodiment, the control operating system 405 executes in a virtual machine

406 that is authorized to interact with at least one guest operating system 410. In another

embodiment, a guest operating system 410 communicates with the control operating system

405 via the hypervisor 401 in order to request access to a disk or a network. In still another

embodiment, the guest operating system 410 and the control operating system 405 may

communicate via a communication channel established by the hypervisor 401, such as, for

example, via a plurality of shared memory pages made available by the hypervisor 401 .

In some embodiments, the control operating system 405 includes a network back-end

driver for communicating directly with networking hardware provided by the computing

device 100. In one of these embodiments, the network back-end driver processes at least one

virtual machine request from at least one guest operating system 110. In other embodiments,

the control operating system 405 includes a block back-end driver for communicating with a

storage element on the computing device 100. In one of these embodiments, the block back-

end driver reads and writes data from the storage element based upon at least one request

received from a guest operating system 410.

In one embodiment, the control operating system 405 includes a tools stack 404. In

another embodiment, a tools stack 404 provides functionality for interacting with the

hypervisor 401, communicating with other control operating systems 405 (for example, on a

second computing device 100b), or managing virtual machines 406b, 406c on the computing

device 100. In another embodiment, the tools stack 404 includes customized applications for

providing improved management functionality to an administrator of a virtual machine farm.

In some embodiments, at least one of the tools stack 404 and the control operating system

405 include a management API that provides an interface for remotely configuring and

controlling virtual machines 406 running on a computing device 100. In other embodiments,

the control operating system 405 communicates with the hypervisor 401 through the tools

stack 404.

In one embodiment, the hypervisor 401 executes a guest operating system 410 within

a virtual machine 406 created by the hypervisor 401 . In another embodiment, the guest

operating system 410 provides a user of the computing device 100 with access to resources

within a computing environment. In still another embodiment, a resource includes a

program, an application, a document, a file, a plurality of applications, a plurality of files, an

executable program file, a desktop environment, a computing environment, or other resource

made available to a user of the computing device 100. In yet another embodiment, the

resource may be delivered to the computing device 100 via a plurality of access methods

including, but not limited to, conventional installation directly on the computing device 100,

delivery to the computing device 100 via a method for application streaming, delivery to the

computing device 100 of output data generated by an execution of the resource on a second

computing device 100' and communicated to the computing device 100 via a presentation

layer protocol, delivery to the computing device 100 of output data generated by an execution

of the resource via a virtual machine executing on a second computing device 100', or

execution from a removable storage device connected to the computing device 100, such as a

USB device, or via a virtual machine executing on the computing device 100 and generating

output data. In some embodiments, the computing device 100 transmits output data

generated by the execution of the resource to another computing device 100'.

In one embodiment, the guest operating system 410, in conjunction with the virtual

machine on which it executes, forms a fully-virtualized virtual machine which is not aware

that it is a virtual machine; such a machine may be referred to as a "Domain U HVM

(Hardware Virtual Machine) virtual machine". In another embodiment, a fully-virtualized

machine includes software emulating a Basic Input/Output System (BIOS) in order to execute

an operating system within the fully-virtualized machine. In still another embodiment, a

fully-virtualized machine may include a driver that provides functionality by communicating

with the hypervisor 401 . In such an embodiment, the driver may be aware that it executes

within a virtualized environment. In another embodiment, the guest operating system 410, in

conjunction with the virtual machine on which it executes, forms a paravirtualized virtual

machine, which is aware that it is a virtual machine; such a machine may be referred to as a

"Domain U PV virtual machine". In another embodiment, a paravirtualized machine includes

additional drivers that a fully-virtualized machine does not include. In still another

embodiment, the paravirtualized machine includes the network back-end driver and the block

back-end driver included in a control operating system 405, as described above.

Referring now to FIG. 4B, a block diagram depicts one embodiment of a plurality of

networked computing devices in a system in which at least one physical host executes a

virtual machine. In brief overview, the system includes a management component 404 and a

hypervisor 401. The system includes a plurality of computing devices 100, a plurality of

virtual machines 406, a plurality of hypervisors 401, a plurality of management components

referred to variously as tools stacks 404 or management components 404, and a physical

resource 421, 428. The plurality of physical machines 100 may each be provided as

computing devices 100, described above in connection with FIGs. IE- IH and 4A.

In greater detail, a physical disk 428 is provided by a computing device 100 and stores

at least a portion of a virtual disk 442. In some embodiments, a virtual disk 442 is associated

with a plurality of physical disks 428. In one of these embodiments, one or more computing

devices 100 may exchange data with one or more of the other computing devices 100

regarding processors and other physical resources available in a pool of resources, allowing a

hypervisor to manage a pool of resources distributed across a plurality of physical computing

devices. In some embodiments, a computing device 100 on which a virtual machine 406

executes is referred to as a physical host 100 or as a host machine 100.

The hypervisor executes on a processor on the computing device 100. The hypervisor

allocates, to a virtual disk, an amount of access to the physical disk. In one embodiment, the

hypervisor 401 allocates an amount of space on the physical disk. In another embodiment,

the hypervisor 401 allocates a plurality of pages on the physical disk. In some embodiments,

the hypervisor provisions the virtual disk 442 as part of a process of initializing and

executing a virtual machine 450.

In one embodiment, the management component 404a is referred to as a pool

management component 404a. In another embodiment, a management operating system

405a, which may be referred to as a control operating system 405a, includes the management

component. In some embodiments, the management component is referred to as a tools

stack. In one of these embodiments, the management component is the tools stack 404

described above in connection with FIG. 4A. In other embodiments, the management

component 404 provides a user interface for receiving, from a user such as an administrator,

an identification of a virtual machine 406 to provision and/or execute. In still other

embodiments, the management component 404 provides a user interface for receiving, from a

user such as an administrator, the request for migration of a virtual machine 406b from one

physical machine 100 to another. In further embodiments, the management component 404a

identifies a computing device 100b on which to execute a requested virtual machine 406d and

instructs the hypervisor 401b on the identified computing device 100b to execute the

identified virtual machine; such a management component may be referred to as a pool

management component.

Referring now to Figure 4C, embodiments of a virtual application delivery controller

or virtual appliance 450 are depicted. In brief overview, any of the functionality and/or

embodiments of the appliance 200 (e.g., an application delivery controller) described above

in connection with FIGs. 2A and 2B may be deployed in any embodiment of the virtualized

environment described above in connection with FIGs 4A and 4B. Instead of the

functionality of the application delivery controller being deployed in the form of an appliance

200, such functionality may be deployed in a virtualized environment 400 on any computing

device 100, such as a client 102, server 106 or appliance 200.

Referring now to FIG. 4C, a diagram of an embodiment of a virtual appliance 450

operating on a hypervisor 401 of a server 106 is depicted. As with the appliance 200 of FIGs.

2A and 2B, the virtual appliance 450 may provide functionality for availability, performance,

offload and security. For availability, the virtual appliance may perform load balancing

between layers 4 and 7 of the network and may also perform intelligent service health

monitoring. For performance increases via network traffic acceleration, the virtual appliance

may perform caching and compression. To offload processing of any servers, the virtual

appliance may perform connection multiplexing and pooling and/or SSL processing. For

security, the virtual appliance may perform any of the application firewall functionality and

SSL VPN function of appliance 200.

Any of the modules of the appliance 200 as described in connection with FIGs. 2A

may be packaged, combined, designed or constructed in a form of the virtualized appliance

delivery controller 450 deployable as one or more software modules or components

executable in a virtualized environment 300 or non-virtualized environment on any server,

such as an off the shelf server. For example, the virtual appliance may be provided in the

form of an installation package to install on a computing device. With reference to FIG. 2A,

any of the cache manager 232, policy engine 236, compression 238, encryption engine 234,

packet engine 240, GUI 210, CLI 212, shell services 214 and health monitoring programs

216 may be designed and constructed as a software component or module to run on any

operating system of a computing device and/or of a virtualized environment 300. Instead of

using the encryption processor 260, processor 262, memory 264 and network stack 267 of the

appliance 200, the virtualized appliance 400 may use any of these resources as provided by

the virtualized environment 400 or as otherwise available on the server 106.

Still referring to FIG. 4C, and in brief overview, any one or more vServers 275A-

275N may be in operation or executed in a virtualized environment 400 of any type of

computing device 100, such as any server 106. Any of the modules or functionality of the

appliance 200 described in connection with FIG. 2B may be designed and constructed to

operate in either a virtualized or non-virtualized environment of a server. Any of the vServer

275, SSL VPN 280, Intranet UP 282, Switching 284, DNS 286, acceleration 288, App FW

280 and monitoring agent may be packaged, combined, designed or constructed in a form of

application delivery controller 450 deployable as one or more software modules or

components executable on a device and/or virtualized environment 400.

In some embodiments, a server may execute multiple virtual machines 406a-406n in

the virtualization environment with each virtual machine running the same or different

embodiments of the virtual application delivery controller 450. In some embodiments, the

server may execute one or more virtual appliances 450 on one or more virtual machines on a

core of a multi-core processing system. In some embodiments, the server may execute one or

more virtual appliances 450 on one or more virtual machines on each processor of a multiple

processor device.

E. Systems and Methods for Providing A Multi-Core Architecture

In accordance with Moore's Law, the number of transistors that may be placed on an

integrated circuit may double approximately every two years. However, CPU speed

increases may reach plateaus, for example CPU speed has been around 3.5 - 4 GHz range

since 2005. In some cases, CPU manufacturers may not rely on CPU speed increases to gain

additional performance. Some CPU manufacturers may add additional cores to their

processors to provide additional performance. Products, such as those of software and

networking vendors, that rely on CPUs for performance gains may improve their

performance by leveraging these multi-core CPUs. The software designed and constructed

for a single CPU may be redesigned and/or rewritten to take advantage of a multi-threaded,

parallel architecture or otherwise a multi-core architecture.

A multi-core architecture of the appliance 200, referred to as nCore or multi-core

technology, allows the appliance in some embodiments to break the single core performance

barrier and to leverage the power of multi-core CPUs. In the previous architecture described

in connection with FIG. 2A, a single network or packet engine is run. The multiple cores of

the nCore technology and architecture allow multiple packet engines to run concurrently

and/or in parallel. With a packet engine running on each core, the appliance architecture

leverages the processing capacity of additional cores. In some embodiments, this provides up

to a 7X increase in performance and scalability.

Illustrated in FIG. 5A are some embodiments of work, task, load or network traffic

distribution across one or more processor cores according to a type of parallelism or parallel

computing scheme, such as functional parallelism, data parallelism or flow-based data

parallelism. In brief overview, FIG. 5A illustrates embodiments of a multi-core system such

as an appliance 200' with n-cores, a total of cores numbers 1 through N . In one embodiment,

work, load or network traffic can be distributed among a first core 505A, a second core 505B,

a third core 505C, a fourth core 505D, a fifth core 505E, a sixth core 505F, a seventh core

505G, and so on such that distribution is across all or two or more of the n cores 505N

(hereinafter referred to collectively as cores 505.) There may be multiple VIPs 275 each

running on a respective core of the plurality of cores. There may be multiple packet engines

240 each running on a respective core of the plurality of cores. Any of the approaches used

may lead to different, varying or similar work load or performance level 515 across any of

the cores. For a functional parallelism approach, each core may run a different function of

the functionalities provided by the packet engine, a VIP 275 or appliance 200. In a data

parallelism approach, data may be paralleled or distributed across the cores based on the

Network Interface Card (NIC) or VIP 275 receiving the data. In another data parallelism

approach, processing may be distributed across the cores by distributing data flows to each

core.

In further detail to FIG. 5A, in some embodiments, load, work or network traffic can

be distributed among cores 505 according to functional parallelism 500. Functional

parallelism may be based on each core performing one or more respective functions. In some

embodiments, a first core may perform a first function while a second core performs a second

function. In functional parallelism approach, the functions to be performed by the multi-core

system are divided and distributed to each core according to functionality. In some

embodiments, functional parallelism may be referred to as task parallelism and may be

achieved when each processor or core executes a different process or function on the same or

different data. The core or processor may execute the same or different code. In some cases,

different execution threads or code may communicate with one another as they work.

Communication may take place to pass data from one thread to the next as part of a

workflow.

In some embodiments, distributing work across the cores 505 according to functional

parallelism 500, can comprise distributing network traffic according to a particular function

such as network input/output management (NW I/O) 510A, secure sockets layer (SSL)

encryption and decryption 510B and transmission control protocol (TCP) functions 510C.

This may lead to a work, performance or computing load 515 based on a volume or level of

functionality being used. In some embodiments, distributing work across the cores 505

according to data parallelism 540, can comprise distributing an amount of work 515 based on

distributing data associated with a particular hardware or software component. In some

embodiments, distributing work across the cores 505 according to flow-based data

parallelism 520, can comprise distributing data based on a context or flow such that the

amount of work 515A-N on each core may be similar, substantially equal or relatively evenly

distributed.

In the case of the functional parallelism approach, each core may be configured to run

one or more functionalities of the plurality of functionalities provided by the packet engine or

VIP of the appliance. For example, core 1 may perform network I/O processing for the

appliance 200' while core 2 performs TCP connection management for the appliance.

Likewise, core 3 may perform SSL offloading while core 4 may perform layer 7 or

application layer processing and traffic management. Each of the cores may perform the

same function or different functions. Each of the cores may perform more than one function.

