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(57) Abregé/Abstract:

Methods and systems for analyzing brain functional

activity data are provided. Also provided are systems that find use In performing
the present methods.
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METHOD AND SYSTEMS FOR ANALYZING FUNCTIONAL IMAGING DATA

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No.
62/289,741, filed February 1, 2016, the disclosure of which 1s incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0002] This invention was made with government support under Grant No.
1ROINS091461 awarded by the National Institutes of Health. The government has certain rights

1n the 1nvention.

INTRODUCTION
[0003] Neuroscience studies have shown that specific cell types within a brain network
have unique contributions to the behavioral output. Distinct cell types within the same regions
of the brain have been shown to drive distinct, and sometimes even opposite behaviors.
[0004 ] Neuroanatomical studies have also shown that even a single neuron can make
connections to large portions of the brain. Furthermore, there are many circuits 1n the brain that
function through global networks of connected cells, such as 1n the case of basal ganglia-
thalamocortical circuits.
[00035] Optogenetic functional magnetic resonance 1imaging (0fMRI) 1s a technology that
combines optogenetic stimulation with IMRI readout. Optogenetics enables cell type specific,
millisecond-scale, activity modulation using light, while high-field IMRI measures resulting

responses 1n live subjects across the whole brain.

SUMMARY
[0006] Methods and systems for analyzing brain functional activity data are provided. A
method of the present disclosure may include obtaining functional activity data for a region of a
brain of an individual, where the functional activity data represent a collective activity of
neurons in the region; and estimating relative activities of neural pathways regulated by a
plurality of neuronal subtypes by 1) generating a connectivity model from the functional activity

data based on a network model of functional connections among interconnected nodes
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representing the region, where the interconnected nodes include a node corresponding to each of
the neuronal subtypes; and 11) linear regression between a) the connectivity model and b)
neuronal subtype-specific connectivity estimates among the interconnected nodes, where the set
of coetlicients of the regression represent the contribution to the functional activity data of a
neural pathway regulated by each of the distinct neuronal subtypes. Also provided are systems
that find use 1n performing the present methods.

[0007] The present disclosure provides a method comprising: a) obtaining functional
activity data for a region of a brain of a first individual, wherein the functional activity data
represent a collective activity of a plurality of neurons in the region; and b) estimating relative
activities of neural pathways regulated by each of a plurality of neuronal subtypes by
computationally processing the functional activity data, wherein the computational processing
comprises: 1) generating a connectivity model from the functional activity data based on a
network model of functional connections among interconnected nodes representing the region,
wherein the interconnected nodes comprise a node corresponding to each of the plurality of
neuronal subtypes; and 11) deriving a set of coefficients from a linear regression between a) the
connectivity model; and b) neuronal subtype-specific connectivity estimates among the
interconnected nodes, wherein the set of coetficients of the regression represent the contribution
to the functional activity data of a neural pathway regulated by each of the plurality of distinct
neuronal subtypes. In some cases, the functional activity data 1s resting-state functional activity
data. In some cases, each of the neuronal subtypes comprises neurons categorized by neuronal
identity. In some cases, the neuronal 1dentity comprises expression of neuronal subtype-specific
marker and/or neuronal subtype-specific spatial location. In some cases, each of the neuronal
subtypes comprises neurons categorized by activity pattern. In some cases, the activity pattern
comprises neuronal subtype-specific frequency, duration, and/or magnitude of activity. In some
cases, the generating step comprises using dynamic causal modeling (DCM) to generate a DCM
connectivity model. In some cases, the DCM 1s spectral DCM (spDCM). In some cases, the
spDCM comprises stochastic modeling. In some cases, the generating comprises using neural
mass modeling (NMM). In some cases, the functional activity data 1s obtained by functional
magnetic resonance imaging (IMRI), magentoencephalography (MEG), and/or
electroencephalography (EEG). In some cases, the obtaining comprises measuring functional
activity of the region using IMRI, MEG, and/or EEG, to obtain the functional activity data. In

some cases, the deriving step comprises using a general linear model, linear least squares
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regression, robust linear regression, support vector machine, quadratic programming, or ridge
regression. In some cases, the region of the brain comprises the thalamus, cortex, ventral
tegmental area (VTA), prefontal cortex (PFC), nucleus accumbens (NAc), amygdala (BLA),
substantia nigra (SN), ventral pallidum, globus pallidus, dorsal striatum, ventral striatum,
subthalamic nucleus (STN), anterior caudate putamen (CPu), globus pallidus external (GPe),
globus pallidus internal (GP1), hippocampus, dentate gyrus, cingulate gyrus, entorhinal cortex,
olfactory cortex, motor cortex, cerebellum, or combinations thereof. In some cases, the neuronal
subtypes comprise neurons of the thalamus, cortex, ventral tegmental area (VTA), prefontal
cortex (PFC), nucleus accumbens (NAc), amygdala (BLA), substantia nigra (SN), ventral
pallidum, globus pallidus, striatum, dorsal striatum, ventral striatum, subthalamic nucleus
(STN), anterior caudate putamen (CPu), globus pallidus external (GPe), globus pallidus internal
(GP1), hippocampus, dentate gyrus, cingulate gyrus, entorhinal cortex, oltactory cortex, motor
cortex, or cerebellum. In some cases, the neuronal subtypes comprise medium spiny neurons. In
some cases, the neuronal subtypes comprise dopaminergic, cholinergic, gamma-aminobutyric
acid-(GABA )ergic, glutamatergic, or peptidergic neurons. In some cases, the neuronal subtypes
comprise neurons expressing dopamine receptor subtypes, metabotropic glutamate receptor
subtypes, 1onotropic glutamate receptor subtypes, metabotropic acetylcholine receptor subtypes,
1onotropic acetylcholine receptor subtypes, GABA 4 receptor subtypes, and GABAg receptor
subtypes. In some cases, the neuronal subtype-specific connectivity estimate 1s derived from a
different species of organism than the species of organism to which the first individual belongs.
In some cases, the first individual 1s a human 1individual. In some cases, the first individual 1s a
healthy individual. In some cases, the first individual has a neurological disorder. In some cases,
the neurological disorder 1s a neurological disease, or an age-related neurological disorder. In
some cases, the neurological disease 1s Parkinson’s disease, Alzheimer’s disease, dementia,
epilepsy, autism, bipolar disorder, schizophrenia, Tourette’s syndrome, obsessive compulsive
disorder, attention deficit hyperactivity disorder, Huntington’s disease, multiple sclerosis, or
migraine. In some cases, the estimating step further comprises: 111) generating the neuronal
subtype-specific connectivity estimates before the deriving (11). In some cases, generating the
neuronal subtype-specific connectivity estimates comprises, for each neuronal subtype:
obtaining neuronal subtype functional activity data for the region of a brain of one or more
second 1ndividuals, wherein the region of the brain of the one or more second individuals

corresponds to the region of the brain of the first individual, and wherein the functional activity
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data represent a collective activity of a plurality of neurons in the region of the brain of the one
or more second individuals caused by selective activity modulation of neurons of the neuronal
subtype 1n the brain of the one or more second individuals; generating, for each of the plurality
of neuronal subtypes, a neuronal subtype-specific connectivity model from the neuronal subtype
functional activity data based on the network model; and estimating the connectivity among the
interconnected nodes of the network model for each of the plurality of neuronal subtypes based
on an average across the one or more second individuals of the neuronal subtype-specific
connectivity model. In some cases, the neuronal subtype functional activity data 1s obtained by
functional magnetic resonance 1maging (tMRI), magentoencephalography (MEG), and/or
electroencephalography (EEG). In some cases, obtaining the neuronal subtype functional
activity data comprises measuring functional activity of the region using {MRI, MEG, and/or
EEG, to obtaining the neuronal subtype functional activity data. In some cases, neurons of the
neuronal subtype in the one or more second individuals selectively express a light-activated
polypeptide configured to modulate the activity of the neurons when the neurons are 1lluminated
by an activating light stimulus. In some cases, the obtaining comprises, for each of the plurality
of neuronal subtypes in the one or more second individuals: 1lluminating neurons of the
neuronal subtype with an activating light stimulus; and measuring functional activity of the
region, thereby generating the neuronal subtype functional activity data. In some cases,
generating the neuronal subtype-specific connectivity model comprises using dynamic causal
modeling (DCM) to generate a neuronal subtype-specitic DCM connectivity model. In some
cases, the DCM 1s spectral DCM (spDCM). In some cases, the spDCM comprises stochastic
modeling.

[0008] The present disclosure provides a method of identifying a neural circuit-level
biomarker associated with a neurological disorder, the comprising: 1) estimating relative
activities of neural pathways regulated by each of a plurality of neuronal subtypes by
performing the method, as described above or elsewhere herein, in each first individual of a
plurality of groups of first individuals, the plurality of groups comprising: a case group of first
individuals having the neurological disorder; and a control group of first individuals, thereby
generating a plurality of sets of regression coefficients comprising: a case set of regression
coellicients representing the contribution to a case functional activity data of the neural pathway
regulated by each of the plurality of distinct neuronal subtypes 1n the case group; and a control

set of regression coefficients representing the contribution to a control functional activity data of
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the neural pathway regulated by each of the plurality of distinct neuronal subtypes in the control
group; 11) calculating a difference measurement between the case set and the control set of
regression coefficients; and 111) determining that the case set of regression coetficients 1s a
neural circuit-level biomarker associated with the neurological disorder when the difference
measurement for one or more regression coetficients meets a threshold criterion, or determining
that the case set of regression coefficients 1s not a neural circuit-level biomarker associated with
the neurological disorder when the difference measurement for one or more regression
coellicients does not meet the threshold criterion. In some cases, the control group comprises
individuals not having the neurological disorder. In some cases, the case group comprises
individuals having a neurological disorder and to whom a treatment for the neurological
disorder has been administered, and the control group comprises individuals having a
neurological disorder and to whom a treatment for the neurological disorder has not been
administered.

[0009] The present disclosure provides a method of treating an individual for a
neurological disease, the method comprising: 1) estimating relative activities of neural pathways
regulated by each of a plurality of neuronal subtypes 1n a brain of a first individual by
performing the method as described above or elsewhere herein, wherein the first individual has
a neurological disorder; 11) stimulating a region of the brain 1n a manner sufficient to modulate
the activity of neurons of one or more of the plurality of neuronal subtypes based on the
estimated relative activities. In some cases, the neurological disorder 1s a neurological disease,
or an age-related neurological disorder. In some cases, the neurological disease 1s Parkinson’s
disease, Alzheimer’s disease, dementia, epilepsy, autism, bipolar disorder, schizophrenia,
Tourette’s syndrome, obsessive compulsive disorder, attention deficit hyperactivity disorder,
Huntington’s disease, multiple sclerosis, or migraine.

