PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/22329
GOGF 17/60 Al , -

(43) International Publication Date: 6 May 1999 (06.05.99)

(21) International Application Number: PCT/US98/23026 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 29 October 1998 (29.10.98) GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,

LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ,

(30) Priority Data: TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
60/063,714 29 October 1997 (29.10.97) us (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD,RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(71) Applicant: N-GINE, LLC [US/US]; 464 Gilpin street, Denver, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CO 80218 (US). CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventor: HINKLE, William, H.; 464 Gilpin Street, Denver,
CO 80228 (US). Published
With international search report.
(74) Agents: KOVARIK, Joseph, E. et al.; Sheridan Ross P.C., Suite Before the expiration of the time limit for amending the
3500, 1700 Lincoln Street, Denver, CO 80203-4501 (US). claims and to be republished in the event of the receipt of
amendments.

(54) Title: MULTI-PROCESSING FINANCIAL TRANSACTION PROCESSING SYSTEM

(57) Abstract

A financial transaction processing system in which much of the transaction processing logic is stored in a database, resulting in a
relatively small executable file. Each transaction is described by a transaction data descriptor that includes a series of subtransaction data
descriptions of actions that can be performed independently of one another, permitting parallel processsing on multiprocessor computers.
Additionally, control columns in certain tables allow balance checking, thereby providing an indication of the integrity of the current data.
Moreover, any changes to financial data can be traced for any period of time into the past, allowing full auditability.

AL
AM
AT
AU
AZ
BA
BB

BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
VA4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

20

15

30

- - WO 99/22329 PCT/US98/23026

MULTI-PROCESSING FINANCIAL TRANSACTION PROCESSING SYSTEM

FIELD OF THE INVENTION
The present invention relates to a financial transaction processing system, and in particular, to such a system that

is capable of decomposing transactions into subtransactions and multi-processing subtransactions simultaneously.

BACKGROUND OF THE INVENTION

Computerized data processing systems for processing financial transactions have become increasingly more complex
as further strides toward automation have occurred. Such complexity has generated a number of related difficulties for the
financial data processing industry. In particular, complex financial transaction processing systems may have subtle
programming defects or errors that may go unnoticed for long periods of time before the extent of the problems thereby
generated are fully recognized. For example, the number of positions allotted for the dating of transactions has recently been
problematic, wherein the dates for the millennium starting at the year 2000 can be problematic for many financial transaction
processing systems.

In addition, such complex financial transaction processing systems also are typically incapable of being fully audited.
That is, it is common practice in the financial data processing industry to provide only partial auditability in that it is generally
believed that the amount of data required to be stored for full auditability is so large as to not be cost effective.

Further, in many circumstances, the rate of transaction increase is becoming problematic in that progressively larger
computers are required for processing financial transactions at an acceptable rate. This problem is exacerbated by the fact
that such transaction processing systems are not architected for use on multi-processing machines having a plurality of
processors. Thus, the advantages of parallel-processing computers cannot be fully utilized by such systems.

Accordingly, it would be advantageous to have a financial transaction processing system that alleviates the above difficulties,
and that additionally, provides flexibility to adapt to the changing business needs of business enterprises so that the
transactions processed and the respective reports generated may be modified easily according to business constraints and

demands.

SUMMARY OF THE INVENTION
The present invention is a financial transaction processing system that achieves substantial increases in auditability
and processing efficiency. In particular, the present invention provides auditable trails or history in a number of different
ways. For example, financial data within transactions is used in the present invention to update various control fields in
different tables or files so that cross-checks of system financial integrity can be performed for assuring that, for example, cash
fields, total units fields, and cost fields balance appropriately across system data tables provided by the present invention.

20

25

30

- - WO 99/22329 PCT/US98/23026

2

Additionally, the present invention provides a full range of auditable history files for each system data table having
information that is required during auditing.

The present invention also performs financial transaction processing using a novel computational paradigm. That
is, the financial transaction processing system of the present invention has an architecture wherein financial transactions can
be decomposed into corresponding collections of independent subtransactions, such that for each input transaction, the
corresponding collection of subtransactions are performed by operations that are independent of one another. Thus, the
subtransactions can be performed in any order, including in an overlapping fashion, such as may occur during multiprocessing
of these subtransactions on a computer having multiple processors.

Further, note that each of the subtransactions is described by a relatively short (e.g., less than 8 characters) text
string that can be straightforwardly interpreted as an operation (e.g., either plus or minus) together with a series of operands,
in particular, a first operand having a value to be used in modifying a data table field (column) specified by a second operand.
Such high level descriptions of subtransactions provide both compact conceptualization and a reduction in the total size of
the executable code for the present invention. Accordingly, when one of the subtransactions is performed, not only is its
corresponding operation performed on the operands, but additionally, control fields such as those mentioned above are
updated appropriately in various data tables for the present invention to enhance auditability of the financial data resulting
from the transaction processing. Further, note that since the subtransactions are independent of one another and their
executable code is relatively small, there is no need for lengthy and complex flow of control transaction processing modules.
That is, the size of the code for the present invention may be up to 100 times smaller than many prior art transaction
processing systems. Accordingly, this has a substantial positive impact on the efficiency of the present invention in that the
swapping of program elements in and out of primary computer memory is substantially reduced.

Inanother aspect of the present invention, the financial transactions of a plurality of business enterprises can be
processed in an interleaved manner. In particular, since the present invention is substantially data driven, including the
descriptions of the transactions and their refated subtransactions, the present invention can be easily modified to incorporate
both different or updated versions of transactions and associated data tables for an existing business enterprise (e.g., also
denoted “licensee” hereinafter). Additionally, the transactions and related data tables for an entirely new or different business
enterprise (licensee) may be straightforwardly incorporated into the present invention so that its transactions can be
interleaved with the transactions of other business enterprises. Thus, transaction processing may be performed by the present
invention for business enterprises having different transactions, different account record structures and differently organized
general ledgers substantially without modifying the program elements of the transaction processing system.

For example, the present invention can be used to simultaneously process transactions for:

()] a single software application such as an investment management or telecommunications billing system,

20

25

30

- WO 99/22329 PCT/US98/23026

3

@ multiple disparate software applications such as investment management, and telecommunications

billing, paying agencies, etc., all with disparate definitions.

Accordingly, the present invention may be viewed as a software engine, or a user-definable transaction processing
tool that can be adapted to a variety of industry specific software application needs without changing the actual program code.
That is, by surrounding the present invention with application specific software for inputting transaction data to the multi-
processing financial transaction processor of the
present invention and retrieving data from the multi-processing financial transaction processor of the present invention, a
particular business enterprise can have substantially all of its financial records in condition for auditing on a daily or weekly
basis.

The present invention may be further characterized along the following dimensions: flexibility, auditability,
multiprocessing, efficiency and size, these dimensions being discussed, in turn, hereinbelow.

Flexibility is achieved by permitting a business enterprise to define:

()] a series of “reference” tables (also denoted “master tables”) that describe the appropriate management

decision-making, accounting structure, and regulatory information for the specific application;

@ a series of audit controls and system procedures that provide for complete control of all processing and

prevent the overwriting of any original data;

a series of institutional and customer reporting files, known as the “driven” tables; and

—~ —
F- N 4

the specific processing content of each individual transaction to be processed via a series of table
definitions, known as the “driving” tables.
Thus, transactions may be customized according to the business needs of a business enterprise.

Auditability is achieved by:

)] providing separate control columns for cash, units and cost basis (if any) in detail records generated and
stored for each financial transaction;

@ repeating these three control columns, or variations thereof, in at least three different tables so that
subsequent summations of each of the four tables will result in similar balances and thus prove that no
critical data has been lost in the course of processing, as one familiar with auditing and financial
transactions systems will understand;

3) adding appropriate data columns:

(a) to each reference table or master row for maintaining a history of the effects of add, change
and delete commands in a current database as well as an archive database;

(b) to each original file record (i.¢. table row) that represents an add to a current database as
well as the periodic archive and purge to a permanent database;

20

25

30

~ - WO 99/22329 PCT/US98/23026

4

(© to tables for retaining transaction processing data representing error identification, error
negation and error correction.
Thus, auditabilty of transaction records is achieved by four sets of files for a specific period. These are: (a) a snapshot of all
the reference files at the end of the period; (b) snapshots of a history file for each master table, wherein the corresponding
history file (table) contains all changes to the master table during the specific period; (c) a snapshot of all financial
transactions for the specific period, and (d) a snapshot of all of the “driven” tables at the end of the period.
Multiprocessing is achieved by:
) decomposing the processing of the present invention into a series of separate and independent
subprocesses that may be simultaneously performed on any number of simultaneous processors, and
@ decomposing input transactions into a series of subtransactions that are processed by independent
processes, which may be executed in any particular order, with complete auditability.
For example, multiprocessing can be achieved by allocating the next prescribed subtransaction process to the next available
processor.
Efficiency is achieved by:
0 Defining and utilizing only four standard processing models that perform all prescribed functionality and
auditability of the present invention. The models are:
(a Processing Model | provides an architecture for maintaining historical transaction data so
that financial changes can be traced through time;
(b) Processing Model 2 provides an architecture for automatically maintaining data columns such
as Units, Debits and Credits for cross checking table sums to assure that the financial records for a
business enterprise balance;
(© Processing Model 3 provides an architecture for automatically maintaining financial records
relating to financial instruments such as stocks, bonds, real estate, etc.; and
(d) Processing Model 4 provides an architecture for producing a common processing format for
maintaining customer and institutional data tables.
) Defining only four primary program modules for controlling functionality of the present invention, these
modules being:
(@) a transaction processing controller module for receiving transactions to be processed, and
controlling the processing thereof;
(b) a preprocessor and decomposer module for determining the validity of a received transaction,
assuring that all data tables and rows thereof are available for processing the transaction, and retrieving

the appropriate subtransactions data descriptions to be processed;

20

25

30

~ WO 99/22329 PCT/US98/23026

5

© a subtransaction scheduling module for scheduling instantiations of the subtransaction
processing module on each of one or more processors; and

(d) a subtransaction processing module for performing each subtransaction retrieved by the
preprocessor and decomposer module.

®3) Utilizing a number of software switches to control which tables within collection of “driven” tables are

to be updated when a specific type of transaction is to be processed.

Thus, by providing a smali number of processing models, decomposing input transactions, and supplying only the
necessary subtransaction descriptions, the reliability of the transaction processing system of the present invention is
substantially increased.

The software for the present invention is small in size (both source code and object code) due to the following:

(I defining business enterprise financial data processing methods, accounting structures, and regulatory

definitions as data rather than program code;

) reducing the processing content to a series of individual transactions; and

3) reducing all financial transactions to a collection of subtransactions wherein each subtransaction

includes an operator and two or more operands in an 8-character string.
Thus, the financial processing by the present invention may be performed on several transactions at a time, one transaction
atatime, or different processors within a multiprocessor context. Or, the subtransactions for a specific transaction may be
spread over several simultaneous processors. This means that the business enterprise is afforded a large number of options
in tailoring the present invention.

Hence, by defining the accounting structure and processing functionality as data rather than actual program code,
the size of the total code required to process a specific industry application may be substantially reduced compared to prior
art transaction processing systems. For example, the executable code for the present invention may be less than one megabyte
(1MB). Thus, since the secondary cache attached to each processor in multiprocessing personal computer servers can be one
megabyte, substantially the entire executable for the present invention can be provided to each processor. Thus, the positive
impact on total system efficiency is believed to be substantial in that secondary cache is typically about four times faster than
normal cache, so productivity gains of about three-hundred percent would not be unreasonable. In other words, the executable
code for the present invention can reside in the secondary cache of each processor, thereby allowing the off-loading of any
processing function to any processor with relative ease. Additionally, given that a typical RAM memory for a personal
computing devices is 16 megabytes, it is believed that such a device will have the capability to process the back office financial
transactions of a major money center financial institution or communications billing system.

Additional features and benefits of the invention will become evident from the detailed description and the

accompanying drawings contained herein.

20

25

30

- ‘WO 99/22329 PCT/US98/23026

6

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. I is a high level block diagram illustrating the present invention conceptually.

Figs. 2A and 2B is another block diagram of the present invention illustrates: (a) the high level transaction
processing modules, and (b) the data tables (represented by the symbols with arcuate vertical sides) provided and maintained
by the present invention. Furthermore, the present figure shows the data flows as solid arrows and control flows as dashed
arrows. Moreover, this figure also indicates the data tables effected by process models No. 2 and No. 3 of the present
invention.

Fig. 3 is another high level block diagram of the present invention during activation of the preprocessor and
decomposer 54 wherein the solid arrows are illustrative of the data flows that occur during the activation of the preprocessor
and decomposer 54. Moreover, the tables within boxes represent tables having a process model No. | representation, and the
tables having account balancing control fields include the identifier, “CNTLS.”

Figs. 4-A through 4-E illustrate the steps of a flowchart for initializing the database tables of the present invention
for a new business enterprise licensee that is to have its financial transactions subsequently processed by the present invention.

Fig. 5 is a block diagram illustrating process model No. | of the present invention.

Fig. 6 is a high level flowchart of the steps of an embodiment of the transaction processing controller 52 of Fig. 2A.

Figs. 7-A through 7-D show the high level steps performed by an embodiment of the preprocessor and decomposer
54 of Fig. 2A.

Figs. 8-A and 8-B show the steps of a flowchart for obtaining indexes or pointers to particular rows of a general
ledger table wherein the rows are used in processing a transaction.

Figs. 9-Aand 9-B show the steps for a flowchart of an embodiment of the subtransaction processing module 64 (Fig.
2R).

Fig. 10 is an embodiment of a flowchart of the steps performed for processing income cash transactions by the
present invention.

Fig. 11 is an embodiment of a flowchart of the steps performed for processing principal cash transactions by the
present invention.

Fig. 12 is an embodiment of a flowchart of the steps performed for processing invested income transactions by the
present invention.

Fig. I3 is an embodiment of a flowchart of the steps performed for processing invested principal transactions by
the present invention.

Fig. 14 is an embodiment of a flowchart of the steps for performing custom accounting such as income expenses,

and cash flow for a business enterprise.

20

25

30

- - WO 99/22329 PCT/US98/23026

1

Fig. 15 is an embodiment of a flowchart of the steps for maintaining a business enterprise’s balance sheet related

to buys and sells of financial entities or instruments.

DETAILED DESCRIPTION OF A
PREFERRED EMBODIMENT OF THE INVENTION

Figure | shows a high level conceptual block diagram of a transaction processing system 50 according to the present
invention. In particular, the present invention is conceptualized in the present figure as including five functional components,
these being:

(@) transaction processing controlier 52 for: (i) receiving transactions 58 from business enterprises, (ii)
controlling the processing of such transactions, including the scheduling of subtransactions to be performed, and (i) writing
of transaction details to, for example, a transaction journal file or table;

(b) a transaction preprocessor and decomposer 54 for initially receiving a transaction 58 from any one of a plurality
of business enterprises as shown, wherein the preprocessor and decomposer 54 decomposes transactions into subtransactions;

(9 a subtransaction processing module 64 for performing the instructions for each subtransaction
determined by the transaction preprocessor and decomposer 54. In particular, the subtransaction processing module 64
utilizes a collection of subtransaction programmatic data descriptions 66 that can be independently scheduled and performed
for processing each transaction 58 provided to the transaction processing system 50;

@ a subtransaction scheduler 62 for scheduling the execution of each subtransaction output by the
preprocessor and decomposer 54;

(e) a collection of databases 70 containing financial information for each of the one or more business
enterprises. Note that the term “database” in the present context includes both the data therein as weil as database
management functional elements and data structure definitions.

Another illustration of the present invention is provided in Figure 2. This figure is a block diagram providing both
the processing components of Figure |, and additionally, greater detail is provided of the tables or files within the databases
70. However, to simplify the discussion hereinafter, the database terminology used will be that of a relational database.
Accordingly, files may also be equivalently referred to as tables, records may also equivalently be referred to as rows, and
record fields may also be equivalently referred to as columns. Thus, all the data storage symbols having the collective label
of 70 are provided within the like numbered databases of Figure I. It is worth noting, however, that in one embodiment of
the present invention, the data tables for distinct business enterprises may be provided in the same collection of tables such
as those represented in Figure 2. That is, it is an aspect of the present invention that the accounting and transaction processing
of the present invention can use the same plurality of financial data tables for business enterprises having substantially

different financial transactions and accounting categories. Thus, although Figure | illustrates the databases 70 as being

20

25

30

- - WO 99/22329 PCT/US98/23026

distinct for each business enterprise, many of these databases (if not most) may be combined into a single database having
a plurality of data tables such as those labeled collectively “70" in Figure 2, these tables being discussed in detail hereinafter.

Referring still to Figure 2, a high level view of the processing performed when processing a transaction 58 is
provided. In particular, the transaction processing controller 54 receives an input transaction 58 and invokes the preprocessor
and decomposer 54. The preprocessor and decomposer 54 subsequently performs, for each transaction 58, the following
functions:

(a) determines, using input from the business enterprise databases 70, whether all necessary data
for performing the transaction is available and otherwise rejects the transaction without performing any portion
thereof. In particular, the transaction preprocessor and decomposer 54 determines that all data tables to be
accessed are available;

(b) retrieves the data needed to perform the transaction;

() checks to determine that the transaction operation(s) requested is available, and that the
transaction is legitimate to be performed on the data for the input transaction 58;

(d retrieves the subtransaction data descriptors for decomposing the input transaction 58 into
subtransactions.

Accordingly, the preprocessor and decomposer 54 retrieves into the working storage 72 (shown in Fig. 3) of a host computer
(not shown), upon which the transaction processing system 50 is operating, substantially all data and table rows that are
necessary to process the transaction 58. Additionally, note that as one skilled in the art will understand, if some portion of
the required data to process the transaction is unavailable, then the preprocessor and decomposer 54 terminates processing
and subsequently writes appropriate error messages and/or details of the transaction into the reject table 74 (Fig. 2).
Assuming that the preprocessor and decomposer 54 successfully pérforms the gathering of information for the
decomposing of the transaction into subtransactions appropriately, then control is returned to the transaction processing
controller 52, wherein this controller then writes the details of the transaction to the transaction journal 78 along with
identification data uniquely identifying the transaction (e.g., a transaction sequence number and/or time and date stamp).
Following this, the transaction processing controller 52 invokes the subtransaction scheduler 62 for scheduling the performance
of each subtransaction by an invocation of the subtransaction processing module 64. Note that it is an important aspect of
the present invention that since the subtransactions can be processed independently of one another for a given transaction,
instantiations of the subtransaction processing module 64 can be executed in substantially any desired order. In particular,
such instantiations of the subtransaction processing module 64 can be performed concurrently, thus providing a substantial
increase in transaction processing efficiency when such concurrency is provided on a computer having a piurality of processors.
Given that a subtransaction is performed successfully by the subtransaction processing module 64, various

accounting tables within the transaction processing system 50 are updated. In general, each subtransaction conceptually

20

25

30

~ - WO 99/22329 PCT/US98/23026

9

indicates a single operation of either plus or minus that is to be performed with two operands also indicated in the
subtransaction. That is, the first operand indicates the data to be added or subtracted from a particular field or column of
atable row identified by the second operand. Additionally, each subtransaction updates other tables within the transaction
processing system 50 automatically in order to provide consistency among the data tables so that: (a) substantially on-line
account balancing capabilities can be performed, and (b) full auditability of the records of the business enterprise providing
the transaction can be facilitated by retaining history records of table updates, as will be discussed with reference to “master
table transaction cluster processing” described hereinbelow. Accordingly, each subtransaction processed by an instantiation
of the subtransaction processing module 64 may update a plurality of the data tables contained in the collectively labeled
database 70. Note that for one skilled in the art of transaction data processing and accounting, the names provided to the
tables are indicative of their information content and structure. However, for clarity, substantially all of the tables for the
present invention will be discussed in detail and/or illustrated hereinbelow.

The subtransaction processing module 64 processes subtransactions derived from three general categories of
transactions that may be input to the present invention. That is, there may be input transactions for each of the following
types of financial transactions (1.1) through (1.3) hereinbelow.

(1.1) Transactions related to exchanges of funds such as cash debits and credits for accounts of a particular business
enterprise are provided. At a high level, the tables related to this functionality include the account master table 84 (Fig. 2),
the general ledger table 88, and the entity attribute master table 92.

(12) Transactions related to additional or customized accounting for clients having accounts in the account master
table 84 are provided. For example, in addition to providing the functionality of the transactions described in (1.1)
immediately above, a customer income statement (income/expense) table 96 may be provided with client account and
transaction information related to income and expenses for tax purposes. Additionally, a customer cash flow
(receipts/disbursements) table 100 is also provided for recording any account transaction information related to receipts and
disbursements in client accounts. Further, a customer performance measurement table 104 is also provided for retaining client
account performance information related to the performance of client portfolios in comparison to investment indexes such
as the Dow Jones Industrial Average, the S&P 500, etc. Note that these tables will be discussed and/or illustrated hereinbelow.

(13) When transactions are additionally related to financial instruments other than cash, debits and credits, such
as portfolio management wherein there is buying and selling of equities, income derived from equities, and trade settlements
related thereto. Further, note that these additional capabilities also provide the same degree of flexibility, adaptability and
simplicity as provided in relation to the transaction processing capabilities discussed in (1.1) and (1.2) immediately above.
That is, financial equity transactions of various types and for various business enterprises may be easily modified and/or added

or removed from the transaction processing system 50 of the present invention, since these transactions are also described

15

20

25

30

- WO 99/22329 PCT/US98/23026

10

by transaction data descriptors consisting of a collection of subtransactions that are capable of being performed in
substantially any order that is determined by the subtransaction scheduler 62.

Accordingly, in providing the functionality for the transactions related to portfolio management, the preprocessor
and decomposer 54, upon being invoked by the transaction processing controller 52, also retrieves into working storage (as
shown in Fig. 2) the necessary data for processing such portfolio maintenance transactions, this data including a
subtransaction decomposition for the transaction. Subsequently, as discussed hereinabove, the subtransaction scheduler 62
invokes an instance of the subtransaction processing module 64. However, in addition to updating any appropriate rows of
the tables 84, 88, 92, 96, 100 and 104, the subtransaction processing module 64 invokes a portfolio adjuster module 110 for
capturing and/or updating detailed data of portfolio transactions that are not otherwise effectively captured for proper
accounting and auditing. In particular, for a given subtransaction, the portfolio adjuster 110 invokes one of the following
modules (2.1) through (2.4) hereinbelow.

(2.1) Original add module 114 for processing a subtransaction related to the addition of further financial
instruments to a portfolio such as occurs when securities are bought and must be added to a given account.

(2.2) A reverse of add module 118 for reversing an addition of financial enterprises to a particular account
portfolio. Note that this module is typically activated when financial enterprises are inadvertently added to an incorrect
portfolio account.

(23) An original sell module |22 for processing subtransactions related to selling financial enterprises within a
given account portfolio.

(24) A reversal of original sell module 126 for reversing the affects of an inadvertent sell of financial enterprises
within an account portfolio.

These four modules 114-126 update the tables labeled collectively as 70B. In particular, the processing performed
herein and the tables updated herein are described below.