Any of the cores may run any of the functionality or portions thereof identified and/or

described in conjunction with FIGs. 2A and 2B. In this the approach, the work across the

cores may be divided by function in either a coarse-grained or fine-grained manner. In some

cases, as illustrated in FIG. 5A, division by function may lead to different cores running at

different levels of performance or load 515.

In the case of the functional parallelism approach, each core may be configured to run

one or more functionalities of the plurality of functionalities provided by the packet engine of

the appliance. For example, core 1 may perform network I/O processing for the appliance

200' while core 2 performs TCP connection management for the appliance. Likewise, core 3

may perform SSL offloading while core 4 may perform layer 7 or application layer

processing and traffic management. Each of the cores may perform the same function or

different functions. Each of the cores may perform more than one function. Any of the cores

may run any of the functionality or portions thereof identified and/or described in conjunction

with FIGs. 2A and 2B. In this the approach, the work across the cores may be divided by

function in either a coarse-grained or fine-grained manner. In some cases, as illustrated in

FIG. 5A division by function may lead to different cores running at different levels of load or

performance.

The functionality or tasks may be distributed in any arrangement and scheme. For

example, FIG. 5B illustrates a first core, Core 1 505A, processing applications and processes

associated with network I/O functionality 5 1OA. Network traffic associated with network

I/O, in some embodiments, can be associated with a particular port number. Thus, outgoing

and incoming packets having a port destination associated with NW I/O 5 1OA will be

directed towards Core 1 505A which is dedicated to handling all network traffic associated

with the NW I/O port. Similarly, Core 2 505B is dedicated to handling functionality

associated with SSL processing and Core 4 505D may be dedicated handling all TCP level

processing and functionality.

While FIG. 5A illustrates functions such as network I/O, SSL and TCP, other

functions can be assigned to cores. These other functions can include any one or more of the

functions or operations described herein. For example, any of the functions described in

conjunction with FIGs. 2A and 2B may be distributed across the cores on a functionality

basis. In some cases, a first VIP 275A may run on a first core while a second VIP 275B with

a different configuration may run on a second core. In some embodiments, each core 505 can

handle a particular functionality such that each core 505 can handle the processing associated

with that particular function. For example, Core 2 505B may handle SSL offloading while

Core 4 505D may handle application layer processing and traffic management.

In other embodiments, work, load or network traffic may be distributed among cores

505 according to any type and form of data parallelism 540. In some embodiments, data

parallelism may be achieved in a multi-core system by each core performing the same task or

functionally on different pieces of distributed data. In some embodiments, a single execution

thread or code controls operations on all pieces of data. In other embodiments, different

threads or instructions control the operation, but may execute the same code. In some

embodiments, data parallelism is achieved from the perspective of a packet engine, vServers

(VIPs) 275A-C, network interface cards (NIC) 542D-E and/or any other networking

hardware or software included on or associated with an appliance 200. For example, each

core may run the same packet engine or VIP code or configuration but operate on different

sets of distributed data. Each networking hardware or software construct can receive

different, varying or substantially the same amount of data, and as a result may have varying,

different or relatively the same amount of load 515.

In the case of a data parallelism approach, the work may be divided up and distributed

based on VIPs, NICs and/or data flows of the VIPs or NICs. In one of these approaches, the

work of the multi-core system may be divided or distributed among the VIPs by having each

VIP work on a distributed set of data. For example, each core may be configured to run one

or more VIPs. Network traffic may be distributed to the core for each VIP handling that

traffic. In another of these approaches, the work of the appliance may be divided or

distributed among the cores based on which NIC receives the network traffic. For example,

network traffic of a first NIC may be distributed to a first core while network traffic of a

second NIC may be distributed to a second core. In some cases, a core may process data

from multiple NICs.

While FIG 5A illustrates a single vServer associated with a single core 505, as is the

case for VIPl 275A, VIP2 275B and VIP3 275C. In some embodiments, a single vServer

can be associated with one or more cores 505. In contrast, one or more vServers can be

associated with a single core 505. Associating a vServer with a core 505 may include that

core 505 to process all functions associated with that particular vServer. In some

embodiments, each core executes a VIP having the same code and configuration. In other

embodiments, each core executes a VIP having the same code but different configuration. In

some embodiments, each core executes a VIP having different code and the same or different

configuration.

Like vServers, NICs can also be associated with particular cores 505. In many

embodiments, NICs can be connected to one or more cores 505 such that when a NIC

receives or transmits data packets, a particular core 505 handles the processing involved with

receiving and transmitting the data packets. In one embodiment, a single NIC can be

associated with a single core 505, as is the case with NICl 542D and NIC2 542E. In other

embodiments, one or more NICs can be associated with a single core 505. In other

embodiments, a single NIC can be associated with one or more cores 505. In these

embodiments, load could be distributed amongst the one or more cores 505 such that each

core 505 processes a substantially similar amount of load. A core 505 associated with a NIC

may process all functions and/or data associated with that particular NIC.

While distributing work across cores based on data of VIPs or NICs may have a level

of independency, in some embodiments, this may lead to unbalanced use of cores as

illustrated by the varying loads 515 of FIG. 5A.

In some embodiments, load, work or network traffic can be distributed among cores

505 based on any type and form of data flow. In another of these approaches, the work may

be divided or distributed among cores based on data flows. For example, network traffic

between a client and a server traversing the appliance may be distributed to and processed by

one core of the plurality of cores. In some cases, the core initially establishing the session or

connection may be the core for which network traffic for that session or connection is

distributed. In some embodiments, the data flow is based on any unit or portion of network

traffic, such as a transaction, a request/response communication or traffic originating from an

application on a client. In this manner and in some embodiments, data flows between clients

and servers traversing the appliance 200' may be distributed in a more balanced manner than

the other approaches.

In flow-based data parallelism 520, distribution of data is related to any type of flow

of data, such as request/response pairings, transactions, sessions, connections or application

communications. For example, network traffic between a client and a server traversing the

appliance may be distributed to and processed by one core of the plurality of cores. In some

cases, the core initially establishing the session or connection may be the core for which

network traffic for that session or connection is distributed. The distribution of data flow may

be such that each core 505 carries a substantially equal or relatively evenly distributed

amount of load, data or network traffic.

In some embodiments, the data flow is based on any unit or portion of network

traffic, such as a transaction, a request/response communication or traffic originating from an

application on a client. In this manner and in some embodiments, data flows between clients

and servers traversing the appliance 200' may be distributed in a more balanced manner than

the other approached. In one embodiment, data flow can be distributed based on a

transaction or a series of transactions. This transaction, in some embodiments, can be

between a client and a server and can be characterized by an IP address or other packet

identifier. For example, Core 1 505A can be dedicated to transactions between a particular

client and a particular server, therefore the load 515A on Core 1 505A may be comprised of

the network traffic associated with the transactions between the particular client and server.

Allocating the network traffic to Core 1 505A can be accomplished by routing all data

packets originating from either the particular client or server to Core 1 505A.

While work or load can be distributed to the cores based in part on transactions, in

other embodiments load or work can be allocated on a per packet basis. In these

embodiments, the appliance 200 can intercept data packets and allocate them to a core 505

having the least amount of load. For example, the appliance 200 could allocate a first

incoming data packet to Core 1 505A because the load 515A on Core 1 is less than the load

515B-N on the rest of the cores 505B-N. Once the first data packet is allocated to Core 1

505A, the amount of load 515A on Core 1 505A is increased proportional to the amount of

processing resources needed to process the first data packet. When the appliance 200

intercepts a second data packet, the appliance 200 will allocate the load to Core 4 505D

because Core 4 505D has the second least amount of load. Allocating data packets to the

core with the least amount of load can, in some embodiments, ensure that the load 515A-N

distributed to each core 505 remains substantially equal.

In other embodiments, load can be allocated on a per unit basis where a section of

network traffic is allocated to a particular core 505. The above-mentioned example illustrates

load balancing on a per/packet basis. In other embodiments, load can be allocated based on a

number of packets such that every 10, 100 or 1000 packets are allocated to the core 505

having the least amount of load. The number of packets allocated to a core 505 can be a

number determined by an application, user or administrator and can be any number greater

than zero. In still other embodiments, load can be allocated based on a time metric such that

packets are distributed to a particular core 505 for a predetermined amount of time. In these

embodiments, packets can be distributed to a particular core 505 for five milliseconds or for

any period of time determined by a user, program, system, administrator or otherwise. After

the predetermined time period elapses, data packets are transmitted to a different core 505 for

the predetermined period of time.

Flow-based data parallelism methods for distributing work, load or network traffic

among the one or more cores 505 can comprise any combination of the above-mentioned

embodiments. These methods can be carried out by any part of the appliance 200, by an

application or set of executable instructions executing on one of the cores 505, such as the

packet engine, or by any application, program or agent executing on a computing device in

communication with the appliance 200.

The functional and data parallelism computing schemes illustrated in FIG. 5A can be

combined in any manner to generate a hybrid parallelism or distributed processing scheme

that encompasses function parallelism 500, data parallelism 540, flow-based data parallelism

520 or any portions thereof. In some cases, the multi-core system may use any type and form

of load balancing schemes to distribute load among the one or more cores 505. The load

balancing scheme may be used in any combination with any of the functional and data

parallelism schemes or combinations thereof.

Illustrated in FIG. 5B is an embodiment of a multi-core system 545, which may be

any type and form of one or more systems, appliances, devices or components. This system

545, in some embodiments, can be included within an appliance 200 having one or more

processing cores 505A-N. The system 545 can further include one or more packet engines

(PE) or packet processing engines (PPE) 548A-N communicating with a memory bus 556.

The memory bus may be used to communicate with the one or more processing cores 505A-

N . Also included within the system 545 can be one or more network interface cards (NIC)

552 and a flow distributor 550 which can further communicate with the one or more

processing cores 505A-N. The flow distributor 550 can comprise a Receive Side Sealer

(RSS) or Receive Side Scaling (RSS) module 560.

Further referring to FIG. 5B, and in more detail, in one embodiment the packet

engine(s) 548A-N can comprise any portion of the appliance 200 described herein, such as

any portion of the appliance described in FIGs. 2A and 2B. The packet engine(s) 548A-N

can, in some embodiments, comprise any of the following elements: the packet engine 240, a

network stack 267; a cache manager 232; a policy engine 236; a compression engine 238; an

encryption engine 234; a GUI 210; a CLI 212; shell services 214; monitoring programs 216;

and any other software or hardware element able to receive data packets from one of either

the memory bus 556 or the one of more cores 505A-N. In some embodiments, the packet

engine(s) 548A-N can comprise one or more vServers 275A-N, or any portion thereof. In

other embodiments, the packet engine(s) 548A-N can provide any combination of the

following functionalities: SSL VPN 280; Intranet UP 282; switching 284; DNS 286; packet

acceleration 288; App FW 280; monitoring such as the monitoring provided by a monitoring

agent 197; functionalities associated with functioning as a TCP stack; load balancing; SSL

offloading and processing; content switching; policy evaluation; caching; compression;

encoding; decompression; decoding; application firewall functionalities; XML processing

and acceleration; and SSL VPN connectivity.

The packet engine(s) 548A-N can, in some embodiments, be associated with a

particular server, user, client or network. When a packet engine 548 becomes associated with

a particular entity, that packet engine 548 can process data packets associated with that entity.

For example, should a packet engine 548 be associated with a first user, that packet engine

548 will process and operate on packets generated by the first user, or packets having a

destination address associated with the first user. Similarly, the packet engine 548 may

choose not to be associated with a particular entity such that the packet engine 548 can

process and otherwise operate on any data packets not generated by that entity or destined for

that entity.

In some instances, the packet engine(s) 548A-N can be configured to carry out the

any of the functional and/or data parallelism schemes illustrated in FIG. 5A . In these

instances, the packet engine(s) 548A-N can distribute functions or data among the processing

cores 505A-N so that the distribution is according to the parallelism or distribution scheme.

In some embodiments, a single packet engine(s) 548A-N carries out a load balancing scheme,

while in other embodiments one or more packet engine(s) 548A-N carry out a load balancing

scheme. Each core 505A-N, in one embodiment, can be associated with a particular packet

engine 548 such that load balancing can be carried out by the packet engine. Load balancing

may in this embodiment, require that each packet engine 548A-N associated with a core 505

communicate with the other packet engines associated with cores so that the packet engines

548A-N can collectively determine where to distribute load. One embodiment of this process

can include an arbiter that receives votes from each packet engine for load. The arbiter can

distribute load to each packet engine 548A-N based in part on the age of the engine's vote

and in some cases a priority value associated with the current amount of load on an engine's

associated core 505.

Any of the packet engines running on the cores may run in user mode, kernel or any

combination thereof. In some embodiments, the packet engine operates as an application or

program running is user or application space. In these embodiments, the packet engine may

use any type and form of interface to access any functionality provided by the kernel. In

some embodiments, the packet engine operates in kernel mode or as part of the kernel. In

some embodiments, a first portion of the packet engine operates in user mode while a second

portion of the packet engine operates in kernel mode. In some embodiments, a first packet

engine on a first core executes in kernel mode while a second packet engine on a second core

executes in user mode. In some embodiments, the packet engine or any portions thereof

operates on or in conjunction with the NIC or any drivers thereof.