[0010] The present disclosure provides a system, comprising: a magnetic resonance
imaging (MRI) device, a processor; and a non-transient computer-readable medium comprising
instructions that, when executed by the processor, cause: the MRI device to record a functional
activity of a brain of an individual, thereby generating functional activity data for a region of the
brain; and the processor to perform the method as described above, or elsewhere herein, using
the generated functional activity data. In some cases, the system further comprises a deep brain

stimulation device, or a transcranial magnetic stimulation device. In some cases, the system
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further comprises a user interface and a data connector that transmits data from the processor to

the user 1nterface.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Figure 1 1s a collection of functional magnetic resonance imaging ({MRI) images
showing evolutionary conservation of nuclei and regions in the basal ganglia-thalamocortical
complex involved 1n voluntary movement.
[0012] Figures 2A-2C are a collection of schematic diagrams depicting embodiments of
methods and systems of the present disclosure.
[0013] Figure 3, panels A-J, are a collection of graphs, images and diagrams showing
optogenetic IMRI (ofMRI) results with D1- and D2-medium spiny neuron (MSN) stimulations,
according to embodiments of the present disclosure.
[0014] Figure 4, panels A-D are a collection of graphs and diagrams showing that
stimulations of D1- and D2-MSNss drive distinct and opposing fMRI responses, according to
embodiments of the present disclosure.
[0015] Figure 3, panels A-F are a collection of graphs showing that neuronal activity
mirrors the polarity of IMRI responses evoked 1n striatum and thalamus during D1- and D2-
MSN stimulations, according to embodiments of the present disclosure.
[0016] Figure 6 1s a schematic diagram showing a network model of the basal ganglia-
thalamocortical complex, according to embodiments of the present disclosure.
[0017] Figures 7A-7C are a collection of schematic diagrams and graphs showing
spectral dynamic causal modeling of whole brain circuit function driven by basal ganglia
pathways, according to embodiments of the present disclosure.
[0013] Figure 8 1s a schematic diagram showing an organization of different aspects of
the present method, according to embodiments of the present disclosure.
[0019] Figure 9, panels A-D, are a collection of 1mages and graphs of anatomical masks
and time series extracted from regions of interest within the basal ganglia-thalamocortical
network, according to embodiments of the present disclosure. Figure 9, panels A and B, show
anatomical masks for time series extraction and model estimation of the MCX (panel A) and
SCX (panel B) network models, respectively. Figure 9, panels C and D, show time series
extracted from regions of interest (ROIs) of the left (ipsi-stimulation) hemisphere during D1-

and D2-MSNstimulations, respectively. The time series were zero-mean and represented the
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average signal changes across all voxels and subjects (panel C; D1-MSN stimulation: n = 12 and
panel D; D2-MSN stimulation: n = 11). The error bars represent the SEM activation values
across subjects. The blue rectangles overlying time series represent the 20 second periods of
optogenetic activation, delivered every minute for 6 min.

[0020] Figure 10, panels A and B, show a schematic representation and a graphical
representation of a basal ganglia-thalamocortical network model, according to embodiments of
the present disclosure. Figure 10, panel A, shows a schematic representation of the a priori
generative network model. u(t) denotes input to the CPu network node modeling optogenetic
stimulation. Figure 10, panel B, shows a graphical representation of the matrix A that described
extrinsic (between region) anatomical connections.

[0021] Figure 11, panels A-H, are a collection of graphs illustrating significant and
close-to-significant connections during D1- and D2-MSN stimulations for the MCX and SCX
network models at each cutott frequency, according to embodiments of the present disclosure.
Figure 11, panels A and B, show graphs of significant and close-to-significant effective
connections during D1-MSN stimulations for MCX and SCX network models, respectively.
Figure 11, panels C and D, show graphs of significant and close-to-significant effective
connections during D2-MSN stimulations for MCX and SCX network models, respectively.
Substantial variability 1n the p-values of some connectivity estimates across cutoff frequencies
was observed. In all panels, statistical significance was determined by testing effective
connectivity strengths across subjects. Significant, P < 0.035; Close-to-significant, P < 0.10.
Figure 11, panels E and F, show graphs of weighted sum number of significant and close-to-
significant connections during D1-MSN stimulations for MCX and SCX network models,
respectively. The optimal cutoff frequencies, marked with a vertical dashed line, were 0.29 and
0.24 Hz, respectively. Figure 11, panels G and H, show graphs of weighted sum number of
significant and close-to-significant connections during D2-MSN stimulations for MCX and
SCX network models, respectively. The optimal cutoff frequencies, marked with a vertical
dashed line, were 0.27 and 0.22 Hz, respectively.

[0022] Figure 12, panels A-F, are a collection of schematics and graphs demonstrating
that the D1-MSN stimulation network shows connectivity estimates consistent with the direct
pathway, according to embodiments of the present disclosure. Figure, 12, panels A and D are
schematics showing significant connections during D1-MSN stimulations for MCX (Figure 12,

panel A) and SCX (Fifure 12, panel D) network models, respectively. The greatest connections
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for either model were from CPu to GP1 and SN, which defined the direct pathway. The matrices
to the right of each network schematic show a graphical representation of significant
connections. For simplicity, self-connections were not included. The significance levels were
corrected for multiple comparisons by FDR. Figure 12, panels B and E are graphs showing
observed and predicted BOLD responses for MCX (Figure 12, panel B) and SCX (Figure 12,
panel E) network models, respectively. The predicted responses closely fit the observed time
series. Figure 12, panels C and F show that, according to Bayesian model selection, the
stochastic modeling fits the observed BOLD responses better than the deterministic modeling
for both MCX (Figure 12, panel C) and SCX (Figure 12, panel F) networks.

[0023] Figure 13 shows Table 3, which 1s related to Figure 12. Figure 13 shows a table
of connectivity estimates, 95% confidence intervals across subjects, and statistical significance
levels for the D1-MSN simulation network model, according to embodiments of the present
disclosure. Significant connections reflected the direct pathway. Asterisks indicate significant
connectivity estimate after multiple comparison correction (* P < 0.03, ** P < 0.003, *** P <
0.001); “cts” indicates close-to-significant connectivity estimate after multiple comparison
correction.

[0024] Figure 14, panels A-F, are a collection of schematics and graphs demonstrating
that the D2-MSN stimulation network shows connectivity estimates consistent with the indirect
pathway, according to embodiments of the present disclosure. Figure 14, panels A and D, are
schematics showing significant connections during D2-MSN stimulations for MCX (Figure 14,
panel A) and SCX (Ficure 14, panel D) network models, respectively. The connection from GPe
to STN, which in part defines the indirect pathway, was the greatest connection within either
model. The matrices to the right of each network schematic provide a graphical representation
of connection strengths. For simplicity, self-connections were not included. The significance
levels were corrected for multiple comparisons by FDR. Figure 14, panels B and E, show graphs
of observed and predicted BOLD responses for MCX (Figure 14, panel B) and SCX (Figure 14,
panel E) network models, respectively. The predicted responses closely fit the observed time
series. Figure 14, panels C and F, show that, according to Bayesian model selection, the
stochastic modeling fit the observed BOLD responses better than the deterministic modeling 1n
a majority of animals for both MCX (Figure 14, panel C) and SCX (Figure 14, panel F) network

models.
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[0025] Figure 15 shows Table 4, which 1s related to Figure 14. Figure 15 shows a table
of connectivity estimates, 95% confidence intervals across subjects, and statistical significance
levels for the D2-MSN simulation network model, according to embodiments of the present
disclosure. Significant connections reflected the indirect pathway. Asterisks indicate significant
connectivity estimate after multiple comparison correction (* P < 0.03, ** P < 0.003, *** P <
0.001). “cts” 1indicates close-to-significant connectivity estimate after multiple comparison
correction.

[0026] Figure 16, panels A and B, show graphs of a comparison of connectivity
estimates between MCX and SCX network models, according to embodiments of the presente
disclosure. Figure 16, panel A, shows a graph of a comparison of connectivity estimates during
D1-MSN stimulations between MCX and SCX network models. No significant differences were
observed in the connectivity estimates during D1-MSN stimulations between MCX and SCX
network models. Figure 16, panel B, shows a graph of a comparison of connectivity estimates
during D2-MSN stimulations between MCX and SCX network models. No differences were
observed 1n the connectivity estimates during D2-MSN stimulations with the exception of the
self-connection within CTX. The error bars represent the SE of the connectivity estimates over
subjects. ““cts’” indicates a close-to-significant difference across subjects after applying a
multiple comparison correction across a priori connections with FDR (p < 0.10).

[0027] Figure 17 shows Table 5, which 1s related to Figure 16. Figure 17 shows a table
of statistical comparisons of connectivity estimates between MCX and SCX network models,
according to embodiments of the present disclosure. No significant differences were observed.
“cts” 1ndicates close-to-significant difference after multiple comparison correction.

[0023] Figure 18 shows graphs of a comparison of connectivity estimates between D1-
and D2-MSN stimulation network models, according to embodiments of the present disclosure.
Figure 18, panel A, shows a graph of a comparison of connectivity estimates between D1- and
D2-MSN stimulations for the MCX network model. The statistical differences were observed 1n
the connectivity estimates between D1- and D2-MSN stimulations. Figure 18, panel B, shows a
graph of a comparison of connectivity estimates between D1- and D2-MSN stimulations for the
SCX network model. The statistical ditferences were observed in the connectivity estimates
between D1- and D2-MSN stimulations. The error bars represent the SE of the connectivity

estimates over subjects. * indicates p < 0.05 and *** 1ndicates p < 0.001 across subjects after
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applying a multiple comparison correction across a priori connections with FDR and “‘cts™
indicates a close-to-significant difference (p < 0.10).

[0029] Figure 19 shows Table 6, which 1s related to Figure 18. Figure 19 shows a table
of statistical comparisons of connectivity estimates between D1- and D2-MSN stimulation
network models, according to embodiments of the present disclosure. Asterisks indicate
significant connectivity estimate after multiple comparison correction (* P < 0.05, *** P <
0.001). “cts” indicates close-to-significant difference after multiple comparison correction.
[0030] Figure 20, panels A-H, 1s related to Figures 12 and 14. Figure 20 shows a
comparison between deterministic and stochastic modeling and evaluation of autoregressive
models under stochastic assumptions across cutoff frequencies, according to embodiments of
the present disclosure. Figure 20, panels A-D, show graphs of a comparison of model
exceedance probabilities between deterministic and stochastic modeling. Figure 20, panels E-H,
shows graphs of a comparison of model exceedance probabilities of autoregressive processes
under stochastic assumptions. Error bars represent the standard error of the mean exceedance

probabilities across cutoff frequencies.