Major Programs and Functionality

Major Programs
The N_gine transaction processing system contains four major programs. These are:

()] Transaction Processing controller 52
2
3
)] Subtransaction Scheduler 62

Transaction Preprocessor and Decomposer 54

)
) Subtransaction Processing module 64

20

15

30

- -WO 99/22329 PCT/US98/23026

Program Functionality
The purpose of the Transaction Processing controller 52

(a) test for incoming transactions and once detected
(b) execute the Transaction Preprocessor and Decomposer 54 and then

(© execute the Subtransaction Processing module 64 for each transaction.

The purpose of the Transaction Preprocessor and Decomposer 54 is to verify
() that all information in the transaction is accurate
(b) that all files and controls are available to properly process the transaction
(© that the specific subtransaction processing instructions are loaded into working storage.
The purpose of the Subtransaction Processing module 64 is to
(a) execute all of the subtransactions that have been previously defined for a transaction
(b) create auditability for every transaction.

The purpose of the Subtransaction Scheduler 62 is to
(3 allocate a specific task to a specific processor
(b) return processing to the Transaction Processing controller 52.

The present invention may be described as “Table-Driven Transaction Processing”. That is, the present invention
permits the processing of virtually any type of user-definable transaction by defining the processing for such transactions as
data descriptors that are interpreted in real time and dynamically as needed for processing corresponding transactions.
Accordingly, the transaction data descriptors are denoted as “driving data” and are defined by the transaction processing
master table and the transaction master table. That is, the transaction master table provides a first initial collection of data
for identifying each transaction and the transaction processing table provides the remainder of the data including the
subtransaction decompositions. Accordingly, each transaction processed updates an appropriate set of user-definable tables
(known as the “driven” data) for completing the processing of the transaction. Since both the “driving” and the “driven”
information is expressed as data rather that actual code, the entire functionality of the system can be changed in a
straightforward manner.

In the description hereinbelow, the functional components of the present invention are also identified by other
naming conventions from the description above. Accordingly, the following table shows the pairing of the functional

component identifications above with those also used below:

20

25

30

© WO 99/22329

12

PCT/US98/23026

ABOVE

BELOW

TRANSACTION PROCESSING CONTROLLER 52

N_GINE COMMAND PROCESSOR

TRANSIACTION PREPROCESSOR AND DECOMPOSER
54

K_GINE EDIT PROCESSOR

SUBTRANSACTION PROCESSING MODULE 64

N_GINE POSTING TO AM, EA AND GL

SUBTRANSACTION SCHEDULER 62 N_GINE SCHEDULER
PORTFOLIO ADJUSTER 110 AORS

ORIGINAL ADD MODULE 114 ORIGINATE ADD PROCESSING
REVERSER OF ADD MODULE 118 REVERSE ADD PROCESSING
ORIGINAL SELL MODULE 122 ORIGINATE SELL ROUTINE
REVERSE OF ORIGINAL SELL MODULE 126 REVERSER SUBTRACT PROCESS

N_gine System Design Rules
The Magic Number in Software Design is . That is,

store data once,
program data once,

process data once.

Design a total system with the fewest number of processing models. For example,

One model for processing all adds (inserts), changes (updates), and deletes (deletes) for all Master (or

Reference) Files (or tables).

One model for processing all of simple transactions (such as debits and credits), including original and

reversing entries.

One model for processing all complex transactions (such as buys and sells), including original and

reversing entries.

One model for processing all adds (inserts), changes (updates), and deletes (deletes) for all Detail Record

(or “driven”) Files (or tables).

Use the first and last models to process all files (or tables) in the entire system.

Include audit controls for every table in the system from the very outset of design.

For reasons of productivity assessment, include Production Statistics for every job.

SUBSTITUTE SHEET (RULE 26)

20

5

30

WO 99/22329 PCT/US98/23026

Namely,
Begin Time
Number of Transactions
Number of Acceptances
Number of Rejects
End Time.
These variables represent the only true means of measuring actual productivity.

k. For reasons of auditability, never overwrite any original information. Move all original information from
data entry (cradle) to data warehouse (grave) without any changes.

G. For reasons of reliability and profitability, system designs should focus on a “large number of small
programs” rather than a “smail number of large programs”™. The result is not only ease of maintenance but also the ability
to spread the small programs across a number of simultaneous processors.

H. For reasons of manageability, all system designs should embrace one integrated enterprise-wide standard
naming convention for all files (tables), records (rows), and fields (columns).

l. For reasons of portability, use the fewest number of language commands to code the system. Avoid
vendor and/or language extensions.

J- For reasons of flexibility, never hard code what can be table-driven.

N_gine Design Concepts
A Only 4 Processing Models for Financial Services and Telecommunications Applications
L. Schema
1 Units, Debit / Credit
3. Assets / Liabilities

4 File Maintenance Routine
B. Table-Driven Transaction Processing for maximum flexibility
L Number of Transactions
1 Name of Each Transaction and Unique Details
3. Processing Algorithms (at least |, up to 20 depending upon complexity)
4 Each algorithm has 3 components

a Plus (P) or Minus (M)
b. Operand |
¢ Operand 2

20

15

30

T WO 99/22329 PCT/US98/23026

14

C 100% Auditability For Every Transaction by creating

L a Detail Record containing all relevant data and

IR hash totals of three relevant fields in at least 3 other tables.
D. The 3 relevant fields for calculating all hash totals are:

l. Cash

2 Units

3 Cost Basis
k. Basic Relational Database Management System Processing Concepts

I Commit / Rollback

2 Row Level Locking
3 Indexing, ROWID
4. Stored Procedures
5 Shared Memory
. Some Financial Services Accounting Systems are not permitted to commingle funds. That is, separate

accounting for both income and principal must be provided. Therefore, each account master must have a designated “income

posting code™ to define the proper processing. Such a code might be: (1) Income Only, (P) Principal Only, (B) Both Income

and Principal.

N_gine’s Basic Tables

Licensee Profile (The Licensee “Reference” or “Master” Tables)

LM

LU
LT

LD

LL

The License Master table contains the necessary information to process any type of licensee using either single or
multiprocessing computers.

The Licensee User Master identifies different users for the disparate systems that may be processed simultaneously.
The Licensee Account Type table contains the necessary information to process any type of account be it for a
pension trust account, a communications account, or a corporate subsidiary.

The Licensee Default Definition table the default definitions for cash, units, and cost basis controls for total system
control.

The Licensee General Ledger Definition is a list of all of the acceptable entries for the General Ledger. That is, it
provides a framework for processing any type of accounting controls for any set of account types.

The Licensee Diversification Scheme contains a three level classification scheme for reporting an decision-making

purposes for any set of assets and liabilities.

20

25

30

LP

LN

Lw
LR

© T WO 99/22329 PCT/US98/23026

15

The Performance Measurement Group Master contains a three level classification scheme for measuring the
performance of different investment groups.

The Licensee Summary Name Master contains a list of the entries on any type of income Statement and Cash Flow
Statement.

The Licensee Wholesaler Master contains name, address, sales volumes, etc. wholesalers of communications services.

The Licensee Reseller Master contains name, address, sales volumes, etc. for reseliers of communications services.

Account Profile (The Customer “Reference” Tables)

AO

AL

N

AR

AN
AM

AC

The Account Objectives Table contains the different types of account objectives, such as income, growth, capital
preservation, etc.

The Account Jurisdiction contains the different types of legal relationships, such as broker, agent, trustee, advisor,
etc.

The Account Jurisdiction contains the different types of legal jurisdiction, such as federal law, state law, foreign law,
etc.

The Account Representatives Table houses the different representatives, their names and communication addresses.
The Account Registration Names is a list of legal names used in security settlement.

The Account Master table provides all of the necessary information to process any type of account by linking the
Account Objective, Account Jurisdiction, Legal Capacity, Profit Center, Account Representative, and Registration
tables plus other relevant data for reporting content and reporting cycles.

The Account Communications Links finks the Account Number for Financial Services to the account numbers for

communications services so that all information can be contained in one reporting scheme.

Transaction Profile (The “Driving” Tables)

™

TP

TR

The Transaction Master table provides all of the information to process any type of transaction, excepting the
specific processing algorithms.

The Transaction Processing table provides all of the specific processing algorithms for any type of transaction
master. The Transaction Master and Transaction Processing tables provide all of the necessary information to
process any type of transaction.

The Transactions - Recurring Table (TR) contains the necessary information for automatically processing any type

of transaction on a recurring basis.

20

25

30

" WO 99/22329 PCT/US98/23026

Entity Profile (The Entity “Reference” Tables)

EM The Entity Master table provides all of the necessary information to process any type of financial entity.

EA The Entity Attribute table joins all relevant diversification (known as type, group, and class), general ledger (known
as accounting control numbers), and performance group (known as type, group, and class) data into one table for
only one access seek.

ET The Entity Transaction table links specific transactions to specific entities, such as BG (Buy Government) for a US
Treasury Note, BF (Buy Tax-Free) for a tax-free bond, BE (Buy Equity) for common stocks, etc. Note: It is the
correct assignment of such transactions to such entities that permits the proper accumulation of data for income
tax purposes.

Licensee Status

SG The System General Ledger contains all of the information to process any type of institutional accounting control.

S} The System Transaction Journal Table contains all of the transactions and all of the details for each transaction for
a specific accounting period.

ST The System Trade Settlement Table contains all of the automatically generated offset transactions for Buys and Sells

S The System Summary Table contains a record for each execution of the system with the Begin Time, End Time,
Number of Total Records Read, Number of Accepts, Number of Rejects, etc.

SR The System Reject Table contains a list of all transactions rejected for whatever reason.

SC The System Transaction Count Table contains the number of each type of transaction processed on any given

transaction.

Customer Status (The “Driven” Tables)

cs
CF
CB
CG
Cl

CA

cp

The Customer Income Statement contains all revenues, expenses, and profits or losses for all customer accounts.
The Customer Cash Flow Statement contains all receipts and disbursements for all customer accounts.

The Customer Balance Sheet table contains all assets and liabilities for all customer accounts.

The Customer Capital Gains table contains all of the realized capital gain details for all customer accounts.

The Pending Income table contains all of the pending income, such as interest or dividends, for all accounts.

The Pending Capital Adjustments table contains all of the pending capital adjustments, such as stock splits, stock
dividends, mergers, acquisitions, etc., for all accounts.

The Performance Measurement contains all of the periodic performance records for all customer accounts.

20

25

30

© T WO 99/22329 PCT/US98/23026

The Control Tables (The “System Balance” Tables

Since every transaction is recorded in a detail record plus hashed to three other control tables, the control values
of cash, units, and cost basis are added to fike values in the following control tables:

Account Master, System General Ledger, and Entity Attribute tables.

For other reports such as the Income Statement and the Cash Flow Statements, the Performance Measurement table
is used as a control table instead of the General Ledger.

The present invention includes four computational processing models (process models | through 4) for processing
financial transactions and assuring full auditability and traceability.

The purpose of Process Model | (Fig. 5) is to create a single methodology for capturing, maintaining, and archiving
the non-financial transaction data including a master table (reference table, or schema) data for [00% auditability within
asingle software system. This model provides:

oA current database 300 (Fig. 5)(for additions, negations and corrections) and an archive database 304(Read Only)

oEight tables (i.e. tables 312, 316, 320, 324, 328, 332, 336 and 340, of Fig. 5)

o Number of Modifications

*|2 Control Fields per master table

o A sequence number generator

o A process flow methodology for add, change, and delete of data table rows.

The operation of Process Model | is as follows:

) Normal Updating to current database 300
Writeto Writeto Move Master Add to Change Delete

Reject Accept to History Master =~ Master =~ Master

Add

IF Identifier Found X

IF Identifier Not Found X X
Change

IF Identifier Not Found X

IF Identifier Found X X X
Delete

IF Identifier Not Found X

IF Identifier Found X X X

2) Periodic updating to the archive database 304 at the end of a pre-determined time period. That is,
(a) archive snapshots of the archive master 312 in the current database 300 to the master in archive database 304;
(b) archive the archive history 332 in the current database 300 to the master history 340 in the archive database 304;
(© purge the history table 332 in the current database 304.

20

15

30

T T WO 99/22329 PCT/US98/23026

The purpose of Process Model 2 (Figs. 2A, 2B) is to create a single methodology for: capturing, maintaining, and
archiving the financial transaction data including: units, and debit/crédits for one or more disparate financial applications
with 100% auditability, wherein the processing is performed by: (a) computing configurations containing any number of
simultaneous processors, (b) decomposing each input financial transaction into separate and independent subcomponents,
(c) allocating the subcomponents across any number of multiple processors.

The methodology of process model 2 utilizes a data-driven transaction processing strategy, wherein the manner in
which a transaction is processed is determined by retrieving appropriate control data for processing a given input transaction.
Thus, the present model provides the ability: (a) to process like systems (such as financial services systems) with different
transaction definitions and accounting requirements (such as commercial banking, broker/dealers, mutual funds, insurance
systems) and different debits and credits and/or (b) unlike systems (such as telecommunications systems) with disparate
definitions (such as landline, wireless, satellite, cable systems) within the present invention at the same time.

The purpose of Process Model 3 (Figs. 2A, 2B) is to create a single methodology for: capturing, maintaining, and
archiving the financial transaction data including: units, debits/credits, financial instruments for one or more disparate
financial applications with 100% auditability within a single software system on computing configurations containing any
number of simultaneous processors, decomposing each disparate financial transaction into separate and independent
subcomponents, allocating the subcomponents across any number of simultaneous processors, and processing the data with
100% auditability. The methodology of Model 3 provides:

. “Detail Record Maintenance”, that is, the ability to process transactions for similar business enterprises (such as
portfolio management systems) relating to various financial instruments (such as disparate assets and liabilities) and/or
transactions for dissimilar business enterprises (such as portfolio management systems, paying agencies, stock transfer
systems) with disparate languages (such as English, Spanish, French, or German) and disparate definitions (such as
management philosophy, accounting, and operating nomenclature) and unlike financial instruments (such as assets and
liabilities) within the same software at the same time.

. The ability to decompose, allocate, process, and audit each financial instrument transactions with 100% auditability.

. The current databases 300 (for additions, negations and corrections) and the archive databases 304(read only);

. Sixteen data tables (some of which are shown in Figs. 2A-2B) pius a sequence generator;

. 12 control fields appended to the master tables for tracing master table changes;

d One transaction three hash totals (mostly using AM, EA, and PM tables);

. 4 currency fields;

. Sequence number generation;

. Reversing/reversed by detail;

. Processing flow for additions, negations, and corrections.

“WO 99/22329 PCT/US98/23026

19

The purpose of Process Model 4 is to create a single methodology for performing file maintenance including:
creating a record (row) containing the initial data in a file (table) or modifying the initial data within an existing record (row)
within a file (table) or deleting a current record (row) from a file (table)in any software application on computing

configurations using simultaneous processors. Where the term, “Details”, hereinbelow represents the identity of the specific

20

25

30

35

40

45

50

financial transaction, the methodology of the process model 4 is provided by programs such as the following:

BEGIN
IF Trxn is “ADD” then
/* Test for Duplicate Add */
SELECT One or More Values from the Desired File (Table) into Working Storage
IF Error then
* Add New Record */
INSERT INTO Reject Report
IF Error then
Message “INSERT Reject ADD”, Details
Goto Write Reject Table
ENDIF
ELSIF
/* Increment Existing Record */

Increment One or More Data Values
UPDATE SET, Details

IF Error then
Message “UPDATE Error ADD”, Details
Goto Write Reject Table
ENDIF
ENDIF
ELSIF Trxn is “SUBTRACT” then
/* Test for Valid Record */
SELECT One or More Value(s) from Existing Record
IF Error then
Message “SELECT Error SUBTRACT”, Details
Goto Write Reject Table
ENDIF
/* Test for Valid Amounts */
IF One or More Amounts > One or More Values from Existing Record then
INSERT INTO Reject Report
IF Error then
Message “INSERT Reject SUBTRACT”, Details
Goto Write Reject Table
ENDIF
/* Delete Existing Record */

ELSIF One or More Amounts = One or More Values from Existing Record
AND Special Deletion Criteria = TRUE then
DELETE Record
IF Error then
Message “DELETE Error”, Details
Goto Write Reject Table
ENDIF
ELSE
/* Decrement Existing Record */
Decrement One or More Values
UPDATE SET, Details

20

5

30

35

40

© T WO 99/22329 PCT/US98/23026

20

IF Error then
Message “UPDATE Error SUBTRACT”, Details
Goto Write Reject Table
ENDIF
ENDIF
ELSE
/¥ Invalid ADD or SUBTRACT Code */
INSERT INTO Reject Report
IF Error then
Message “INSERT Reject AORS”, Details
Goto Write Reject Table
ENDIF
ENDIF
Goto EOJ
<<Write Reject Report>>
ADD to Reject Table
IF Error then
Message “INSERT Reject Table Error”, Details
STOP
ENDIF
<<EOJ>>
Null
END

Accordingly, the methodology of process model 4 defines:

(a) A current database (for additions, negations and corrections) and archive database (Read Only)

(b) ADD or SUBTRACT;

© Initial tests for values;

(d) Special deletion criteria;

(] Tests for action;

INSERT or UPDATE;
DELETE or UPDATE;
INSERT INTO Reject Tables;
Processing Model |:

Processing model I is a method for processing changes to files (or tables) denoted as master or reference tables
(files) wherein these tables retain fundamental information that is not derivable from other tables. In particular, processing
model | processes changes to master tables in an automated manner without losing historical financial information.
Accordingly, 100% auditability of all data changes is able to be achieved.

The method of achieving this goal uses an architecture denoted as ”Master Transaction Cluster Processing™ (MTCP). MTCP
is based on the premise of creating a logical flow of all original information from data capture (data entry) to permanent data
repository (data warehouse) by replacing single master files (or tables) with a cluster of files (or tables). Therefore, MTCP addresses
the complete life cycle of all information relevant to organizational decision-making. MTCP is targeted for use in the automatic

generation of program code for multiple large-scale real-time transaction processing applications (such as securities trading,

20

25

30

- WO 99/22329

PCT/US98/23026

2l

telecommunications billing, and work management) on multi-processing computers (using 4, 8, 16, 32 processors), where control

is not only an increasing complex issue but an absolute necessity for future competition.

The circumstances leading to the invention of Master Transaction Cluster Processing are:

3)

Prior art financial transaction software architecture lacks the ability to identify transactions by table,
transaction date, transaction number, and the person authorizing the transaction.

Prior art financial transaction systems typically use only one table to contain all Master Information (i.e.,
non-derivable information) and the data in this table is overwritten, thereby losing historical
information. Cases in point would be a record of all of the past mailing addresses or processing
instructions for a specific customer.

Without 100% retention of an organization’s vital information, management has no idea of the accuracy
of the information being used for decision-making purposes.

The Year 2000 problem, know as Y2K; is proving that past software applications designs have reached
technological limits and current maintenance costs are inordinately expensive.

Competitive pressures are mounting for higher quality software with lower software development and
maintenance costs. Totally new architectures for applications software is in great demand.

The ComputerWorld article, “Information: America’s Favorite Investment,” by Paul Strassman,
ComputerWorld Magazine, August 5, 1996, states that over 1100 companies are spending more on
automation annually than the net worths of their respective companies.

The Standish Report as described in Development Patterns, InfoWorld Magazine, Feb. 3, 1997, p. 56,
states that the success rate of Business Process Reengineering has increased from 16% in 1994 to only
7% in 1996.

Note, in the book "Oracle Design", Ensor & Stevenson, O'Reilly Press, it is a recommended practice to compromise

data retention rather than achieve 100% auditability. Today’s hardware costs suggest otherwise.

The advantages of the present invention over the approaches discussed above are:

to provide 100% auditability which offers business management the capability to exercise its fiduciary
responsibility to its stockholders and Board of Directors,

to capture, maintain, and ensure the integrity of all vital information for business enterprise
decision-making purposes, and

to preserve such information consistent with business enterprise-defined data retention cycles.

Additionally, the present invention allows accountants to certify in business enterprise annual reports that all vital corporate

data is being properly preserved.

20

5

30

© WO 99/22329 PCT/US98/23026

i}

A detailed description of Master Transaction Cluster Processing corresponding to model | (the first computational

model of the present invention) is as follows.

MTCP Overview

Master Transaction Clustering, or MTCP, performs the following tasks:

a) assigns a unique identifier based on (i) master table identification, (ii) transaction date, (jii) transaction
number, and (iv) authorized user, to each transaction that causes a change in the state of a particular
record of a master table. That is, if one or more data elements in the record change, then the previous
record is written to history, and a new status is assigned to an identifier field used for tracking such
changes;

b) creates a logical flow of data as it is originally entered from its inception (data entry) to its repository
(data warehouse). The unique architecture of MTCP replaces the Master File (or Table) within prior art
systems with a cluster of Master Files (or Tables), known as a "Master Transaction Cluster". This cluster
is suitable for multiprocessing (or the use of simultaneous processors within a single computer to
complete a common job). Hence, MTCP addresses 100% auditability via maintaining the total life cycle
of information. Aged information may be deleted from the appropriate tables consistent with
user-defined data retention policies;

0 offers a standard for processing all Master Tables within a total application;

d) provides a test bed for separately testing each Master Table Cluster under development and all Master
Table Clusters in concert;

e) permits management to report that it is successfully capturing, maintaining, and preserving all critical
information for decision-making purposes.

MICP Scope

Master Transaction Cluster Processing utilizes the following (Fig. 5):

a) two databases (i.c., the current data base 300 and the archive data base 304),

b) sequencing generator 308 having: (i) two external sequence generators; (ii) two internal counters,

0 eight tables (denoted master table 312, input table 316, summary table 320, reject table 324, accept
table 328, history table 332, master archive table 336 and master history table 340), and

d) twelve additional fields for every row in the master table 312.

20

P4

30

WO 99/22329 PCT/US98/23026

Ji]

MTCP independence
Master Transaction Cluster Processing of Model | is independent of any:

a) application - such as accounts receivable, customer billing, etc.

b) industry - such as financial services, telecommunication, or work management,

4] hardware manufacturer - such as Compag, Digital, HP, IBM, NCR, Unisys,

d) operating system - such as MS-DOS, UNIX, OpenVYMS, MYS, etc.

e) network - such as Novell, Ethernet, etc.

f) relational database management system - such as Oracle, Sybase, Microsoft SQL Server, Informix, etc.,
and

g computer language - such as SQL, COBOL, FORTRAN, PL/1, Java, etc.

MICP Architecture

The Master Transaction Cluster Processing (MTCP) architecture can be used for any application in any industry using
any computer language. Within the typical structured processing scheme of input and process, the Master Transaction Cluster
Processing focuses solely on the process function. Thus, the method permits users to define input screens and defined output
reports.
MICP Databases

Unlike prior art software systems which contain only one table for each set of primary records, Master Transaction
Cluster Processing uses eight related tables, or a cluster of tables, to track all information on a cradle to grave basis. The
cradle being its point in inception (or data entry), and the grave being its permanent repository (or data warehouse).
Consequently, the "Master Transaction Cluster" spans two different databases: one denoted the Current database 300
containing all relevant data for the current processing period and a second denoted the Archive database 304 containing all
relevant data for all previous processing periods. The Current database 300 represents the area of high inquiry, and the Archive
database 304 represents the area of low inquiry. Consequently, the Current database 300 is normally placed on high-speed
internal disk drive and the Archive database 304 is normally placed on less expensive lower-speed CD-ROMs. Note that trailing
information in the Archive database 304 may be destroyed consistent with defined data retention policies, statute of

limitations, etc.