In some embodiments the memory bus 556 can be any type and form of memory or

computer bus. While a single memory bus 556 is depicted in FIG. 5B, the system 545 can

comprise any number of memory buses 556. In one embodiment, each packet engine 548 can

be associated with one or more individual memory buses 556.

The NIC 552 can in some embodiments be any of the network interface cards or

mechanisms described herein. The NIC 552 can have any number of ports. The NIC can be

designed and constructed to connect to any type and form of network 104. While a single

NIC 552 is illustrated, the system 545 can comprise any number of NICs 552. In some

embodiments, each core 505A-N can be associated with one or more single NICs 552. Thus,

each core 505 can be associated with a single NIC 552 dedicated to a particular core 505.

The cores 505A-N can comprise any of the processors described herein. Further, the cores

505A-N can be configured according to any of the core 505 configurations described herein.

Still further, the cores 505A-N can have any of the core 505 functionalities described herein.

While FIG. 5B illustrates seven cores 505A-G, any number of cores 505 can be included

within the system 545. In particular, the system 545 can comprise "N" cores, where "N" is a

whole number greater than zero.

A core may have or use memory that is allocated or assigned for use to that core.

The memory may be considered private or local memory of that core and only accessible by

that core. A core may have or use memory that is shared or assigned to multiple cores. The

memory may be considered public or shared memory that is accessible by more than one

core. A core may use any combination of private and public memory. With separate address

spaces for each core, some level of coordination is eliminated from the case of using the same

address space. With a separate address space, a core can perform work on information and

data in the core's own address space without worrying about conflicts with other cores. Each

packet engine may have a separate memory pool for TCP and/or SSL connections.

Further referring to FIG. 5B, any of the functionality and/or embodiments of the cores

505 described above in connection with FIG. 5A can be deployed in any embodiment of the

virtualized environment described above in connection with FIGs. 4A and 4B. Instead of the

functionality of the cores 505 being deployed in the form of a physical processor 505, such

functionality may be deployed in a virtualized environment 400 on any computing device

100, such as a client 102, server 106 or appliance 200. In other embodiments, instead of the

functionality of the cores 505 being deployed in the form of an appliance or a single device,

the functionality may be deployed across multiple devices in any arrangement. For example,

one device may comprise two or more cores and another device may comprise two or more

cores. For example, a multi-core system may include a cluster of computing devices, a server

farm or network of computing devices. In some embodiments, instead of the functionality of

the cores 505 being deployed in the form of cores, the functionality may be deployed on a

plurality of processors, such as a plurality of single core processors.

In one embodiment, the cores 505 may be any type and form of processor. In some

embodiments, a core can function substantially similar to any processor or central processing

unit described herein. In some embodiment, the cores 505 may comprise any portion of any

processor described herein. While FIG. 5A illustrates seven cores, there can exist any "N"

number of cores within an appliance 200, where "N" is any whole number greater than one.

In some embodiments, the cores 505 can be installed within a common appliance 200, while

in other embodiments the cores 505 can be installed within one or more appliance(s) 200

communicatively connected to one another. The cores 505 can in some embodiments

comprise graphics processing software, while in other embodiments the cores 505 provide

general processing capabilities. The cores 505 can be installed physically near each other

and/or can be communicatively connected to each other. The cores may be connected by any

type and form of bus or subsystem physically and/or communicatively coupled to the cores

for transferring data between to, from and/or between the cores.

While each core 505 can comprise software for communicating with other cores, in

some embodiments a core manager (not shown) can facilitate communication between each

core 505. In some embodiments, the kernel may provide core management. The cores may

interface or communicate with each other using a variety of interface mechanisms. In some

embodiments, core to core messaging may be used to communicate between cores, such as a

first core sending a message or data to a second core via a bus or subsystem connecting the

cores. In some embodiments, cores may communicate via any type and form of shared

memory interface. In one embodiment, there may be one or more memory locations shared

among all the cores. In some embodiments, each core may have separate memory locations

shared with each other core. For example, a first core may have a first shared memory with a

second core and a second share memory with a third core. In some embodiments, cores may

communicate via any type of programming or API, such as function calls via the kernel. In

some embodiments, the operating system may recognize and support multiple core devices

and provide interfaces and API for inter-core communications.

The flow distributor 550 can be any application, program, library, script, task,

service, process or any type and form of executable instructions executing on any type and

form of hardware. In some embodiments, the flow distributor 550 may any design and

construction of circuitry to perform any of the operations and functions described herein. In

some embodiments, the flow distributor distribute, forwards, routes, controls and/ors manage

the distribution of data packets among the cores 505 and/or packet engine or VIPs running on

the cores.. The flow distributor 550, in some embodiments, can be referred to as an interface

master. In one embodiment, the flow distributor 550 comprises a set of executable

instructions executing on a core or processor of the appliance 200. In another embodiment,

the flow distributor 550 comprises a set of executable instructions executing on a computing

machine in communication with the appliance 200. In some embodiments, the flow

distributor 550 comprises a set of executable instructions executing on a NIC, such as

firmware. In still other embodiments, the flow distributor 550 comprises any combination of

software and hardware to distribute data packets among cores or processors. In one

embodiment, the flow distributor 550 executes on at least one of the cores 505A-N, while in

other embodiments a separate flow distributor 550 assigned to each core 505A-N executes on

an associated core 505A-N. The flow distributor may use any type and form of statistical or

probabilistic algorithms or decision making to balance the flows across the cores. The

hardware of the appliance, such as a NIC, or the kernel may be designed and constructed to

support sequential operations across the NICs and/or cores.

In embodiments where the system 545 comprises one or more flow distributors 550,

each flow distributor 550 can be associated with a processor 505 or a packet engine 548. The

flow distributors 550 can comprise an interface mechanism that allows each flow distributor

550 to communicate with the other flow distributors 550 executing within the system 545. In

one instance, the one or more flow distributors 550 can determine how to balance load by

communicating with each other. This process can operate substantially similarly to the

process described above for submitting votes to an arbiter which then determines which flow

distributor 550 should receive the load. In other embodiments, a first flow distributor 550'

can identify the load on an associated core and determine whether to forward a first data

packet to the associated core based on any of the following criteria: the load on the associated

core is above a predetermined threshold; the load on the associated core is below a

predetermined threshold; the load on the associated core is less than the load on the other

cores; or any other metric that can be used to determine where to forward data packets based

in part on the amount of load on a processor.

The flow distributor 550 can distribute network traffic among the cores 505 according

to a distribution, computing or load balancing scheme such as those described herein. In one

embodiment, the flow distributor can distribute network traffic according to any one of a

functional parallelism distribution scheme 550, a data parallelism load distribution scheme

540, a flow-based data parallelism distribution scheme 520, or any combination of these

distribution scheme or any load balancing scheme for distributing load among multiple

processors. The flow distributor 550 can therefore act as a load distributor by taking in data

packets and distributing them across the processors according to an operative load balancing

or distribution scheme. In one embodiment, the flow distributor 550 can comprise one or

more operations, functions or logic to determine how to distribute packers, work or load

accordingly. In still other embodiments, the flow distributor 550 can comprise one or more

sub operations, functions or logic that can identify a source address and a destination address

associated with a data packet, and distribute packets accordingly.

In some embodiments, the flow distributor 550 can comprise a receive-side scaling

(RSS) network driver, module 560 or any type and form of executable instructions which

distribute data packets among the one or more cores 505. The RSS module 560 can comprise

any combination of hardware and software, In some embodiments, the RSS module 560

works in conjunction with the flow distributor 550 to distribute data packets across the cores

505A-N or among multiple processors in a multi-processor network. The RSS module 560

can execute within the NIC 552 in some embodiments, and in other embodiments can execute

on any one of the cores 505.

In some embodiments, the RSS module 560 uses the MICROSOFT receive-side-

scaling (RSS) scheme. In one embodiment, RSS is a Microsoft Scalable Networking

initiative technology that enables receive processing to be balanced across multiple

processors in the system while maintaining in-order delivery of the data. The RSS may use

any type and form of hashing scheme to determine a core or processor for processing a

network packet.

The RSS module 560 can apply any type and form hash function such as the Toeplitz

hash function. The hash function may be applied to the hash type or any the sequence of

values. The hash function may be a secure hash of any security level or is otherwise

cryptographically secure. The hash function may use a hash key. The size of the key is

dependent upon the hash function. For the Toeplitz hash, the size may be 40 bytes for IPv6

and 16 bytes for IPv4.

The hash function may be designed and constructed based on any one or more criteria

or design goals. In some embodiments, a hash function may be used that provides an even

distribution of hash result for different hash inputs and different hash types, including

TCP/IPv4, TCP/IPv6, IPv4, and IPv6 headers. In some embodiments, a hash function may

be used that provides a hash result that is evenly distributed when a small number of buckets

are present (for example, two or four). In some embodiments, hash function may be used that

provides a hash result that is randomly distributed when a large number of buckets were

present (for example, 64 buckets). In some embodiments, the hash function is determined

based on a level of computational or resource usage. In some embodiments, the hash

function is determined based on ease or difficulty of implementing the hash in hardware. In

some embodiments, the hash function is determined based on the ease or difficulty of a

malicious remote host to send packets that would all hash to the same bucket.

The RSS may generate hashes from any type and form of input, such as a sequence of

values. This sequence of values can include any portion of the network packet, such as any

header, field or payload of network packet, or portions thereof. In some embodiments, the

input to the hash may be referred to as a hash type and include any tuples of information

associated with a network packet or data flow, such as any of the following: a four tuple

comprising at least two IP addresses and two ports; a four tuple comprising any four sets of

values; a six tuple; a two tuple; and/or any other sequence of numbers or values. The

following are example of hash types that may be used by RSS:

- 4-tuple of source TCP Port, source IP version 4 (IPv4) address, destination TCP Port,

and destination IPv4 address.

- 4-tuple of source TCP Port, source IP version 6 (IPv6) address, destination TCP Port,

and destination IPv6 address.

- 2-tuple of source IPv4 address, and destination IPv4 address.

- 2-tuple of source IPv6 address, and destination IPv6 address.

- 2-tuple of source IPv6 address, and destination IPv6 address, including support for

parsing IPv6 extension headers.

The hash result or any portion thereof may used to identify a core or entity, such as a

packet engine or VIP, for distributing a network packet. In some embodiments, one or more

hash bits or mask are applied to the hash result. The hash bit or mask may be any number of

bits or bytes. A NIC may support any number of bits, such as seven bits. The network stack

may set the actual number of bits to be used during initialization. The number will be

between 1 and 7, inclusive.

The hash result may be used to identify the core or entity via any type and form of

table, such as a bucket table or indirection table. In some embodiments, the number of hash-

result bits are used to index into the table. The range of the hash mask may effectively define

the size of the indirection table ny portion of the hash result or the hast result itself may be

used to index the indirection table. The values in the table may identify any of the cores or

processor, such as by a core or processor identifier. In some embodiments, all of the cores of

the multi-core system are identified in the table. In other embodiments, a port of the cores of

the multi-core system are identified in the table. The indirection table may comprise any

number of buckets for example 2 to 128 buckets that may be indexed by a hash mask. Each

bucket may comprise a range of index values that identify a core or processor. In some

embodiments, the flow controller and/or RSS module may rebalance the network rebalance

the network load by changing the indirection table.

In some embodiments, the multi-core system 575 does not include a RSS driver or

RSS module 560. In some of these embodiments, a software steering module (not shown) or

a software embodiment of the RSS module within the system can operate in conjunction with

or as part of the flow distributor 550 to steer packets to cores 505 within the multi-core

system 575.

The flow distributor 550, in some embodiments, executes within any module or

program on the appliance 200, on any one of the cores 505 and on any one of the devices or

components included within the multi-core system 575. In some embodiments, the flow

distributor 550' can execute on the first core 505A, while in other embodiments the flow

distributor 550" can execute on the NIC 552. In still other embodiments, an instance of the

flow distributor 550' can execute on each core 505 included in the multi-core system 575. In

this embodiment, each instance of the flow distributor 550' can communicate with other

instances of the flow distributor 550' to forward packets back and forth across the cores 505.

There exist situations where a response to a request packet may not be processed by the same

core, i.e. the first core processes the request while the second core processes the response. In

these situations, the instances of the flow distributor 550' can intercept the packet and

forward it to the desired or correct core 505, i.e. a flow distributor instance 550' can forward

the response to the first core. Multiple instances of the flow distributor 550' can execute on

any number of cores 505 and any combination of cores 505.

The flow distributor may operate responsive to any one or more rules or policies. The

rules may identify a core or packet processing engine to receive a network packet, data or

data flow. The rules may identify any type and form of tuple information related to a

network packet, such as a 4-tuple of source and destination IP address and source and

destination ports. Based on a received packet matching the tuple specified by the rule, the

flow distributor may forward the packet to a core or packet engine. In some embodiments,

the packet is forwarded to a core via shared memory and/or core to core messaging.

Although FIG. 5B illustrates the flow distributor 550 as executing within the multi-

core system 575, in some embodiments the flow distributor 550 can execute on a computing

device or appliance remotely located from the multi-core system 575. In such an

embodiment, the flow distributor 550 can communicate with the multi-core system 575 to

take in data packets and distribute the packets across the one or more cores 505. The flow

distributor 550 can, in one embodiment, receive data packets destined for the appliance 200,

apply a distribution scheme to the received data packets and distribute the data packets to the

one or more cores 505 of the multi-core system 575. In one embodiment, the flow distributor

550 can be included in a router or other appliance such that the router can target particular

cores 505 by altering meta data associated with each packet so that each packet is targeted

towards a sub-node of the multi-core system 575. In such an embodiment, CISCO'S vn-tag

mechanism can be used to alter or tag each packet with the appropriate meta data.