DEFINITIONS
[0031] The terms “polypeptide”™, “peptide’” and “protein” are used interchangeably
herein to refer to polymers of amino acids of any length. The polymer may be linear, it may
comprise modified amino acids, and 1t may be interrupted by non-amino acids. The terms also
encompass an amino acid polymer that has been modified; for example, disulfide bond
formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation,
such as conjugation with a labeling component. As used herein the term “amino acid” refers to
either natural and/or unnatural or synthetic amino acids, including glycine and both the D or L
optical 1somers, and amino acid analogs and peptidomimetics.
[0032] The term “genetic modification” refers to a permanent or transient genetic
change induced 1n a cell following introduction into the cell of a heterologous nucleic acid (e.g.,
a nucleic acid exogenous to the cell). Genetic change (“modification”) can be accomplished by
incorporation of the heterologous nucleic acid into the genome of the host cell, or by transient or
stable maintenance of the heterologous nucleic acid as an extrachromosomal element. Where the
cell 1s a eukaryotic cell, a permanent genetic change can be achieved by introduction of the

nucleic acid into the genome of the cell. Suitable methods of genetic modification include viral
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infection, transfection, conjugation, protoplast fusion, electroporation, particle gun technology,
calcium phosphate precipitation, direct microinjection, and the like.

[0033] A “plurality” contains at least 2 members. In certain cases, a plurality may have
at least 10, at least 100, at least 1000, at least 10,000, at least 100,000, at least 106, at least 10,
at least 10° or at least 10” or more members.

[0034 ] An “individual” as used herein, may be any suitable animal amenable to the
methods and techniques described herein, where 1n some cases, the individual may be a
vertebrate animal, including a mammal, bird, reptile, amphibian, etc. The individual may be any
suitable mammal, e.g., human, mouse, rat, cat, dog, pig, horse, cow, monkey, non-human

primate, etc.

[0035] “Dynamic’™ as used herein, may be used to describe a time varying property of a
system.
[0036] “Static” as used herein, may be used to describe a property of a system without

regard to any time dependence of the property.

[0037] “Functional activity”, as used herein, may refer to a time-varying measure of a
change 1n a first component of a system, where the change has a specific effect on a second
component of the system.

[0033] “Neuronal subtype” as used herein, may refer to a classification of neurons based
on a static 1dentity of a neuron, and/or a dynamic property of a neuron. A static identity of a
neuron may include marker expression (e.g., mRNA transcript or protein expression),
anatomical location and/or connection, etc. A dynamic property of a neuron may include the
pattern (e.g., frequency, duration, timing, etc.) of depolarization/action potential firing). In some
cases, a single neuron may belong to multiple subtypes, €.g., when a neuron exhibits distinct
responses to different depolarizing stimulation patterns.

[0039] A “network’ as used herein, may refer to a collection of nodes that are
connected, directly, or indirectly, with one another through edges. “Direct” as used herein, may
refer to a connection between two nodes with a single edge. “Indirect” as used herein, may refer
to a connection between two nodes that requires at least two edges and at least a third
intervening node. A single node within a network may be connected directly to one other node,
some nodes, or all nodes of the network. A single node may be connected to one or more other
nodes at certain times, and may not be connected to any nodes at other time. “Node™ as used

herein, may include a substantially functionally equivalent collection of elements, e.g., neurons.
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A subtype of neurons may define a node of a neural network. “Interconnected” as used herein,
may be used to describe a collection of nodes where each node 1s directly connected to at least
one other node.

[0040] “Connectivity” as used herein, may refer to a measure of the strength of a
functional connection between two nodes of a network. The measure may retlect a structural
aspect (e.g., the number of neuronal processes, the number of synaptic connections across one
or more neurons), and/or may reflect a functional aspect (e.g., the strength of a synapse) of the
connection.

[0041] A “neural pathway” as used herein, may refer to a functional state of a network
of neurons defined by a specific distribution of connectivity among the nodes of the network.
The functional state may be promoted or induced by specific activity of one or more subtypes of
neurons in the network.

[0042] A “model” as used herein, may refer to a representation of a system (e.g., a
collection of neurons forming a network) using a defined set of parameters, which in some cases
may be generated based on empirical information having dimensionality that 1s lower than the
number of the parameters. The representation may be an approximation of the real-life
anatomical and/or functional properties of the system. A “connectivity model” may refer to a
dynamic model representing the strength of the functional connection among nodes of a
network. A “network model” may refer to a static representation of physical and functional
connections among nodes of a network without regard to the strength of the connection (1.e., a
representation of the topology of the network).

[0043] “Identity’ as used herein, may refer to a static property of an object, e.g., a
neuron. The static property may be expression of a marker, e.g., a receptor, by a cell or neuron.
10044 ] “Neural activity” as used herein, may refer to electrical activity of a neuron (e.g.,
changes in membrane potential of the neuron), as well as indirect measures of the electrical
activity of one or more neurons, €.g., neurons in a neural pathway. Thus, neural activity may
refer to changes 1n field potential, changes 1n intracellular 10n concentration (e.g., intracellular
calcium concentration), and changes 1n magnetic resonance induced by electrical activity of
neurons, as measured by, e.g., blood oxygenation level dependent (BOLD) signals 1n functional
magnetic resonance imaging.

[00435] “Resting” or “‘resting-state”, as used herein, may refer to an individual who 1s not

performing an explicit, or an externally prompted task. Resting-state functional activity data,
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such as resting-state {MRI data, may refer to functional activity data collected from an
individual who has not been 1nstructed to perform an explicit task while the functional activity
data was being collected.

[0046] As used herein, the term “difference measurement’ refers to any measurement of
the relationship (e.g., subtraction, division, correlation, deviation, etc.) between two values or

vectors.

[0047] Before the present disclosure 1s further described, it 1s to be understood that the
disclosed subject matter 1s not limited to particular embodiments described, as such may, of
course, vary. It 1s also to be understood that the terminology used herein 1s for the purpose of
describing particular embodiments only, and 1s not intended to be limiting, since the scope of
the present disclosure will be limited only by the appended claims.

[0048] Where a range of values 1s provided, it 1s understood that each intervening value,
to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between
the upper and lower limit of that range and any other stated or intervening value 1n that stated
range, 1s encompassed within the disclosed subject matter. The upper and lower limits of these
smaller ranges may independently be included 1n the smaller ranges, and are also encompassed
within the disclosed subject matter, subject to any specifically excluded limit 1n the stated range.
Where the stated range includes one or both of the limits, ranges excluding either or both of
those included limits are also included in the disclosed subject matter.

[0049] Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which the disclosed
subject matter belongs. Although any methods and materials similar or equivalent to those
described herein can also be used 1n the practice or testing of the disclosed subject matter, the
preferred methods and materials are now described. All publications mentioned herein are
incorporated herein by reference to disclose and describe the methods and/or materials 1n
connection with which the publications are cited.

[0050] It must be noted that as used herein and 1n the appended claims, the singular
forms “a,” “an,” and “‘the” include plural referents unless the context clearly dictates otherwise.
Thus, for example, reference to “a neuron’ includes a plurality of such neurons and reference to

“the processor’” includes reference to one or more processors and equivalents thereof known to

those skilled 1n the art, and so forth. It 1s further noted that the claims may be drafted to exclude

13



CA 03012463 2018-07-24

WO 2017/136285 PCT/US2017/015659

any optional element. As such, this statement 1s intended to serve as antecedent basis for use of

2% ¢e

such exclusive terminology as “solely,” “only” and the like 1n connection with the recitation of
claim elements, or use of a “negative” limitation.

[0051] It 1s appreciated that certain features of the disclosed subject matter, which are,
for clarity, described 1n the context of separate embodiments, may also be provided 1n
combination 1n a single embodiment. Conversely, various features of the disclosed subject
matter, which are, for brevity, described 1n the context of a single embodiment, may also be
provided separately or 1in any suitable sub-combination. All combinations of the embodiments
pertaining to the disclosure are specifically embraced by the disclosed subject matter and are
disclosed herein just as if each and every combination was individually and explicitly disclosed.
In addition, all sub-combinations of the various embodiments and elements thereof are also
specifically embraced by the present disclosure and are disclosed herein just as 1f each and every
such sub-combination was individually and explicitly disclosed herein.

[0052] The publications discussed herein are provided solely for their disclosure prior to
the filing date of the present application. Nothing herein 1s to be construed as an admission that
the disclosed subject matter 1s not entitled to antedate such publication by virtue of prior

invention. Further, the dates of publication provided may be different from the actual

publication dates which may need to be independently confirmed.

DETAILED DESCRIPTION
[0053] As summarized above, methods and systems for analyzing brain functional
activity data are provided. In general terms, the present disclosure includes methods and systems
for analyzing the response of a neuronal circuit to cell type- and/or frequency-specific activation
of distinct neural pathways within the neuronal circuit, to construct models that describe the
relationship between non-invasively monitored brain functional activity and the neuronal
mechanisms underlying the same. The neuronal circuit response may be measured by a variety
of methods, ranging from local field potential (LFP) or multiunit activity (MUA) recordings of
regional neural circuit responses, to functional magnetic imaging (fMRI) of whole brain
responses. In particular, the connectivity of the neuronal circuit that gives rise to cell type-
and/or frequency-specific neural pathways may be estimated by the present method.
[0054] The present disclosure also includes methods and systems for estimating the cell

type- and/or frequency-specific neural pathways underlying non-invasively measured brain
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functional activity of an individual, e.g., an individual 1n a resting state, by modeling a
connectivity model derived from the measured brain functional activity as a linear combination
of cell type- and/or frequency-specific neural pathways, such as those estimated from empirical
measurement of neural circuit-level responses to cell type- and/or frequency-specific neuronal
activity, as described above.

[0035] Thus, the present methods and systems may enable the quantitative
characterization of neuronal mechanisms in the healthy and diseased human brain based on

resting state brain functional activity data using validated neurobiophysical models 1n animals.