MICP Tables
The six tables in the Current database 300 are the
a) Master Table 312(M) that will contain all records to be maintained.

b.) input Table 316 (1) that will contain all records prior to updating.

20

25

30

" T WO 99/22329 PCT/US98/23026

4

) Reject Table 324 (R) that will contain all records rejected during processing.
d) Accept Table 328 (A) that will contain all records accepted during processing.
) History Table 332 (H) that contain a complete snapshot of all records prior to updating.
f) Summary Table 320 (S) that contains the results of a specific processing operation.
and the two tables in the Archive database 304 are the:
g) Master Archive Table 336 that contains snapshots of the master table 312 at the end of each processing
period.
h.) Master History Table 340 that contains a history of the master table 312 changes during a current
processing period.
Note that the Master Table (M), Input Table (1), Reject Table (R), the Accept Table (A), the History Table (H) in the
same “Master Transaction Cluster” share the same number and order of data elements consisting of alphabetic, numeric, and
date items. Alternatively, the Summary Table (S) contains the start time, end time, number of accepts, and number of rejects

for each time a series of master table 312 modifications are provided.

MTCP Generator and Counters

The Generators 308 include two different external counters and two internal counters used in effecting 100%
auditability. The two external counters are the Accept Sequence Number Generator and the Reject Sequence Number
Generator. The two internal counters are the Total Records Read Counter and the Number of Modifications Counter. All are
used only in the Current database 300, as the Archive database 304 is read-only in nature.

Regarding the external counters, the Accept Sequence Number Generator included in the Current database 300
automatically generates sequential numbers for the processing period (daily, weekly, monthly, etc.) starting with the number
I, and increments by |, so that every transaction processed against the preceding (old) master table 312 will receive a specific
transaction number, and accordingly, each transaction processed will be uniquely identifiable based on master table identity,
transaction date, transaction number, and authorized user. Note that the transaction date is read off the internal system
clock. The Reject Sequence Number Generator counts the number of rejects for the specific processing period. Its function
is similar to the Accept Sequence Number Generator. Both the Accept Sequence Number Counter and the Reject Sequence
Number Counter are "processing period“ specific. That is, both are cleared to zero at, e.g., midnight on the end of the
processing period so that each processing period may be separately identified and audited.

Regarding the internal counters, the Total Records Read Counter counts the number of transactions read during a
specific processing performance. Since the Total Records Read Counter is "job execution" dependent, this counter is cleared
to zero at the outset of every processing program execution. The Number of Modifications Counter counts the number of times
a specific record has been changed. As this counter is "record" dependent, this counter is never cleared to zero, This specific

20

25

30

"~ WO 99/22329 PCT/US98/23026

25

counter should identify the number of individual records that may be retrieved, viewed, and verified from all of the tables in
the specific Master Transaction Cluster to prove its auditability.

MTCP Archive Database 304

The Archive database 304 is read only. Within the Archive database 304, information contained in the Master
Archive Table 336 represents a snapshot of information in the Master Table in the Current database 300 at a particular point
in time such as the end of a month, quarter, or year. And, information in the History Archive Table 336 contains all of the
transactions that have occurred from the beginning of the most recent processing period until the particular point in time,
be it month, quarter, or year. For example, the Master Archive Table 336 contains the status of the Master Table 312 at the
end of the first quarter, and the History Archive 340 contains all of the transaction modifications occurring since the end of
the last quarter. In this fashion, any status of any Master Table 312 can be recreated for any point in time (say, month ends)
by simply processing all transactions in the History Archive 340 for the desired period against the previous Master Archive
Table 336, or the beginning of the period.

MTCP SQL Script Library Implications
To achieve 100% auditability of a complete system, every master file (or table in relational database management

systems has a Master Transaction Cluster. Therefore, a total system containing I5 tables would require I5 x 8 or 120 tables
to achieve full 100% auditability. Since each table will require at least 4 SQL scripts to (1) Create Table, (2) Select data from
the table, (3) Delete data from the table, and (4) Drop the Table in the event of redefinition, the number of SQL scripts is 15
x8x4,0r 960 SQL Scripts. Then, each Master Transaction Cluster will require at least a Processing Program plus a Review,
Reset, and Retest, or at least four more programs for each cluster, or 4 x 15, or 60, more SQL Scripts. All of the SQL scripts

would be stored in one SQL Script Library on the computer for future reference and ease of maintenance.

MTCP Multi-processing
The multi-processing of the Master Transaction Cluster occurs in the following manner:

For additions (or Insertions in SQL) of data
The Insertions to the Master Table 312and Insertions to the Accept Table 328 may be processed
simultaneously.

For changes (or Updates in SQL) of data
The Update of the Master Table 312and the Insert to the Accept Table 328 may be processed
simultaneously after the original record from the Master Table 312 has been copied to the History fable
32

20

25

30

© WO 99/22329 PCT/US98/23026

26

For deletes (or Deletes in SQL) of data
The Deletion from the Master Table 312 and the Insertion to the Accept Table 328 may be processed
simultaneously after the current record in the Master Table 312 has been updated for the transaction
identifier and then copied to the History Table 332.

MICP Creation
Before processing any Master Transaction Cluster, the necessary databases and files (or tables) must be created.
For each business enterprise utilizing the present invention, these databases and files are created only once in the following
manner:
(Begin Program)
Create "Current" database
Create "Archive" database
in the "Current" database
Create Master Table
Create Input Table
Create Reject Table
Create Accept Table
Create Second Accept Table (on separate disk unit, if desired)
Create History Table
Create Summary Table
Create Sequence Number for Accepts
Create Sequence Number for Rejects
in the "Archive" database
Create Master Archive
Create History Archive
(End of Program)

MICP Processing
Processing of the "Master Transaction Cluster" then occurs in the following manner.

Stepl: Alf required information for processing a transaction is first captured on an input Form.
Step2: Once this information is edited by, e.g., an operator, an Enter Key can be pressed by an operator to write this
information to the Input Table 316 for particular master transaction clusters.

20

25

30

35

40

45

~ WO 99/22329 PCT/US98/23026

7

Step3: Foreach input table 316, a polling program notes that the Input Table is not empty and has a transaction action
to be processed whereupon the action is processed by a process (denoted “process " in Fig. M1).
Step4: The transaction processing program determines the type of file maintenance to perform; basically,
() add a record (entitled Insert a Row in SQL),
@ change a record (entitled Update a Row in SQL), and
() delete a record (entitled Delete a Row in SQL),
which in turn determines the multi-processing potential as described above in the MTCP Multi-processing.
The normal daily processing flow to achieve 100% auditability in either real-time or batch mode is as follows:

(Begin Program)
Read System Clock to Store Begin Time
(Read Next Transaction)
If Last Transaction
Read System Clock to Store End Time
Write End Time, Begin Time, Number of Accepts, Number of Rejects,
and Total Records Read to Summary Table
Goto End of Program
Increment Total Records Read by 1
(Add a New Record)
If transaction is ”’Add" then
If record exists then
Process Addition Error
Goto Write Reject Table
kkkkkkdokkkkkkkkokkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkk
* Select System Clock Date into Insert - Transaction Date *
* Increment Sequence Number into Insert - Transaction Number *
* Select User Name into Insert - Transaction User *
* Select Zero into Update - Transaction Number *
* Select Zero into Delete - Transaction Number *
skokdkokok koo kokdkokkok Rk kokkkokkkkkkkkokkkkkkkkk kR Rk KRk kR Kk kR kK Kk
Insert to Master Table
Goto Write Accept Table
(Change an Existing Record)
If transaction is “Change" then
If record does not exist then
Process Change Error

Goto Write Reject Table
koo kR KRk ok Rk doR R Rk kR ok ok sk ok ok ko
* (Master Snapshot) *

* Move Master Table Record to History Table *
kkkkkkokkkkkkkkkkkkkkkkkRkkkk kR kkkkkk R Rk kR kkkkkkk k%

* Select System Clock Date into Update - Transaction Date *

* Increment Sequence Number into Update - Transaction Number *

* Select User Name into Update - Transaction User *

* Select Zero into Delete - Transaction Number *
* Increment Master Table Number of Modifications by 1 *

RRERRRKRRRERERRRRRRERRRRRRR AR RRRERRER R KRRk kR Rk Rk Kk

20

25

30

35

“ WO 99/22329 PCT/US98/23026

28

Update Master Table with New Data
Goto Write Accept Table

(Delete an Existing Record)
If transaction is ’Delete" then
If record does not exist then
Process Drop Error
Goto Write Reject Table
kkrkkkkkkkkkkx
* Select System Clock Date into Delete - Transaction Date
* Increment Sequence Number into Delete - Transaction Number *
* Select User Name into Delete - Transaction User
sk ok ok ok ok ok koK ok ok kR ke ko ok ok ok ok ko ok sk ok ok ok ok sk ok ok ok ok k ok ke kR ko ok ok ke k koK

* Update Master Table Record for Tran Date/Tran Num/User
sk ok ok ok ok e ook o o o o ok ok ok ok ok ok sk ok ook ok ok ok ook o o ok ok ok ok ok K ok ok ok ok o
* (Master Snapshot)
* Move Master Table Record to History Table
kkkkkkkkkkkkkokkikdkokkkkkkkkkkikkkkkkkkkokkkkkkkkkkkkkkkkkkkkk
Delete Master Table Record From Master Table
(Write MULTI-PROCESSED Accept Table)
ek ok 3 ok o 3 ok o o o 0 e ok 3 o 3k ok ok e e ok e o ke ok o e o e ok o ke e ok ok ok ak ok ok
* Move “Current" into Archive - Status *
* Move ”System Date" into Archive - Date *
o ok e o o o ok o e e e ok o ok ok ok ok o ok ol sk ok ok ok ok ok sk ok ok ok ok ok ok ke ok ok ok ok
Increment Accept Counter
Insert to Accept Table
Insert Second Accept Table (on a separate disk drive, if desired)
Goto Loop to Next Transaction
(Write Reject Table)
Increment Reject Counter
Insert to Reject Table
(Loop to Next Transaction)
Goto Read Next Transaction
(End of Program)
End

Note: The specific multiprocessing of “Write Multiprocessed Accept Table" may be relocated to the
specific routine (Add, Change, or Delete) depending upon the computer language being used.
Step 5. Atthe end of the “’proofing period" ,such as daily or weekly, when proof tallies are matched
to computer tallies, the Accept Table can be deleted as follows:
(Begin Program)
Delete All Records from the Accept Table
(End Program)

Step 6: Backup all databases and tables before any information is purged as follows:

20

25

WO 99/22329 PCT/US98/23026
9
(Begin Program)
Write All Tables in the ”Current" database to backup
Write All Tables in the ”Archive" database to backup
(End of Program)
Step 7. At the end of a user-defined period, an archive and purge process occurs that

(Begin Program)

ek ok ok ook o ok o ok ok ok ok ok dk ok sk ok ok dk ok ok ok ok ok ok ok ko sk ok ok ok ok ke ok ok ok ok ok ok

* Move "Archive" to Archive Status

* Move “System Date" to Archive Date

akakokokok dkokdkok ok ok ko ko sk okok ok ook ok ok ok ok ok ok ok ok Rk ok okok Rk Rk kR kK
Move All Records in the Master Table to Master Archive.
Move All Records in the History Table to the History Archive.

(End Program)

Step 8: In the event that current records are wrongfully moved to the History Archive,
they may be retrieved by
(Begin Program)
Move Specific Records from the Master Archive to the Master Table
Move Specific Records from the History Archive to the History Table
(End Program)
This program should be executed only after Records have been moved from the Current database 300 to the Archive database 304, it should

never be run after new transactions have been processed to the Current database 300.

20

5

© WO 99/22329 PCT/US98/23026

30
MTCP Backup/Recove
If necessary, a recovery program can be utilized at any time in the event of hardware failure. Upon complete recovery, Step 7
and Step 8 will have to be re-executed to insure the correct status before the next day’s processing is begun. The Accept Table can then be
used to as a substitute [nput Table to return the system to its previous processing point. Once this table is exhausted, data from the Input

Table would supply the remaining data for the processing job.

MTCP Management

Once test data are defined and processed, a business enterprise may

(a) Review lists of the contents of all Master Tables 312 for determining correctness.
(b) Reset the contents of all Master Tables for performing the next test.
() Retest.

MTCP Auditability

Once auditabilty is achieved, the business enterprise may query:

(a) When a Master Table Cluster was created.

(b) When each record was added (or inserted) to the Master Table 312,

(c) How many authorized changes (or updates) have been made to a record of the Master Table 312.

(d) Prove the integrity of the master transaction cluster by producing a sequential list of all record changes, and if the
record was deleted, where the record is stored.

Accordingly, 100% auditability of every change, every day, for every application is possible.

Multiprocessing Defined

Unlike serial processing which processes all jobs in sequential fashion, multiprocessing processes some of the same jobs
simuttaneously, or in parallel. While multiprocessing is not new, major computer manufacturers such as Compag, Digital, Hewlett-Packard,
1BM, NCR, Unisys, etc. have announced offerings of low-cost multiprocessing machines based on 2, 4, 8, and sixteen processors. These
machines will rapidly increase the demand for multiprocessing software, which is known as "multithreaded" software. Multithreaded

software permits the simultaneous execution of more than one jobs o job sequences.

20

25

© - WO 99/22329 PCT/US98/23026

3l

Multiprocessing takes two forms, Symmetrical Multiprocessing (SMP) and Massively Parallel Processing (MPP), the difference
being that symmetrical multiprocessing machines coliectively have only one bus between the processors and the peripheral storage. For
example, a symmetrical multiprocessing machine may have eight processors, one bus, and sixteen disk drives. In contrast, massive parallel
processing machines has one bus for each processor. For example, a massively parallel machine may have eight processor, eight busses, and
sixteen disk drives. Therefore, symmetrical multiprocessing machines are best suited for applications with a high processing content and a
low input/out content. I contrast, massively parallel processing machines are best suited for applications that can be paralielized and have
a high input/output requirement, as is the case with many commercial systems.

In either event, multiprocessing machines are best utilized when carefully tuned to avoid bottlenecks. This is likely to mean that
all of the layers constituting a computing environment are multiprocessing-enabled. That is, the hardware, operating system, relational
database management system, and the specific application are capable of multiprocessing. Some multiprocessing mainframes have been
available for several years as well as some versions of the UNIX operating system. Only a few multiprocessing relational databases exist and
even fewer multiprocessing applications. It is believed by some that the success of multiprocessing is solely dependent upon the “knowledge
of the application” rather than “knowledge of the underlying tools,” the tools being the hardware, operating system, and relational database
system.

Accordingly, it is believed that the limiting factors for the success of multiprocessing for financial systems depends on:

(N the lack of financial transaction application knowledge,

) a lack of understanding of how multiprocessing can be used to effect 100% auditability, and

(3) the lack of understanding as to how to decompose a financial transaction system into a series of small independent

processes that may be performed simultaneously.

MTPC Uniqueness

Approaching multiprocessing from the business enterprise perspective, there are several levels by which processing could be
sub-divided. These are by:
)] application, wherein certain applications are capable of being performed in parallel, such as , e.g., Accounts
Receivable, Accounts Payable, etc.
@ function, wherein certain functions within an application are capable of being performed in parallel, such as, e.g.,

updating customer profiles, customer status, or performance.

20

15

30

35

40

32

WO 99/22329 PCT/US98/23026

®) process, wherein certain large tasks are capable of being decomposed into smaller tasks that can be performed in

parallel, such as, e.g., by splitting a large Accounts Receivable process, such as billing, into subcomponents.

o transaction, wherein transactions are decomposed into subtransactions that are capable of being performed in

parallel.

The value of MTCP is that it addresses the last form of multiprocessing which is befieved to be the most critical to delivering rapid

response times for real-time financial transaction processing systems. That is, by dividing a transaction into subtransactions that can be

spread across several multiprocessors, processing throughput may be faster. Plus, the large number of small programs make maintenance

much easier and less expensive.,

Afirst embodiment of the transaction processing controller 52 is provided in the flowchart of Fig. 6. Note that for simplicity,

error handling and related validity checking steps have been omitted. However, the performance of such steps is within the scope of the

present invention, as one skilled in the art will appreciate. A second pseudo-code embodiment of the transaction processing controller 52

follows.

Pseudo-Code for the Command Processor
(Transaction Processing Controller 52)

BEGIN
/* The following switches are global. They control both the activity of the system. */
/* The Processor Switches monitors the availability of an eight processor computer. */

/* The Process Switches monitors all of the jobs that are to be executed. */
/* These switches initialize the system, and then change throughout processing */
/* as the subcomponents of the system and the processors finish. */

/* The Processor Switches are turned ON as jobs are sent to specific processors. */
/* The Processor Switches are turned OFF after the jobs are completed. */
Set Processor 1 Switch=0
Set Processor 2 Switch =0
Set Processor 3 Switch=0
Set Processor 4 Switch=0
Set Processor 5 Switch=0
Set Processor 6 Switch =0
Set Processor 7 Switch=0
Set Processor 8 Switch=0

Read Begin Time from Systems Clock into Working Storage
Set Total Records Read =0
Set Number Accepts =0
Set Number Rejects =0

/* The Command Programs reads the transaction input from the operator, then

/* edits the transaction for validity and loads the transaction processing algorithms

/* from the Transaction Processing table (or cache file) to a temporary table. It then
/* walks down all of algorithms in the temporary table to process the total transaction

*/
*/
*/
*/

20

25

30

35

40

45

50

55

33
/* with 100% auditability. Each algorithm may be passed to a separate processor.

/* Read operator instructions for starting and ending item in input stream */
/* For the purposes of restart in the event of mid-stream job failure

/* For the purpose of omissions in processing.

/* Operator may enter Begin End for all items

/* Operator may enter Begin End for a beginning list

/* Operator may enter Begin End for an intermediate list
/* Operator may enter Begin End for an ending list

Read Beginning Item in Input Stream from Master Control Terminal
Read Ending Item in Input Stream from Master Control Terminal

Set Beginning Item to Next Transaction
Set Ending Item to End of List

Read System Clock for Begin Time
Add Record with Begin Time
IF Error then
Message “No System Table Record for Begin Time”, Details
ENDIF

<<Read Next Transaction>>

/* The Process Switches are turned ON as each transaction subcomponent is completed. ~ */
/* The Process Switches are tumed OFF after the total transaction is completed. */
SetProcess 1 Switch=0
Set Process 2 Switch =0
Set Process 3 Switch=0
Set Process 4 Switch=0
Set Process 5 Switch=0
Set Process 6 Switch=0
Set Process 7 Switch=0
Set Process 8 Switch=0
Set Process 9 Switch=0
Set Process 10 Switch=0
Set Process 11 Switch=0
Set Process 12 Switch=0
Set Process 13 Switch=0
Set Process 14 Switch=0
Set Process 15 Switch=0
Set Process 16 Switch =0
Set Process 17 Switch =0
Set Process 18 Switch=0
Set Process 19 Switch=0
Set Process 20 Switch=0
Set Process 21 Switch=0
Set Process 22 Switch=0
Set Process 23 Switch=0
Set Process 24 Switch=0

Read Next Transaction into Working Storage
IF EOF then
Read End Time from Systems Clock into Working Storage
INSERT End-time, Begin Time
Total Records Read, Number Accepts, Number Rejects

- WO 99/22329 PCT/US98/23026

*
*/
*/
*/
*/
*/

20

25

30

35

40

45

50

55

- WO 99/22329

into Summary Table

IF Error then

Message “ INSERT ST Table”, Details

STOP

ENDIF
Goto EOJ
ENDIF

IF Next Transaction = End of List

Goto EOJ
ENDIF

Increment Total Records Read

<<Test Transaction Type>>
IF Transaction Type != “ ¢ then

/* Set Switches for Trade Offset and Settle Offset Processing

Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
Set Process
ENDIF

<<Test OORR>>

IF OORR = ‘O’ then

1 Switch=0
2 Switch=1
3 Switch=1
4 Switch =1
5 Switch=1
6 Switch =0
7 Switch =1
8 Switch =1
9 Switch =1
10 Switch=1
11 Switch=0
12 Switch=1
13 Switch=1
14 Switch=1
15 Switch =1
16 Switch =1
17 Switch=0
18 Switch=0
19 Switch=1
20 Switch = 1
21 Switch=1
22 Switch =1
23 Switch=1
24 Switch=0

RRKRRRRARRRKRRARRK

CALL N_gine EDIT

Rk hkRRAARhkhkkRAXAR

IF Edit Error

Message “Edit Error”, Details

34

Goto Write Reject Table

ENDIF

IF Tran-Type != ‘Sell’
OR Tran-Type != ‘Withdraw’ then

INSERT into Transaction Journal Table

IF Error

*/

PCT/US98/23026

20

25

30

35

40

4

50

55

- - WO 99/22329

PCT/US98/23026

35

Message “Insert TJ Error”, Details
Goto Write Reject Table
ENDIF
IF Correction Data then
DELETE from Reject Table
IF Error
Message “Delete Reject Error”, Details
Goto Write Reject Table
ENDIF
ENDIF
ENDIF

Aok ok ok ok ok ke k

CALL TT i.e., execute the algorithms in the temporary table
FRk Ak AAAK
IF Temporary Table Error then
Message “Temporary Table Error”, Details
Goto Write Reject Table
ENDIF

Generate Sequence Number

ELSIF OORR = R’

ke 2k ok 2k 2 o 2 3 o ok o e ok o 3 ok
CALLN_gine EDIT

RRRKRRRRRRRRRRARRAR

IF Edit Error
Message “Edit Error”, Details
Goto Write Reject Table

ENDIF

Assign Transaction Number = ‘000000’
Assign LOT Number =1
<<Read Next Reversal>>

Read Transaction Journal Table for reversal number

IF “No Transaction Exists” where LOT =1 then
Message “No Transaction Exists”, Details
Goto Write Reject Table

ENDIF

IF “No Transaction Exists” and LOT > 1 then
Goto Transaction Wrap-up

ENDIF

IF Previously Reversed
Message “Previously Reversed”, Details
Goto Write Reject Table

ENDIF

INSERT Reversing Transaction” to Transaction Journal Table

IF Error
Message “INSERT TJ Reversing Error”, Details
Goto Write Reject Table

ENDIF

UPDATE “Reversed” Transaction

IF Error
Message “"UPDATE TJ Reversed Error”, Details
Goto Write Reject Table

ENDIF

20

15

30

35

40

L

50

55

-~ WO 99/22329

36

Increment the LOT Number

a3k o o o e ok ke %k

CALL TT i.e., execute the algorithms in the temporary table

ke e ok ok o ok ke e ok

IF Temporary Table Error then
Message “Temporary Table Error”, Details
Goto Write Reject Table

ENDIF

Goto Read Next Reversal

Generate Sequence Number

UPDATE “Reversed” Transaction, ALL ROWS with Reversing Data
IF Error then
Message “UPDATE TL Table Reversed”, Details
Goto Write Reject Report
ENDIF
UPDATE “Reversing” Transaction, ALL ROWS with Reversed Data
IF Error then
Message “UPDATE TL Table Reversing”, Details
Goto Write Reject Report
ENDIF
ELSE
INSERT into Reject Table “No Originate or Reverse Code”
IF Error then
Message “Insert Reject Table”, Details
Goto Write Reject Table
ENDIF
ENDIF

<<Transaction Wrap-up>>
INSERT INTO Transaction Count Table
Select Original-Count and Reversal Count from TC Table into Working Storage
IF Error then
INSERT INTO TC Table, Details

IF Error then
Goto Write Reject Table
ENDIF
ELSE
IF AORS = ‘O’ then
Increment Original-Count
ELSIF AORS=‘R’
Increment Reversal-Count
ELSE
Message “Invalid AORS Code”, Details
STOP
ENDIF
ENDIF
<<Test Trade Settlement>>
IF Transaction Switch = 2
Goto Loop Next Transaction
ENDIF
IF Transaction Switch = 1

OR AORS = then
Goto Loop Next Transaction

PCT/US98/23026

20

125

30

35

40

45

50

55

“ WO 99/22329 PCT/US98/23026

37
ENDIF

/* COMMIT Work to Database */
COMMIT Original Transaction Before Offset Transaction

IF AORS =°A’ then

Insert Licensee Trade Offset Buy in Transaction Identifier
ELSIF AORS=°S’

Insert Licensee Trade Offset Sell in Transaction Identifier
ELSE

Message “Invalid AORS”, Details
ENDIF

/* Swap Account Numbers for Automatic Transaction */

Move Account Number to Working Storage Account Number

Move Buyer/Seller Number to Account Number

Move Working Storage Account Number to Account Number

Multiply the Net Amountby -1

Multiply the Amount Units by -1

Add Number of Settiement Days from Entity Master to Trade Date to determine Settlement Date

Add to Total Number of Accepts
UPDATE Row in System Table for Number of Accepts
IF Error then
Message “Update Error for Accepts”, Details
Goto Write Reject Record
ENDIF

Go to Test Transaction Type

<<Loop Next Transaction>>

/* COMMIT Work to Database */
COMMIT Original Transaction or Offset Transaction, if any
Goto Read Next Transaction
<<Write Reject Record>>
Add to Total Number of Rejects
UPDATE Row in System Table for Number of Rejects
IF Error then
Message “Update Error for Rejects”, Details
ENDIF
INSERT Into Reject Table, Details
IF Error
Message “Insert Command Reject Table”, Details
STOP
ENDIF

Move Incoming Licensee Identifier to Stored Licensee Identifier
Move Incoming Account Identifier to Stored Account Identifier

Move Incoming Transaction Identifier to Stored Transaction Identifier
Move Incoming Entity Identifier to Stored Entity Identifier

Goto Read Next Transaction

<<EOJ>>
Read System Clock for End Time

20

25

30

35

40

45

50

© WO 99/22329 PCT/US98/23026

38
Add Record with End Time
IF Error then
Message “No System Table Record for End Time”, Details
ENDIF

END

A first embodiment of the transaction preprocessor and decomposer 54 is provided in the flowcharts of Figs. 7-A through 7-D
and Figs. 8-Aand 8-B. Note that for simplicity, error handling and related validity check steps have been omitted. However, the performance
of such steps is within the scope of the present invention, as one skilled in the art will appreciate.