Illustrated in FIG. 5C is an embodiment of a multi-core system 575 comprising one or

more processing cores 505A-N. In brief overview, one of the cores 505 can be designated as

a control core 505A and can be used as a control plane 570 for the other cores 505. The other

cores may be secondary cores which operate in a data plane while the control core provides

the control plane. The cores 505A-N may share a global cache 580. While the control core

provides a control plane, the other cores in the multi-core system form or provide a data

plane. These cores perform data processing functionality on network traffic while the control

provides initialization, configuration and control of the multi-core system.

Further referring to FIG. 5C, and in more detail, the cores 505A-N as well as the

control core 505A can be any processor described herein. Furthermore, the cores 505A-N

and the control core 505A can be any processor able to function within the system 575

described in FIG. 5C. Still further, the cores 505A-N and the control core 505A can be any

core or group of cores described herein. The control core may be a different type of core or

processor than the other cores. In some embodiments, the control may operate a different

packet engine or have a packet engine configured differently than the packet engines of the

other cores.

Any portion of the memory of each of the cores may be allocated to or used for a

global cache that is shared by the cores. In brief overview, a predetermined percentage or

predetermined amount of each of the memory of each core may be used for the global cache.

For example, 50% of each memory of each code may be dedicated or allocated to the shared

global cache. That is, in the illustrated embodiment, 2GB of each core excluding the control

plane core or core 1 may be used to form a 28GB shared global cache. The configuration of

the control plane such as via the configuration services may determine the amount of memory

used for the shared global cache. In some embodiments, each core may provide a different

amount of memory for use by the global cache. In other embodiments, any one core may not

provide any memory or use the global cache. In some embodiments, any of the cores may

also have a local cache in memory not allocated to the global shared memory. Each of the

cores may store any portion of network traffic to the global shared cache. Each of the cores

may check the cache for any content to use in a request or response. Any of the cores may

obtain content from the global shared cache to use in a data flow, request or response.

The global cache 580 can be any type and form of memory or storage element, such

as any memory or storage element described herein. In some embodiments, the cores 505

may have access to a predetermined amount of memory (i.e. 32 GB or any other memory

amount commensurate with the system 575). The global cache 580 can be allocated from

that predetermined amount of memory while the rest of the available memory can be

allocated among the cores 505. In other embodiments, each core 505 can have a

predetermined amount of memory. The global cache 580 can comprise an amount of the

memory allocated to each core 505. This memory amount can be measured in bytes, or can

be measured as a percentage of the memory allocated to each core 505. Thus, the global

cache 580 can comprise 1 GB of memory from the memory associated with each core 505, or

can comprise 20 percent or one-half of the memory associated with each core 505. In some

embodiments, only a portion of the cores 505 provide memory to the global cache 580, while

in other embodiments the global cache 580 can comprise memory not allocated to the cores

505.

Each core 505 can use the global cache 580 to store network traffic or cache data. In

some embodiments, the packet engines of the core use the global cache to cache and use data

stored by the plurality of packet engines. For example, the cache manager of FIG. 2A and

cache functionality of FIG. 2B may use the global cache to share data for acceleration. For

example, each of the packet engines may store responses, such as HTML data, to the global

cache. Any of the cache managers operating on a core may access the global cache to server

caches responses to client requests.

In some embodiments, the cores 505 can use the global cache 580 to store a port

allocation table which can be used to determine data flow based in part on ports. In other

embodiments, the cores 505 can use the global cache 580 to store an address lookup table or

any other table or list that can be used by the flow distributor to determine where to direct

incoming and outgoing data packets. The cores 505 can, in some embodiments read from

and write to cache 580, while in other embodiments the cores 505 can only read from or write

to cache 580. The cores may use the global cache to perform core to core communications.

The global cache 580 may be sectioned into individual memory sections where each

section can be dedicated to a particular core 505. In one embodiment, the control core 505A

can receive a greater amount of available cache, while the other cores 505 can receiving

varying amounts or access to the global cache 580.

In some embodiments, the system 575 can comprise a control core 505A. While FIG.

5C illustrates core 1 505A as the control core, the control core can be any core within the

appliance 200 or multi-core system. Further, while only a single control core is depicted, the

system 575 can comprise one or more control cores each having a level of control over the

system. In some embodiments, one or more control cores can each control a particular aspect

of the system 575. For example, one core can control deciding which distribution scheme to

use, while another core can determine the size of the global cache 580.

The control plane of the multi-core system may be the designation and configuration

of a core as the dedicated management core or as a master core. This control plane core may

provide control, management and coordination of operation and functionality the plurality of

cores in the multi-core system. This control plane core may provide control, management

and coordination of allocation and use of memory of the system among the plurality of cores

in the multi-core system, including initialization and configuration of the same. In some

embodiments, the control plane includes the flow distributor for controlling the assignment of

data flows to cores and the distribution of network packets to cores based on data flows. In

some embodiments, the control plane core runs a packet engine and in other embodiments,

the control plane core is dedicated to management and control of the other cores of the

system.

The control core 505A can exercise a level of control over the other cores 505 such as

determining how much memory should be allocated to each core 505 or determining which

core 505 should be assigned to handle a particular function or hardware/software entity. The

control core 505A, in some embodiments, can exercise control over those cores 505 within

the control plan 570. Thus, there can exist processors outside of the control plane 570 which

are not controlled by the control core 505A. Determining the boundaries of the control plane

570 can include maintaining, by the control core 505A or agent executing within the system

575, a list of those cores 505 controlled by the control core 505A. The control core 505A can

control any of the following: initialization of a core; determining when a core is unavailable;

re-distributing load to other cores 505 when one core fails; determining which distribution

scheme to implement; determining which core should receive network traffic; determining

how much cache should be allocated to each core; determining whether to assign a particular

function or element to a particular core; determining whether to permit cores to communicate

with one another; determining the size of the global cache 580; and any other determination

of a function, configuration or operation of the cores within the system 575.

F. Systems and Methods for Maintaining Operation of a Multi-Core Network Appliance

Upon Failover

Referring now to FIG. 6A, an embodiment of a system for controlling a rate of a

traffic traversing an intermediary 200 is illustrated. In brief overview, FIG. 6A depicts an

intermediary 200 comprising a rate limiting manager (RLM) 605 in communication with a

rate limiting license 660 which identifies a performance level 665. Data packets 601 are

received by the RLM 605 and flow rate controlled by a throttler 625 of the RLM 605. Data

packets 601 that are propagated or throttled by the throttler 625 are sent out of the RLM 605

towards the packet engines 548A-N which operate on the cores 505A-N. RLM 605 further

includes a token generator 610 for generating tokens 602 at a token rate 615 into a token

bucket 620 which holds or keeps a count of all the tokens 602. An excess handler 630 of the

RLM 605 handles any data packets 601 that are not received or not rate controlled by the

throttler 625. RLM 605 further includes a plurality of performance level settings 640A-

640N. Each performance level setting (PLS) 640 may comprise a rate limit settings 645

which may have a bucket settings 646 and a throughput rate 650 comprising a bytes per

second (BPS) limit 65 1 and a packet per second (PPL) limit 652. As illustrated by FIG. 6A,

RLM 605 may set, configure and manage a rate of flow of data packets 601 traversing the

throttle 625 at a rate limit that is identified by a performance level 665 of the rate limiting

license 660. The rate limit for propagating data packets 601 may be controlled by a number

of tokens 602 which may need to be available for each propagated data packet 601 .

Referring to FIG. 6A in a greater detail, rate limiting license 660 may include any

type and form of hardware, software or any combination of hardware and software for

providing a license, authorization or a permit to control a rate of network traffic received

and/or transmitted via an appliance 200. In some embodiments, rate limiting license 660

includes any type and form of a program, an application, an executable, a script, a function, a

unit or a device for providing a license or permit. In other embodiments, rate limiting license

660 is a component of a software installed on the appliance 200. In further embodiments,

rate limiting license 660 includes a file, program, script or an executable that is installed or

enabled by an operator, administrator or a service provider for the appliance 200. In some

embodiments, rate limiting license 660 includes a third party software. Rate limiting license

660 may include a license file validation. Intermediary 200 may use a file for validating a

license and use a link, a URL or a directory path to validate the rate limiting license 600. In

some embodiments, a rate limiting license 660 may be confirmed or verified via a remote

database or link, such as for example MS Windows license verification model. Rate limiting

license 600 may include contents which upon testing or inspection by the intermediary may

be validated as the rate limiting license 600. In some embodiments, rate limiting license 660

includes a unique identifier or a serial number for the appliance 200 or for any service

provided by the appliance. In some embodiments, rate limiting license 660 may include a

data structure, an object or an entry in a data base. The data structure, object or the entry may

identify or provide a license for an entity.

In further embodiments, rate limiting license 660 includes a component, unit, function

or a program that controls a specific performance level. The specific performance level may

correspond to a configuration or operation of the appliance 200 in accordance with a

predetermined set of parameters or settings. In some embodiments, rate limiting license 660

enables the appliance to be operate only at a single performance level. In other embodiments,

rate limiting license 660 enables a plurality of performance levels for the appliance. In

further embodiments, rate limiting license 660 disables all except one performance level for

the appliance 200. Rate limiting license 660 may include, provide or identify one or more

performance levels, such as the performance level 665.

Performance level 665 may be any data or information for identifying or specifying a

level of performance of hardware, software or hardware and software for an appliance 200, or

any portion thereof. The level of performance may include a range or a limitation for a rate

of receipt/transmit of network traffic or a rate of processing of data packets, data or a data

stream traversing an appliance 200. Performance level 665 may be identified via a file, an

executable, a program, an application, a script, function, an algorithm, a unit or a device. In

some embodiments, performance level 665 includes an encryption/decryption key for

decrypting and enabling a predetermined performance level to be used by the appliance 200.

In other embodiments, performance level 665 includes a keyword or an instruction used by

RLM 605 to identify a predetermined set of performance level settings 645. In some

embodiments, performance level 665 includes an algorithm, application, executable or unit

that enables access to a set of instructions and settings that enable a level of performance of

the appliance 200. Performance level 665 may comprise any number of configuration

settings and values, instructions, configuration files and executables, data values and any

other type and form of hardware or software to specify, identify and enable the appliance 200

to function or operate at a level specified by the performance level 665.

Performance level 665 may include or specify any type and form of information for

identifying a level of performance or a level of operation of the appliance 200. In some

embodiments, performance level 665 includes an information about data flow rate threshold

or a limitation for the receipt and/or transmit of data in bytes of data per second or in data

packets per second. The information about data flow rate may include a flow limit or an

upper limit threshold for the performance, or the data rate flow, for the appliance 200. In

some embodiments, the information about data flow rate includes a lower limit threshold for

the performance, or the rate flow of data, of the appliance 200.

Rate limiting license 660 or the performance level 665 may identify or specify any

one performance level of a plurality of performance levels supported by the appliance, such

performance level 5500. Each of the performance levels may identify a model or type of the

appliance 200. Each of the performance levels may be associated with a predetermined

threshold of performance or rate of performance or processing of the network packets. For

example, in some embodiments, performance level 5500 limits the maximum rate of flow of

the data packets traversing the appliance 200 at 5500 packets per second. In other

embodiments, performance level 5500 limits the maximum rate of flow of the data packets

traversing the appliance 200 at 5500 bytes per second. Rate limiting license 660 or the

performance level 665 may identify or specify performance level 7500. In some

embodiments, performance level 7500 limits the maximum rate of flow of the data packets

traversing the appliance 200 at 7500 packets per second. In other embodiments, performance

level 7500 limits the maximum rate of flow of the data packets traversing the appliance 200

at 7500 bytes per second. Rate limiting license 660 or the performance level 665 may

identify or specify performance level 9500. In some embodiments, performance level 9500

limits the maximum rate of flow of the data packets traversing the appliance 200 at 9500

packets per second. In other embodiments, performance level 9500 limits the maximum rate

of flow of the data packets traversing the appliance 200 at 9500 bytes per second. Rate

limiting license 660 or the performance level 665 may identify or specify performance level

10500. In some embodiments, performance level 10500 limits the maximum rate of flow of

the data packets traversing the appliance 200 at 10500 packets per second. In other

embodiments, performance level 10500 limits the maximum rate of flow of the data packets

traversing the appliance 200 at 10500 bytes per second. Rate limiting license 660 or the

performance level 665 may identify or specify performance level 12500. In some

embodiments, performance level limits the maximum rate of flow of the data packets

traversing the appliance 200 at 12500 packets per second. In other embodiments,

performance level 12500 limits the maximum rate of flow of the data packets traversing the

appliance 200 at 12500 bytes per second.

Data packets 601 may include any type and form of data and any type and form of

units, groups or elements of data. Data packets 601 may include any information, signal or

transmission traversing an appliance 200. Data packets 601 may also include any type and

form of formatted or non- formatted data. In some embodiments, data packets 601 are

formatted units or chunks of data carried by a packet mode computer network. The formatted

units or chunks of data may be of a same size or a varying size. In further embodiments, data

packets 601 are formatted or formed network data packets for a network 104. Data packets

601 may include a header or an envelope. Data packets 601 may also include one or more

data bits or bytes. In some embodiments, data packets 601 are formed or organized into

groups that include 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 196 or 256 bits. Data packets 601

may include 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 196, 256, 512 or 1024 bytes. Data packets

601 may also include 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 196, 256, 512 or 1024

Megabytes.