METHODS
[0056] An embodiment of the present disclosure may be described with reference to
Figure 2A and 2B. Figure 2A depicts an embodiment of a method of analyzing brain functional
activity data. The method may include obtaining 2100 a set of data for brain functional activity,
e.g., IMRI data, for an individual, e¢.g., a human individual. The {MRI data may be, 1n some
cases, resting-state {MRI data. The functional activity data may be processed, e.g.,
computationally processed, to generate 2120 a connectivity model, constrained by a network
model 2121 of functional connections among nodes representing a region of interest. An
example of a network model of the basal ganglia-thalamocortical system 1s shown in Figure 6.
The connectivity model may be generated using any suitable algorithm, e.g., a dynamic causal
modeling (DCM).
[0057] The connectivity model 1s then used to perform a linear regression against
connectivity estimates 2141 for different neuronal subtypes, to derive 2140 the regression
coefficients. The regression coetficients provide an estimate of the relative activity of different
neural pathways, each of which 1s regulated by a different neuronal subtype.
[0058] The present disclosure also provides a method of estimating the neuronal
subtype-specific connectivity estimates (Figure 2B). Such a method may include measuring
2200 the functional activity of a neuronal circuit caused by selective activation of neurons in a
subtype-specific manner. Selective modulation, e.g., depolarization or hyperpolarization, of
neurons 1n a subtype-specific manner may include, e.g., optogenetic or electrophysiological
stimulation, and the functional activity 1n response to the selective stimulation may be
measured, e.g., by IMRI, such as optogenetic IMRI (ofMRI). “Selective’ as used herein, may be

used to describe an action that 1s applied to, or a property that 1s present in, a larger proportion
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of members within a first group compared to the proportion of members of a second group to
which the action 1s applied, or in which the property 1s present, where the relative proportions
are such that a functional consequence of the action or property can largely be attributed to 1ts
effect on members of the first group.

[00359] The measured neuronal subtype-specific functional activity data may be
processed, e.g., computationally processed, to generate 2220 a subtype-specific connectivity
model, constrained by a network model 2121 of functional connections among nodes
representing a region of interest. For each neuronal subtype, the connectivity of a neural
pathway regulated by activity of the neuronal subtype may be estimated 2240 from the subtype-
specific connectivity model.

[0060] The data acquisition 2100, 2200, connectivity model-generating 2120, 2220,
linear regression analysis 2140, and estimating neuronal subtype-specific connectivity may be
performed using a system, as described below, that includes one or more processors and a neural
pathway analysis program that, when executed by the processor(s) causes the processor(s) to
perform a method of the present disclosure.

[0061 ] The neuronal subtype-specific connectivity estimates may be obtained from any
suitable 1individual. In some cases, the neuronal subtype-specific connectivity estimates are
obtained from an individual who 1s the same as the individual whose brain functional activity
data 1s being analyzed. In some embodiments, the neuronal subtype-specific connectivity
estimates are obtained from a second individual who 1s different from a first individual whose
brain functional activity data 1s being analyzed. The second individual may be an individual of
the same or different species as the species to which the first individual belongs. In some cases,
the second individual and first individual are both mammals, but belong to different species of
mammals. In some cases, the first individual and second individual are each selected from a
rodent, feline, canine, monkey, non-human primate, and human.

[0062] The functional activity data, including the neuronal subtype functional activity
data, may be any suitable form of functional activity data. The functional activity data may
include measurements of the collective activity of neurons 1in a region of the brain where the
neuronal activity 1s not spatially resolved at the level of individual neurons. In other words, the
components of the measured functional activity data cannot be readily attributed to any specific
neuron subtype (e.g., the components are not attributable to any specific neuron subtype without

applying an algorithm to estimate the components). In some cases, the functional activity data
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are data obtained from functional magnetic resonance imaging ({MRI),
magentoencephalography (MEG), electroencephalography (EEG), or a combination thereof.
[0063] In some cases, the functional activity data are obtained from an individual who 1s
in a resting state, e.g., wakeful resting state. Thus, in some cases, the individual from whom the
functional activity data are obtained may not have been given an explicit task to perform while
the individual was monitored to obtain the data.

[0064 ] The connectivity models, including the neuronal subtype-specific connectivity
model, may be generated using any suitable method that models the biophysical properties of
the brain based on large-scale functional activity data, such as IMRI, MEG or EEG. In some
cases, the connectivity models are generated using an algorithm that relies on convolution
principles, such as dynamic causal modeling (DCM). In some cases, the DCM may be spectral
DCM or time domain DCM. In some cases, the spDCM 1s stochastic spDCM or deterministic
spDCM. A suitable DCM method 1s described 1n, e.g., Friston, Karl J., et al. “A DCM for
resting state tMRL.” Neuroimage, 94 (2014): 396-407, the disclosure of which 1s incorporated
herein by reference. In some cases, the connectivity models are generated using an algorithm
that 1s based on mesoscopic properties of the neurons, such as neural mass modeling (NMM).
[0065] The process of generating the connectivity models, including the neuronal
subtype-specific connectivity model, may be constrained by a network model of functional
connections among interconnected nodes 1n a brain region of interest. In some cases, the
network model used to generate the connectivity model for the individual whose brain
functional activity data 1s being analyzed, according to embodiments of the present disclosure, 1s
the same connectivity model used to generate the neuronal subtype-specific connectivity
models.

[0066] The nodes of the network model may represent one or more anatomical and/or
functional brain regions. Suitable anatomical and/or functional brain regions include, without
limitation, thalamus, cortex, ventral tegmental area (VTA), prefontal cortex (PFC), nucleus
accumbens (NAc), amygdala (BLA), substantia nigra (SN), ventral pallidum, globus pallidus,
dorsal striatum, ventral striatum, subthalamic nucleus (STN), anterior caudate putamen (CPu),
globus pallidus external (GPe), globus pallidus internal (GP1), hippocampus, dentate gyrus,
cingulate gyrus, entorhinal cortex, olfactory cortex, motor cortex, cerebellum. A node may also
represent, 1n some cases, any subregion of anatomical and/or functional brain regions, such as

those listed above, where a subregion includes at least a portion of an anatomical and/or
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functional brain region as described above. A node may also represent, in some cases, any
superregion of anatomical and/or functional brain regions, where a superregion includes two or
more anatomical and/or functional brain regions (or portions thereot), such as those listed
above.

[0067] In some embodiments, the region of the brain and/or the network model represent
neural systems that are conserved across different species of mammals. A conserved neural
system may exhibit a functional activity of similar anatomically and/or functionally defined
brain structures 1n a similar temporal order between two different species of individuals. In
some cases, the conserved neural system 1s the basal ganglia-thalamocortical circuit, as shown
in Figure 1.

[0068] The network model may include any suitable number of nodes. In some cases,
the network model includes 2 or more, 3 or more, e.g., 4 or more, 5 or more, 6 or more, 7 or
more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, 50 or more, 100 or more,
including 1,000 or more interconnected nodes, and in some embodiments, includes 100,000 or
fewer, e.g., 10,000 or fewer, 5,000 or fewer, 1,000 or fewer, 500 or fewer, 200 or fewer, 100 or
fewer, 80 or fewer, 60 or fewer, 40 or fewer, 20 or fewer, 15 or fewer, including 10 or fewer

nodes. In some embodiments, the network model includes a number of nodes 1n the range of 2

to 100,000, such as 3 to 100,000, e.g., 4 to 10,000, 4 to 5,000, 4 to 1,000, 4 to 500, 4 to 200, 4 to
100, 4 to 80, 5 to 60, 5 to 40, 5 to 20, including 6 to 15.

[0069] The network model may be derived from any suitable source. In some cases, the
network model 1s based on a survey of published literature on the anatomical and/or functional
connections among brain regions that correspond to nodes of the network. In some cases, the
network model 1s based on empirical data, e.g., diffusion tensor IMRI data,
immunohistochemistry data, tracer data, etc. In some cases, the network model 1s based on
diffusion tensor {MRI data. In some cases, the network model 1s based on
immunohistochemistry data. In some cases, the network model 1s based on tracer data.

[0070] The regression coefficients may be derived from the connectivity model using
any suitable regression method. In some cases, the regression 1s general linear model, linear
least squares regression, robust linear regression, support vector machine, quadratic
programming, or ridge regression. In some cases, the regression 1s a general linear model. In
some cases, the regression 1s a linear least squares regression. In some cases, the regression 1s a

robust linear regression. In some cases, the regression 1s a support vector machine. In some
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cases, the regression 1s a quadratic programming. In some cases, the regression 1s a ridge
regression.

[0071] The neuronal subtype may be defined using any suitable property of neurons in a
brain. Properties by which a neuronal subtype 1s defined may include, without limitation,
physical form, location, marker expression, activity pattern (e.g., frequency, duration or
magnitude of activity, etc.), and combinations thereof.

[0072] A neuronal subtype may include neurons from any suitable brain region. Suitable
brain regions include, without limitation, thalamus, cortex, ventral tegmental area (VTA),
prefontal cortex (PFC), nucleus accumbens (NAc), amygdala (BLA), substantia nigra (SN),
ventral pallidum, globus pallidus, dorsal striatum, ventral striatum, subthalamic nucleus (STN),
anterior caudate putamen (CPu), globus pallidus external (GPe), globus pallidus internal (GP1),
hippocampus, dentate gyrus, cingulate gyrus, entorhinal cortex, olfactory cortex, motor cortex,
cerebellum.

[0073] A neuronal subtype may be classified based on any suitable physical form of the
neuron. Suitable neuron types include, without limitation, medium spiny neurons (MSN),
pyramidal cell, small gelatinosa cell, sphindle-shaped cell, granule cell, ovoid cell, globus
pallidus cell, small reticular formation, large reticular formation, and Purkinje cells.

[0074] A neuronal subtype may be defined by one or more neurotransmitters produced
by neurons of the subtype. In some cases, neurons of a neuronal subtype are, without limitation,
dopaminergic, cholinergic, gamma-aminobutyric acid-(GABA )ergic, glutamatergic, or
peptidergic neurons, and the like.

[0075] A neuronal subtype may be defined by any suitable receptor expression. Suitable
receptors expressed by neurons of a subtype include, without limitation, dopamine receptor
subtypes (D1, D,, D3, D4, and/or Ds); metabotropic glutamate receptor subtypes (mGluR,
mGluR;, mGluR3, mGluR4, mGluRs, mGluRg, mGIuR7, and/or mGluRg); 1onotropic glutamate
receptor subtypes (o-amino-3-hydroxy-5-mthyl-4-1soxazolepropionic acid (AMPA), Kainate,
and/or N-methyl-D-aspartate (NMDA)); metabotropic acetylcholine receptor subtypes (M, Mo,
M3, M4, and/or Ms)y; 10notropic acetylcholine receptor subtypes; GABA 4 receptor subtypes (a., 3,
v, 0, €, 7, 0, and/or p); and/or GABAGg receptor subtypes (GABAg;, and/or GABAg)).