A second pseudo-code embodiment of the transaction preprocessor and decomposer 54 follows.

seudo-Co dit Processor fo

all Incoming Transactions
(Transaction Preprocessor and Decomposer 54)

BEGIN
Housekeeping

Set Working Storage Alphas to Blanks
Set Working Storage Numbers to Zeroes

IF Incoming Licensee Identifier = Stored Licensee Identifier then
Using Licensee Identifier from Input String, retrieve
Licensee Name
Trade Settlement Switch
Trade Offset Buy
Trade Offset Sell
from Licensee Master into Working Storage
IF Error then
Message “No Licensee Master”, Detail
Goto EOJ
ENDIF

ENDIF

stk ek ok o g o e o ok e o ke ok e o ool o o o kool ko o ok ok ok sk ok ok oKk ok

IF the Default Definition Table has not been loaded to memory then
LOAD all records from the Default Definition Table consisting of
Licensee
DD Class
DD Identification
DD Sub-Class
DD Accounting Control Number
DD Name
from the Default Definition Table
into the Temporary Table (TA)
IF Error then
Message “NO TA Table”, Details
Goto EOJ

20

25

30

35

40

4

50

55

“WO 99/22329 PCT/US98/23026
39
ENDIF
ENDIF
1% ST kK sk kR R Rk |

IF the Incoming Account Identifier = Stored Account Identifier

ELSE

ENDIF

Goto Access Transaction Master (TM)

/*** This is the first table containing control totals for cash, units, and cost basis ***/
<<Access Account Master>>

From the Account Master Table (TM)
using the Licensee Identifier from the Input String
and the Account Identifier from the Input String, retrieve

Account Type

Income Posting Code
Income/Expense Switch
Receipt/Disbursement Switch
Performance Measurement Switch

Fiscal Year - Month
Fiscal Year - Day
Fiscal Year - Number Periods

Income Cash Balance
Principal Cash Balance
Invested Income
Invested Principal
Total Units - Assets
Liabilities

Total Units - Liabilities

and the Row Identification of the Account Master Record
from the Account Master Table (AM) into Working Storage
IF Error then
Report “Invalid Account Identifier”, Details
Goto Write Reject Report
ENDIF

<<Access Transaction Master>>

IF

ELSE

the Incoming Transaction Identifier = Stored Transaction Identifier
Goto Test Cash Entry in Entity Attribute Table

Using the Licensee Identifier from the Input String
and the Transaction Identifier from the Input String
Transaction Name
Add or Subtract Switch
Settlement Switch
and the Row Identification
from the Transaction Master Table (TM) into Working Storage

20

25

30

35

40

4

50

55

= WO 99/22329

PCT/US98/23026

40

IF Error then
Message “Invalid Transaction Identifier”, Details
Goto Write Reject Report

ENDIF

IF AORS =“A’ then
Using the Licensee Identifier from the Input String
and the Trade Offset Buy from Working Storage, verify
the existence of a Trade Offset Buy in the TM Table

IF Error then
Message “No Trade Offset Buy”, Details
Goto Write Reject Table

ENDIF

ELSE AORS =S’ then
Using the License Identifier from the Input String
and the Trade Offset Sell from Working Storage, verify
the existence of a Trade Offset Sell in the TM Table.

IF Error then
Message “No Trade Offset Sell”, Details
Goto Write Reject Table

ENDIF

ELSE
Message “Invalid AORS Code”, Details
Goto Write Reject Report

ENDIF

<<Access Transaction Processing Table (TP)>>
Using the Licensee Identifier from the Input String
and the Transaction Identifier from the Input String, retrieve

ALL of the Transaction Processing algorithms
from the Transaction Processing Table (TP)
into a Temporary Table (TT) in Working Storage

IF Error then
Message “No Transaction Processing Algorithms”, Details
Goto Write Reject Report

ENDIF

/*#** This is the second control table containing cash, units, cost basis, liabilities, etc. ***/

<<Test Income Cash Posting Controls>>

IF the Working Storage Income Posting Code = ‘T’

OR the Working Storage Income Posting Code = ‘B’ then
Count the number of IC entries in the TA table

<<Test Income Cash>>
IF count=1 then
Using Licensee Identifier from the Input String
and the Class = ‘IC’
and the Sub-Class = “ * retrieve
Accounting Control Number from TA into Working Storage
IF Error then
Message “Invalid Income Cash ACN™, Details

20

25

30

35

40

45

50

55

© WO 99/22329

PCT/US98/23026

4

Goto Write Reject Record
ENDIF

Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number
and the Row Identification from General Ledger Table (SG)
IF Error then
Message “Invalid Income Cash on SG”, Details
Goto Write Reject Report
ENDIF

ELSIF count =2 then

ELSE

Using the Licensee Identifier from the Input String
and the Class =°IC’
and the Sub-class = ‘D’, retrieve
Accounting Control Number from TA into Working Storage

IF Error then
Message “Invalid Income Cash Demand ACN in TA”, Details

Goto Write Reject Report
ENDIF

Using the Licensee Identifier from the Input String

and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Income Cash Demand in GL”, Details
Goto Write Reject Report

ENDIF

Using the Licensee Identifier from the Input String
and the Class =°IC
and the Sub-class = ‘O’, retrieve
Accounting Control Number from TA table into Working Storage

IF Error then
Message “Invalid Income Cash Overdraft ACN in TA”,
Details
Goto Write Reject Report
ENDIF

Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Income Cash Overdraft in GL”, Details
Goto Write Reject Report

ENDIF

20

25

30

35

40

45

50

55

- - WO 99/22329 PCT/US98/23026

4

Message “Invalid Income Cash Count on DD”, Details
Goto Write Reject Record

ENDIF

<<Test Principal Cash Posting Controls>>
ELSIF the Working Storage Income Posting Code = ‘P’
Count the number of PC entries in the TA table

<<Test Principal Cash>>
IF count=1 then
Using the Licensee Identifier from the Input String
and the Class = ‘PC’
and the Sub-Class = * * retrieve
Accounting Control Number from TA into Working Storage
IF Error then
Message “Invalid Principal Cash ACN”, Details
Goto Write Reject Record
ENDIF

Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number
and the Row Identification from General Ledger Table (SG)
IF Error then
Message “Invalid Principal Cash on SG”, Details
Goto Write Reject Report
ENDIF

ELSIF count =2 then

Using the Licensee Identifier from the Input String
and the Class = ‘PC’
and the Sub-class = ‘D’, retrieve
Accounting Control Number from TA into Working Storage

IF Error then
Message “Invalid Principal Cash Demand ACN in TA”,
Details
Goto Write Reject Report
ENDIF

Using the Licensee Identifier from the Input String

and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Principal Cash Demand in GL”, Details
Goto Write Reject Report

ENDIF

Using the Licensee Identifier from the Input String

and the Class = ‘PC’

and the Sub-class = ‘O’, retrieve

Accounting Control Number from TA tabie into Working Storage

20

25

30

35

40

4

50

55

- - WO 99/22329

48

IF Error then

PCT/US98/23026

Message “Invalid Principal Cash Overdraft ACN in TA”,

Details
Goto Write Reject Report
ENDIF

Using the Licensee Identifier from the Input String

and the Accounting Control Number in Working Storage, retrieve

Accounting Control Number
and the Row Identification from the General Ledger

IF Error then

Message “Invalid Principal Cash Overdraft in GL”, Details

Goto Write Reject Report
ENDIF

ELSE
Message “Invalid Principal Cash Count on DD”, Details
Goto Wrnite Reject Record

ENDIF

ELSE
Message “Invalid Posting Code”, Details
Goto Write Reject Report

ENDIF

ENDIF

<<Test Cash Entry in Entity Attribute Table>>
Using the Licensee Identifier from the Input String
and the Account Control Number from the TU Record in Working Storage, retrieve

The Total Units - Assets
and the Row Identifier from the Entity Attribute Table (EA)

IF Error then
Message “Invalid Total Units”, Details
Goto Write Reject Table

ENDIF

<<Test Asset / Liability Processing>>

IF Working Storage Add or Subtract Switch (AORS) is OFF then
Goto EOJ

ENDIF

IF Incoming Entity Identifier = Stored Entity Identifier then
Goto EOJ
ENDIF

f*** This is the third table containing control table for cash, units, cost basis, liabilities, etc.

<<Access Entity Attribute Table (EA)>>
Using the Licensee Identifier from the Input String
and the Entity Identifier from the Input String, retrieve

*kk/

20

25

30

35

40

£

50

55

- WO 99/22329

PCT/US98/23026

4

Accounting Control Number (Asset)
Accounting Control Number (Liability)

Diversification Type
Diversification Group
Diversification Class

Invested Income Balance
Invested Principal Balance
Total Units - Assets

Total Units - Liabilities

and the Row Identification of the Entity Attribute Record
from the Entity Attribute Table (EA) into Working Storage
IF Error then
Message “Invalid Entity Identifier in EA”, Details
Goto Write Reject Table
ENDIF

<<Access the Entity Transaction Table (ET)>>

Using the Licensee Identifier from the Input String
and the Entity Identifier from the Input String, verify
the existence of an acceptable transaction
in the Entity Transaction Table (ET) for the Entity Identifier.
IF Error then
Message “Invalid Transaction for this Entity”, Details
Goto Write Reject Table
ENDIF

<<Access the Entity Master Table (EM)>>
Using the Entity Identifier from the Input String, retrieve
Income Rate
Income Ex-Date
Income Record Date
Income Payment Date
Cap-Adj Rate
Cap-Adj Ex-Date
Cap-Adj Record Date
Cap-Adj Payment Date
Settlement Days
Current Price
from the Entity Master Table (EM) into Working Storage
IF Error then
Message “No Entity Master”, Details
Goto Write Reject Report
ENDIF

<<Test Other Assets>>

Using the Licensee Identifier from the Input String
and the Account Type from Working Storage
and the Accounting Control Number - Asset from Working Storage, retrieve
the Accounting Control Number - Asset
and Row Identifier from the General Ledger (SG)
IF Error then
Message “Invalid ACN - Asset”, Details
Goto Write Reject Report
ENDIF

20

25

30

35

40

45

50

55

-WO 99/22329 PCT/US98/23026

45

<<Test Other Liabilities>>
Using the Licensee Identifier from the Input String
and the Account Type from Working Storage

and the Accounting Control Number - Liability from Working Storage, retrieve

the Accounting Control Number - Liability
and Row Identifier from the General Ledger (SG)
IF Error then
Message “Invalid ACN - Liabilities”, Details
Goto Write Reject Report
ENDIF

<<Test Invested Income>>
Using the Licensee Identifier from the Input String
and the Account Type Code from Working Storage
and the Invested Income Identifier from Working Storage, retrieve
the Invested Income Balance
and the Row Identifier from the General Ledger Table (SG)
IF Error then
Message “Invalid Invested Income”
Goto Write Reject Table
ENDIF

<<Test Invested Principal>>
Using the Licensee Identifier from the Input String
and the Account Type Code from Working Storage
and the Invested Principal Identifier from Working Storage, retrieve
the Invested Principal Balance
and the Row Identifier from the General Ledger Table (SG)
IF Error then
Message “Invalid Invested Principal”
Goto Write Reject Table
ENDIF

Goto EOJ

<<Write Reject Table>>
Add to Reject Table
IF Error then
Message “Invalid Insert to Reject Table”, Details
STOP
ENDIF

<<EOJ>>
Null

END

Pseudo-Code for the SCHEDULER
(Subtransaction Scheduler 62)

BEGIN
<<Read Next Process>>
Read Next Transaction in Temporary Table (TT)
IF EOJ then

20

25

30

35

40

45

50

55

- - WO 99/22329 PCT/US98/23026

46

<<Test All Switches - AORL>>
IF All 18 Process Switches =0
Goto EOJ
ENDIF
Wait 10 milliseconds
Goto Test All Switches - AORL
ENDIF
<<Test Processor Availability>>
IF Processor 1 Switch = O then
Set Processor 1 Switch=1
Initiate Process on Processor 1 @ end, Set Processor 1 Switch=0
Goto Next Process Loop
ENDIF
IF License Master (LM) Number of Processors = 1 then
<<Test 1 Processor>>
IF Processor 1 Switch = 1 then
Wait 10 Milliseconds
Goto Test 1 Processor
ENDIF
Goto Test Processor Availability
ENDIF

IF Processor 2 Switch = 0 then
Set Processor 2 Switch =1

Initiate Process on Processor 2 @ end, Set Processor 2 Switch =0
Goto Next Process Loop
ENDIF
IF License Master (LM) Number of Processors =2 then
<<Test 2 Processors Busy>>
IF Processor 1 Switch =1

AND Processor 2 Switch =1 then
Wait 10 milliseconds
Goto Test 2 Processors Busy
ENDIF
Goto Test Processor Availability
ENDIF

IF Processor 3 Switch = 0 then
Set Processor 3 Switch = 1
Initiate Process on Processor 3 @ end, Set Processor 3 Switch =0
Goto Next Process Loop
ENDIF
IF Processor 4 Switch = 0 then
Set Processor 4 Switch = 1

Initiate Process on Processor 4 @ end, Set Processor 4 Switch=0
Goto Next Process Loop
ENDIF
IF License Master (LM) Number of Processors =4 then
<<Test 4 Processors Busy>>
IF Processor 1 Switch =1

AND Processor 2 Switch =1
AND Processor 3 Switch = 1
AND Processor 4 Switch = 1 then
Wait 10 milliseconds
Goto Test 4 Processors Busy
ENDIF
Goto Test Processor Availability

20

25

30

35

40

45

50

55

- - WO 99/22329

END

BEGIN

ENDIF

IF Processor 5 Switch = 0 then
Set Processor 5 Switch = 1
Initiate Process on Processor 5
Goto Next Process Loop
ENDIF
IF Processor 6 Switch = 0 then
Set Processor 6 Switch =1
Initiate Process on Processor 6
Goto Next Process Loop
ENDIF
IF Processor 7 Switch = 0 then
Set Processor 7 Switch = 1
Initiate Process on Processor 7
Goto Next Process Loop
ENDIF
IF Processor 8 Switch = 0 then
Set Processor 8 Switch = 1
Initiate Process on Processor 8

4

PCT/US98/23026

@ end, Set Processor 5 Switch =0

@ end, Set Processor 6 Switch =0

@ end, Set Processor Switch 7 =0

@ end, Set Processor 8 Switch =0

Goto Next Process Loop

ENDIF

IF Licensee Master (LM) Number of Processors = 8 then
<<Test 8 Processors Busy>>
IF Processor 1 Switch=1
AND Processor 2 Switch = 1
AND Processor 3 Switch =1
AND Processor 4 Switch = 1
AND Processor 5 Switch=1
AND Processor 6 Switch =1
AND Processor 7 Switch=1
AND Processor 8 Switch = 1 then

Wait 10 milliseconds
Goto Test 8 Processors Busy

ENDIF
Goto Test Processor Availability

ENDIF

<<Next Process Loop>>
Goto Read Next Process

<<EQJ>>

Null

Proces

e Controls Process Routine

in the Temporary Table (TT)

IF OORR = “0O” then
Set Factor=+1
ELSIF OORR = ‘R’ then
Set Factor=- 1
ENDIF

20

25

30

35

40

45

50

55

- WO 99/22329

48
<<Total Units>>
IF Operand 2 = ‘TU’ then
(AMU) Process AM Units
(EAU) Process EA Units
(PMU) Process PM Units
<<Cash Balances>>
ELSIF Operand 2 = ‘IC’
OR Operand 2 = ‘PC’ then
(AMC) Process AM Income Cash Demand
Income Cash Overdraft
Principal Cash Demand
Principal Cash Overdraft
(EAC) ProcessEA Income Cash
Principal Cash
(GLC) Process GL Assets - Income Cash Demand

Assets - Income Cash Overdraft
Assets - Principal Cash Demand
Assets - Principal Cash Overdraft
Liab - Income Net Worth

Liab - Principal Net Worth

<<Investment Balances>>
ELSIF Operand 2 = ‘I’
OR Operand 2 = ‘IP’ then

(AMI) Process AM Invested Income
Invested Principal
(EAI) Process EA Cost
(GLI) Process GL Assets - Actg Control Number

Liab - Income Net Worth
Liab - Principal Net Worth

<<Other Customized Investment Reporting>>

ELSIF Operand 2 = ‘T" and Report Request = ‘Y’

OR Operand 2 = ‘E’ and Report Request = ‘Y’ then
(IEE) ProcessIE
(PME) Process PM

<<Receipts/Disbursements>>

ELSIF Operand 2 = ‘R’ and Report Request = ‘Y’

OR Operand 2 = ‘D’ and Report Request = ‘Y’ then
(IEC) ProcessRD
(PMC) Process PM

<<Performance Measurement>>
ELSIF Operand 2 = ‘PM’ and Report Request = ‘Y” then
(PMP) Process PM

<<Contributions/Distributions>>

ELSIF Operand 2 = ‘CN’ and Report Request = ‘Y’

OR Operand 2 = ‘DN’ and Report Request = ‘Y’ then
(CDC) Process PM

<<Management Fees>>
ELSIF Operand 2 = ‘MF’ and Report Request = ‘F” then

PCT/US98/23026

20

© WO 99/22329

49

(PMM) Process PM

<<Commissions>>
ELSIF Operand 2 = ‘CM” then
(PCM) Process PM

<<Federal Taxes>>
ELSIF Operand 2 = ‘FT” then
(PMF) Process PM

<<State Taxes>>
ELSIF Operand 2 = ‘ST’ then
(PMS) ProcessPM

ELSE
Message “Invalid Operand 2”
STOP

ENDIF

END

PCT/US98/23026

Process the Detail Records Maintenance Routine (AORS)

Note: Leave all switches = | until the last routine is completed. This forces the processing to loop through each succeeding
routine until completed. Then turn set all switches = 0 so that the Scheduler will revert back to the Command

30

35

40

45

50

55

Program to read another transaction.

<<Originate ADD>>
IF OORR = ‘O’ and
AORS = ‘A’ then
IF Process 1 Switch = 0 then
Set Process 1 Switch=1
Initiate Process BS
ELSIF Process 2 Switch = 0 then
Set Process 2 Switch = 1
Initiate Process PI/PA
ELSIF Process 3 Switch =0 then
Set Process 3 Switch =1
Initiate Process TS
ELSIF Process 4 Switch = 0 then
Set Process 4 Switch =1

Initiate Process PM
ELSE
Set Process 1 Switch=0
Set Process 2 Switch =0
Set Process 3 Switch =0
Set Process 4 Switch =0
ENDIF
<<Reverse ADD>>
ELSIF OORR = ‘R’ and
AORS = ‘A’ then

IF Process 5 Switch = 0 then
Set Process 5 Switch =1
Initiate Process BS

20

25

30

35

40

45

50

55

© WO 99/22329

ELSIF

ELSIF

ELSIF

ELSE

ENDIF

50

Process 6 Switch = 0 then
Set Process 6 Switch = 1
Initiate Process PI/PA
Process 7 Switch = 0 then
Set Process 7 Switch =1
Initiate Process TS
Process 8 Switch = 0 then
Set Process 8 Switch = 1
Initiate Process PM

Set Process 5 Switch =0
Set Process 6 Switch =0
Set Process 7 Switch =0
Set Process 8 Switch =0

<<Originate SUB>>

ELSIF OORR =

‘O’ and

AORS = ‘S’ then

IF

ELSIF

ELSIF

ELSIF

ELSIF

ELSE

ENDIF

Process 9 Switch = 0 then
Set Process 9 Switch = 1
Initiate Process BS '
Process 10 Switch =0 then
Set Process 10 Switch = 1
Initiate Process PI/PA
Process 11 Switch = 0 then
Set Process 11 Switch =1
Initiate Process TS
Process 12 Switch = 0 then
Set Process 12 Switch =1
Initiate Process CG
Process 13 Switch =0 then
Set Process 13 Switch =1
Initiate Process PM

Set Process 9 Switch =0
Set Process 10 Switch=0
Set Process 11 Switch =0
Set Process 12 Switch =0
Set Process 13 Switch =0

<<Reverse SUB>>
ELSIF OORR = ‘R’ and
AORS =S’ then

IF

ELSIF

ELSIF

ELSIF

Process 14 Switch = 0 then
Set Process 14 Switch =1
Initiate Process BS

Process 15 Switch = 0 then
Set Process 15 Switch =1
Initiate Process PI/PA
Process 16 Switch = 0 then
Set Process 16 Switch =1
Initiate Process TS

Process 17 Switch = 0 then
Set Process 17 Switch = 1
Initiate Process CG

PCT/US98/23026

15

20

25

30

35

40

4

© © WO 99/22329

ENDIF

PCT/US98/23026

|

ELSIF Process 18 Switch = 0 then
Set Process 18 Switch = 1
Initiate Process PM

ELSE
Set Process 14 Switch =0
Set Process 15 Switch =0
Set Process 16 Switch =0
Set Process 17 Switch =0
Set Process 18 Switch =0

ENDIF

Afirst embodiment of the processing for the subtransaction processing module 64 is provided in the flowcharts of

Figs. 9-A through 9-B, Figs. 10, 11, 12, 13 and 14. Note that for simplicity, error handling and related validity checking steps

have been omitted. However, the performance of such steps is within the scope of the present invention, as one skilled in the

art will appreciate.