Data packets 601 may be formed into a stream of data packets or a stream of data bits.

Data packets 601 of a stream of data may be of a same or a similar size. In some

embodiments, data packets 601 of a stream of data are of varying sizes. Data packets 601

may be formatted in any number of ways. Some data packets 601 may be formatted in

accordance a communication protocol, such as TCP, IP, UDP, HTTP, DHCP, POP3, SMPT,

Citrix XenApp, Citrix ICA protocol or any other type and form of communication protocol

for any communication layer or level. In some embodiments, data packets 601 include

compressed data packets. Some data packets 601, in other embodiments, may be not

compressed. In some embodiments, data packets 601 are formatted network packets, such as

TCP/IP data packets. Data packets 601 may include any number of data bits or bytes. In

some embodiments, data packets 601 include a data bit or a data byte. In some embodiments,

data packets 601 comprise one or more data bits, or a stream of data bits. In further

embodiments, data packets 601 includes a byte. In further embodiments, data packets 601

include a plurality of bytes. In some embodiments, data packets 601 include a request from a

client 102. In other embodiments, data packets 601 include a response from a server 106.

Data packets 601 may include any number of formatted or non- formatted data groups, chunks

or units of data. Data packets 601 may also include any number of bits, bytes, characters or

any other units of information transmitted via a network 104 or via an appliance 200.

Rate limiting manager 605, also known as RLM 605, may include any type and form

of algorithms or functions for managing or controlling a rate of operation, process or

propagation of the network packets in accordance with the performance level identified by

the license. RLM 605 may use instructions from the rate limiting license 660 to set up and

configure the operation and function of the appliance 200 to process data packets of the

network traffic at a predetermined rate. By way of example, RLM 605 may use a token

based system to control the rate at which data packets of the network traffic are received by

one or more packet engines 548. The token based system may include a token generator that

generates tokens 602 at a token rate 615. The token based system may further include a

token bucket 620 maintaining and keeping a track of the tokens available and a throttler 625

which receives and propagates data packets 601 conditioned by availability of tokens 602.

As such the token based system controls the throughput of the data packets 601 by throttling

of the data packets 601 at a rate of available tokens 602. The token based system may further

include a performance level settings 640A-640N for each different performance level 665

that the license may identify. The performance level settings 640A-640N may identify

various speeds or rates of processing of the data packets 601 by the RLM 605. Each

performance level settings 640 may further include rate limit settings 645 that includes a

bucket settings 646 and a throughput rate 650. The throughput rate 650 may also include a

bytes per second limit 65 1 and packets per second limit 652. RLM 605 may identify a

performance level settings 645 for the appliance 200 in response to the performance level 665

of the rate limiting license and operate in accordance with the identified settings. In some

embodiments where the performance level 665 is not identified, RLM 605 may identify a

default performance level settings 640 according to which the appliance 200 may operate. In

some embodiments, the default performance level settings comprises the settings with the

slowest rate of operation, propagation and throughput. RLM 605 may be operating on a

single-core system or a multi-core system. In a single core system, RLM 605 may operate on

the main central processing unit (CPU). In a multi-core system, RLM 605 may operate on a

single or a plurality of cores 505. RLM 605 may be configured to operate on each core 505

to control the throughput rate for each packet engine 548 on each of the cores 505.

Rate limiting manager 605, also referred to as RLM 605, may include any hardware,

software or any combination of hardware and software for initiating, establishing, managing,

controlling and/or implementing rate limiting of data traffic. RLM 605 may include any

number of files, scripts, programs, applications, functions, algorithms, libraries, units, devices

or executables for performing any function for limiting the rate of any data traffic traversing

the appliance 200. RLM 605 may include any number of processors or processing units,

logic circuits, analog or digital circuits for initiating, establishing, managing, controlling and

implementing rate control of the data traffic. In some embodiments, rate limiting manager

605 comprises any functionality, logic, circuitry, software or applications for controlling the

flow of data packets received by the appliance 200. Rate limiting manager 605 may further

include any number of RLM 605 components, such as any number of the token generators

610, token rates 615, tokens 602, token buckets 620, data packets 601, throttlers 625, excess

handlers 630, performance levels 640A-N, rate limit settings 645, bucket settings 646,

throughput rates 650, BPS limits 651 and PPS limits 652. RLM may initiate and configure a

set of RLM 605 components for each of the packet engines 548 on each of the plurality of

cores 505A-N. An appliance 200 may initiate, configure, set up and implement any number

of RLMs 605 for any number of PEs 548 which may run or operate on any number of cores

505A-N.

RLM 605 may include any functionality for controlling, managing, monitoring,

accelerating or decelerating the flow or propagation of data packets 601. In some

embodiments, RLM 605 comprises controllers, functions or units that control, organize and

manage a flow of data packets 601. RLM 605 may include one or more queues for receiving

or storing incoming data packets 601 . RLM 605 may further use or interface with any of the

existing queues of the intermediary 200. The queues accessed, monitored, managed or used

by the RLM 605 may correspond to any number of network interface cards (NICs) or data

ports that receive data packets 601 from one or more clients 102 or servers 106. Queues used

and managed by the RLM may include queues, such as a receiving queue at the NICs or

ports, SSL queues, queues storing compressed network traffic, queues storing decompressed

network traffic, queues storing data specific applications, servers or clients, queues for the

VIPs or virtual servers 270, queues for any component of the intermediary 200 or any

network traffic for any component of the appliance 200. Similarly, RLM 605 may include

one or more queues for receiving and storing data packets 601 that are being received by the

throttler 625. In some embodiments, RLM 605 stores information or data packets 601 from

the queues intended for one or more packet engines 548 on one or more cores 505. In some

embodiments, RLM 605 includes any component, unit or function for searching for and

identifying rate limiting license 660. RLM 605 may include functionality for communicating

with the rate limiting license 660 and identifying performance level 665 information. RLM

605 may include functionality or means for recognizing and identifying the performance level

660. RLM 605 may further include functionality or means for implementing rate limit

settings for the appliance 200 based on, or responsive to, the information identified by the

performance level 660. RLM 605 may further include any functionality for generating

operation and configuration settings for the appliance 200 to implement the rate limit

identified by the performance level 665 of the rate limiting license 660.

Queues that are managed or accessed by the RLM 605 may be configured in a variety

of ways. RLM 605 may manage, interface with or receive data packets from any number of

queues, such as the NICs queues or SSL queues. The queues may configured to receive

network traffic until their capacity is reached. In some embodiments, queues receiving

network traffic are configured to drop, or tail drop, any additional network packets that

cannot be accepted by the queue. In some embodiments, the NIC drops or tail drops packets.

In further embodiments, if an amount of network packets received exceeds a predetermined

threshold, the network packets may be dropped or not accepted by the queues. In further

embodiments, when data packets are tail-dropped, data packets may be resent by the sender at

a later time when queues are available to accept additional data packets.

A token 602 may include any value, character, number, count, object or any

combination of hardware and software to be used for counting, maintaining or keeping a

track of a number of data packets 601 that may be propagated. A token 602 may include any

file, object, character, symbol, value or a number to be used by any component of the RLM

605, such as a throttler 625 or a token bucket 620 for maintaining a count. The count

maintained using tokens 602 may be any count, sum or tally for determining an amount or a

number of data packets 602 to be propagated, processed or throttled by the RLM 605. Token

602 may include an object, an executable or a file. In further embodiments, token 602

includes a cookie. In yet further embodiments, token 602 includes a set of characters, values

and parameters identifying a specific data packet 601, or a specific type of data packet 601.

Token 602 identifying a specific data packet 601 or a specific data packet type may be used

by a throttler 625 for propagating such a data packet 601 . In some embodiments, one or more

tokens 602 comprise a count or a summation value. In further embodiments, one or more

tokens 602 are a value or a number inside a counter or an algorithm maintaining a count or a

total for the tokens 602. Tokens 602 may be counted or maintained by an algorithm or an

application that keeps the count of tokens 602 by adding new tokens 602 to the total count or

subtracting existing tokens 602 from the total count. Tokens 602 may be added or counted

up in a counter at a token generation rate, such as token rate 615, for each new token 602

generated. In some embodiments, tokens 602 are counted down or subtracted from a total

sum of tokens 602 for each data packet 601 that is processed, propagated or throttled by the

throttler 625. In further embodiments, token 602 comprises a number or a value that

corresponds to a number of data packets 601 allowed for processing, propagating or throttling

at present moment. A token 602 may comprise any count, count variable, value, number,

object or component used for counting, keeping count of or tracking a number of data packets

601 that may be allowed to be propagated by the RLM 605.

Token generator 610 may include any hardware, software or any combination of

hardware and software for generating, managing, adding, subtracting, or otherwise

controlling a count of tokens 602. Token generator 610 may include any number of files,

scripts, programs, applications, functions, algorithms, processing units, logic circuits, analog

or digital circuits or executables for producing, managing, adding or subtracting tokens 602.

Token generator 610 may comprise any functionality and means for generating, maintaining

and keeping a track of a total count or a total number of tokens 602 available. Token

generator 610 may subtracts a token 602 or a count for each data packet 601 that propagates,

processes or throttles through the RLM 605. In such embodiments, token generator 610 may

add a token 602 or a count for each period of time defined by a token rate 615 (1 / (token

rate) in tokens/second) for which a data packet 601 is not propagated, processed or throttled

through the RLM 605. Token generator 610 may also add a token 602 or a count for each

data packet 601 that propagates, processes or throttles through the RLM 605. In such

embodiments, token generator 610 subtracts a token 602 or a count for each period of time

defined by a token rate 615 for which a data packet 601 is not propagated, processed or

throttled through the RLM 605. Token generator 610 may add or generates any number of

tokens 602 as defined by the token rate 615. In some embodiments, token generator 610 may

subtract, count down or terminate any number of tokens 602 as defined by the token rate 615.

Token generator 610 may include a program, an application or an algorithm counting, or

maintaining a count. Token generator 610 may maintain a number of counts or tokens 602

available at each moment. In some embodiments, token generator 610 generates or adds a

number of tokens to a total number of tokens 602. In some embodiments, token generator

610 subtracts or terminates a number of tokens 602 from a total number of tokens 602.

Adding, subtracting, generating or terminating or any other action performed by the token

generator 610 on the tokens 602 may be responsive to a timing counter defined by a token

rate 615. In some embodiments, adding, subtracting, generating or terminating or any other

action performed by the token generator 610 on the tokens 602 is responsive to a data packet

602 propagated, processed or throttled by the RLM 605.

Token rate 615 may be any rate at which tokens 602 are established, counted or

generated. Token rate 615 may include any hardware, software or any combination of

hardware and software for establishing or generating a rate, a tempo or a pace for production,

counting or generating tokens 602. Token rate 615 may include an application, an algorithm,

an executable or a counter for maintaining and managing a rate at which tokens 602 are

generated or terminated. In some embodiments, token rate 615 includes a rate for generating

or increasing a number of tokens 602 in tokens 602 per second. In other embodiments, token

rate 615 includes a rate of adding a count or counting up a counter that corresponds to a total

number of tokens 602. In further embodiments, token rate 615 includes a rate for terminating

or decreasing a number of tokens 602 in tokens 602 per second. In other embodiments, token

rate 615 includes a rate of subtracting a count or counting down a counter that corresponds to

a total number of tokens 602. In some embodiments, token rate 615 comprises any rate

between 1 and 100 bytes per second, such as 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100

tokens 602 per second. In other embodiments, token rate 615 includes any range of rates

between 100 and 1000 tokens 602 per second, such as 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 tokens 602 per second. In further

embodiments, token rate 615 includes any range of rates between 1000 and 10000 tokens 602

per second, such as 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000,

6500, 7000, 7500, 8000, 8500, 9000, 9500 or 10000 tokens 602 per second. In yet further

embodiments, token rate 615 includes any range of rates between 10,000 and 100000 tokens

602 per second, such as 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000,

55000, 60000, 65000, 70000, 75000, 80000, 85000, 90000, 95000 or 100000 tokens 602 per

second. In still further embodiments, token rate 615 includes any range of rates between

100,000 and 1,000,000 tokens 602 per second, such as 100000, 150000, 200000, 250000,

300000, 350000, 400000, 450000, 500000, 550000, 600000, 650000, 700000, 750000,

800000, 850000, 900000, 950000 or 1000000 tokens 602 per second. In yet further

embodiments, token rate 615 includes any range of rates between 1,000,000 and

1,000,000,000 tokens 602 per second, such as 1,000,000, 5,000,000, 10,000,000, 50,000,000,

100,000,000, 500,000,000 or 1,000,000,000 tokens 602 per second. Token rate 615 may be

used for managing or controlling the rate of propagation, processing or throttling of data

packets 602 through the throttler 625. Token rate 615 may be created by the token generator

610 responsive to any information or settings from any of the rate limiting license 660 or any

performance level settings 640.