[0076] A neuronal subtype may be defined by expression of any other suitable marker

by neurons of the subtype.
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[0077] The plurality of neuronal subtypes may include any suitable number of subtypes.
In some cases, the number of neuronal subtypes 1s 2 or more, €.g., 3 or more, 4 or more, S5 or
more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, 50 or
more, including 100 or more interconnected nodes, and 1n some embodiments, 1s 10,000 or
fewer, e.g., 5,000 or fewer, 1,000 or fewer, 500 or tewer, 200 or fewer, 100 or fewer, 80 or
fewer, 60 or fewer, 40 or fewer, 20 or fewer, 15 or fewer, including 10 or fewer nodes. In some
embodiments, the neuronal subtypes include a number of subtypes in the range of 2 to 10,000,
e.g., 2 to 5,000, 2 to 1,000, 2 to 500, 2 to 200, 2 to 100, 2 to 80, 2 to 60, 2 to 40, 2 to 20,
including 2 to 10.

[0078] In some embodiments, the neuronal subtype-specific connectivity estimates
between two neuronal subtypes are substantially orthogonal to each other. In some cases, the
neuronal subtype-specific connectivity estimates between two neuronal subtypes may have a
correlation coefficient, e.g., Pearson’s correlation coefficient, of 0.5 or less, e.g., 0.4 or less, 0.3
or less, 0.2 or less, 0.1 or less, 0.05 or less, 0.03 or less, including 0.01 or less, and may have a
correlation coefficient of -0.5 or more, e.g., -0.4 or more, -0.3 or more, -0.2 or more, -0.1 or
more, -0.05 or more, -0.03 or more, including 0.01 or more. In some embodiments, the neuronal
subtype-specific connectivity estimates between two neuronal subtypes may have a correlation
coefficient, e.g., Pearson’s correlation coefficient, in the range of -0.5 to 0.5, e.g., -0.4 to 0.4, -
0.31t00.3,-0.2t0 0.2, -0.1 to 0.1, -0.05 to 0.03, including -0.03 to 0.03.

[0079] The 1ndividual may be any suitable individual for analyzing the individual’s
brain functional activity data. In some cases, the individual 1s a human individual. In some cases
the human 1s a healthy human, or a human having a neurological disorder. The neurological
disorder may be any neurological disorder. In some cases, the neurological disorder 1s caused by
a disease, e.g., a neurological disease. The neurological disease may be any disease associated
with pathological activity of a network of neurons. Suitable neurological diseases include,
without limitation, Parkinson’s disease, Alzheimer’s disease, dementia, epilepsy, autism, bipolar
disorder, schizophrenia, Tourette’s syndrome, obsessive compulsive disorder, attention deficit
hyperactivity disorder, Huntington’s disease, multiple sclerosis, or migraine. In some
embodiments, the neurological disorder 1s an age-related disorder of brain function.

[0080] Selective activation of neurons in order to measure subtype-specific functional
activity may be done using any suitable method. Suitable methods of selective neuron activation

include, without limitation, optogenetic stimulation, single unit electrophysiology, etc.
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Examples of some methods and systems suitable for optogenetic stimulation are described 1n
additional detail in U.S. Patent Nos. 8,696,722; 8,834,546; and 9,271,674; U.S. Application
Publication No. 2016/0270723; and PCT Application Nos. PCT/US2016/043179;
PCT/US2016/064250; and PCT/US2016/049508, the disclosures of each of which are

incorporated herein by reference.
[0081 ] Where the neurons are selectively activated by optogenetic stimulation, the
neurons may express one or more light-activated polypeptides configured to hyperpolarize or
depolarize the neurons. Suitable light-activated polypeptides and methods used thereof are
described further below.

Light-Activated Polypeptides
[0082] A light-activated polypeptide of the present disclosure may be any suitable light-
activated polypeptide for selectively activating neurons of a subtype by 1lluminating the neurons
with an activating light stimulus. In some 1nstances, the light-activated polypeptide 1s a light-
activated 1on channel polypeptide. The light-activated 1on channel polypeptides are adapted to
allow one or more 10ns to pass through the plasma membrane of a target cell when the
polypeptide 1s illuminated with light of an activating wavelength. Light-activated proteins may
be characterized as 1on pump proteins, which facilitate the passage of a small number of 10ns
through the plasma membrane per photon of light, or as 1on channel proteins, which allow a
stream of 1ons to freely flow through the plasma membrane when the channel 1s open. In some
embodiments, the light-activated polypeptide depolarizes the cell when activated by light of an
activating wavelength. In some embodiments, the light-activated polypeptide hyperpolarizes the
cell when activated by light of an activating wavelength. Suitable hyperpolarizing and
depolarizing polypeptides are known 1n the art and include, e.g., a channelrhodopsin (e.g.,
ChR2), variants of ChR2 (e.g., C128S, D156A, C128S + D156A, E123A, E123T), 1C1C2,
C1C2, GtACR2, NpHR, eNpHR3.0, C1V1, VChR1, VChR2, SwiChR, Arch, ArchT, KR2,
ReaChR, ChiEF, Chronos, ChRGR, CsChrimson, and the like. In some cases, the light-activated
polypeptide includes bReaCh-ES, as described herein and described further 1n, e.g.,
Rajasethupathy et al., Narure, 2015 Oct 29, 526(7575):653, which 1s incorporated herein by
reference. Hyperpolarizing and depolarizing opsins have been described 1n various publications;
see, €.g2., Berndt and Deisseroth (2015) Science 349:590; Berndt et al. (2014) Science 344:420;
and Guru et al. (July 25, 2015) Intl. J. Neuropsychopharmacol. pp. 1-8 (PMID 26209858).
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[0083]  The light-activated polypeptide may be introduced into the neurons using any suitable
method. In some cases, the neurons of a subtype of interest are genetically modified to express a
light-activated polypeptide. In some cases, the neurons may be genetically modified using a
viral vector, e.g., an adeno-associated viral vector, containing a nucleic acid having a nucleotide
sequence that encodes the light-activated polypeptide. The viral vector may include any suitable
control elements (e.g., promoters, enhancers, recombination sites, etc.) to control expression of
the light-activated polypeptide according to neuronal subtype, timing, presence of an inducer,
etc.

[0084] Neuron-specific promoters and other control elements (e.g., enhancers) are known 1n
the art. Suitable neuron-specific control sequences include, but are not limited to, a neuron-
specific enolase (NSE) promoter (see, e.g., EMBL HSENO2, X519356; see also, e.g., U.S. Pat.
No. 6,649,811, U.S. Pat. No. 5,387,742); an aromatic amino acid decarboxylase (AADC)
promoter; a neurofilament promoter (see, €.g., GenBank HUMNFL, L.0O4147); a synapsin
promoter (see, €.g., GenBank HUMSYNIB, M355301); a thy-1 promoter (see, e.g., Chen et al.
(1987) Cell 51:7-19; and Llewellyn et al. (2010) Nat. Med. 16:1161); a serotonin receptor
promoter (see, €.g., GenBank S62283); a tyrosine hydroxylase promoter (TH) (see, e.g., Nucl.
Acids. Res. 15:2363-2384 (1987) and Neuron 6:583-3594 (1991)); a GnRH promoter (see, €.g.,
Radovick et al., Proc. Natl. Acad. Sci1. USA 88:3402-3406 (1991)); an L7 promoter (see, €.¢.,
Oberdick et al., Science 248:223-226 (1990)); a DNMT promoter (see, e.g., Bartge et al., Proc.
Natl. Acad. Sci. USA 85:3648-3652 (1988)); an enkephalin promoter (see, e.g., Comb et al.,
EMBO J. 17:3793-3805 (1988)); a myelin basic protein (MBP) promoter; a CMV
enhancer/platelet-derived growth factor- promoter (see, e.g., Liu et al. (2620) Gene Therapy
11:52-60); a motor neuron-specific gene HbY promoter (see, e.g., U.S. Pat. No. 7,632,679; and
Lee et al. (2620) Development 131:3295-3306); and an alpha subunit of Ca(2+)—calmodulin—
dependent protein kinase II (CaMKIIa) promoter (see, €.g., Mayford et al. (1996) Proc. Natl.

Acad. Sci. USA 93:13250). Other suitable promoters include elongation factor (EF) 1o and

dopamine transporter (DAT) promoters.

[0085] In some cases, neuronal subtype-specific expression of the light-activated
polypeptide may be achieved by using recombination systems, e.g., Cre-Lox recombination,
Flp-FRT recombination, etc. Cell type-specific expression of genes using recombination has

been described 1n, e.g., Fenno et al., Nat Methods. 2014 Jul;11(7):763; and Gompf et al., Front

Behav Neurosci. 2015 Jul 2;9:152, which are incorporated by reference herein.
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SYSTEMS
[0086] Also provided herein 1s a system for performing a method of the present
disclosure, as described above. With reference to Figure 2C, the present system 2500 may
include an fMRI device 2700, a processor 2610, and a memory 2620 (e.g., a non-transient
memory on a computer-readable medium). The memory 2620 may contain an application 2624
or program that, when executed by the processor 2610, causes the IMRI device 2700 to record
functional activity of an individual’s brain to generate functional activity data for the individual,

and further perform a method of analyzing functional activity data, as described herein.

[0087] The fMRI device 2700 may be any suitable device. Suitable devices are
described 1n, e.g., U.S. Patent No. 8,834,546; U.S. Application Publication No. 2016/0270723;
and PCT Application Nos. PCT/US2016/043179; PCT/US2016/064250; and
PCT/US2016/049508, the disclosures of which are incorporated herein by reference.

[0083 ] The system 2500 includes one or more processing units (also called herein
“processors’”) 2610, memory 2620 (i.e., a computer readable storage medium), an input/output
(I/0) interface 2640, and a communications interface 2630. These components communicate
with one another over one or more communication buses or signal lines. In some embodiments,
the memory 2620, or the computer readable storage media or memory, stores an operating
system 2622, programs 2624, modules, instructions, and stored data. The one or more
processors are coupled to the memory and operable to execute these programs, modules, and
instructions, and read/write from/to the stored data.

[0089] In some embodiments, the processing units 2610 include one or more
microprocessors, such as a single core or multi-core microprocessor. In some embodiments, the
processing units include one or more general purpose processors. In some embodiments, the
processing units include one or more special purpose processors (e.g., programmed to execute
the methods described herein).

[0090] In some embodiments, the memory 2620 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory
devices. In some embodiments the memory includes non-volatile memory, such as one or more
magnetic disk storage devices, optical disk storage devices, tlash memory devices, or other non-
volatile solid state storage devices. In some embodiments, the memory includes one or more

storage devices remotely located from the processing units 2610. The memory, or alternately the
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non-volatile memory device(s) within the memory, includes a computer readable storage
medium. In some embodiments, the memory includes a non-transitory computer readable
storage medium.