A second pseudo-code embodiment of the transaction processing controller 52 follows.

BEGIN

Pseudo-Code for Processing for the
Subtransaction Processing Module 64

DO WHILE List of Subtransactions in the TT Table is Valid

Select Next Row of Operator, Operand 1, and Operand 2 from TT into Working Storage

1%
IF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

To choose the specific input field (or column) */

Operand 1 = ‘N’

Set Value = Net Amount from Input String
Operand 1 =T

Set Value = Interest from Input String
Operand 1 = ‘P’

Set Value = Principal from Input String
Operand 1 = ‘H’

Set Value = Amount Units from Input String
Operand 1 = ‘U’

Set Value = Amount Units from Input String
Operand 1 =°C’

Set Value = Cost Basis from Input String
Operand 1 =V’

Set Value = Amount Units * Curr Price from Input String
Operand 1 = ‘F°

Set Value = Federal Taxes from Input String
Operand 1 =S’

Set Value = State Taxes from Input String

Operand 1 =L’

20

25

30

35

40

4

50

55

“WO 99/22329

ELSIF
ELSE

ENDIF

[*

ELSIF

ENDIF

/*

ELSIF

ENDIF

52

Set Value = Local Taxes
Operand 1 = ‘M’
Set Value = Management Fees

Message “Invalid Operand 17, Details

To Adjust for Plus or Minus
Operator = ‘P’ then

Set Multiplier = +1
Operator = ‘M’ then

Set Multiplier = -1

To Adjust for Originate or Reversal
OORR =°‘O’ then

Set Multiplier = Multiplier * +1
OORR =R’

Set Multiplier = Multiplier * -1

/* Test for Total Unit Changes

IF

Operand 2 = “TU’ then
Add Value to AM - Total Units
Add Value to EA - Total Units

/* Test for Income Cash Changes

IF

Operand 2 = ‘IC’ then

/* Add to First Controls - Account Master

Add Value to AM - Income Cash
Add Value to AM - Units

PCT/US98/23026

from Input String

from Input String

*/

*/

*/

*/

*/

/* Add to Second Controls - Entity Attribute */

Add Value to EA - Invested Income
Add Value to EA - Units

/* Addto Third Controls - General Ledger

IF Number of Entries = 1 then

Add Value to GL - Income Cash

ELSIF Number of Entries =2 then
IF Value >0 then
IF ICD>=0 then
Add Value
ELSE ICD <0

*/

to GL - Income Cash Demand

Add (Value - ICO) to GL - Income Cash Demand

Set Zero
ENDIF
ELSIF Value <=0 then

IF ICD <0 then

Add Value

ELSE ICD>=0 then

to GL - Income Cash Overdraft

to GL - Income Cash Overdraft

Add (Value - ICD) to GL - Income Cash Overdraft

Set Zero
ENDIF

to GL - Income Cash Demand

20

15

30

35

40

4

50

55

© WO 99/22329 PCT/US98/23026

3

ELSE
Message “Invalid Value”, Details
ENDIF

Add Value to Uninvested Income
ELSE

Message “Invalid Number Entries”, Details
ENDIF

/* Test for Principal Cash Changes */
ELSIF Operand 2 =‘PC’ then

/* Add to First Controls - Account Master */
Add Value to AM - Principal Cash
Add Value to AM - Units

/* Add to Second Controls - Entity Attribute */
Add Value to EA - Invested Principal
Add Value to EA - Units

/* Add to Third Controls - General Ledger */
IF Number of Entries =1 then
Add Value to GL - Principal Cash
ELSIF Number of Entries =2 then
IF Value >0 then
IF PCD>=0 then

Add Value to GL - Principal Cash Demand
ELSE PCD <0

Add Value to GL - Principal Cash Demand

Set Zero to GL - Principal Cash Overdraft

ENDIF
ELSIF Value <=0 then
IF PCD <O then
Add Value to GL - Principal Cash Overdraft
ELSE PCD>=0 then
Add (Value - PCD) to GL - Principal Cash Overdraft
Set Zero to GL - Principal Cash Demand
ENDIF
ELSE
Message “Invalid Value”, Details
ENDIF
ELSE
Message “Invalid Number Entries”, Details
ENDIF

Add Value to Uninvested Principal

/* Test for Invested Income Changes */
ELSIF Operand 2 = ‘I then

/* Add to First Controls - Account Master */
Add Value to AM - Invested Income

/* Add to Second Controls - Entity Attribute */
Add Value to EA - Invested Income

/* Add to Third Controls - General Ledger */

20

5

30

35

40

H

50

55

© WO 99/22329

54

/* Update Assets */
Add Value to ACN- Assets
/* Update Liabilities */
IF ACN-Liab = then

Add Value to Invested Income
ELSE

Add Value to ACN_Liabilities
ENDIF

/* Test for Invested Principal Changes
ELSIF Operand 2 = ‘IP’ then

/* Add to First Controls - Account Master
Add Value to AM - Principal Cash

/* Add to Second Controls - Entity Attribute */
Add Value to EA - Invested Principal

/* Add to Third Controls - General Ledger

* Update Assets */
Add Value to ACN - Assets
/* Update Liabilities */

IF ACN_Liab="“ then

Add Value to Invested Principal
ELSE

Add Value to ACN_Liabilities
ENDIF

/* Test for Other Customized Reporting Changes

ELSIF Operand 2 = ‘I’ and Report Request =Y’

OR Operand 2 = ‘E’ and Report Request = Y’ then
(IEE) ProcessIE
(PME) Process PM

ELSIF Operand 2 = ‘R’ and Report Request = ‘Y’

OR Operand 2 = ‘D’ and Report Request = ‘Y” then
(EC) ProcessRD
(PMC) Process PM

/* Test for other Performance Measurement Data

ELSIF Operand 2 = ‘PM’ and Report Request = ‘Y’ then

(PMP) Process PM
ELSIF Operand 2 = ‘CN’
OR Operand 2 = ‘DN’ then
(CDC) Process PM

ELSIF Operand 2 = ‘MF’ then
(PMM) Process PM

ELSIF Operand 2 =‘CM’ then
(PCM) Process PM

ELSIF Operand 2 = ‘FT° then
(PMF) Process PM

ELSIF Operand 2 = ‘ST’ then

*/

*/

*/

*/

*/

PCT/US98/23026

20

25

30

35

40

45

50

55

SELECT Data into Working Storage from PM Record
IF Error then
Message “ SELECT PM Error 27, Details
Goto Write Report Error
ENDIF
IF Units = ‘ALL"
and All Other Balances in the Row are Zero then
DELETE from Table / Row
IF Error
Message “DELETE PM Error”, Details
Goto Write Report Error

PCT/US98/23026

*/

(which means ADD)

= ‘O’ (which means

WO 99/22329
55
(PMS) Process PM
ELSE
Message “Invalid Operand 2”, Details
ENDIF
/* Test for Detail Record Maintenance of Financial Instruments
IF AORS !=°° then
ko kK
CALL PORTFOLIO ADJUSTER 110
e e e ok ofe ok o 3 o 2 ok
ENDIF
ENDDO
END
Pseudo-Code for Performance Measurement (PM)
Processing related to the Licensee
Performance Measurement Table 104
BEGIN
IF Trxn = ‘A’ and Type = ‘O’ OR Trxn = ‘S’ and Type = ‘R’
SELECT Data into Working Storage from PM Record
IF Error then
INSERT INTO PM Record, Details
IF Error then
Message “INSERT PM Error”, Details
Goto Write Reject Report
ENDIF
ELSE
Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error
Message “UPDATE PM Error 1°, Details
Goto Write Report Error
ENDIF
ENDIF
ELSIF Trxn = ‘A’ and Type = ‘R’ OR Trxn = ‘S’ and Type
SUBTRACT)

20

125

30

35

40

Il

50

55

© WO 99/22329 PCT/US98/23026

56

ENDIF
ELSE
Decrement Units by Amount to be reduced
UPDATE PI SET Details
IF Error then
Message “UPDATE PM Error 2", Details
Goto Write Report Writer
ENDIF
ENDIF
ELSE
Null
ENDIF
Goto EOJ
< < Write Reject Report > >
INSERT into Reject Table, Details

IF Error
STOP
ENDIF
< <EOJ> >
Null
END
Pseudo-Code for Income / Expense Processing (IE)
Processing related to the Customer Income Statement
(Income/Expense) Table 96
BEGIN
IF Trxn = ‘Debit’ and Type = ‘O’ (which means ADD)

OR Trxn = ‘Credit’ and Type = ‘O’ then
SELECT Data into Working Storage from IE Record
IF Error then
INSERT INTO IE Table, Details
IF Error then
Message “INSERT IE Error 17, Details
Goto Write Report Error
ENDIF
ELSE
Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error then
Message “UPDATE IE Error 17, Details
Goto Write Report Error
ENDIF
ENDIF
ELSIF Trxn = ‘Debit’ and Type = ‘R’ (which means SUBTRACT)
OR Trxn = ‘Credit’ and Type = ‘R’ then
SELECT Data into Working Storage from IE Record
IF Error then
Message “ SELECT IE Error 2”, Details
Goto Write Report Error
ENDIF
IF Units = ‘ALL” then
DELETE from Table / Row
IF Error then
Message “DELETE IE Error”, Details

20

25

30

35

)

4

50

55

-~ WO 99/22329
51
Goto Write Report Error
ENDIF
ELSE
Decrement Units by Amount to be reduced
UPDATE IE SET Details
IF Error then
Message “UPDATE IE Error 2", Details
Goto Write Report Writer
ENDIF
ENDIF
ELSE
Null
ENDIF
Goto EOJ

END

BEGIN

< < Write Reject Report> >
INSERT into Reject Table, Details
IF Error then
STOP
ENDIF
< <EOJ> >
Null

Pseudo-Code for AORS Processing
(Portfolio Adjuster 110 Processing)

/* The End AORS Switch is a global switch that signals the end of all AORS processing
/* otherwise known as the Detail Record (or Row) Maintenance Processing.
/* The switch is originally set = 0. Each called routine ends by setting the switch = 1.

Set End AORL Switch = 0
DO WHILE End AORS Switch = 0

IF Trxn = “ADD" then
IF Type = ‘O’ then
L2222 22222t d
CALL Original Add Module 114 (Originate Add)
Rk kR Rk Rk
IF Error
Message “No OADD Routine”
Goto Write Reject Report
ENDIF
ELSIF Type = ‘R’ then
ek ok kkk
CALL Reverse Add Module 118 (Reverse Add)
ek o o ok ok o ok ok
IF Error
Message “NO RADD Routine”
Goto Write Reject Routine
ENDIF
ELSE

*/

PCT/US98/23026

*/
*/

20

25

30

35

40

45

50

-~ WO 99/22329

END

ENDDO

ENDIF

PCT/US98/23026

58

Message “Invalid O OR R Code for ADD”, Details
Goto Write Reject Report

ELSIF Trxn = ‘SUBTRACT’ then
IF Type = ‘O’ then

0 e o e e ofe a2 e e ok

CALL Original Sell Module 122 (Originate Subtract)
e ke e e ke oke e ke e 2 ok
IF Error then
Message “No OSUB Routine”, Details
Goto Write Reject Report
ENDIF

ELSIF Type = ‘R’ then

ELSE

ENDIF

ELSE

3ie e ok e e sk ok e e ok o

CALL Reverse Sell Module 126 (Reverse Subtract)

2k e 3 e e o e e 2

IF Error then
Message “No RSUB Routine, Details
Goto Write Reject Report

ENDIF

Message “Invalid O OR R for SUBTRACT", Details
Goto Write Reject Report

Message “Invalid Transaction”, Details
Goto Write Reject Report

ENDIF

Goto EOJ

< < Write Reject Report> >
INSERT into Reject Table
IF Error then

ENDIF

STOP

Set End AORL Switch = 1

<<EO0J>>
Null

Afirst embodiment of the processing for the balance sheet table 130 is provided in the flowchart of Fig. BAL-SHT.
Note that for simplicity, error handling and related validity checking steps have been omitted. However, the performance of

such steps is within the scope of the present invention, as one skilled in the art will appreciate.
A second pseudo-code embodiment of the processing for the balance sheet table 130 follows.

2

25

30

35

40

45

50

55

© WO 99/22329

59

Balance Sheet Processing (BS

BEGIN

ELSIF AORL = ‘A’ and OORR = ‘R’
AORL =

OR

ELSE

ENDIF

AORL = ‘A’ and OORR = ‘O’

AORL = ‘S’ and OORR = ‘R’ then
SELECT Data into Working Storage from BS Record
IF Error then

ELSE

ENDIF

INSERT INTO BS Table, Details

IF Error then
Message “INSERT BS Error’, Details
Goto Write Reject Table

ENDIF

Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error
Message “UPDATE BS Error 17, Details
Goto Write Report Error
ENDIF

‘S’and OORR = ‘O’ then

SELECT Data into Working Storage from BS Record
IF Error then

ENDIF

Message “ SELECT BS Error 27, Details
Goto Write Report Error

IF Units = ‘ALL” then

ELSE

ENDIF

Null

Goto EOJ
< < Write Reject Report> >
INSERT into Reject Table, Details

IF Error

ENDIF

< <EOI>>

Null

DELETE from Table / Row

IF Error
Message “DELETE BS Error”, Details
Goto Write Report Error

ENDIF

Decrement Units by Amount to be reduced
UPDATE IE SET Details
IF Error then
Message “UPDATE BS Error 2", Details
Goto Write Report Writer
ENDIF

STOP

PCT/US98/23026

(which means ADD)

(which means SUBTRACT)

20

25

30

35

40

45

50

55

© WO 99/22329 PCT/US98/23026

60
Pseudo-Code For Processing The Capital Gains Table 140

BEGIN

IF AORL=°S’ and Type =0’ (which means ADD)
SELECT Data into Working Storage from CG Record
IF Error then
INSERT INTO CG Table, Details
IF Error then
Message “INSERT CG Table”, Details
Goto Write Report Error
ENDIF
ELSE
Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error
Message “UPDATE CG Error 17, Details
Goto Write Report Error
ENDIF
ENDIF
ELSIF AORL =S’ and Type= ‘R’ (which means SUBTRACT)
SELECT Data into Working Storage from CG Record
IF Error then
Message “ SELECT CG Error 27, Details
Goto Write Report Error
ENDIF
IF Units = “‘ALL” then
DELETE from Table / Row
IF Error
Message “DELETE CG Error”, Details
Goto Write Report Error
ENDIF
ELSE
Decrement Units by Amount to be reduced
UPDATE IE SET Details
IF Error then
Message “UPDATE CG Error 27, Details
Goto Write Report Writer
ENDIF
ENDIF
ELSE
Null
ENDIF
Goto EOJ
<<Write Reject Report>>
INSERT into Reject Table, Details
IF Error
STOP
ENDIF
<<EQJ>>
Null
END

20

5

30

35

4

50

55

© WO 99/22329

6l
Pseudo-Code for Original Add le ssi

Note: Do not turn switch OFF or back to 0 as these
switches indicate which processes remain.

BEGIN

IF Process 1 Switch =0 then
Set Process 1 Switch = 1
ok ok ofe e ofe afe o 2

CALL BS
rnmn—

ELSIF Process 2 Switch =0 then
Set Process 2 Switch =1
KRRk

CALLPI
ok ok

ELSIF Process 3 Switch =0 then
Set Process 3 Switch =1
pnp—

CALLPA
koo ok

ELSIF Process 4 Switch = 0 then
Set Process 4 Switch = 1
Rk ok kok

CALL TS
ok Aok ok

ELSIF Process 5 Switch=0 then
Set Process 5 Switch =1
nppp—

CALLPM

o s ofe e e ok ok ok ok

PCT/US98/23026

Set End AORS Switch =1 Notes End of AORS Processing

ELSE
NULL
ENDIF

3k 3k ek ok o o o e o o ok o ok ok ok
CALL Subtransaction Scheduler 62

e e o o ok e e e o o e e ok ok ok dkeok

END

Pseudo-Code for Reverse of Add Module 118 Processing

Note: Do not turn switch OFF or back to 0 as these switches indicate which processes remain.

BEGIN

IF Process 6 Switch =0 then

Set Process 6 Switch = 1
ok s o e o o ok ok

20

15

30

35

40

45

50

55

~ - WO 99/22329

END

BEGIN

ELSIF

ELSIF

ELSIF

ELSIF

ELSE

ENDIF

PCT/US98/23026

62

CALL BS

ok e o o o o ok ok

Process 7 Switch =0 then
Set Process 7 Switch = 1
sk ok ok

CALL PI

Aok ko K

Process 8 Switch =0 then
Set Process 8 Switch = 1
Rk

CALLPA

e o o o ok ok ok

Process 9 Switch = 0 then
Set Process 9 Switch = 1
ok ol ok ok 2 o ke 3k

CALL TS

o o o o ke ok ok

Process 10 Switch =0 then
Set Process 10 Switch =1
ko ok ok

CALLPM

ek e ok ok o afe ke ok

Set End AORS Switch =1 Notes End of AORS Processing

NULL

ook ok o ok o o ok o o o ok ek ok ok ok

CALL Subtransaction Scheduler 62
a4 3k 3 ok ok o ok o ok ok o ke o o e ke ok

PSEUDO-CODE FOR ORIGINAL SELL MODULE 122 PROCESSING

IF Sell-Method = ‘LOT’ then

Select LOT Amount into Working Storage from BS record

IF Amount Sold > Lot Amount in Working Storage then
Message “Lot Amount > Amount Available”
Goto Write Reject Report

ENDIF

IF Process 11 Switch = 0 then
Set Process 11 Switch=0

ok e e e o o o ke e e o o ofe e

CALLBS
P L T,
ELSIF Process 12 Switch = 0 then
Set Process 12 Switch =0

20

25

30

35

40

4

50

55

- “WO 99/22329

ELSE

PCT/US98/23026

63

e ke ke oe o ok ok o 3k ok

CALLPI
ok Rk

ELSIF Process 13 Switch =0 then
Set Process 13 Switch =0

ook ook ok ok ok ok

CALL PA
p—
ELSIF Process 14 Switch = 0 then
Set Process 14 Switch =0

ook afe e o ok ok ok ke ok

CALL CG
koo ok ik
ELSIF Process 15 Switch = 0 then
Set Process 15 Switch =1

e afe e sk ok e ook

CALL TS
Kok
ELSIF Process 16 Switch = 0 then
Set Process 16 Switch =0

3ok e de e e ok e akok

CALL PM
e e o o ofe ofe o 3 afe
ELSIF Process 17 Switch = 0 then
Set Process 17 Switch =0

kR Rk K
CALLTL

Aok e o o ok o Aok ok

Set End AORS Switch =1 Notes End of AORS Processing
ELSE

NULL
ENDIF
Ak

CALL SUBTRACTION SCHEDULER 62

* *okk

Select all LOTS into Temporary Working Storage Table
Licn/Acct/Asset/Purch/Amt/Cost/Unit-CostROWID)
Set Total Amount Sold = Data Entry Amount Sold
IF Total Amount Sold > Total Amount Available then
Message “Total Amount Sold > Total Amount Available”, Details
Goto Write Reject Report
ENDIF

Avg-Factor = 1
IF Sell-Method = “AVG” then

Avg-Factor = (Total Amount Sold / Total Amount Available)
ENDIF

<<Sell Multiple Lot Routine>>

20

25

30

35

45

50

55

-~ WO 99/22329

PCT/US98/23026

DO While Total Amount Sold =0

IF Total Amount Sold > 0 then

ELSIF

ELSIF

ELSIF

ELSE

ELSIF

ELSIF

ELSIF

ELSIF

IF Sell-Method = ‘FIF’ or ¢ © then
Select LOT Amount Available into WS Lot Amount
Where Purch = MIN (Purch)
ENDIF

IF Sell-Method = ‘LIF”
Select LOT Amount Available into WS Lot Amount
Where Purch = MAX(Purch)
ENDIF

IF Sell-Method = ‘LCF’
Select LOT Amount Available into WS Lot Amount
Where Unit-Cost = MIN(Unit-Cost)
ENDIF

IF Sell-Method = “HCF”
Select LOT Amount Available into WS Lot Amount
Where Unit-Cost = MAX(Unit-Cost)
ENDIF

<<for Sell-Method = ‘AVG’ or ‘ALL’>>
IF Amount Sold * Avg Factor < WS Lot Amount then
UPDATE Temporary Table Lot Amount for Amount Sold
ELSE
DELETE Total Row Temporary Table
ENDIF

o o o o o o o o o ok

Process 11 Switch = 0 then

Set Process 11 Switch =0
ok ok ok

Process 12 Switch =0 then
Set Process 12 Switch=0
i

CALLPI

Aok

Process 13 Switch =0 then
Set Process 13 Switch =0
Rk

CALLPA

sk dkdokokokkkk

Process 14 Switch = 0 then
Set Process 14 Switch=0

o o o o o o o o ke ok

CALL CG

skl ookl dkok

Process 15 Switch = 0 then
Set Process 15 Switch =1
kool kok ko

CALL TS

kR RkRRRE

20

25

30

35

40

45

50

55

-~ WO 99/22329

ENDDO
ENDIF
<<EQJ]>>
NULL
END

BEGIN

ELSIF

ELSIF

ELSE

ENDIF

65

Process 16 Switch = 0 then
Set Process 16 Switch =0
P

CALLPM

dofeafe e s ok ok e e sk

Process 17 Switch = 0 then

Set Process 17 Switch=0
e e ofe o o ok ok ok ok

CALLTL
kR

Set End AORS Switch =1

NULL

PCT/US98/23026

Notes End of AORS Processing

Decrement Total Amount Sold by Cap Gain Lot Amount
Increment the e LOT Number

e ke o o ok ok ofe s afe ofe e e s ok e o ok

CALL SUBTRANSACTION SCHEDULE 62

ke fe e o o ok e s o afe e e e o ook o

ENDIF

Originate Sell Routine

IF Seli-Method = ‘LOT’ then
Select LOT Amount into Working Storage from BS record
IF Amount Sold > Lot Amount in Working Storage then

Message “Lot Amount > Amount Available”

Goto Write Reject Report

ELSE

Aok

CALL BS Routine
sk sk ok ok ok ok ok

ENDIF

sokoRoR kR ok
CALL PIPA
Rk kR kR
ook kKR koK
CALL CG

sokokok kAR R
skl ko ok
CALL TS

sk ok ook ok ok
sk koo ok ok o

CALL PM

o ok o o o ok ok e e Xk

20

5

30

35

40

45

50

55

© WO 99/22329

ELSE

PCT/US98/23026

66

Aok ok
CALL CG
EET TR
Aok Rk
CALLTL

e e o o ok e e ek ok

Select All LOTS into Temporary Working Storage Table
Licn/Acct/Asset/Purch/Amt/Cost/Unit-Cost/ROWID)
Set Total Amount Sold = Data Entry Amount Sold
IF Total Amount Sold >Total Amount Available then
Message “Total Amount Sold > Total Amount Available”, Details
Goto Write Reject Report
ENDIF