Token bucket 620 may include any hardware, software or any combination of

hardware and software for managing and maintaining a total count or a total tally of available

tokens 602. Token bucket 620 may include any logic, application, function or an algorithm

for maintaining a total number or tally of tokens 602. Token bucket 620 may include any

logic, application, function or an algorithm for establishing a maximum size for the token

bucket 620. Token bucket 620 may refuse to accept additional tokens 602 once a maximum

size for the tokens has been reached. In some embodiments, token bucket 620 establishes the

maximum size of the token bucket 620 responsive to information from a PLS 640 or a

performance level 665. Token bucket 620 may include any functionality, logic, or means for

disabling additional tokens 602 from being generated or being added to the token bucket 620

once a threshold is exceeded. In further embodiments, token bucket 620 comprises a limit or

a threshold for a minimal number of tokens 602 that may be generated. In such

embodiments, token bucket 620 includes any functionality, logic, or means for ensuring that

no additional tokens 602 are subtracted or terminated after the threshold has been exceeded.

Token bucket 620 may include, keep a track of, or keep a count of any number of tokens 602

that are available. In some embodiments, token bucket 620 subtracts a token 602 for each

data packet 601 that is processed, propagated or throttled via a throttler 625. In other

embodiments, token bucket 620 adds a token 602 for each data packet 601 that is processed,

propagated or throttled via a throttler 625. Token bucket 620 may provide any number of

tokens 602 to the throttler 625 in response to the request from the throttler 625 to send the

tokens 602. Token bucket 620 may also refuse to provide tokens 602 to the throttler 625

responsive to a rule, logic or threshold limit. Token bucket 620 may use any function,

device, unit or an algorithm to maintain and monitor any token 602 or the total number of

available tokens 602.

Throttler 625 may include any hardware, software or any combination of hardware

and software for establishing, controlling and managing the flow of any data packets 601 that

are propagating, processing or throttling via RLM 605. Throttler 625 may include any

number of files, programs, applications, functions, algorithms, components, processing units

or logic circuits for propagating, processing, throttling or controlling the flow of any data

packets 601 according to a throughput rate 650. Throttler 625 may process, propagate,

throttle any number of data packets 601 responsive to availability of tokens 602 in a token

bucket 620. Data packets 601 to be throttled or processed by the throttler 625 may be stored

in one or more queues. The queues may receive incoming data packets 601 from one or more

network interface cards. Throttler 625 may receive incoming data packets 601 from one or

more queues and throttle, propagate or process the data packets 601 at the rate limit.

Throttler 625 may utilize logic, functions, algorithms or units for determining or monitoring

the total number or a total count of tokens 602 available in the token bucket 620. Throttler

625 may comprise any functionality for propagating data packets 601 responsive to

availability of tokens 602 in the token bucket 620. In some embodiments, throttler 625

comprises functionality for propagating data packets 601 based on BPS limit 65 1. In other

embodiments, throttler 625 comprises functionality for propagating data packets 601 based

on PPS limit 651. In further embodiments, throttler 625 comprises functionality for

propagating or throttling data packets 601 based on any type and form of throughput rate 650

or token rate 615. Throttler 625 may include any means or functionality for propagating or

throttling data packet 601 based on any combination of availability of tokens 602, throughput

rate 650, BPS limit 651, PPS limit 652 and any PLS 640A-N.

Throttler 625 may propagate, process or throttle any number of data packets 601

responsive to availability of tokens 602. In some embodiments, throttler 625 determines to

propagate a number of data packets 601 to one or more packet engines 548 on one or more

cores 505 in response to a number of tokens 602 being available in the token bucket 620. In

some embodiments, throttler 625 determines that a specific number of data packets 601 is

waiting at a queue to be propagated to one or more packet engines 548. Throttler 625 may

further determine that the total number of tokens 602 available in the token bucket 620

exceeds the number of data packets 601 awaiting the propagation. Throttler 625 may

propagate the data packets 601 responsive to the tokens 602 being available for each data

packet 601 propagated. In some embodiments, if the number of available tokens 602 does

not exceed the number of data packets 601, throttler 625 may not propagate the data packets.

In further embodiments, once the data packets 601 are propagated or throttled, the throttler

625 may send a signal to the token bucket 620 to decrease the number of available tokens 602

by the number of data packets 601 propagated. In further embodiments, throttler 625

propagates the data packets 601 one at a time, while waiting to receive a new token 602 from

the token generator 610. Token rate 615 at which the token generator 610 generates tokens

602 may determine the throughput rate 650 at which the throttler 625 propagates a data

packet 601. Following the propagation of each data packet 601, throttler 625 may send an

instruction to the token bucket to count down, decrease or otherwise adjust the number or

tally of the available tokens 602. In other embodiments, token rate 615 at which the token

generator 610 generates tokens 602 is determined by the throughput rate 650.

Throttler 625 may control the flow of the data packets 601 by using a token 602 in

correspondence to each byte or bit of data packets 601 propagated by the throttler 625. In

such embodiments, throttler 625 controls the flow of the data packets 601 based on the

number of bytes or bits of the data packets 601 propagated. For example, throttler 625 may

throttler or propagate data packets 601 towards one or more PEs 548, responsive to

availability of tokens 602 for each byte or bit of data packets 601 propagated. Following the

propagation of the data packets 601 based on the number of bits or bytes, the total number of

tokens 602 available in the token bucket 620 may decrease or adjust accordingly to reflect the

correct total sum of available tokens 602. In some embodiments, throttler 625 may determine

that a token bucket 620 comprises no tokens 602. In such embodiments, throttler 625 readies

a data packet 601 for propagation and awaits arrival of the next token 602. Upon arrival of

the token 602 the next token 602, throttler 625 propagates the data packet 601 . The token

602 may be dropped, discounted or subtracted from the count of the total number of available

tokens 602 responsive to the data packet 601 being propagated. Throttler 625 may ready

another data packet 601 for transmission and await another available token 602 to implement

the propagation. In some embodiments, throttler 625 decides that data packets 601 have been

waiting for propagation for a period of time that exceeds a predetermined threshold.

Throttler 625 may then drop, flush or erase data packets 601 stored in the queues awaiting the

propagation. In some embodiments, throttler 625 sends the data packets 601 whose waiting

period has exceeded the threshold to excess handler 630.

Excess handler 630 may include any hardware, software or any combination of

hardware and software for controlling and managing data packets 601 sent to the excess

handler from the throttler 625. Excess handler 630 may include any number of files,

programs, applications, functions, algorithms, components, processing units or logic circuits

for propagating, processing, terminating, refreshing or erasing any data packets 601. Excess

handler 630 may send, transmit out, reject or erase any number of data packets 601

responsive to instructions from the PLS 640. Excess handler 630 may terminate or flush data

packets 601. In some embodiments, excess handler 630 sends the data packets 601 back to

the original sender of the data packets 601. In further embodiments, excess handler 630

sends a response to the original sender of the data packets 601 requesting from the sender to

resend the data packets 601 again. In further embodiments, excess handler 630 stores the

data packets 601 received into a storage or a memory. In still further embodiments, excess

handler 630 reformats or processes the data packets 601 and sends the data packets back to

the queue of the throttler 625 for processing. In still further embodiments, excess handler

630 forwards the data packets 601 to an additional throttler 625 that uses an additional set of

tokens 602 from another token bucket 620. Following the receipt of the data packets 601

from the excess handler 630, the additional throttler 625 propagates or throttles the data

packets to one or more PEs 548 responsive to availability of the additional set of tokens 602

in the another token bucket 620.

Excess handler 630 may process any data packets 601 not throttled by the throttler

625 in accordance with any number of processes and procedures. In some embodiments,

excess handler 630 discards the data packets 601 that are not received or processed by the

throttler 625. For example, the queues storing data packets 601 may be flushed out if there

are no tokens 602 for processing the data packets 601. In further embodiments, excess

handler 630 stores or maintains excess data packets 601 until the tokens 602 become

available. In still further embodiments, excess handler 630 maintains another token bucket

for handling excess data packets 601 . Excess handler 630 may use active queue management

to handle any data packets 601 that are not processed, throttled or propagated by the throttler

625. Excess handler 630 may include an algorithm or a function to use one or more

proportional integrals to calculate the number of data packets 601 to be flushed or handled in

an alternative matter, such as the additional token bucket. Excess handler 630 may use

probability functions or algorithms to calculate the probability of the data packets 601 being

dropped or flushed from the queues. Active queue management may also employ current

queue length, size of data packets, the number of data packets, token and throughput rates and

BPS and PPS limits to compute the probability of data packets 601 being dropped or flushed.

In some embodiments, active queue management may use current queue length, size of data

packets, the number of data packets, token and throughput rates and BPS and PPS limits to

compute the probability to perform additional processes, such as additional token bucket for

processing the non-throttled data packets 601 . Active queue management may determine to

proceed with processing of the data packets 601 for which the probability of being dropped

exceeds a predetermined threshold.

Performance level settings 640, also referred to as PLS 640, may include any

hardware, software or any combination of hardware and software for setting or configuring

operation of the appliance 200. PLS 640 may include any number of files, scripts, programs,

applications, functions, algorithms, processing units, logic circuits, analog or digital circuits

or executables for configuring or setting operation or functionality of any number of

components of the appliance 200. PLS 640 may include any functionality for configuring or

setting the performance level or operation of the appliance 200 in accordance with

information identified by the performance level 665. In some embodiments, PLS 640

includes a compilation of configuration and operation settings for configuring or maintaining

the rate of flow of the data packets 601 traversing the appliance at a predetermined level.

PLS 640 may comprise one or more settings, parameters input values, instructions and

commands for one or more components of the intermediary 200 or the RLM 605. In some

embodiments, PLS 640 includes parameters, inputs, instructions and settings for any one of,

or any combination of, the token generator 610, token rate 615, throttler 625, token bucket

620 and excess handler 630. The parameters, inputs, instructions and settings may include

any combination of values, configuration points and commands for any number of

components of the RLM 605 to maintain a rate of flow of data packets 601 within a

predetermined level or threshold.

PLS 640 may include any type and form of functionality for storing, identifying,

setting and configuring any parameters, settings and instructions for any part or component of

the RLM 605. In some embodiments, PLS 640 includes settings, parameters and instructions

for a token generator 610 to generate tokens 602 at a predetermined rate. In further

embodiments, PLS 640 includes settings, parameters and instructions identifying or

specifying a token rate 615. PLS 640 may include settings, parameters and instructions for

specifying or identifying a type of tokens 602 to be generated. In some embodiments, PLS

640 includes settings, parameters and instructions for generating tokens 602 for data packets

601. In some embodiments, PLS 640 includes settings, parameters and instructions for

generating tokens 602 for data bytes or data bits of the data packets 601 . PLS 640 may

include settings, parameters and instructions for initiating, generating and maintaining a

token bucket 620 which may include a maximum token size of any number of tokens 602. In

some embodiments, PLS 640 includes settings, parameters and instructions to establish and

maintain a token bucket 620 that comprises any number of tokens 602, such as anywhere

between 100 and 1000, 1000 and 100000 or 100000 and 10,000,000 tokens. In some

embodiments, PLS 640 includes settings, parameters and instructions that generate a throttle

625. In further embodiments, PLS 640 includes settings, parameters and instructions that set

up, initiate and maintain the operation of throttle 625 to throttle or control rate or flow of data

packets 601 at any rate or speed. In some embodiments, PLS 640 includes settings,

parameters and instructions that initiate, establish, control and maintain an excess handler

630. In further embodiments, PLS 640 includes settings, parameters and instructions that

control and maintain operation of excess handler 630 to handle, operate on or process any

data packets 601 that are not processed or throttled by throttler 625.

PLS 640 may further include any additional settings, instructions or parameters for

using additional methods for controlling of rate of propagation or processing. In some

embodiments, PLS 640 includes settings and instructions for limiting amount of memory

visible to the system, or the RLM 605. In further embodiments, PLS 640 includes settings

and instructions for limiting a number of cores 505 available to the system or the RLM 605.

In still further embodiments, PLS 640 includes settings and instructions for limiting the

number of SSL chips visible to the system. In yet further embodiments, PLS 640 includes

settings and instructions for adjusting a clock for running of the processors, such as CPUs or

the processors used by the RLM 605. In still further embodiments, PLS 640 includes settings

and instructions for managing processor cache-miss rate. In still further embodiments, PLS

640 includes settings and instructions for tweaking or fine-tuning of the netio pipeline

parameters. In yet further embodiments, PLS 640 includes settings and instructions for

running or operating RLM 605 on a plurality of cores 505. In still further embodiments, PLS

640 includes settings and instructions for running or operating RLM 605 on a single-

processor (single-core) system.

Rate limit settings 645 may include any hardware, software or any combination of

hardware and software for setting or configuring rate of flow of data packets 601. Rate limit

settings 645 may include any number of files, scripts, programs, applications, functions,

algorithms, processing units, logic circuits, analog or digital circuits or executables for

configuring or setting rate of flow or rate of processing of data packets 601. Rate limit

settings 645 may include any type and form of settings, configuration points or setting points

for any number of components of the RLM 605, such as the throttler 625, for controlling or

limiting rate of flow or rate of propagation of data packets 601. In some embodiments, rate

limit settings 645 include any number of configuration and operation settings for establishing

and operating a token generator 610. In further embodiments, rate limit settings 645 include

any number of configuration and operation settings for establishing a token rate 615. In yet

further embodiments, rate limit settings 645 include any number of configuration and

operation settings for establishing and operating a throttler 625. In still further embodiments,

rate limit settings 645 include any number of configuration and operation settings for

establishing and operating an excess handler 630. Rate limit settings 645 may include any

number files, instructions, data, applications, processing units, hardware or software for

configuring, establishing and operating any of the RLM 605 components to maintain a rate of

flow or propagation of the data 601 through the throttler 625 within performance level

settings identified by the performance level 665 of the rate limiting license 660.