[0091] In some embodiments, the I/O interface 2640 1s coupled to one or more
input/output devices, such as one or more displays, keyboards, touch-sensitive surtfaces (such as
a track pad or a touch-sensitive surface of a touch-sensitive display), speakers, and
microphones. The I/O interface may be configured to receive user inputs (e.g., voice 1mnput,
keyboard inputs, touch inputs, etc.) from a user and process them accordingly. The I/O interface
may also be configured to present outputs (e.g., sounds, images, text, etc.) to the user according
to various program instructions implemented on the system 23500.

[0092] In some embodiments, the communications interface 2630 includes wired
communication port(s) and/or wireless transmission and reception circuitry. The wired
communication port(s) receive and send communication signals via one or more wired
interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry
receives and sends RF signals, infrared signals, and/or optical signals from/to communications
networks and other communications devices. The wireless communications may use any of a
plurality of communications standards, protocols and technologies, such as GSM, EDGE,
CDMA, TDMA, Bluetooth, Wi1-Fi, VolP, Wi-MAX, or any other suitable wireless
communication protocol. The network communications interface enables communication
between the system 2500 with networks, such as the Internet, an intranet and/or a wireless
network, such as a cellular telephone network, a local area network (LAN) a wireless local area
network (WLAN) and/or a metropolitan area network (MAN), and other devices. Network
communications interface 1s configured to facilitate communications between the system and
other devices over a network.

[0093] In some aspects, the system may include a computer 2600, which may be a
personal device (e.g., laptop, desktop, workplace computer, portable device, etc.). A computer
that 1s a personal device may not need to be connected to a network. In other instances, a
computer that 1s a personal device 1s connected to a network (e.g., a wired or wireless
connection as described above).

[0094] In some aspects, the computer 2600 1s a server or a collection of servers, and may

not need an I/O interface. For example, the computer 2600 may be a server, and a neural
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pathway analysis program of the present disclosure 2124 may be accessed by a user through a
website.

[0095] In some embodiments, the operating system 2622 (e.g., LINUX®, UNIX®, OS
X®, WINDOWS®, or an embedded operating system) includes various software components
and/or drivers for controlling and managing general system tasks (e.g., memory management,
storage device control, power management, etc.) and facilitates communications between
various hardware, firmware, and software components.

[0096] It should be noted that the system 2500 1s only one example, and that the system
2500 may have more or fewer components than shown, may combine two or more components,
or may have a different configuration or arrangement of the components. The various
components shown 1n Figure 2C may be implemented 1in hardware, software, firmware,
including one or more signal processing and/or application specific integrated circuits, or a
combination of thereof.

[0097] In Figure 2C, the neural pathway analysis program 2624 includes one or more
programs stored in the memory 2620, and may include 1nstructions to perform methods
according to one or more embodiments of the methods described herein. The neural pathway
analysis program 2624 may include any of the following examples of modules or a subset or a
superset thereof.

[0098] In some cases, a neural pathway analysis program 2624 may be configured to
computationally process functional activity data for a region of a brain of an individual, as
described above, to generate an estimate of the relative activities of neural pathways regulated
by each of a plurality of neuronal subtypes, by generating a connectivity model from the
functional activity data based on a network model 2627 of functional connections among
interconnected nodes representing the region, as described herein; and deriving a set of
coefficients from a linear regression between a) the connectivity model; and b) neuronal
subtype-specific connectivity estimates 2628 among the interconnected nodes, as described
herein.

[0099] The present system 2500 may include an fMRI device 2700, configured to
measure functional brain activity of an individual. The computer system 2600 may be in
communication with the fMRI device, through the communication interface 263(), such that the

computer system can control operation of the fMRI device and/or retrieve functional 1maging

data from the fMRI device.
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[00100] The neural pathway analysis program 2624 may include a model-generating
module, e.g., a spDCM module, 2625 configured to generate the connectivity model from the
functional activity data based on a network model 2627 of functional connections among
interconnected nodes representing the region.

[00101] The neural pathway analysis program 2624 may include a linear regression
module 2626 configured to perform a linear regression between a) the connectivity model; and
b) neuronal subtype-specific connectivity estimates 2628, to derive a set of coetficients that
represent the contribution to the functional activity data of a neural pathway regulated by
different neuronal subtypes.

[00102] The methods described herein may be performed by the computer system 2600.
In some embodiments, the computer system 2600 1s a distributed computer system. For
example, the computer system 2600 may include a first set of one or more processors located
remotely from a second set of one or more processors. In some embodiments, the computer
system 2600 includes a web server configured to provide a web interface. In some
embodiments, the web 1nterface 1s configured to receive data. In some embodiments, the web
interface 1s configured to display results.

[00103] In certain aspects, the neural pathway analysis program, 2624 may be
configurable by a user. For example, a the neural pathway analysis program may include a user
interface module (not shown) configured to enable a user to determine one or more settings,
such as the network model 2628, neuronal subtype-specific connectivity estimates 2627,
whether to include neural fluctuations, etc., to apply to the model generating and/or linear
regression algorithms, or any other settings that would allow performance of one or more
embodiments of the methods described herein.

100104 ] In some embodiments, the system 2500 includes a brain stimulation device 2800,
such as a deep brain stimulation device or a transcranial magnetic stimulation device,
configured to stimulate a brain region of the individual being monitored by the IMRI device
2700. In some embodiments, the computer system 2600 may be configured to control the brain
stimulation device based on the analysis of neural pathways contributing to the functional brain
activity data, according to methods of the present disclosure. For example, if the neural pathway
analysis indicates that an individual has insufficient activity in a neural pathway associated with
a neurological disorder from which the individual suffers, the computer system may provide an

appropriate stimulation to the relevant brain region that regulates the neural pathway via the
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brain stimulation device, thereby rebalancing the level of the neural pathway activity 1n the

individual’s brain.

UTILITY
[00105] The methods and systems of the present disclosure find use in a variety of
applications, where an understanding of the neural pathway mechanisms underlying a non-
invasively acquired functional brain activity data in an individual 1s desired. The present
methods and systems may find use 1n obtaining a mechanistic understanding of the neural
pathways underlying a neurological disorder, e.g., Parkinson’s disease; providing a
diagnostic/prognostic/predictive tool for neurological disorders; contributing to development of
new treatments, e.g., cell-specific and/or frequency-dependent therapeutic trials (e.g., for drug
development and/or deep brain stimulation); aiding in monitoring the progression of core
symptoms of a neurological disorder, e.g., dyskinesia and/or bradykinesia in PD; monitoring the
efficacy of a treatment for a neurological disorder, etc.
[00106] Thus, aspects of the present disclosure include a method of identifying a neural
circuit-level biomarker associated with a neurological disorder, using the methods and systems
as described above. “Associate” as used herein, may refer to any specific relationship between a
neural pathway and a neurological disorder, including a relationship with a treatment for the
disorder. The relationship may be causal or correlative.
[00107] Thus a method of estimating relative activities of neural pathways regulated by
different neuronal subtypes based on an analyses of brain functional activity data, as described
herein, may be used to 1dentify a neural circuit-level biomarker associated with a neurological
disorder, by comparing the results of the analyses from two groups of individuals that are
different from each other with respect to one or more aspects related to a neurological disorder.
The analyses may provide a set of regression coefficients that relate neuronal subtype-specific
connectivity estimates to a connectivity model for brain functional activity data for each group
of individuals. A difference measurement between the different sets of regression coefficients
may then be calculated to determine whether the distribution of regression coefficients in one
group 1s different from the distribution 1n another group. Where the two groups are a case group
of individuals having a neurological disorder, and a control group of individuals not having the
neurological disorder, the difference measurement may indicate that the case set of regression

coefficients 1s a neural circuit-level biomarker associated with the neurological disorder. Where
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the two groups are a case group of individuals who have a neurological disorder and have
received a treatment for the neurological disorder, and a control group of individuals who have
the neurological disorder and have not received a treatment for the neurological disorder, the
difference measurement may indicate that the case set of regression coefficients 1s a neural
circuit-level biomarker associated with the treatment for the neurological disorder.

[00108] The difference measurement may be any suitable measure of the relationship
between different sets of regression coetficients. Suitable difference measurements include,
without limitation, subtraction, division, correlation, deviation. In some cases the difference
measurement 1s the Pearson product-moment correlation coetficient, Spearman rank correlation,
root mean squared error (RMSE), Euclidean distance, or mean absolute deviation (MAD).
[00109] The difference measurement may be compared relative to a threshold criterion. If
the difference measurement meets the threshold criterion, 1t may be concluded that an
association between the neural circuit-level biomarker and the neurological disorder exists. In
some cases, the threshold criterion includes a threshold value, where a difference measurement
above (or below) the threshold value supports the association between the neural circuit-level
biomarker and the neurological disorder. In some cases, the difference measurement 1s a
statistical significance values, e.g., a p-value, where a difference measurement below the p-
value supports the association between the neural circuit-level biomarker and the neurological
disorder.

[00110] In another aspect, a method of estimating relative activities of neural pathways
regulated by different neuronal subtypes based on an analyses of brain functional activity data,
as described herein, may be used to evaluate the predictive value of a neural circuit-level
biomarker to progression, prognosis, and/or response to treatment of a neurological disorder 1n
an individual.

[00111] In some embodiments, a method of estimating relative activities of neural
pathways regulated by different neuronal subtypes based on analyses of brain functional activity
data, as described herein, may be used to determine or adjust a parameter for a therapy for a
neurological disorder. In some cases, a stimulus protocol for brain stimulation therapy (e.g.,
deep brain stimulation, transcranial magnetic stimulation, etc., with stimulation parameters, such
as the frequency of stimulation, the target of stimulation, the duration of stimulation, etc.) may

be adjusted based on the analyses of brain functional activity,
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[00112] The neurological disorder may be any suitable neurological disorder. In some
cases, the neurological disorder 1s a neurological disease, or an age-related neurological
disorder. In some embodiments, the neurological disease 1s Parkinson’s disease, Alzheimer’s
disease, dementia, epilepsy, autism, bipolar disorder, schizophrenia, Tourette’s syndrome,
obsessive compulsive disorder, attention deficit hyperactivity disorder, Huntington’s disease,

multiple sclerosis, or migraine.