Avg-Factor =1
IF Sell-Method = ‘AVG’ then
Avg-Factor = (Total Amount Sold / Total Amount Available)
ENDIF
DO While Total Amount Sold =0
IF Total Amount Sold >0 then
IF Sell-Method = ‘FIF’ or ¢ “ then
Select LOT Amount Available into WS Lot Amount
Where Purch = MIN (Purch)
ENDIF
ELSIF
IF Sell-Method = ‘LIF”
Select LOT Amount Available into WS Lot Amount
Where Purch = MAX(Purch)
ENDIF
ELSIF
IF Sell-Method = ‘L.CF’
Select LOT Amount Available into WS Lot Amount
Where Unit-Cost = MIN(Unit-Cost)
ENDIF
ELSIF
IF Sell-Method = ‘HCF”
Select LOT Amount Available into WS Lot Amount
Where Unit-Cost = MAX(Unit-Cost)
ENDIF
ELSE
<<for Sell-Method = ‘AVG’ or ‘ALL’>>
IF Amount Sold * Avg Factor < WS Lot Amount then
UPDATE Temporary Table Lot Amount for Amount Sold
ELSE
DELETE Total Row Temporary Table
ENDIF

ook o ofe e e e ok ofe ok

CALLBS with the amount of LOT sold
Aok ko ok ok

ENDIF

e e ek ok e ke ok

CALL PIPA
Atk ko

20

25

30

35

40

45

50

55

“WO 99/22329 PCT/US98/23026

END

BEGIN

67
F———
CALLTS
Aok ok ok ok
Tp———
CALLPM
Aok ok
a0 ofe o o s 3 e ok 2 o
CALL CG with the amount of LOT sold
Rk ok
Rokdokdokok ok
CALLTL
e ok 2k 3k o o o e e ok
Decrement Total Amount Sold by Cap Gain Lot Amount
Increment the LOT Number
ENDIF
ENDDO
ENDIF
Goto EOJ
<<Write Reject Report>>
INSERT into Reject Table
IF Error then
STOP
ENDIF
<<EQJ>>

Pseudo-Code for Reverse of
Original Sell Module 126 Processing

IF Process 18 Switch=0 then
Set Process 18 Switch=1
o 3 ok ok ok ok ok

CALL BS with the amount of LOT sold
Kok Rok ok
ELSIF Process 19 Switch =0 then
Set Processor 19 Switch =1
Aok ko

CALLPI
e ok e e ofe ok ok ok

ELSIF Process 20 Switch =0 then
Set Process 20 Switch=1
R

CALL PA
ok ok 2k ok ok ok ok ok
ELSIF Process 21 Switch=0 then
Set Process 21 Switch=1
e ok ok ofe ofe ofe ofe o

CALL TS

e e ok ok of ok ook

ELSIF Process 22 Switch=0 then
Set Process 22 Switch=1

20

25

30

35

40

£

50

55

- WO 99/22329 PCT/US98/23026

68
ke 2k ok o o o o ok ok
CALL PM
e
ELSIF Process 23 Switch=0 then
Set Process 23 Switch=1
sk dok ok
CALL CG with the amount of LOT sold
ook e
ELSIF Process 24 Switch=0 then
Set Process 24 Switch =1
ek ko
CALL TL
Hokokok ok ok
Set End AORL Switch =1 Notes End of AORS
Processing
ELSE
NULL
ENDIF

END

kR ok Rk ok koK
CALL Subtransaction Scheduler 62

3k o e 2k o 3 o o ok o e o ok o ok ok ok

Pseudo-Code for Processing Model #4

For All INSERTS, UPDATES, and DELETES to all Tables

BEGIN

IF Trxn is ’ADD’ then
SELECT Data in Working Storage
IF Error then
INSERT INTO Table, Details
IF Error then
Message “INSERT Error”, Details
Goto Write Reject Report
ENDIF
ELSE
Increment the Details
UPDATE Set Table, Details
IF Error then
Message “UPDATE Error ADD”, Details
Goto Write Reject Report
ENDIF
ENDIF
ELSIF Trxn is ‘SUBTRACT’ then
SELECT Data into Working Storage
IF Error then
Message “SELECT Error Subtract”, Details
Goto Write Reject Report
ENDIF
If One or More Amounts > One or More Values from Existing Record then
ADD to Reject Report

20

15

30

35

40

45

50

55

"WO 99/22329 PCT/US98/23026

69

IF Error then
Message “INSERT Reject SUBTRACT”, Details
Goto Write Reject Report
ENDIF
IF Details = ‘ALL” then
DELETE From Table, Details
IF Error then
Message “DELETE Error”, Details
Goto Write Reject Report
ENDIF
ELSE
Decrement the Details
UPDATE SET, Details
IF Error then
Message “UPDATE Error SUBTRACT”, Details
Goto Write Reject Report
ENDIF
ENDIF
ENDIF
Goto EOJ

<<Write Reject Report>>

INSERT INTO Reject Table, Details

IF Error then
Message “INSERT Reject Table Error”, Details
STOP

ENDIF

<<EQJ>>

NULL
END

Pseudo-Code for Processing
the Trade Settlement Table 142

BEGIN

IF Trxn="‘A’ and Type = ‘O’ OR Trxn = ‘S’ and Type = ‘O’ (which means ADD)
INSERT into TS table, Details

IF Error then
Message “INSERT TS Error 17, Details
Goto Write Report Error

END

ELSIF Trxn="A’ and Type= ‘R’ OR Trxn = ‘S’ and Type= ‘R’ (which means SUBTRACT)
SELECT Data into Working Storage from TS Record
IF Error then
Message “ SELECT TS Error 2”, Details
Goto Write Report Error

ENDIF

DELETE from Table / Row

IF Error
Message “DELETE TS Error”, Details
Goto Write Report Error

ENDIF

20

25

30

35

40

4

50

55

"~ WO 99/22329

10

ELSE
Null
ENDIF

Goto EOJ

<<Write Reject Report>>
INSERT into Reject Table, Details
IF Error
STOP
ENDIF

<<EQF>>
Null

END

Pseudo-Code for Processing the Customer Cash Flow (Receipts/Disbursements)

Table 100

BEGIN

IF Trxn = ‘Receipt’ and Type = ‘O’ (which means ADD)

OR Trxn = ‘Disbursement’ and Type = ‘O’ then
SELECT Data into Working Storage from RD Record
IF Error then
INSERT INTO RD Table, Details
IF Error then
Message “INSERT RD Error”, Details
Goto Write Report Error
ENDIF
ELSE
Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error then
Message “UPDATE RD Error 17, Details
Goto Write Report Error
ENDIF
ENDIF

ELSIF Trxn = ‘Receipt’ and Type = ‘R’ (which means SUBTRACT)

OR Tmxn = ‘Disbursement’ and Type = ‘R’
SELECT Data into Working Storage from RD Record
IF Error then
Message “ SELECT RD Error 27, Details
Goto Write Report Error
ENDIF
IF Units = ‘ALL” then
DELETE from Table / Row
IF Error
Message “DELETE RD Error”, Details
Goto Write Report Error
ENDIF
ELSE
Decrement Units by Amount to be reduced
UPDATE IE SET Details

PCT/US98/23026

20

25

30

35

40

45

50

55

"~ WO 99/22329 PCT/US98/23026

1l

IF Error then
Message “UPDATE RD Error 27, Details
Goto Write Report Writer
ENDIF
ENDIF
ELSE
Null
ENDIF
Goto EQJ
<<Write Reject Report>>
INSERT into Reject Table, Details
IF Error then
STOP
ENDIF
<<EQJ>>
Null
END

Pseudo-Code for Processing
the Pending Adjustment Table 138

BEGIN

IF Trn=°A’ and Type=‘O’ OR Trxn= ‘S’ and Type =‘R> (which means ADD)
AND Trade Date < Income Ex-Date then
SELECT Data into Working Storage from PA Record
IF Error then
INSERT INTO PA Table, Details
IF Error then
Message “INSERT PA Error”, Details
Goto Write Report Error
ENDIF
ELSE
Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error
Message “UPDATE PA Error 17, Details
Goto Write Report Error
ENDIF
ENDIF
ELSIF Trxn= ‘A’ and Type= ‘R’ OR Trxn= ‘S’ and Type = ‘O’ (which means SUBTRACT)
AND Trade Date > Income Ex-date + 1 then
SELECT Data into Working Storage from PA Record
IF Error then
Message “ SELECT PA Error 27, Details
Goto Write Report Error
ENDIF
IF Units = ‘ALL” then
DELETE from Table / Row
IF Error
Message “DELETE PA Error”, Details
Goto Write Report Error
ENDIF
ELSE
Decrement Units by Amount to be reduced

20

25

30

35

40

£

50

55

- WO 99/22329 PCT/US98/23026

n

UPDATE PA SET Details
IF Error then
Message “UPDATE PA Error 27, Details
Goto Write Report Writer
ENDIF
ENDIF
ELSE
Null
ENDIF
Goto PA-EOJ
<<Write Reject Report>>
INSERT into Reject Table, Details
IF Error
STOP
ENDIF
<<PA-EQJ>>
Null
END

Pseudo-Code for Processing
the Pending Income Table 134

BEGIN
IF Tmxn=°A’ and Type=‘O’ OR Trxn= ‘S’ and Type = ‘R> (which means ADD)
AND Trade Date <Income Ex-Date then
SELECT Data into Working Storage from PI Record
IF Error then
INSERT INTO PI Table, Details
IF Error then
Message “INSERT PI Error”, Details
Goto Write Reject Report
ENDIF
ELSE
Increment Units by amount to be increased
UPDATE Data to Table / Row
IF Error
Message “UPDATE PI Error 17, Details
Goto Write Report Error
ENDIF
ENDIF
ELSIF Trxn= ‘A’ and Type= ‘R’ OR Trxn = ‘S’ and Type = ‘O’ (which means SUBTRACT)
AND Trade Date > Income Ex-date + 1 then
SELECT Data into Working Storage from PI Record
IF Error then
Message “ SELECT PI Error 2”, Details
Goto Write Report Error
ENDIF
IF Units = ‘ALL” then
DELETE from Table / Row
IF Error
Message “DELETE PI Error”, Details
Goto Write Report Error
ENDIF
ELSE
Decrement Units by Amount to be reduced

20

25

30

35

40

4

© T WO 99/22329 PCT/US98/23026
B
UPDATE PI SET Details
IF Error then
Message “UPDATE PI Error 2”, Details
Goto Write Report Writer
ENDIF
ENDIF
ELSE
Null
ENDIF
Goto PI-EOJ
<<Write Reject Report>>
INSERT into Reject Table, Details
IF Error
STOP
ENDIF
<<PI-EQJ>>
Null
END
N_gine File (or Table) Structure and
jke e atio
corresponding with Figs. 4-A through 4-E
Institutional Profile Data Source
LM Licensee Master User-Definable
w Licensee Users User-Definable
L Licensee Account Type User-Definable
)] Licensee Default Definitions User-Definable
L Licensee General Ledger Definitions User-Definable
LS Licensee Diversification Scheme User-Definable
Lp Licensee Performance Group User-Definable
LN Licensee Summary Names User-Definable
W Licensee Service Wholesalers User-Definable
LR Licensee Service Resellers User-Definable
Customer Profile
A0 Account Objective User-Definable
AL Account Legal Capacity User-Definable
A Account Jurisdiction User-Definable
AR Account Representatives User-Definable
AN Account Registration Names User-Definable
AM* Account Master User-Definable
AC Account Communication Links User-Definable
Transaction Profile
TM** Transaction Master User-Definable “Driving” File
TP** Transaction Processor User-Definable “Driving” File
TR Transactions - Recurring User-Definable “Driving” File

50

Entity Profile

© WO 99/22329

20

25

30

35

40

Il

EM
EA*
ET

Licensee Status
5G*
§J*
ST
1)
SR
SC

Customer Status

¢
Cf
(8*
6
a
A
p*

Notes:

14

Entity Master
Entity Attribute
Entity Transaction

System General Ledger
System Transaction journal
System Trade Settlement
System Summary Table
System Reject Table
System Transaction Count

Customer Income Statement (Income / Expense)
Customer Cash Flow (Receipts / Disbursements)
Customer Balance Sheet

Customer Capital Gain

Customer Pending Income

Customer Pending Capital Adjustments
Customer Performance Measurement

* denotes Primary Control Tables

** denotes “Driving Tables”

(LM)

ABLE DATA DESCRIPTIONS

Licensee Master

Primary Data consisting of

Licensee Identifier
Licensee Description

Trade Settlement Data consisting of

Licensee Trade Settlement Switch
Trade Offset Buy Identifier
Trade Offset Sell Identifier

Settle Offset Buy Identifier
Settle Offset Sell Identifier

+

Other Details

+

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number
Add User Identifier
Change Date

Change Sequence Number
Change User Identifier

PCT/US98/23026

Public Market Data
User-Definable
User-Definable

User-Definable
System Defined “Driven” File
System Defined “Driven” File
System Defined
System Defined
System Defined

System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File

MPLES

p{]

25

30

35

40

45

T WO 99/22329
75
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
Example:
Licensee Licensee Other Licensee
Identifier Description Address
LICNI First Licensee Name Main Street
LICN2 Second Licensee Name Broadway
LICN3 Third Licensee Name Michigan Ave.
(LU) Licensee Users
Primary Data consisting of
Licensee |dentifier
User Identifier
User Description
+
Other Details
+
Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
Example:
Licensee User User
Identifier Identifier Description
LICKI FUN First User Name
LICN2 SUN Second User Name
LICN3 TUN Third User Name

PCT/US98/23026

Licensee
City/State/1IP
Denver, CO
New York, NY
Chicago, IL

Other User User

Address

Lincoln Ave

Park Ave

Montgomery

City/State/11P
Denver, (0

New York, NY
San Francisco, CA

20

25

30

35

" T WO 99/22329
16
(LT) Licensee Account Type
Primary Data consisting of
Licensee Identifier
Account Type Identifier
Account Type Description
+
Other Details
+
Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
Example:
Licensee Account Account
Identifier Type Number Type Name
LICNI 100 Pension Trust
LICNI 200 Investment Advisory
LICNI 300 Estates
LICK! 400 Settlements - Buy
LICNI 500 Settlements - Sell
LICN2 1000 Wireless Communications
LICN2 2000 Landline Communications
LICN2 3000 Satellite Broadcast
LICN3 9000 Domestic Subsidiary
LICN3 10000 Foreign Subsidiary

40

45

(LD) Licensee Default Definitions

Primary Data consisting of
Licensee ldentifier
Default Class

Demand or Overdraft

Accounting Control Number
Accounting Control Number Description
Cash Record Pointer in EA Table

PCT/US98/23026

20

15

30

35

40

£

WO 99/22329
+
Other Details
+
Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number

Add User Identifier

Change Date

Change Sequence Number

Change User Identifier

Delete Date

Delete Sequence Number

Delete User Identifier

Number of Modifications

Archive Status

Archive Date
Example:
Licensee Class Sub-Class
Identifier Iden Iden
LICNI ic D A0l
LICNI IC 0 A02
LICNI ic D A03
LICNI IC 0 A4
LICNI ul L0S
LICNI up Lio
LICNI i LIS
LICNI P 120
(LL) Licensee General Ledger Definition

Primary Data consisting of
Licensee Identifier
Asset or Liability
Account Type Identifier
Account Type Description
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number

Accounting
Control Number

PCT/US98/23026

Accounting
Control Name

Income Cash Demand
Income Cash Overdraft
Principal Cash Demand
Principal Cash Overdraft
Uninvested Income
Uninvested Principal
Invested Income
Invested Principal

20

25

30

35

40

45

" WO 99/22329
18
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
(See Details Provided)
(LS) Licensee Diversification Scheme
Primary Data consisting of
Licensee Identifier
Diversification Type Identifier
Diversification Group Identifier
Diversification Class Identifier
Diversification Description
_|..
Other Details
+
Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
Example:
Licensee Diversification Diversification Diversification
Identifier Type Group Class
LICNI 100 000 000
LICN1 100 100 000
LICNI 100 200 000
LICNI 100 300 000
LICNI 100 400 000
LICK! 200 000 000
LICNI 200 100 000
LICNI 200 200 000
LICNI 200 300 000

PCT/US98/23026

Diversification

Name

Money Market Instruments
US Govt Bills

US Govt Notes

Par Notes

Discount Notes

Fixed Income Securities

US Govt Bonds

Municipal Bonds
Corporate Bonds

20

25

30

35

40

4

" - WO 99/22329

LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICN2
LICN2
LICN2
LICN2
LICN3
LICN3
LICN3
LICN3
LICN3
LICN3
LICN3
LICN3
LICN3
LICN3

200 400
300 000
300 100
300 200
300 300
300 300
300 300
300 300
300 300
300 400
300 500
100 000
100 100
100 200
100 300
100 100
100 200
100 300
100 400
100 500
100 600
100 100
100 800
100 900
100 1000

(LP) Licensee Performance Group

Primary Data consisting of

Licensee |dentifier
Performance Type Identifier
Performance Group Identifier
Performance Class Identifier
Performance Description

+

Other Details

+

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number
Add User Identifier
Change Date

Change Sequence Number
Change User Identifier
Delete Date

Delete Sequence Number
Delete User Identifier

19

000
000
000
000
000
100
200
300
400
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

PCT/US98/23026

Bond Funds
Equities
Preferred Stock
Convertible Preferred
Common Stock
Automotive
Building
Chemical
Drug
Oil Partnerships
Real Estate Partnerships
Communication Services
Wireless Communication
Landline Communication
Direct Satellite
Cash
Other Current Assets
Fixed Assets
Depreciation
Other Tangible Assets
Other Intangible Assets
Current Liabilities
Deferred Taxes
Long-Term Debt
Net Worth

20

15

© - WO 99/22329

Number of Modifications

Archive Status

Archive Date
Example:
Licensee Perf Meas Perf Meas
|dentifier Type Group
LICNI 100 000
LICNI 100 100
LICNI 100 100
LICNI 100 100
LICNI 100 200
LICNI 100 200
LICNI 100 200
LICNI 200 000
LICNI 200 AAA
LICNI 200 AAA
LICNI 200 AAA
LICNI 300 000
LICNI 300 100
LICNI 300 100
LICNI 300 100
LICNI 300 200
LICNI 300 200
LICNI 300 200
(LN) Licensee Summary Names

30

35

40

45

Primary Data consisting of
Licensee Identifier
Summary Type Identifier
Summary Number
Summary Description
+

Other Details
+

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number
Add User Identifier
Change Date

Change Sequence Number
Change User Identifier
Delete Date

Delete Sequence Number

80

Perf Meas
Class

000
000
9710
9711
000
i
9712
000
000
9803
9806
000
000
100
200
000
100
200

PCT/US98/23026

Perf Meas
Name

Money Market
US Notes
Maturing 10/97
Maturing 11/97
Par Notes
Maturing 11/97
Maturing 12/97
Municipal Bonds
Rated AAA
Maturing 03/98
Maturing 06/98
Common Stock
Durables
Autos
Appl
Consumer Goods
Food
Beverage

20

15

30

35

40

45

Example:

Licensee
identifier

LICNI
LICNI
LICNI
LICKI
LICK!
LICN!
LICNI
LICNI
LICNI
LICNI
LICNI

(w)

© - WO 99/22329

Delete User Identifier
Number of Modifications
Archive Status

Archive Date

Class
Code

Group
Code

Type
Code

0001
0002
0003
0001
0004
0001
0002
0007
0008
0001
0009

OO e 0o mrm —— — —

D — g g = e

Licensee Service Wholesalers

Primary Data consisting of
Licensee Identifier
Wholesaler Identifier
Wholesaler Address
Number of Calls
Yalue of Call
+

Other Details
+

PCT/US98/23026

8l

Summary item
Name

Dividends - Ordinary
Dividends - Partially Tax-Exempt
Dividends - Tax-Free
Management Fees

Legal Expenses
Dividends

Interest - Net

Principal Contributions
Principal Sale Proceeds
Management Fees
Principal Disbursements

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number
Add User Identifier
Change Date

Change Sequence Number
Change User Identifier
Delete Date

Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status

Archive Date

20

15

30

35

40

4

" T WO 99/22329

82
Example:
Licensee Wholesaler Wholesaler
Identifier Identifier Name
LICNI ABCD AB Cellular Dealer
LICNI RSTU RS Telephone Utility
(LR) Licensee Resellers

Licensee Identifier
Wholesaler Identifier
Reseller Identifier
Reseller Address
+

Other Details
+

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number
Add User Identifier
Change Date

Change Sequence Number
Change User Identifier
Delete Date

Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status

Archive Date

Example:

Wholesaler
Identifier

Reseller
Identifier

Licensee
Identifier

LICNI ABCD 123
LICNI ABCD 34
LICNI RSTU 678
LICNI STUY 189

(AO) Account Objective

Primary Data consisting of
Licensee Identifier
Objective Identifier
Objective Description
+

Reseller
Name

123 Reseller
234 Reseller
678 Reseller
789 Reseller

Wholesaler
Address

100 Main Street
200 Broadway

Reseller
Address

200 Oak
500 Elm
300 Pine
700 Cedar

PCT/US98/23026

City/State/IIP

Codes

Denver, CO
NY, NY

City/State/ZIP

Codes

Tulsa, OK
Okla City, OK
Fresno, CA
Pittsburgh, PA

20

25

30

35

40

4

" T WO 99/22329
8
Other Details
+
Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
Example:
Licensee Objective Objective
Identifier Identifier Name
LICNI 0100 Growth
LICNI 0200 Income
LICNI 0300 Growth with Income
LICNI 0400 Capital Preservation
LICNI 0500 High-Risk
(AL) Account Legal Capacity

Primary Data consisting of
Licensee Identifier
Legal Capacity Identifier
Legal Capacity Description
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications

PCT/US98/23026

20

25

30

35

40

45

Example:

Licensee
Identifier

LICNI
LICNI
LICNI
LICNI
LICNI
LICKI
LICNI

(A

Example:

Licensee
Identifier

LICNI
LICKI
LICNI
LICNI

- - WO 99/22329

Archive Status
Archive Date

Legal Capacity
Number

010
020
030
040
050
060
070

Account Jurisdiction

Primary Data consisting of
Licensee Identifier

84

Legal Capacity
Name

Trustee
Broker
Advisor
Agent

Escrow
Executor
Administrator

Jurisdiction Identifier
Jurisdiction Description

+
Other Details
+

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number

Add User Identifier

Change Date

Change Sequence Number
Change User Identifier

Delete Date

Delete Sequence Number
Delete User Identifier
Number of Modifications

Archive Status
Archive Date

Jurisdiction
Identifier

(A
PA
Vi

NA

Jurisdiction
Name

Cafifornia
Pennsylvania

Yirgin Islands
Netheriands Antilles

PCT/US98/23026

20

15

30

35

40

45

(AR)

Example:

Licensee
|dentifier

LICNI
LICNI
LICNI
LICN

(AN)

- - WO 99/22329

85

Account Representative

Primary Data consisting of
Licensee Identifier
Account Representative Identifier
Account Representative Name
+
Other Details
+
Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date

Representative Representative
Identifier Name

RR Rhonda Red
ww Wanda White
BB Bill Brown
GG Glenn Green

Account Registration Name

Primary Data consisting of
Licensee Identifier
Registration Identifier
Registration Description
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date