RLS 465 may include any type and form of configuration or operation instructions,

parameters or settings. In some embodiments, RLS 465 sets the limits or thresholds for any

of the throughput rate 650 or token rate 615 based on the hardware platform of the model of

the appliance 200. In further embodiments, RLS 465 sets the limits or thresholds of the

throughput and token rates at a minimum or the slowest rate settings if a performance level

665 is not identified.

RLS 465 may configure a rate limit using a setting, such as:

netscaler.do_rate_limit=l. In such embodiments, setting the netscaler.do rate limit

variable to non-zero activates or enables the rate limiting settings. In other embodiments, if

the setting is at a zero, the rate limiting setting or code is not active default value is zero, and

means, that rate limiting code is not active.

RLS 465 may configure a size of a token bucket 620 using another setting, such as:

netscaler.rate_limit_bucket_size=1000. In such embodiments, the size of the token bucket

620 is set in milliseconds. This value may determine size of the maximum burst in traffic

which will be able to pass through throttler 625 without restrictions. This value may identify

a maximum burst that is allowed to propagate or be received by the throttler 625.

RLS 465 may configure a limit for a throughput rate 650 using a setting such as:

netscaler.rate_limit_mbits=3072. In such embodiments, the limit or the threshold for

throughput rate is defined in Megabits per second, such as 3072 Mb/s, or 3Gb/s.

RLS 465 may configure a packet rate limit in packets per second using a setting, such

as: netscaler.rate_limit_packets=1000000. In such embodiments, packet rate limit is

defined as 1000000 packets per second.

RLS 465 may also allow confirmation of the values set. Such confirmations may be

initiated using an instruction, such as: dmesg \grep platform

RLS 465 may further configure or set rate limiting parameters, using instructions,

such as: nsapimgr - B "w ns_rl_bucket_size 0x400" - for setting a token bucket 620 size in

milliseconds using hexadecimal values, nsapimgr - B "w ns_rl_mbits OxCOO" - for setting

throughput rate in megabits per second, using hexadecimal values, and nsapimgr - B "w

ns_rl_packets 0xF4240" - for setting a packet rate in packets per second, also using

hexadecimal values.

Bucket settings 646 may include any hardware, software or any combination of

hardware and software for setting or configuring of token bucket 620. Bucket settings 646

may include any number of files, scripts, programs, applications, functions, algorithms,

processing units, logic circuits, analog or digital circuits or executables for configuring or

setting any components features or functions of the token bucket 620. Bucket settings 646

may configure or set up a type or operation of the token bucket 620. In some embodiments,

bucket settings 646 configure or set up the token bucket 620 as a bucket that stores a

predetermined amount of tokens 602. Bucket settings 646 may configure or set up the token

bucket 620 to enable a burst of data having a number of data packets 601 which does not

exceed the number of tokens 602 stored in the token bucket 620 to be throttled or processed

by the throttler 625 without slowing the data 601 down. In further embodiments, bucket

settings 646 may maintain the rate of generating tokens 602 by the token generator 610 at a

predetermined token rate 615. In some embodiments, token rate 615 may be any rate of

generating tokens 602, such as 10, 50, 100, 500, 1000, 2000, 5000, 7000, 10000, 15000,

20000, 30000, 50000, 100000 or 1000000 tokens/second. In some embodiments, bucket

settings 646 configure or set up the token bucket 620 as a bucket that does not store a

predetermined amount of tokens 602. Instead, token bucket 620 may be set by the bucket

settings 646 to simply hold a token 602 for a predetermined amount of time. The token

bucket 620 may be configured to drop the token 602 after the predetermined amount of time

expires and wait for the next token 602. Bucket settings 646 may configure or set up the

token bucket 620 not to enable a burst of data greater than a predetermined rate limit of data

to be throttled. Instead, bucket settings 646 may set up the token bucket to generate tokens

602 at a predetermined rate to ensure that data packets 601 are throttled or processed by the

throttler 625 at the predetermined rate limit, such as the throughput rate.

Throughput rate 650 may comprise any limit, threshold or a configuration setting for a

rate of processing or throttling of data packets 601 traversing the appliance 200. Throughput

rate 650 may include a rate or propagation in packets per second or bytes per second of data

packets 601 . Throughput rate 650 may include any hardware, software or any combination of

hardware and software for setting or configuring of token bucket 620. Throughput rate 650

may include any number of files, scripts, programs, applications, functions, algorithms,

processing units, logic circuits, analog or digital circuits or executables for configuring or

setting rate of processing or throttling of data packets 601. In some embodiments, throughput

rate 650 includes a threshold for a rate of propagation of data packets 601. In some

embodiments, throughput rate 650 is identified in terms of data packets 601 to be processed,

propagated or throttled per second. In other embodiments, throughput rate 650 is identified

in terms of a number of packets or chunks of data packets 601 to be processed, propagated or

throttled per second. In further embodiments, throughput rate 650 is identified in terms of a

number of bits of data packets 601 to be propagated, processed or throttled per second. In yet

further embodiments, throughput rate 650 is identified in terms of a number of requests of a

client 102 to be propagated, processed or throttled per second. In still further embodiments,

throughput rate 650 is identified in terms of a number of responses of a server 106 to be

propagated, processed or throttled per second. In yet further embodiments, throughput rate

650 is identified in terms of a number of transmissions for a specific destination to be

processed, propagated or throttled per second. In still further embodiments, throughput rate

650 is identified in terms of a number of transmission from a specific source to be processed,

propagated or throttled per second. In yet further embodiments, throughput rate 650 is

identified in terms of a number of data packets 601, data bits, data bytes or transmissions to

be throttled, processed or propagated and forwarded to a specific PE 548 or a specific core

505 of the appliance 200. Throughput rate 650 may include any type and form of

propagation rate for data packets 601 traversing the appliance 200.

Bytes per second limit 65 1, also referred to as BPS limit 65 1, may comprise any limit,

threshold or a configuration setting in bytes per second for a rate of processing or throttling of

data packets 601 . BPS limit 65 1 may include any rate of propagation in bytes per second.

BPS limit 65 1 may include any limit or threshold for a maximum rate of propagation in bytes

per second. In some embodiments, BPS limit 65 1 includes or identifies any rate between 1

byte per second and 1 terabyte per second. In some embodiments, BPS limit 65 1 includes

any range of rates between 1 and 100 bytes per second, such as 1, 10, 20, 30, 40, 50, 60, 70,

80, 90 or 100 bytes per second. In other embodiments, BPS limit 651 includes any range of

rates between 100 and 1000 bytes per second, such as 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 bytes per second. In further

embodiments, BPS limit 651 includes any range of rates between 1000 and 10000 bytes per

second, such as 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500,

7000, 7500, 8000, 8500, 9000, 9500 or 10000 bytes per second. In yet further embodiments,

BPS limit 651 includes any range of rates between 10,000 and 100000 bytes per second, such

as 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000,

70000, 75000, 80000, 85000, 90000, 95000 or 100000 bytes per second. In still further

embodiments, BPS limit 651 includes any range of rates between 100,000 and 1,000,000

bytes per second, such as 100000, 150000, 200000, 250000, 300000, 350000, 400000,

450000, 500000, 550000, 600000, 650000, 700000, 750000, 800000, 850000, 900000,

950000 or 1000000 bytes per second. In yet further embodiments, BPS limit 651 includes

any range of rates between 1,000,000 and 1,000,000,000 bytes per second, such as 1,000,000,

5,000,000, 10,000,000, 50,000,000, 100,000,000, 500,000,000 or 1,000,000,000 bytes per

second. Throughput rate 650 may include any hardware, software or any combination of

hardware and software for setting or configuring of token bucket 620.

Packets per second limit 652, also referred to as PPS limit 652, may comprise any

limit, threshold or a configuration setting in packets per second for a rate of processing or

throttling of data packets 601. PPS limit 652 may include any rate of propagation in packets

per second. PPS limit 652 may include any limit or threshold for a maximum rate of

propagation in packets per second. In some embodiments, PPS limit 652 includes or

identifies any rate between 1 packet per second and 1,000,000,000 packets per second. In

some embodiments, PPS limit 652 includes any range of rates between 1 and 100 packets per

second, such as 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 packets per second. In other

embodiments, PPS limit 652 includes any range of rates between 100 and 1000 packets per

second, such as 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800,

850, 900, 950 or 1000 packets per second. In further embodiments, PPS limit 652 includes

any range of rates between 1000 and 10000 packets per second, such as 1000, 1500, 2000,

2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500

or 10000 packets per second. In yet further embodiments, PPS limit 652 includes any range

of rates between 10,000 and 100000 packets per second, such as 10000, 15000, 20000,

25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 70000, 75000, 80000,

85000, 90000, 95000 or 100000 packets per second. In still further embodiments, PPS limit

652 includes any range of rates between 100,000 and 1,000,000 packets per second, such as

100000, 150000, 200000, 250000, 300000, 350000, 400000, 450000, 500000, 550000,

600000, 650000, 700000, 750000, 800000, 850000, 900000, 950000 or 1000000 packets per

second. In yet further embodiments, PPS limit 652 includes any range of rates between

1,000,000 and 1,000,000,000 packets per second, such as 1,000,000, 5,000,000, 10,000,000,

50,000,000, 100,000,000, 500,000,000 or 1,000,000,000 packets per second.

Referring now to FIG. 6B, embodiments of steps of a method for controlling a rate of

traffic of a device in accordance with a rate limit identified by a rate limiting license is

illustrated. In brief overview, at step 605 a rate limiting manager 605 of an intermediary 200

identifies presence of a rate limiting license 660 that identifies a performance level 665. At

step 610, the rate limiting manager 605 establishes a rate limit, such as a token rate 615,

based on the performance level 665. At step 615, a token generator 610 generates tokens 602

for a token bucket 620 in accordance with the rate limit. At step 620, the intermediary 200

receives a plurality of network packets, such as data packets 601. At step 625, a throttler 625

identifies, from the token bucket 620, tokens 602 for the plurality of network packets. At

step 630, the throttler 630 controls a rate of receiving of the network packets, such as the

throughput rate 650, based on the rate limit. At step 635, the rate limiting manager 605

transmits the throttled network packets to one or more packet engines 548 and transmits the

network packets that were not throttled to an excess handler 630. At step 640, the rate

limiting manager 605 transmits the network packets that were not throttled to an excess

handler 630.

In further overview of FIG. 6B, at step 605 a rate limiting manager 605 of an

intermediary 200 identifies presence of a rate limiting license 660 which includes an

information about a performance of the intermediary 200. In some embodiments, a rate

limiting manager (RLM) 605 of the intermediary 200 identifies a presence of a rate limiting

license 660. In other embodiments, RLM 605 identifies a component of a rate limiting

license 660. In yet further embodiments, RLM 605 receives a file or a message from the rate

limiting license 660 comprising information about a performance of the intermediary 220.

Rate limiting license 660 may sand to the RLM 605 any information about a performance

level 665 for the appliance 200. The information about the performance level 665 may

include any information about throughput rate 650 or a propagation or throttling rate of data

packets 601 . The information identifying the performance level 665 may include any

number, value or a parameter uniquely identifying the performance level 665 from any other

performance level 665. The performance level 665 may be matched by the RLM 605 with a

corresponding performance level settings 640. The performance level 665 may include any

information regarding the rate of throughput, propagation, throttling or processing of the data

packets 601 by the intermediary 200. In some embodiments, performance level 665 includes

a maximum threshold rate of throughput or propagation for processing or throttling data

packets 601 via the throttler 625. In further embodiments, performance level 665 includes

information identifying the rate of generating tokens 602. In still further embodiments,

performance level 665 includes information identifying the maximum number of tokens 602

to be stored in a token bucket 620.

At step 610, the rate limiting manager 605 establishes a rate limit based on the

performance level 665. RLM 605 may establish a rate limit based on the PLS 640 that is

identified by the information from the performance level 665. In some embodiments, PLS

640 generates configuration and operation settings for the RLM based on the information

from the performance level 665. RLM 605 may establish or determine a rate limit responsive

to configuration and operation settings from the PLS 640. RLM 605 may establishes any rate

limiting or placing a threshold for controlling throughput, propagation or throttling of data

packets 601. In some embodiments, RLM 605 establishes a throughput rate 650. In other

embodiments, RLM 605 establishes a token rate 615. In further embodiments, RLM 605

establishes a BPS limit 65 1. In yet further embodiments, RLM 605 establishes a PPS limit

652. In further embodiments, RLM 605 establishes one or more bucket settings 646 for a

token bucket 620. In some embodiments, RLM 605 establishes a maximum token 602

number to be allowed by the token bucket 620. RLM 605 may utilize PLS 640 to identify or

establish any rates or rate limits for the RLM 605. In some embodiments, RLM 605

identifies or establishes a maximum or a minimum threshold or limit for a token rate 615. In

other embodiments, RLM 605 identifies or establishes a maximum or a minimum threshold

or limit for a throughput rate 615.