ADDITIONAL EMBODIMENTS
[00113] Further embodiments of the present disclosure are described below.
[00114] An embodiment of the present disclosure includes three modules: a) animal data;
b) computational modeling, and ¢) human data. Figure 8 illustrates the three modules and
workflow of the embodiment of the present disclosure:
[00115] The first module includes experimental design, instrumentation, acquisition, and
processing of animal brain data. This module provides the technology to map brain function
using invasive and/or non-invasive recordings while manipulating specific neuron types with
optogenetics and/or other neuromodulation tools. The second module refers to the
computational modeling of animal data. The second module estimates brain networks
implicated in neurological and/or psychiatric disorders driven by optogenetic (de)activations of
specific neuron types. Finally, the third module constitutes the acquisition, processing, and
network analyses of human brain data. The third module examines and quantifies the
contribution of specific cell types and stimulation frequencies to disease-specific human brain
networks during resting-state conditions.
M1: Animal data
[00116] The first module may include the procedures employed to collect cell type and
frequency specific neuroimaging data in animals. Optogenetics 1in conjunction with
invasive/non-invasive neural recordings will be used to allow modulation of specific cells using
light pulses at different frequencies while mapping brain function. Optogenetic IMRI (ofMRI)
provides a tool to explore in vivo the neuronal connectivity among brain regions.
[00117] Within this module, optogenetic experiments are performed, where the
experiments target specific neuron-types (e.g., excitatory pyramidal neurons and/or inhibitory
interneurons), which in turn drive specific brain circuits (e.g., basal ganglia pathways). These

brain circuits driven by specific cell types may contribute to the total variance observed in
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human brain data and potentially we may be able to quantity such specific contributions to
human brain networks (see third module for further details).
[00118] For example, the functional significance of two neuron types on basal ganglia

circuitry may be investigated. The basal ganglia are a phylogenetically old and evolutionarily

conserved group of nuclei1 crucial for goal-oriented motor action. In some cases, evolutionary

conserved brain regions may be taken into account when translating circuit models into humans
and when developing and/or testing therapeutic interventions. Figure 2 shows anatomical masks
for the basal ganglia-thalamocortical complex 1n mice and humans.

[00119] The basal ganglia include several interconnected subcortical nucle1 controlling
voluntary movement. The two output nucle1 of the basal ganglia, the internal pallidal aspect and
the substantia nigra (pars reticulata), tonically inhibit the thalamus, which in turn, send
projections to the cortex to initiate or terminate movement. This inhibitory output 1s thought to
be modulated by the direct and indirect pathways that run from the striatum. Within the
striatum, medium spiny neurons (MSN) that project directly to the two output nucle1 have D1
dopamine receptors that facilitate transmission, while those that project in the indirect pathway
have D2 dopamine receptors that reduce transmission. These pathways may provide a system to
dissociate the contribution of different neurons, since they are relatively well-characterized,
topographically segregated, and functionally opposing.

[00120] With these optogenetic experiments, the influence of each neuron type within the
dorsomedial caudate-putamen aspect on the workings of the basal ganglia-thalamocortical
complex may be established. The two optogenetic manipulations may provide an explanation
for the cell-type and frequency-dependent response of brain activity in resting-state data.

Table 1 illustrates an example experimental design:

Table 1. Initial experimental design

Cell type
D1-MSN D2-MSN
Stimulation 20 Hz D1 @ 20 Hz D2 @ 20 Hz
frequency
[00121] In some embodiments, more ofMRI data may be collected and the 1nitial design

may be updated with a second factor. Table 2 depicts a 2x2 factorial design that will enable to
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assess the separate etfects of D1- and D2-MSN cell types at high and low stimulation

frequencies on the workings of the basal ganglia circuitry, for example:

Table 2. A proposed 2x2 factorial design

Cell type
DI-MSN D2-MSN
Stimulation Low (20 Hz) D1 @ Low D2 @ Low
frequency High (130 Hz) D1 @ High D2 @ High
[00122] In some embodiments, three different areas (subfields) within the striatal aspect

may be illuminated. Subfields of interest include, e.g., the ventral striatum, dorsal caudate
nucleus, and dorsal-anterior putamen. Thus, the definition and implementation of a third factor
may 1nclude the location of the 1llumination source. With this factor, a new set of regressors
(independent variables) that will reveal the spatial etfects of optical stimulation on remote brain
areas may be generated.

M2:. Computational modeling

[00123] The computational modeling toolbox may model and characterize brain systems
from data collected 1n the previous module, 1.e. using optogenetics and multimodal recording
techniques. The computational modeling toolbox includes imaging/recording techniques —
optogenetic IMRI, LFP, MUA, SUA, and optical imaging responses — and biophysical modeling
initiatives — dynamic causal modeling (DCM) which 1s based on convolution principles and/or
neural mass modeling (NMM) based on mesoscopic properties. The combination of
optogenetics and 1maging methods together with computational modelling may provide for the
understanding of the biological underpinnings of brain networks.

00124 ] As introduced above, ofMRI may be used to investigate the contribution of two
cell-types on basal ganglia pathways. Within this modelling unit, spectral DCM (spDCM) may
be used to estimate the effective connectivity among brain regions. A 7-node brain network
consisting of: caudate-putamen aspect (CPu), globus pallidus external segment (GPe), globus
pallidus 1internal segment (GP1), subthalamic nucleus (STN), substantia nigra (SN), thalamus
(THL), and motor cortex (MOT) aspects 1psilateral to the stimulation site may be modeled.

[00125] In general, connectivity algorithms may rely on i1dentifying the most appropriate

generative model for the data among neurobiologically plausible candidates. To constrain the
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models, anatomical connectivity information obtained through diffusion tensor MRI

immunohistochemistry data, and/or literature search are commonly used. In this particular case,
we searched the literature to select the most likely generative model. Figure 6 depicts an
example of a connection scheme that may be used in this example.

[00126] In some embodiments, other experiments (factors) described above, 1.e. D1- and
D2-MSN stimulations at high frequency, may be performed and proceed with the estimation of
brain networks in the same way. This analysis will generate a new set of network-estimates at
high frequency as was done for low frequency stimulation 1in Figures 7A-7C.

M3: Human data

[00127] In some embodiments, the third module includes the experiments, data
collection, and analyses performed in humans. As above-mentioned, an aspect of the present
disclosure includes translating models build using data collected 1n animals: (m;, my, ...), 1nto
human fMRI data. Through this approach a cell type specific description of brain network
function 1n the healthy and the diseased human brain may be provided. The same brain networks
as previously examined in animal models may be examined and the contribution of each cell
type and frequency dependent network in human brains may be estimated by means of
regression analyses such as the general lineal model (GLM) or advanced statistical methods
such as support vector machines (SVM).

[00128] These analyses may generate regression coefficients for each individual: (a;, f;
...), that may reveal the eftects of specific cell types (and frequency) on the resting-state brain
network of interest, e.g. the basal ganglia-thalamocortical circuitry. These regression
coeflicients, henceforth neurophysiological scores, may constitute a vector subspace that
potentially may characterize behavior, traits, or symptoms observed 1n those individuals. Then
the distribution of these scores may be estimated and examined across individuals: (a, B, ...).
and statistical differences on those scores may be investigated at the group-level between the
healthy and the diseased brain. In this context, group-analyses are appropriate for analyses.
[00129] For 1instance, considering the previous example, the contribution of D1- and D2-
MSN cell types to the basal ganglia-thalamocortical network of the normal and parkinsonian
human brain may be quantified by means of rstMRI. In some cases, for the two optogenetic
manipulations, there may be two different, approximately orthogonal patterns of effective
connectivity among brain regions (see Figures 7A-7C). In other words, between D1- and D2-

connectivity estimates, Pearson’s r = 0.02.
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[00130] The same resting-state network 1n a given i-t4 human subject may be estimated
and the contribution of D1- and D2-MSN cell types calculated. In other words, a multiple linear

regression problem may be solved according to Equation (I):

spDCM, = @, X [spDCM ,,_ysen |+ B X[SpPDCM 1, _vien |+ & X |constant]

Equation (I). Multiple linear regression considering the initial experimental design

[00131] where spDCM,; 1s the vector of network-estimates (1.e., connectivity parameters)
for the i-th human subject, spDCMpi.msn and spDCMpyvsn are vectors of averaged network-
estimates for D1- and D2-MSN stimulations (e.g. thresholded estimates), a; and f; denote the
contribution of direct and indirect pathways to the resting-state network for the i-#2 human
subject, and i runs from / to N, being N, the total number of participants.

[00132] When 1dentifying ditferences between groups, this approach may generate two
(multivariate) distributions: p (&, p.) and p (@, p,), where the pairs: {a., p.} and {a,, f,}, will
denote the contribution of direct and indirect pathway networks for the control and parkinsonian
groups respectively. By comparing the two groups, statistical differences in the distribution of
the neurophysiological scores: p (a., p.) vs. p («,, pp) may be observed, which may indicate the
aberrant neurobiology of the PD cohort 1n relation to the D1- and D2-MSN cell types.

[00133] As noted earlier, a more complex experimental designs, e.g., a 2x2 factorial
design, may be used 1n some embodiments. Likewise the same multiple linear regression
procedure may be used by using more optogenetic experiments (factors). For example, when
considering the above-described 2x2 factorial design, the regression model can be implemented

as follows according to Equation (1I):

SpDCMz — ai X lSpDCMDl—MSN , low-frequency J T ﬂz X \LSpDCMDQ,—MSN , low -frequency J+

}/i X [SpDCM DI1-MSN, high-frequency ] + é‘t X [SpDCM D2—-MSN, high-frequency ] T (i X [COI]Stant]

Equation (II). Multiple linear regression considering the 2x2 factorial design

[00134] where spDCM,; 1s the vector of network-estimates (1.e. connectivity parameters)

for the i-th human subject, SpDCMpi-msN, low-frequency and SPDCMp2-MSN, low-frequency are vectors of
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averaged network-estimates for D1- and D2-MSN stimulations at low-frequency (e.g.
thresholded estimates), SpDCMpi-msN, high-frequency @d SPDCMpa-MSN, high-frequency are vectors of
averaged network-estimates for D1- and D2-MSN stimulations at high-frequency (e.g.
thresholded estimates), o; and p; denote the contribution of D1- and D2-MSN stimulations at
low-frequency to the resting-state network for the i-th human subject, y; and 0; denote the
contribution of D1- and D2-MSN stimulations at high-frequency, and i runs from / to N;, being
N the total number of participants.

[00135] In turn, this approach may generate a new set of two (multivariate) distributions:
p (@, Be, Yoo Oc) and p (&, by, Vpy 0p), Where now the quartets: {a., be, Yo, Oc} and { &y, By, Vp, Op |
may denote the contribution of D1- and D2-MSN at low and high stimulation frequencies to the
resting-state network for the control and parkinsonian groups respectively. Once again, by
comparing the two groups, statistical differences in the neurophysiological scores: p (a., be, Ve
o) vs. p (&, By, ¥p, 0p) May be observed, which may provide insights about the underlying
biology 1n relation to cell types and stimulation frequencies as well.