PCT/US98/23026

20

25

30

35

40

4

© WO 99/22329

86

Change Sequence Number

Change User Identifier

Delete Date

Delete Sequence Number

Delete User Identifier

Number of Modifications

Archive Status

Archive Date
Example:
Licensee Registration Registration
Identifier ldentifier Name
LICNI A Able & Company
LICNI BB Baker & Company
LICNI (c Charlie & Company

(AM) Account Master

Primary Data consisting of

Licensee Identifier
Account Identifier
Account Description
Account Address
Account Fiscal Year - MM
Account Fiscal Year - DD

Account Fiscal Year - Number of Periods

Income Posting Code

Account Type

Account Objective

Account Legal Capacity
Account Jurisdiction

Account Representative
Account Registration Name
Income / Expense Switch
Receipts / Disbursement Switch
Performance Measurement Switch
Licensee Wholesaler

Licensee Reseller

Account Settlement Switch

+

Other Details

+

System Control Data consisting of

Income Cash
Principal Cash

PCT/US98/23026

20

15

30

35

40

45

" T WO 99/22329

Invested Income
Invested Principal
Total Units - Assets
Liabilities
Total Units - Liabilities
<+

Capital Gain Control Fields consisting of
Total Units
Total Cost Basis

System Control Fields consisting of
Total Income
Total Expense
Total Receipts
Total Disbursements
+

Pending Income consisting of
Total Units
Total Cost Basis
Total Pending Income
+

Pending Cap Adj Out consisting of
Cap Adj Out - Units
Cap Adj Out - Cost Basis
Cap Adj In - Units
Cap Adj In - Cost Basis
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date

Account Communication Links

Primary Data consisting of
Account Identifier
Communications Number
+

87

PCT/US98/23026

20

25

30

35

40

45

(TM) Transaction Master

Primary Data consisting of

Licensee Identifier

Transaction Identifier

Income Posting Code
Transaction Description

Add or Subtract Switch
Settlement Transaction Identifier
Terminate Settiement Switch

+

Other Details

+

Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number
Add User Identifier
Change Date

Change Sequence Number

© "WO 99/22329
88
Other Details
+
Audit Fields consisting of Processing Model |

Add Date

Add Sequence Number

Add User Identifier

Change Date

Change Sequence Number

Change User Identifier

Delete Date

Delete Sequence Number

Delete User Identifier

Number of Modifications

Archive Status

Archive Date
Example:
Licensee Account Communications
Identifier Identifier Identifier
LICNI 123456 ATT-001
LICNI 123456 TCI-345
LICNI 234567 US-West
LICNI 234567 ATT-002
LICNI 234561 MCl
LICN 456789 Sprint

PCT/US98/23026

20

25

30

35

40

4

WO 99/22329
89

Change User Identifier

Delete Date

Delete Sequence Number

Delete User Identifier

Number of Modifications

Archive Status

Archive Date
Example:
Licensee Transaction Income Transaction
Identifier Identifier Posting Code Name
LICNI oI | Paid Management Fee
LICNI Dol | Paid Management Fee
LICNI Dol | Paid Management Fee
LICN! SE I Sell Equity
LICKI SE P Sell Equity
LICN SE B Sell Equity
LICN2 DoI P Cellular Charge
LICN2 D02 P Landline Charge
LICN2 D03 P Direct Satellite Charge
LICN2 D04 P America On-Line Charge

(TP) Transaction Processor

Primary Data consisting of
Licensee Identifier
Transaction Identifier
Transaction Income Posting Code
Transaction Process Description
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Kumber of Modifications

PCT/US98/23026

2

25

30

35

40

45

WO 99/22329

90

Archive Status
Archive Date

Example:

Licensee Transaction Income
Identifier Identifier Posting Code Operator Operand |

(TR) Transactions - Recurring

Primary Data consisting of
Licensee Identifier
Account Identifier
Transaction Identifier
Transaction Amount
Begin Paying
End Paying
User Identifier
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date

Example:

Licensee Account Transaction Transaction
Identifier Identifier Identifier Amount

(EM) Entity Master

Primary Data consisting of
Entity Identifier
Entity Description

PCT/US98/23026

Operand 2

Begin
Date

End
Date

Suffix

User

Identifier

" WO 99/22329

20

15

30

35

40

45

(EA)

Asset or Liability Code
Settlement Days
+

Income Collection Data consisting of
Income Rate
Income Ex-Date
Income Record Date
Income Payment Date
+

Capital Adjustment Data consisting of
Capital Adjustment Rate
Capital Adjustment Ex-Date
Capital Adjustment Record Date
Capital Adjustment Payment Date
Capital Adjustment New Entity
.+_

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date

Entity Attribute

Primary Data consisting of
Licensee Identifier
Entity Identifier
+

9l

Management Decision-Making Data consisting of

Diversification Type
Diversification Group
Diversification Class
+

Performance Measurement Data consisting of
Performance Type
Performance Group

PCT/US98/23026

© T WO 99/22329

20

25

30

35

40

45

(ET)

N

Performance Class
+

Accounting Data consisting of
Accounting Control Number - Asset
Accounting Control Number - Liability
+

System Control Data consisting of
Invested Income
Invested Principal
Total Units - Assets
Liabilities
Total Units - Liabilities
+

Settlement Data consisting of
Buy - In Units
Buy - Out Cost Basis
Sell - In Proceeds
Sell - Out Units
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date

Entity Transaction

Primary Data consisting of
Licensee Identifier
Entity |dentifier
Transaction |dentifier
+
Other Details
+
Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number

PCT/US98/23026

20

25

30

35

40

L)

WO 99/22329
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date
Example:
Licensee Entity Transaction
Identifier Identifier Identifier
LICNI GM BE
LICNI GM X0
LICNI GM Xl
(SG) System General Ledger

Primary Data consisting of
Licensee Identifier
+

Control Fields consisting of
Asset or Liability
Account Type Identifier
Accounting Control Number
Account Balance
+

Other Details
+

Audit Fields consisting of Processing Model |
Add Date
Add Sequence Number
Add User Identifier
Change Date
Change Sequence Number
Change User Identifier
Delete Date
Delete Sequence Number
Delete User Identifier
Number of Modifications
Archive Status
Archive Date

%3

PCT/US98/23026

20

15

30

35

40

4

- WO 99/22329

94
Example:

(See Details provided)

(S]) System Transaction journal

Primary Data consisting of
Licensee Identifier
Account ldentifier
Transaction Identifier and either

Buys / Sells
Entity Identifier
Purchase Date
Amount Units or
Net Amount
Cost Basis (if Sell)
+
Other Details
+
Currency Fields consisting of
Currency Rate
Currency From
Currency To
Currency Date
+
Sell Data consisting of
Sell Date
Sell Price
Sell Proceeds
Sell Transaction Date
Sell Transaction Sequence Number
Sell Transaction Lot
Sell To
Capital Gain Amount
Capital Gain Period
+
Sell Currency Data consisting of
Sell Currency Rate
Sell Currency From
Sell Currency To
Sell Currency Date
+
Audit Fields consisting of Processing Model 2
Transaction Date
Transaction Sequence Number
Transaction Lot

PCT/US98/23026

Debits / Credits

Entity Identifier (if any)
Principal

income

Net Amount

20

25

30

35

40

4

(ST)

© - WO 99/22329

95

Reversing Transaction Date

Reversing Sequence Number

Reversing Transaction Lot

Reversed By Transaction Date

Reversed By Transaction Sequence Number
Reversed By Transaction Lot

Trade Date

Archive Status

Archive Date

System Trade Settlement

Primary Data consisting of
Licensee Identifier
Account Identifier
Entity Identifier
Purchase Date
Amount Units
Cost Basis
Buyer / Seller
Trade Settlement Date
+

Currency Fields consisting of
Currency Ratio
Currency From
Currency To
Currency Date
+

Other Details
+
Transaction Date
Transaction Sequence Number
Transaction Lot
+

Audit Data consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

System Summary Table

Primary Data consisting of
Licensee Identifier
Job Number
Job Name
Begin Time
End Time

PCT/US98/23026

20

25

30

35

40

45

- WO 99/22329

Number of Accepts
Number of Rejects
Total Items
+

Audit Data consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

Example:

Licensee Job Job Begin
Identifier Number Name Time

(SR) System Reject Table
Primary Data consisting of
Licensee Identifier
Licensee Record
+
Audit Data consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

Example:

Transaction
Record

License
{dentifier

(SC) System Transaction Count
Primary Data consisting of
Licensee Identifier
Today's Date

Transaction ldentifier

Transaction Count - Originate
Transaction Count - Reversal

.+.
Audit Data consisting of
Add Date
Add User Identifier
Archive Status

96
End Total Number
Time Tramsactions Accepts

PCT/US98/23026

Number
Rejects

20

25

30

35

40

5

- WO 99/22329
97
Archive Date
Example:
License Transaction Transaction Transaction
Identifier Date Identifier Count - Orig

(CS) Customer Income Statement (Income / Expense)

Primary Data consisting of
Licensee Identifier
Account Identifier
Fiscal Year - YYYY
Fiscal Year - Period
Income / Expense
Income / Expense Number
Income / Expense Balance
+

Audit Fields consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

Example:

Licensee Account Fiscal Fiscal Inc / Exp
Identifier Identifier Year Period Identifier

LICNI

(CF) Customer Cash Flow (Receipts / Dishursements)

Primary Data consisting of
Licensee [dentifier
Account Identifier
Fiscal Year - YYYY
Fiscal Year - Period
Receipt / Disbursement
Receipt / Disbursement Number
Receipt / Disbursement Balance
+
Audit Fields consisting of
Add Date
Add User |dentifier
Archive Status
Archive Date

Transaction
Count - Rev

Inc/ Exp
Number

PCT/US98/23026

Inc/Exp
Balance

© - WO 99/22329

20

25

30

35

40

4

Example:

Licensee
Identifier

LICNI

(CB)

(C6)

98

Rec / Dis
Identifier

Fiscal
Period

Fiscal
Year

Account
Identifier

Customer Balance Sheet

Primary Data consisting of
Licensee Identifier
Account Identifier
Entity Identifier
Purchase Date
Amount Units
Cost Basis
+

Currency Data consisting of
Currency Rate
Currency From
Currency To
Currency Date
+

Other Details
+

Transaction |dentification consisting of
Transaction Date
Transaction Sequence Number
Transaction Lot
+

Audit Fields consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

Customer Capital Gains

Primary Data consisting of
Licensee Identifier
Account Identifier
Entity Identifier
Purchase Date
Amount Units
Cost Basis
Purchase Price
Buy From

Rec /Dis
Number

PCT/US98/23026

Rec /Dis
Balance

© - WO 99/22329

20

25

30

35

40

45

()

+

Transaction Identification consisting of
Transaction Date
Transaction Sequence Number
Transaction Lot
+

Buy Currency Fields consisting of
Current Rate
Currency From
Currency To
Currency Date
+

Sell Data consisting of
Sell Date
Sell Price
Sell Proceeds
Sell Transaction Date
Sell Transaction Sequence Number
Sell Transaction Lot
Sell To
Capital Gain Amount
Capital Gain Period
+

Sell Currency Data consisting of
Sell Currency Rate
Sell Currency From
Sell Currency To
Sell Currency Date
+

Audit Fields consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

Customer Pending Income

Primary Data consisting of
Licensee Identifier
Account Identifier
Entity Identifier
Purchase Date
Amount Units
Cost Basis
Purchase Price
+

Transaction Identification consisting of
Transaction Date

99

PCT/US98/23026

20

25

30

35

40

4

(CA)

© “WO 99/22329

100

Transaction Sequence Number
Transaction Lot
+

Payment Date Data consisting of
Income - Ex-Date
Income - Record Date
Income - Payment Date
+

Audit Fields consisting of
Add Date
Add User Identifier
Archive Status
Archive Date

Pending Capital Adjustment

Primary Data consisting of
Licensee Identifier
Account Identifier
+

Pending Out Data consisting of
Entity Identifier (Old Entity)
Purchase Date
Transaction |dentifier (Exchange Out)
Amount Units (Old Amount)
Cost Basis
Purchase Price
+

Transaction Identification consisting of
Transaction Date
Transaction Sequence Number
Transaction Lot
+

Pending In Data consisting of
Transaction Identifier (Exchange In)
Entity Identifier (New Entity)
Amount Units (New Amount)
+

Payment Date Data consisting of
Capital Adjustment - Ex-Date
Capital Adjustment - Record Date
Capital Adjustment - Payment Date
+

Audit Fields consisting of
Add Date
Add User identifier
Archive Status
Archive Date

PCT/US98/23026

20

25

30

35

40

4

© - WO 99/22329

101

(CP) Customer Performance Measurement

Primary Data consisting of
Licensee Identifier
Account |dentifier
Fiscal Year - YYYY
Fiscal Year - Period
Performance Measurement - Type
Performance Measurement - Group
Performance Measurement - Class
Beginning Value
Beginning Units
Contributions
Distributions
Income
Expenses
Management Fees
Commissions
Federal Taxes
State Taxes
Local Taxes
Ending Value
Ending Units
Ending Net Asset Yalue
+

Capital Gain Control Fields consisting of
Total Units
Total Cost Basis

System Control Fields consisting of
Total Income
Total Expense
Total Receipts
Total Disbursements
+

Pending Income consisting of
Total Units
Total Cost Basis
Total Pending Income
+

Pending Cap Adj Out consisting of
Cap Adj Out - Units
Cap Adj Out - Cost Basis
Cap Adj In - Units
Cap Adj In - Cost Basis
+

Audit Fields consisting of
Add Date

PCT/US98/23026

© - WO 99/22329 PCT/US98/23026

102

Add User Identifier
Archive Status
Archive Date

SAMPLE DATA FOR LICENSE GENERAL LEDGER

20

25

30

DEFINITION TABLE (LL)
Licensee Asset Accounting Accounting
Identifier or Liab Contro! Number Name
LICNI A A0S Municipal Bonds
LICNI A A07 Corporate Bonds
LICNI A Al0 Common Stocks
LICKI A Al2 Mutual Funds
LICNI A Al3 International Currencies
LICNI A AlS Oil Partnerships
LICNI A A20 Real Estate Partnerships
LICN{ A A30 Foreign Equities
LICNI A A35 Objects of Art
LICNI A A40 Jewelry
LICNI A Ad5 Homes
LICN A AS0 Automobiles
LICN A A90 Derivatives
LICN2 A Wi0 MSA/RSA -North
LICN2 A W20 MSA/RSA -East
LICN2 A W30 MSA/RSA -South
LICN2 A W40 MSA/RSA -West
LICN2 A L0 Alabama
LICN2 A 120 Alaska

. .

LICN2 A L500 Wyoming

20

25

- -WO 99/22329 PCT/US98/23026
103

Licensee Asset Accounting Accounting
Identifier or Liab Control Number Name
LICN2 A SI0 Major Market |
LICN2 A 520 Major Market 2
LICN2 A 30 Major Market 3

. .
LICN2 A §1000 Major Market N
LICN3 A o Cash
LICN3 A Q0 Other Current Assets
LICN3 A] Fixed Assets
LICN3 A (40 Depreciation
LICN3 A (50 Intangible Assets
LICNI L L0S Uninvested Income
LICNI L Lo Invested income
LICNI L LIS Uninvested Principal
LICNI L 120 Invested Principal
LICNI L 130 Personal Notes
LICNI L 140 Mortgages
LICNI L 190 Income
LICNI L L60 Short-Term Liabilities
LICNI L L6S Deferred Taxes
LICNI L 170 Long-Term Liabilities
LICNI L L75 Net Worth

20

25

30

© - WO 99/22329 PCT/US98/23026

104

SAMPLE DATA FOR SYSTEM GENERAL LEDGER TABLE

Licensee Asset Account Accounting Accountiﬁg

Master or Liab Type Control Number Name

LICNI A 000 000 Financial Services Assets
LICNI A 100 000 Pension Trust
LICKI A 100 A0l Income Cash Demand
LICNI A 100 A02 Income Cash Overdraft
LICNI A 100 A3 Principal Cash Demand
LICNI A 100 A04 Principal Cash Overdraft
LICNI A 100 A07 Corporate Bonds

LICNI A 100 AlO Common Stocks

LICNI A 100 AlS Oil Partnerships

LICNI A 100 A20 Real Estate Partnerships
LICNI A 100 A30 Foreign Equities

LICNI A 200 000 Investment Advisory
LICNI A 200 Aol Income Cash Demand
LICNI A 200 AQ2 Income Cash Overdraft
LICNI A 200 A03 Principal Cash Demand
LICNI A 200 A04 Principal Cash Overdraft
LICNI A 200 A0S Municipal Bonds

LICNI A 200 A07 Municipal Bonds

LICNI A 200 Al0 Common Stocks

LICNI A 200 Al2 Mutual Funds

LICNI A 200 Ai3 International Currencies
LICNI A 200 AlIS Oil Partnerships

LICNI A 200 A20 Real Estate Partnerships
LICNI A 100 A30 Foreign Equities

LICNI A 100 A90 Financial Derivatives

20

25

- - WO 99/22329

Licensee
Master

LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNI

©
md o
— 2
55 =
=

X T o T T b T T b b - b b T T T T P T - T b _d b T b o= I

105

Account
Type

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
400
400
400
400
400
400
400
400
400
400
400

Accounting

Control Number
000

A0l
A02
A03
A04
A0S
A07
Al0
Al2
AlS
A20
A30
A35
A0
A0
AS0
000
Aol
A02
A03
A04
A0S
A07
Al0
AlS
A0
A30

PCT/US98/23026

Accounting
Name

Estates

Income Cash Demand
Income Cash Overdraft
Principal Cash Demand
Principal Cash Overdraft
Municipal Bonds
Corporate Bonds
Common Stocks

Mutual Funds

Oil Partnerships

Real Estate Partnerships
Foreign Equities

Objects of Art

Jewelry

Homes

Automobiles

Settlement Accounts - Buy

Income Cash Demand
Income Cash Overdraft
Principal Cash Demand
Principal Cash Overdraft
Corporate Bonds
Municipal Bonds
Common Stocks

Oil Partnerships

Real Estate Partnerships

Foreign Equities

20

25

- - WO 99/22329

Licensee
Master

LICNI
LICNI
LICNI
LICNI
LICNI
LICNI
LICNi
LICNI
LICNI
LICNI
LICNI

LICN2
LICN2
LICN2
LICN2
LICN2
LICN2
LICN2
LICN2
LICN2

LICN2
LICN2
LICK2

Asset
or Liab

A
A
A
A
A
A
A
A
A
A
A

-

P - -

106
Account Accounting
Type Control Number
500 000
500 A0l
500 AR
500 AG3
500 A04
500 A0S
500 A07
500 Al0
500 AlS
500 A0
500 A30

(AND/OR)
1000 000
1000 W00
1000 wio
1000 W20
1000 W30
1000 W40
2000 L00
2000 LI0
2000 120
2000 1500
3000 500
3000 SI0

PCT/US98/23026

Accounting
Name

Settlement Accounts - Sell
Income Cash Demand

Income Cash Overdraft

Principal Cash Demand

Principal Cash Overdraft

Corporate Bonds

Municipal Bonds

Common Stocks

Oil Partnerships

Real Estate Partnerships

Foreign Equities

Communication Assets
Wireless Communications
MSA/RSA - North

MSA/RSA - East

MSA/RSA - South

MSA/RSA - West

Landline Communications
Alabama

Alaska

Wyoming
Satellite Broadcast
Major Market |

© - WO 99/22329 PCT/US98/23026

107
Licensee Asset Account Accounting Accounting
Master or Liab Type Control Number Name
LICN2 A 3000 §20 Major Market 2
LICN2 A 3000 §30 Major Market 3
LICN2 A 3000 $1000 Major Market 4
(AND/OR)
LICN3 A 0000 000 Corporate Assets
LICN3 A 9000 000 Domestic Subsidiary
LICN3 A 9000 o Cash
LICN3 A 9000 Qo0 Other Current Assets
LICN3 A 9000 ao Fixed Assets
LICN3 A 9000 (40 Depreciation
LICN3 A 9000 50 Intangible Assets
LICN3 A 9000 000 Foreign Subsidiary
LICN3 A 9000 o Cash
LICN3 A 9000 Qo0 Other Current Assets
LICN3 A 9000 ao Fixed Assets
LICN3 A 9000 (40 Depreciation
LICN3 A 9000 50 Intangible Assets
LICNI L 000 000 Financial Services
Liabilities
LICNI L 100 000 Pension Trust
LICNI L 100 LIS Uninvested Principal
LICKI L 100 120 Invested Principal
LICNI L 200 000 Investment Advisory

LICNI L 200 L05 Uninvested Income

- -WO 99/22329 PCT/US98/23026

108
Licensee Asset Account Accounting Accounting
Master or Liab Type Control Number Name
LICNI L 200 LI0 Invested Income
LICNI L 200 LIS Uninvested Principal
LICNI L 200 120 Invested Principal
LICNI L 300 000 Estates
LICNI L 300 L0S Uninvested Income
LICN} L 300 Lo Invested Income
LICNI L 300 LIS Uninvested Principal
LICNI L 300 120 Invested Principal
LICNI L 300 130 Personal Notes
LICNI L 300 140 Mortgages
LICNI L 400 000 Settlement - Buy
LICNI L 400 LIS Uninvested Principal
LICNI L 400 120 Invested Principal
LICNI L 500 000 Settlement - Buy
LICNI L 500 LIS Uninvested Principal
LICNI L 500 120 Invested Principal
(AND/OR)
LICN2 L 1000 000 Communications
LICN2 L 1000 000 Wireless
LICN2 L 1000 L90 Income
LICN2 L 2000 000 Landline
LICN2 L 2000 190 Income
LICN2 L 3000 000 Satellite Broadcast
LICN2 L 3000 190 Income
(AND/OR)
LICN3 L 9000 000 Domestic Subsidiary

LICN3 L 9000 L60 Short-Term Liabilities

20

25

- - WO 99/22329 PCT/US98/23026

109
Licensee Asset Account Accounting Accounting
Master or Liab Type Control Number Name
LICN3 L 9000 L6S Deferred Taxes
LICN3 L 9000 170 Long-Term Liabilities
LICN3 L 9000 L7s Net Worth
LICN3 L 9000 000 Foreign Subsidiary
LICN3 L 9000 L60 Short-Term Liabilities
LICN3 L 9000 L65 Deferred Taxes
LICN3 L 9000 L70 Long-Term Liabilities
LICN3 L 9000 s Net Worth

A Standardized Method for Naming the Programs
(or SQL Scripts) and Data Elements of Real-time Multiprocessed Automated Applications

The specific invention is a standardized file naming convention to be used in the automatic generation of
program code for multiple large-scale transaction processing applications (such as securities trading, telecommunications
billing, and work management) on multi-processing computers (using 4, 8, 16, 32 processors) with 100% auditability
of user-defined controls. The standardized file naming convention is totally independent of any specific

a) application such as accounts receivable, customer billing, etc.,

b.) industry such as financial services, telecommunications, or work management,

¢) hardware manufacturer such as Compag, Digital, HP, IBM, NCR, Unisys,

d.) operating system such as MS-DOS, UNIX, OpenVMS, MVS, etc.,

e.) relational database management system such as Oracle, Sybase, MS-SQL Server,

f) computer language such as SQL, COBOL, Fortran, PL/1, etc.