At step 615, a token generator 610 generates tokens 602 for a token bucket 620 in

accordance with the rate limit. In some embodiments, token generator 610 generates tokens

602 in accordance with, or based on, the throughput rate 650. In other embodiments, token

generator 610 generates tokens 602 in accordance with, or based on, the token rate 615. In

further embodiments, token generator 610 generates tokens 602 in accordance with, or based

on, the BPS limit 65 1. In yet further embodiments, token generator 610 generates tokens 602

in accordance with, or based on, PPS limit 652. In still further embodiments, token generator

610 generates tokens 602 in accordance with, or based on, a PLS 640. In some embodiments,

token generator 610 generates tokens 602 in accordance with, or based on, information from

the performance level 665. In yet further embodiments, token generator 610 generates tokens

602 in accordance with, or based on, the information about hardware platform for the

appliance 200. In still further embodiments, token generator 610 generates tokens 602 in

accordance with, or based on, bucket settings 645, such as a token bucket 620 size limit.

Token generator 610 may generate tokens 602 responsive to a type of data packets 601

traversing the appliance 200. Token generator 610 may generate tokens 602 responsive to

any information from any of the RLM 605 components, such as the PLS 640, token bucket

620, throttler 625 or an excess handler 630.

At step 620, the intermediary 200 receives a plurality of network packets, such as data

packets 601. In some embodiments, the intermediary 200 receives one or more requests from

a client 102. In other embodiments, the intermediary 200 receives one or more responses to

client 102 requests from a server 106. In further embodiments, the intermediary 200 receives

one or more data bits or data bytes. In still further embodiments, the intermediary 200

receives one or more streams of data, such as stream data of audio or video streams. In some

embodiments, the intermediary 200 receives one or more data packets 601 . In further

embodiments, the intermediary 200 receives a network data packet, such as a data packet

traversing the network 104. The received plurality of network data packets may be received

by the intermediary 200 and stored in one or more queues, registers or storages. The received

plurality of network data packets may be forwarded to the throttler 625 for further processing,

propagating or forwarding.

At step 625, a throttler 625 identifies, from a token bucket 620, tokens 602 for the

plurality of network packets. In some embodiments, throttler 625 identifies a number of

tokens 602 available in the token bucket 620. In other embodiments, throttler 625 identifies

specific tokens 602 to be used for processing or propagating specific data packets 601 . In

further embodiments, throttler 625 identifies a current count or sum of the tokens 602

available. In further embodiments, throttler 625 requests from the token bucket 620 a total

sum of tokens 602 currently available. Token bucket 620 may respond to the throttler 625

with a response identifying the total sum or a total number of currently available tokens 602.

In some embodiments, throttler 625 identifies if there is at least one token 602 available in

the token bucket 620. In further embodiments, throttler 625 identifies if there is at least one

token 602 above a minimum threshold for the number of tokens available in the token bucket

620. Throttler 625 may identify each token 602 for each data packet 601 awaiting the

propagation or processing. In some embodiments, throttler 625 identifies specific tokens 602

for specific data packets 601 based on the type of tokens 602 and types of data packets 601.

Throttler 625 may assign one or more tokens 602 for one or more network packets, such as

data packets 601. In some embodiments, throttler 625 assigns one or more tokens 602 from

the token bucket 620 to a data packet 601 . In other embodiments, throttler 625 assigns a

token 602 for one or more data packets 601 . In further embodiments, throttler 625 assigns a

token for each predetermined amount of bits, bytes or megabytes of the network packets or

data packets 601 . In still further embodiments, throttler 625 assigns one or more tokens for

each bit, byte or megabyte of the network traffic or data packets 601 .

At step 630, throttler 625 controls a rate of receiving, propagating or throttling of

network packets based on any rate limit. In some embodiments, throttler 625 controls a rate

of receiving or propagating of network packets, such as the data packets 601, based on the

established rate limit. In some embodiments, throttler 625 controls a rate of receiving,

propagating or throttling of the data packets 601 based on the throughput rate 650. In other

embodiments, throttler 625 controls a rate of receiving, propagating or throttling of the data

packets 601 based on the bytes per second (BPS) limit 65 1. In other embodiments, throttler

625 controls a rate of receiving, propagating or throttling of the data packets 601 based on the

packet per second (PPS) limit 652. In further embodiments, throttler 625 controls a rate of

receiving, propagating or throttling of the data packets 601 based on the combination of BPS

and PPS limits. In some embodiments, a throttler 625 receives, throttles or propagates data

packets 601 based on a rate that does not exceed a predetermined packets per second limit

652 in addition to not exceeding another predetermined bytes per second limit 65 1. A throttle

625 may propagate, process or receive data packets 601 based on any rate of bytes per second

or packets per second provided that the rate does not exceed a BPS or PPS limit. In some

embodiments, throttle 625 propagates, processes or receives data packets 601 based on any

rate of bytes per second that does not exceed a bytes per second limit 652. In still further

embodiments, throttle 625 propagates, processes or receives data packets 601 based on a

token rate 615. The token rate 615 may further be based on any one of the BPS limit 65 1 or

PPS limit 652. The token rate 615 may also be based on the combination of BPS limit 65 1

and PPS limit 652. Throttler 625 may throttle, propagate or receive the network packets at

any rate based on any combination of any of the token bucket 620 maximum size, token rate

615, throughput rate 650, BPS limit 651 and PPS limit 652.

At step 635, the rate limiting manager 605 transmits data packets 601 that were

received, propagated or throttled by the throttler 625 to one or more packet engines 548. In

some embodiments, RLM 605 transmits the data packets 601 from the throttler 625 to a PE

548. In other embodiments, RLM 605 transmits some data packets 601 to a PE 548 identified

by the data packets 601. In further embodiments, RLM 605 transmits subsets of data packets

601 to some specific or predetermined PEs 548. The subsets of data packets 601 may include

any number of data packets. Such data packets may be distributed across any number of PEs

548 operating on any number of cores 505. In further embodiments, RLM 605 distributes the

data packets 601 to the intended or packet engines 548 based on the information from the

data packets 601 or from the appliance 200.

At step 640, the rate limiting manager 605 transmits data packets 601 that were not

received, propagated or throttled by the throttler 625 to an excess handler 630. In some

embodiments, RLM 605 determines that one or more data packets 601 are pending at the

throttler 625 for a period of time that exceeds a predetermined threshold. RLM 605 may

transmit or forward the one or more data packets to the excess handler 630 based on the

determination. In some embodiments throttler 623 determines that some data packets 601

need to be forwarded to the excess handler 630. In further embodiments, excess handler 630

monitors performance of the throttler 625 and determines which data packets 601 need to be

processed by the excess handler 630. In some embodiments, data packets 601 that were not

received or propagated by the throttler 625 are sent to the excess handler 630 for discarding

or erasing. In further embodiments, data packets 601 that were not received or propagated by

the throttler 625 are sent to the excess handler 630 for further processing or analyzing. In still

further embodiments, data packets 601 that were not received or propagated by the throttler

625 are sent to the excess handler 630 which notifies the sender of the data packets 601 that

data packets 601 are not received. Excess handler 630 may request the sender of the data

packets 601 to resend the data packets that were received by the handler 625.

We Claim:

1. A method for controlling a rate of a traffic of a device in accordance with a rate limit

identified by a rate limiting license, the method comprising:

a) identifying, by a rate limiting manager of an intermediary device, presence

of a rate limiting license, the intermediary device processing network traffic between

a plurality of clients and a plurality of servers, the rate limiting license identifying a

performance level;

b) establishing, by the rate limiting manager, a rate limit based on the

performance level of the rate limiting license; and

c) controlling, by a throttler of the intermediary, a rate of receiving network

packets in accordance with the rate limit.

2 . The method of claim 1, wherein step (a) further comprises identifying, by the rate

limiting manager, the rate limiting license is not present, and wherein step (b) comprises

establishing a set of one or more rate limit parameters for the rate limit for a lower

performance level.

3 . The method of claim 1, wherein step (a) further comprises identifying, by the rate

limiting manager, a type of hardware platform of the intermediary device, and wherein step

(b) further comprises establishing the rate limit based on the type of hardware platform and

the performance level.

4 . The method of claim 1, wherein step (b) further comprises establishing, by the rate

limiting manager, a maximum size of a token bucket in milliseconds based on the rate limit

for the performance level of the rate limiting license.

5 . The method of claim 4, wherein step (c) further comprises receiving, by the throttler,

a network packet, determining that the token bucket has reached the maximum size and

discarding the network packet in response to the determination.

6 . The method of claim 1, wherein step (b) further comprises establishing, by the rate

limiting manager, a throughput rate limit in bits per second based on the rate limit for the

performance level of the rate limiting license.

7 . The method of claim 6, wherein step (c) further comprises generating, by a token

generator, a token for a token bucket at a rate specified by the throughput rate limit.

8. The method of claim 1, wherein step (b) further comprises establishing, by the rate

limiting manager, a packet rate in packets per second based on the rate limit for the

performance level of the rate limiting license.

9 . The method of claim 8, wherein step (c) further comprises receiving, by the throttler,

a network packet having a number of bytes, and removing, by the throttler, a number of

tokens from a token bucket equal to the number of bytes.

10. The method of claim 8, wherein step (c) further comprises receiving, by the throttler,

a network packet having a number of bytes, determining, by the throttler, that a number of

tokens in a token bucket is less than the number of bytes and not removing a token from the

token bucket.

11. The method of claim 10, further comprises providing, by the throttler, the network

packet to an excess packet handler.

12. A system for controlling a rate of a traffic of a device in accordance with a rate limit

identified by a rate limiting license, the system comprising:

a rate limiting manager of an intermediary device identifying presence of a

rate limiting license, the intermediary device processing network traffic between a

plurality of clients and a plurality of servers, the rate limiting license identifying a

performance level;

the rate limiting manager establishing a rate limit based on the performance

level of the rate limiting license; and

a throttler of the intermediary controlling a rate of receiving network packets

in accordance with the rate limit.

13. The system of claim 12, further comprising the rate limiting manager identifying the

rate limiting license is not present and establishing a set of one or more rate limit parameters

for the rate limit for a lower performance level.

14. The system of claim 12, further comprising the rate limiting manager identifying a

type of hardware platform of the intermediary device and establishing the rate limit based on

the type of hardware platform and the performance level.

15. The system of claim 12, further comprising the rate limiting manager establishing a

maximum size of a token bucket in milliseconds based on the rate limit for the performance

level of the rate limiting license.

16. The system of claim 15, further comprising the throttler receiving a network packet,

determining that the token bucket has reached the maximum size and discarding the network

packet in response to the determination.

17. The system of claim 12, further comprising the rate limiting manager establishing a

throughput rate limit in bits per second based on the rate limit for the performance level of

the rate limiting license.

18. The system of claim 17, further comprising a token generator generating a token for a

token bucket at a rate specified by the throughput rate limit.

19. The system of claim 12, further comprising the rate limiting manager establishing a

packet rate in packets per second based on the rate limit for the performance level of the rate

limiting license.

20. The system of claim 19, further comprising the throttler receiving a network packet

having a number of bytes and removing a number of tokens from a token bucket equal to the

number of bytes.

21. The system of claim 19, further comprising the throttler receiving a network packet

having a number of bytes, determining that a number of tokens in a token bucket is less than

the number of bytes and not removing a token from the token bucket.

22. The system of claim 21, further comprising the throttler providing the network packet

to an excess packet handler.

Internat onal app cat on o

PCT/US2010/039213
A. CLASSIFICATION OF SUBJECT MATTER
INV . H04L12/56
ADD .

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal , COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No

US 2002/138643 Al (SHIN KANG G [US] ET AL) 1-22
26 September 2002 (2002-09-26)
paragraph [0001] - paragraph [0094];
figures 1-6

X ,P WO 2010/068436 Al (CITRIX SYSTEMS INC 1-22
[US]; KAMATH SANDEEP [US]; KHEMANI PRAKASH
[US]) 17 June 2010 (2010-06-17)
page 1 - page 3 , line 16

page 10, line 24 - page 13, line 9
page 31, line 32 - page 33, line 27
page 41, line 1 - page 56, line 6 ; figures
4A,4B

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents
"T" later document published after the international filing date

or priority date and not in conflict with the application but
"A" document defining the general state of the art which is not cited to understand the pπnciple or theory underlying the

considered to be of particular relevance invention
"E" earlier document but published on or after the international "X" document of particular relevance, the claimed invention

filing date cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claιm(s) or involve an inventive step when the document is taken alone

which is cited to establish the publication date of another "Y" document of particular relevance, the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"O" document referπng to an oral disclosure, use, exhibition or document is combined with one or more other such docu¬
other means ments, such combination being obvious to a person skilled

"P" document published pnor to the international filing date but in the art
later than the priority date claimed "&" document member of the same patent family

Dale of the actual completion of the international search Date of mailing of the international search report

15 September 2010 22/09/2010

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P B 581 8 Patentlaan 2
NL - 2280 HV Rιjswi|k

TeI (+31-70) 340-2040,
Fax (+31-70) 340-3016 Garcia Bol όs , Ruth

Form PCT/ISA/210 (second sheet) (April 2005)

International application No
Information on patent family members

PCT/US2010/039213

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2002138643 Al 26-09-2002 NONE

WO 2010068436 Al 17-06-2010 US 2010131668 Al 27-05-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	front-page
	description
	claims
	drawings
	wo-search-report