The standard naming convention contains the fewest number of characters in any naming conventions; namely,
eleven characters used by MS-DOS. The naming convention of MS-DOS uses eight characters as a file name and three
characters as a file extension wherein the user may define a file name using the alphabet and selected other characters.
While this flexibility is suitable for home use are a small number of files and users, it is not acceptable for large-scale
enterprise-wide applications with large number of files and large number of supporting technicians. Hence, the need for

enterprise-wide standards.

- - WO 99/22329

20

15

30

{10

PCT/US98/23026

The standard file naming convention contains six elements that permit the technician to readily identify the

functionality of the specific script (or program) without looking at its contents. Using ANSI Standard structured Query

Language as an example language, the six elements are:

a) a 2-character mnemonic for the SQL commands such as:

Mnemonic ANS| Standard SQL Commands

a Create Table
SF Select From Table
Df Delete From
DT Drop Table
il Insert Into
Sl Select Into
N Create Sequence
DS Drop Sequence
a Create Index
DI Drop Index
RV Review
RT Retest
RS Reset, etc.
b.) a 2-character mnemonic for the application name such as

Mnemonic User Defined Application Name Examples

ST Securities Trading
1C Telecommunications Billing
WM Work Management, etc.
¢) a 2-character mnemonic for the table (or file name) such as

Mnemonic User-Defined Table Name Examples

AM
SM
DC
XB

Account Master Name/Address/Etc.
Securities Master

Detail Calls

External Billing, etc.

20

25

30

- - WO 99/22329 PCT/US98/23026

d.) a |-character mnemonic for the table cluster role such as

Mnemonic Standard Table Roles

M Master
I Input
A Accepts
R Rejects
H History
§ Summary
I Master History
2 Accepts History
0 Output
e) a |-character mnemonic for the table cluster type such as
Mnemonic Standard Table Types
M Master
J Journal
T Temporary
-9 Index Numbers

f) a 3-character extension is then added to the file name depending upon

the type of operating system being used such as MS-DOS, UNIX, OpenVMS, etc. and

whether or not the file is a source file for programmer use or a compiled file (or stored procedure) for machine
use.
Hence, script name examples are:

CTXBMDMM.SQL - Create Table for the External Billing System, Master Definition Table Cluster, Master Table,
and Master Role for SQL use.

DTXBDCO).SQL - Drop Table for the External Billing System, Detail Call Cluster, Output Table, and
Journal Role for SQL use.
Circumstances Leading to the Invention

The circumstances leading to the invention of a standard SQL script naming convention are:

a) one programmer will rarely adhere to the same naming conventions over time and unless an

acceptable standard is defined each succeeding programmer added to the job will only complicate the issue by bringing

20

25

30

- - WO 99/22329

12

their own standards. Hence, software maintenance becomes a matter of knowing which programmer wrote which
program at what time.

b.) without a naming standard any programmer has no idea of what functions the programming is
performing without opening the program and examining the program code. This process produces create inefficient
maintenance by existing programmers and inefficient training for new programmers.

¢) Competitive pressures are mounting for the efficient of software maintenance.

Advantage of the Invention
Because no duplicate script names are permitted the name of each SQL Script should

a) convey to the user the precise use of each SQL Script and

b.) permit the storage of all SQL scripts in a one SQL Script Library, or directory.

A standard naming convention also permits the user to determine what scripts may be automatically executed
in sequence by use of a SQL command script, which is a single SQL script containing a st of SQL scripts to be executed
in sequence. Hence, any single SQL scripts contained in the SQL Library can be reused in many different SQL command
scripts.

Although any standard naming convention represents a unique entity separate and apart from the other
technologies described immediately above, this particular naming convention is unique in that it embraces all of the

logical information necessary to readily identify the role of the script in the total system.

Detailed Description of Invention:

std_name is a standard naming convention that constructs names for programs (or SQL Scripts), system

tables, table clusters, and data elements. The seven basic elements are:

1) org_name Organization 2
1) om_name SQL Command 1
3) app_name Application 2
4) tab_name Table 1
5.) rol_name Table Role |

6.) typ_name Table Type |
1) col_name Column (or Field) 4

std_name defines both "external" names used by the operating system and "internal" names used by the

specific program.

PCT/US98/23026

20

25

30

WO 99/22329 PCT/US98/23026

3
The "external resulting names are:
1) clu_name Cluster Name 4
1) sys_name System Table Name 6
3) ext_name Extension Name 3
4) sql_name SQL Script Name 11 (8 name plus 3 extension)

where the SQL Script Names are used by the operating systems.

The "internal” resulting names are:

1) tab_iden Table iden Name 4
1) col_name Column (or Field) Name 4
3) dat_name Data Element Name 8 or more, in increments of 4

where the Data Element Names are used by the programs (or SQL Scripts).
External Names used by the operating system in identifying programs (or SQL Scripts) are created by

employing the following naming components:

com_name SQL Command Mnemonic
app_name Application Name Mnemonic
tab_name Table Name Mnemonic
rol_name Table Role Name Mnemonic
tab_name Table Type Name Mnemonic

ext_name Extension Mnemonic

Examples: CTXBMDMM.S QL
SFXBMDMM.S QL
clu_name
tab_iden
syS_name ext name
sql_name
Internal Names used by the program (or SQL Script) in processing the data elements are created by employing

the following naming components:

20

25

30

- WO 99/22329 PCT/US98/23026
114
5618
tab_name Table Name Mnemonic
rol_name Role Name Mnemonic
typ_name Type Name Mnemonic
col_name Column Name
Examples: MDMNM LNAM ... for last name
MDMN FNAM - for first name
MDMM MNAM ... for middle name
MDMM ADRI - address - Ist line
MDMN ADR2 . address - 2cd fine
MDMN ary - City
MDMMN STAT .. State
MDMM 1IPC - Zip code
dat_name
Data Tracing

By addressing both the external names for the operating system and the internal names for a specific program,
the naming convention is global in nature. In the event that one data element derives its source of input from another
table rather than its own specific input screen, then the data name is extended by placing the table identifier of the table
supplying the data between the first four and second four characters of the intended data name. Should the data be
derived from another table that also derived its data from another table, then eight characters are placed between the
first four characters and the last four characters of the intended data name. In the fashion, the data name points
backwards through all of the preceding tables to the original source of data and its input form. This process is called
"data tracing", and it provides benefits to programmers in the testing and debugging stages of software development
by identifying the original source of data. Thus, "data tracing" provides the programmer with thorough documentation
of the data flow throughout an entire system.

Standard naming conventions do not apply to certain language extensions such as the script footings that, for
example, specify the size of the table to be created in a "Create Table" script.

The foregoing discussion of the invention has been presented for purposes of illustration and description.
Further, comments and description is not intended to limit the invention to the form disclosed herein. Consequently,
variation and modification commensurate with the above teachings, and within the skill and knowledge of the relevant
art, are within the scope of the present invention. The embodiment described herein above is further intended to explain

. WO 99/22329 PCT/US98/23026

15

the best mode presently known of practicing the invention and to enable others skilled in the art to utilize the invention
as such, or in other embodiments, and with the various modifications required by their particular application or uses of
the invention. It is intended that the appended claims be construed to include alternative embodiments to the extent
permitted by the prior art.

20

25

30

- - WO 99/22329

1é

What is claimed is:

i A system for processing accounting operations that facilitates auditability for each of one or more
business enterprises, comprising:

means for generating financial data records, wherein each said data record provides access to one or more
status data fields for values indicative of when one of : a creation, a modification and deletion of said data record has
occurred;

a plurality of master collections for a first of the enterprises, said master collections having said data records,
wherein for each said master collection, said data records in said master collection have an identical data format;

a processing means for modifying said data records of one or more of said master collections according to
each operation of a series of input accounting operations, wherein said processing means modifies said one or more of
said status fields;

a history data storage area for each of said master collections, for storing history data for the master
collection, wherein when performance of one of said accounting operations generates a modified version of a
corresponding previous version of one of said data records of said master collection, a corresponding history record is
provided to said history data storage area, said corresponding history record having information indicative of said
previous version of said data record prior to its modification;

a reversal means for reversing a performance of at least a first of said accounting operations, wherein for each
of the one or more of said modified data records provided by said first accounting operation, said modified data record
is replaced with said corresponding previous version using said corresponding history record, wherein said corresponding
history record is determined using values of said status fields of said modified data record.

2 A system as claimed in Claim |, wherein said accounting operations include a financial transaction
wherein one of: all processing for the financial transaction must be accepted, and no processing for
the financial transaction must be accepted.

3. A system as claimed in Claim |, wherein said accounting operations include any operation for
changing one of: an identifier and a location, wherein the changing is for one of: the first
enterprise, an account held by the first enterprise, an entity for which the first enterprise is capable
of being held accountable.

4 A system as claimed in Claim I, wherein said plurality of master collections includes a
corresponding master collection for each of some of the following data record types:

(a) a description identifying the first enterprise;

(b) a description of account types desired by the first enterprise;

© default account subtypes;

PCT/US98/23026

- - W0 99/22329

20

15

30

1"

(d) a description identifying categories for balances of a general ledger for the first enterprise;

(e a description identifying financial categories to which financial postings can occur in accounts with
the first enterprise;

U] a description of groupings of financial enterprises traded in the accounts for the first enterprise;

(® a description of one or more performance measurements by which a performance of financial

enterprises for which the first enterprise is accountable are capable of being measured;

(m a description of objectives for accounts held by the first enterprise;

0] a description of jurisdictions for accounts held by the first enterprise;

) a description of legal capacities that the first enterprise can hold with respect to its accounts;

(k) a description of one or more account representatives for the first enterprise;

()] a description of accounts for clients of the first enterprise, including at least one balance;

(m) a description identifying transactions capable of being performed on accounts held by the first
enterprise;

(n) a description identifying characteristics of enterprises traded in accounts held by the first enterprise;

(0 adescription, for each of one or more financial enterprises capable of being traded in accounts held
by the first enterprise, of an identity of each financial transaction that can be applied to the financial entity;

(p) a description, for each entity traded in accounts held by the first enterprise, identifying one or more
dassifications of the entity, said classifications indicative of how the first enterprise classifies the entity for account
purposes;

@ a description of identification for income expenses receipts and disbursements generated by
financial accounting classifications used by the first enterprise;

n a description for identifications for collections of enterprises held by the first enterprise for accounts
of the first enterprise, wherein each collection is an aggregation of the enterprises for a plurality of the accounts.

5. A system as claimed in Claim 1, wherein said means for generating includes means for creating at

least some of the following data fields as status data fields:

(@) at least one of a date and time the record was inserted in the master collection;

(b) a sequence number indicating an order of when the record was inserted into the master collection;

(© an identification of a user requesting that the record be inserted into the master collection;

(d) at least one of: a date and a time the record was updated in the master collection;

() a sequence number indicating an order of when the record was updated in the master collection;

(" an identification of a user requesting an update of the record in the master collection;

(8 at least one of: a date and time when the record was deleted from the master collection;

PCT/US98/23026

20

25

30

- WO 99/22329

18

(h) a sequence number indicating an order of when the record was deleted from the master collection;

(i) an identification of a user requesting a deletion of the record from the master collection;

@) a number indicating a number of modifications to the row since it was inserted.

6. A system as claimed in Claim | further including, for at least some of said master collections, an
accept data storage area for storing, for each successful performance of one of the accounting
operations, an accept record having information indicative of successful performance of the
accounting operation.

1. A system as claimed in Claim | further including, for at least some of said master collections, a
reject data storage area for storing, for each unsuccessful performance of one of the accounting
operations, a reject record having information indicative of unsuccessful performance of the
accounting operation.

8. A system for processing accounting operations that facilitates auditability for each of one or more
enterprises, comprising:

means for generating financial data records wherein each said data record provides access to one or more
status data fields for values indicative of when one of : a creation, a modification and deletion of said data record has
occurred;

a plurality of master collections for a first of the enterprises, said master collections having said data records,
wherein for each said master collection, said data records in said master collection have a same data format;

a processing means for modifying said data records of one or more of said master collections according to
each operation of a series of input accounting operations, wherein said processing means modifies said one or more status
fields;

for each of said master coflections, a history data storage area for accumulating data for changes to the master
collection, wherein when performance of said series of input accounting operations generates modified versions of
corresponding previous versions of the data records of said master collection, corresponding history records are added
to said history data storage area, said corresponding history records having information indicative of said previous
versions of each data record of said master collection so that an audit tracing of changes by versions of the data records
of said master collection is capable of being performed using said one or more status fields.

9. A system as claimed in Claim 8, wherein for a plurality of the descriptions (a) through (r) below,

there is one of said master collections whose data records include data for said description:

)] a description identifying the first enterprise;

(b) a description of account types desired by the first enterprise;

(© default account subtypes;

PCT/US98/23026

20

4

30

- - W0 99/22329 PCT/US98/23026
19
(d) a description identifying categories for balances of a general ledger for the first enterprise;
(e a description identifying financial categories to which financial postings can occur in accounts with
the first enterprise;
® a description of groupings of financial enterprises traded in the accounts for the first enterprise;
(2) a description of one or more performance measurements by which a performance of financial

enterprises for which the first enterprise is accountable are capable of being measured;

(h) a description of objectives for accounts held by the first enterprise;

(i) a description of jurisdictions for accounts held by the first enterprise;

(i) a description of legal capacities that the first enterprise can hold with respect to its accounts;

(k) a description of one or more account representatives for the first enterprise;

)] a description of accounts for clients of the first enterprise, including at least one balance;

(m) a description identifying transactions capable of being performed on accounts held by the first
enterprise;

(n) a description identifying characteristics of enterprises traded in accounts held by the first enterprise;

(0) adescription, for each of one or more financial enterprises capable of being traded in accounts held
by the first enterprise, of an identity of each financial transaction that can be applied to the financial entity;

()] adescription, for each entity traded in accounts held by the first enterprise, identifying one or more
classifications of the entity, said classifications indicative of how the first enterprise classifies the entity for account
purposes;

() a description of identification for income expenses receipts and disbursements generated by
financial accounting classifications used by the first enterprise;

n a description for identifications for collections of enterprises held by the first enterprise for accounts
of the first enterprise, wherein each collection is an aggregation of the enterprises for a plurality of the accounts.

10. A system as claimed in Claim 8, wherein said means for generating includes means for creating at

least some of the following data fields as status data fields:

(a) at least one of a date and time the record was inserted in the master collection;

(b) a sequence number indicating an order of when the record was inserted into the master collection;

(© an identification of a user requesting that the record be inserted into the master collection;

(d) at least one of: a date and a time the record was updated in the master collection;

() a sequence number indicating an order of when the record was updated in the master collection;

{0 an identification of a user requesting an update of the record in the master collection;

() at least one of: a date and time when the record was deleted from the master collection;

20

15

30

< WO 99/22329 PCT/US98/23026

120
()] a sequence number indicating an order of when the record was deleted from the master collection;
0] an identification of a user requesting a deletion of the record from the master collection;
)] a number indicating a number of modifications to the row since it was inserted;
(k) a value indicative of whether the record is archived on a read only storage device;
() a date indicative of when archiving of the record to the read only storage device is performed.

| . A system as claimed in Claim 8, wherein said history data storage area includes a first and second
data storage areas, wherein said history records are initially accumulated in said first data storage
area and periodically transferred to said second storage area, wherein at least some of said history
records remain in said first storage area for greater than approximately | day prior to being
transferred to said second storage area where said history records cannot be modified.
2. A system for processing financial transactions with auditability for each of one or more business
enterprises comprising:
a first collection of account records for clients having a corresponding account at a first of the business
enterprises, wherein for each said account records there is associated information for determining:
(Al) avalue indicative of a number of financial items in an account for the account record,
and
(A2) one or more amounts related to the financial items in the corresponding account for the
account record;
(A3) oneor more values indicative of an amount of cash held in the corresponding account;
a second collection of financial item records representing financial items for which the first enterprise is
accountable, each said item record having data for identifying a corresponding one of the financial items, and for each
said item record there is associated information for determining:
(BI) avalue indicative of a number of units of the corresponding financial item, and
(B2) avalue indicative of an amount related to the units of the corresponding financial item;
a third collection of one or more general ledger financial records, wherein each of said general ledger records
provides a value indicative of cash held by the first enterprise;
means for balancing accounts of the first financial institution, including (C1) and (C2) below:
(C) means for comparing: a sum of the values of (Al) for said account records, and a sum
of the values of (BI) for said item records;
(C2) means for comparing: (a) a sum of the values of (A2) for said account records with a

sum of the valves of (B2) for said item records; and (b) a sum of at least one value of the one or more values

20

25

30

- WO 99/22329 PCT/US98/23026

121

of (A3) for said account records with a total of the values indicative of cash of said one or more general ledger

financial records.

13. A method for processing financial transactions, comprising:

receiving one or more financial transaction data records, wherein for each said transaction data record one

of: all processing for the transaction data record must be accepted, and no processing for the transaction data record
must be accepted;

identifying, for at least a first of said financial transaction data records, at least first and second

subtransactions, each of said first and second subtransactions being for accessing a corresponding data store and
performing a predetermined operation;

retrieving said first and second subtransactions from a storage area having encodings of said subtransactions;

performing, after said step of retrieving, said first and second subtransactions, wherein said first

subtransaction is capable of being performed independently of a performance of said second subtransaction, and, said
second subtransaction is capable of being performed independently of said first subtransaction.

14. A method as claimed in Claim I3, wherein said first financial transaction data record includes data
related to one of: a cash transaction, an asset related transaction, a liability related transaction,
a transaction related to a disbursement of funds, and a reversal of a previously processed one of
said financial transaction data records.

I5. A method as claimed in Claim 13, wherein said cash transaction includes data for one of a credit
and debit.

16. A method as claimed in Claim 13, wherein said step of receiving includes receiving a second one of
said financial transaction data records, wherein said first financial transaction data record is
supplied by a business enterprise different from a business enterprise supplying said second
financial transaction data record.

7. A method as claimed in Claim I3, wherein said step of identifying includes selecting a transaction
processing descriptor having data for describing at least one of said first subtransaction and said
second subtransaction, wherein said descriptor is substantially text.

8. A method as claimed in Claim 17, wherein for said data describing said first subtransaction, said
first subtransaction consists essentially of an identification of a single operation and a plurality of
operands.

19. A method as claimed in Claim 18, wherein said operand represents one of: an addition and a

subtraction operation.

20

25

30

- - WO 99/22329

20.

21.

2.

n.

24,

25.

d.

PCT/US98/23026

in

A method as claimed in Claim I3, wherein for said first and second subtransactions, said
corresponding data stores are different.

A method as claimed in Claim 13, wherein each of said corresponding data stores includes
information identifying one of: the first business enterprise, an account for a client of the first
business enterprise, and a financial instrument for which the first business enterprise is capable of
being held accountable.

A method as claimed in Claim 13, wherein during a processing of said first financial transaction
data record, said step of performing includes determining an order to commence performing each
of said first and second subtransactions.

A method as caimed in Claim 13, wherein step of performing includes overlapping, in said step of
performing, the performing of said first and second subtransactions.

A method as claimed in Claim I3, wherein said step of performing includes performing said first
subtransaction on a first processor and performing said second subtransaction on a different
second processor.

A single system for simultaneously processing one or more totally disparate and user-definable
automated financial applications on computing configurations containing one or more
simultaneous processors with the ability to prove the processing accuracy of all transaction changes
and the existence of all data records on a periodic basis:

for non-financial transactions

A single system for processing all original non-financial data from original entry to permanent archive without

ever overwriting any of the original data:
Process Model 1 with 12 fields on all Reference Tables

Add Date

Add Sequence Number
Add User Authorization
Change Date

Change Sequence Number
Change User Authorization
Delete Date

Delete Sequence Number
Delete User Authorization
Number of Modifications

20

25

30

- WO 99/22329

PCT/US98/23026
123
Archive Status
Archive Date
L Processing Methodology - add, Change, Delete
) Reverse Processing Methodology - None Required
b. for financial transactions

A single system for processing all original financial data from original entry to permanent archive without ever
overwriting any of the original data:
Process Model 2 with 12 fields on all Reference Tables
Add Date
Add Sequence Number
Add User Authorization
Trade Date
Archive Status
Archive Date
Reversed by Date
Reversed by Sequence Number
Reversed by Lot Number
Reversing Date
Reversing Sequence Number
Reversing Lot
I For specific units, debits, and credit transactions, a single method for utilizing data
rather than actual program code to define the unit, debit, and credit transaction
processing content of all applications to be processed by the system
2 A single method for reversing the above transaction
Process Model 3
R For specific buy (or deposit) and sell (or withdraw) transactions, a single method of
utilizing data rather than actual program code to define the buy (or deposit) and sell (or withdraw)
transaction processing content of all applications to be processed by the system
2 A single method for reversing the above transaction
(& for file updates:
A single method of performing the basic file maintenance functions of add, change, and delete to any file

definition

- WO 99/22329 PCT/US98/23026

124

Process Model 4
I Processing Methodology - Add, Change, Delete
2 Reverse Processing Methodology - None Required.
26. For the individual transaction, the processing organization, and the total system, a single method
of proving the integrity of the entire database by
a. creating a Transaction Journal and hashed totals for at least the three different controls of (1) cash,
(2) units, and (3) cost basis in at least three other files, deemed system controf files;
b. creating a detailed records of Financial Instruments and hashed totals for at least the three different
controls of (1) cash, (2) units, and (3) cost basis in at least three other files, also deemed system control files;
() performing any query that would sum all of the (1) cash, (2) units, and (3) cost basis data in any

file and comparing it to the summations of similar data in any one or more, if not all, of the other system control files.

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/23026

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : GOG6F 17/60
US CL :705/30
According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
us. : 705/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 4,642,767 A (LERNER) 10 February 1987, (10.02.87) col. 1,| 1-26
line 5 through col. 2 line 43.

Y US 5,117,356 A (MARKS) 26 May 1992, (26.05.92) col. 2, line 27| 1-26
through col. 3, line 31.

Y US 5,317,504 A (NAKAYAMA) 31 May 1994, (31.05.94) col. 1, 1-26
line 58 through col. 2, line 68.

A US 5,390,113 A (SAMPSON) 14 February 1995, (14.02.95) see| 1-26
abstract

A US 5,237,498 A (TENMA et al.) 17 August 1993, (17.08.93) see| 1-26
abstract.

D Further documents are listed in the continuation of Box C. D Sece patent family annex.

. Special categories of cited documents T Tater & blishod after the international filing date or priority
s dlhmdnotnoonﬂntwﬂhdn-pphunonbutﬂmdwundnmmd
"A’ d ent defining the g 1 state of the art which is not considered
10 b of particular relevance the principle or theory underlying the invention
oRe ier dooum lishod international fili X document of particular relevance; the claimed invention cannot be
B carlier sat pub oa or after the filing dete oconsidered novel or cannot be considered to involve an inventive step
Le document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication dats of snother citstion or other
special reason (s specified) Y document of particular relevance; the claimed invention cannot be
considersd to involve an inventive step when the document is
0" document referring to an oral disclosurs, use, exhibition or other combined with one or more other such d ts, such bi
means being obvious to a person skilled in the art
P Mm@mmmmmrmmmmm g t fami
the data claimed & document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the intemational secarch report
03 FEBRUARY 1999 1 1 MAR 1999
Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks . W
) Emanuel Todd Voeltz /a’”"-&’ /@

Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9714

Form PCT/ISA/210 (second sheet)July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Search_Report