[00136] In summary, this module estimates the same brain networks as previously
estimated 1n animals and establishes the contribution of each cell type (and stimulation
frequency) network description to resting-state human brain data. This unit may generate a set
of neurophysiological scores that may serve as a diagnosis tool and also contribute to the
development of new treatments (cell-specific and frequency-dependent therapeutic trials) and
may potentially help to monitor the progression of a core of symptoms (e.g. dyskinesia and/or
bradykinesia in PD).

Cell-types

[00137] Medium spiny neurons (MSN), which represent 90-935% of all neurons within
the striatum, 1include 2 intermingled subpopulations. One subpopulation of MSN express high
levels of dopamine D1 receptors (together with substance P and dynorphin) (D1-MSN), and the

other subpopulation express high levels of dopamine D2 receptors (together with enkephalin)
(D2-MSN).

Biophysical modeling initiatives

[00138] Spectral DCM are deterministic models that generate predicted crossed spectra
from a biophysically plausible model of coupled neuronal fluctuations 1n a distributed neuronal
network. Neural mass modeling (NMM) describes the mean activity of entire neural

populations, represented by their averaged firing rates and membrane potentials. Both
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approaches may be used as generative models for noninvasive brain imaging measurements;

that 1s fMRI, MEG., and EEG.

EXAMPLES
[00139] The following examples are put forth so as to provide those of ordinary skill in
the art with a complete disclosure and description of how to make and use the disclosed subject
matter, and are not intended to limit the scope of what the inventors regard as their invention nor
are they intended to represent that the experiments below are all or the only experiments
performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g.
amounts, temperature, etc.) but some experimental errors and deviations should be accounted
for. Unless indicated otherwise, parts are parts by weight, molecular weight 1s weight average
molecular weight, temperature 1s in degrees Celsius, and pressure 1s at or near atmospheric.
Standard abbreviations may be used, e.g., bp, base pair(s); kb, kilobase(s); pl, picoliter(s); s or
sec, second(s); min, minute(s); h or hr, hour(s); aa, amino acid(s); kb, kilobase(s); bp, base
pair(s); nt, nucleotide(s); 1.m., intramuscular(ly); 1.p., intraperitoneal(ly); s.c., subcutaneous(ly);

and the like.

Example 1: Cell type specific investigation of global brain circuit mechanisms

underlying movement control using optogenetic functional magnetic resonance imaging

(ofMRI) 1n mice
[00140] To selectively drive D1- and D2-medium spiny neuron (MSN) 1n vivo, bacterial
artificial chromosome (BAC) transgenic mouse lines expressing Cre recombinase under control
of dopamine D1 receptor or dopamine D2 receptor regulatory elements, respectively, were used.
A double-floxed inverted (DIO) recombinant adeno-associated virus (AAV) 2 virus was injected
into dorsomedial striatum to express ChR2-yellow tluorescent protein (YFP) in Cre-expressing
neurons, enabling selective optogenetic control of either pathway. To confirm that inhibitory
medium spiny neurons of the direct (D1-MSNs) and indirect (D2-MSNs) pathways could be
selectively driven 1n vivo, the rotational behavior of animals during repeated 20 s periods of
optogenetic stimulation of dorsomedial striatum was assessed. As shown previously unilateral
stimulation of either striatal D1- or D2-MSNSs elicited strong contralateral and 1psilateral

rotations, respectively (Figure 3, panel C and panel F; Wilcoxon signed rank test for
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ipsilateral/contralateral differences between stimulation and non-stimulation periods; D1, p =
0.0005; D2, p = 0.002).

[00141] Stimulations of D1- and D2-MSNs both resulted in significant increases in
striatal firing rate during in vivo extracellular recordings at the stimulation site (Figure 3, panel
B and panel E). To assess the brain-wide BOLD response driven by inhibitory D1- and D2-
MSNs, whole-brain functional magnetic resonance 1imaging (IMRI) during repeated 20 s periods
of optogenetic D1- or D2-MSN stimulation was performed. The fMRI 1mage acquisition was
designed to have 25x25 mm?2 in-plane field of view (FOV) and 0.36x0.36x0.5 mm3 spatial
resolution with a sliding window reconstruction to update the image every repetition time (TR).
The two-dimensional, multi-slice gradientecho sequence used a four-interleave spiral readout,
750 ms TR, and 12 ms echo time, resulting 1n 23 coronal slices. The spiral kspace samples were
reconstructed through a 2-dimensional gridding reconstruction method. Finally, real-time
motion correction was performed using a custom-designed GPU-based system. Active voxels
were 1dentified as those significantly synchronized to the repeated stimulations. Importantly, the
local si1gnal at the site of stimulation was positive for both D1- and D2-MSN stimulations
(Figure 3, panel J), confirming a widely debated 1ssue that activity of inhibitory neurons can
evoke a positive BOLD response. Interestingly, stimulation of D2-MSN resulted 1n larger
amplitude BOLD signal. This 1s 1n good agreement with earlier findings that show that D2-MSN
1S more excitable for a given amount of current injection due to their higher input resistance.
[00142] The downstream basal ganglia circuit elements such as the subthalamic nuclei,
substatia nigra, global pallidus, thalamus, and cortex were then segmented (Figure 3, panel 1).
Due to the high image quality afforded by the technical development, signal in these areas could
be successtully detected. Traditionally, {MRI signal has signal dropout and large image
distortions in these areas near the air-tissue interface. Advanced shimming methods were
utilized 1n combination with fast imaging to improve 1mage quality. In addition, the use of
robust, real-time motion correction drastically improved the ability to resolve signals arising
from small nuclei.

[00143] Figure 3, panels A-J. ofMRI with D1-, D2- MSN stimulations. Figure 3, panel
A, 20 Hz D1-MSN stim. 1in dorsomedial striatum results 1n increase of (Figure 3, panel B)
average firing rate (n = 120, 100%), and (Figure 3, panel C) num. of contralateral rotations (n =
13, *¥% P <(0.001). Figure 3, panel D, 20 Hz D2-MSN stim. in dorsomedial striatum results in

increase of (Figure 3, panel E) average firing rate (n = 15, 93%), and (Figure 3, panel F) num. of
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ipsilateral rotations (n = 11, ** P < 0.005). Figure 3, panel G and panel H, Group-wise
activation maps demonstrate the large-scale modulation of cortical and subcortical regions,
including the basal ganglia, during D1- and D2- MSN stimulation. Significantly modulated
voxels are color-coded according to their phase relative to six repeated cycles of 20 s, 20 Hz
stims. Figure 3, panel I, Regions of interest (ROIs), used for time series extraction in Figure 3,
panel J. Figure 3, panel J, Average time series of active voxels during D1- and D2- MSN
stimulation within each ROI (left/red traces and right/blue traces, respectively). Values are mean
+/- s.e.m. across animals (n = 13 D1- MSN, 11 D2-MSN). Responses are generally opposite in
direction with the exception of the anterior caudate putamen and globus pallidus external (GPe).
100144 ] At all regions of the 1psilateral basal ganglia-thalamocortical loop other than the
site of stimulation— including GPe, GP1, STN, SN, thalamus, and motor cortex — the evoked
response 1n a given region exhibited qualitatively different temporal profiles between D1- and
D2-MSN stimulation (Figure 3, panel J). In general, positive responses were evoked during
D1-MSN stimulation, while negative responses were evoked during D2-MSN stimulation. To
quantify these differences in temporal patterns, the average phase of active voxels within each
ROI was compared. This value represented the temporal shift of the sinusoid that best fits the
modeled data (Figure 4, panel A). The average phase of modulated voxels at the anterior
caudate putamen was not significantly different between D1- and D2-MSN stimulations (Figure
4, panel B and panel C; p > 0.035, circular Watson-Williams test). In contrast, the evoked
responses 1n GPe, GP1, STN, SN, thalamus, and all twelve segmented regions of cortex were
significantly different (Figure 4, panel B and panel C; p < 0.001, circular Watson-Williams
test). To further characterize the evoked responses, the integral of each ROI’s time series
(XBOLD) was next calculated (Figure 4, panel D). With the exception of the anterior caudate
putamen, all ROIs exhibited a positive mean XBOLD value during D1-MSN stimulation and a
negative mean 2BOLD value during D2-MSN stimulation. This difference was significant
across most tested ROIs, including the basal ganglia’s output nuclei1 GP1 and SN, thalamus, and
10 of 12 segmented cortical regions (p < 0.03; two-sided t-test).

[00145] Figure 4, panels A-D. Stimulations of D1- and D2-MSNs drive distinct and
opposing fMRI responses. Figure4 A, Phase calculation for two fMRI time series. Figure4 B,
Distribution of phase values within the basal gangliathalamocortical loop during D1- and D2-
MASN stimulation. Bolded arrows indicate the average across animals. All regions, except the

anterior caudate putamen (site of stimulation), exhibit significantly different phase values (p <
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0.001, circular Watson-Williams test; n = 12 and 11 animals for D1- and D2-MSN stimulation,
respectively). Figured(C, Histogram of p values from circular Watson-Williams tests 1n
Figured4B. Figure4D, Quantification of 2BOLD values for each ROI with statistical comparisons
between D1- and D2-MSN stimulation.

[00146] Given the diversity of BOLD responses evoked by D1- and D2-MSN
stimulation, the relationships between these two responses reflected underlying neuronal activity
was next verified. Specifically, the opposing influences of the direct and indirect pathways
measured on the macroscopic scale with ofMRI were also present at the level of single-unit
activity. Thus, extracellular recordings in striatum and thalamus, where the differences between
D1- and D2-MSN stimulation-evoked responses were least and most significant, respectively,
(Figure 4, panel C) and where the sign of XBOLD was the same and opposite between the two
stimulation groups, respectively (Figure 4, panel D), were performed. Although the striatal
BOLD response evoked by D2-MSN stimulation was slightly larger in magnitude than the
response evoked by D1- MSN stimulation, both time series exhibited clear and consistent
increases upon 20 Hz light delivery (Figure 5, panel A). Peri-event histograms from two
representative neurons showed that the increase in BOLD evoked by stimulation of either
pathway was associated with increases 1n firing rate (Figure 5, panel B) over repeated trials.
Indeed, virtually all recorded units exhibited significant increases in firing rate (Figure S, panel
C; n = 144/144 units over 7 animals and 122/123 units over 5 animals for D1- and D2-MSN
stimulation, respectively, p < 0.05 one-sided paired t-test). Unlike the BOLD signals observed at
the site of stimulation 1n striatum, the fIMRI BOLD signals in thalamus exhibited opposite
responses during D1- and D2-MSN stimulation. Specifically, the evoked time series exhibited
robust and reliable increases and decreases upon D1- and D2-MSN stimulation, respectively
(Figure 5, panel D). Peri-event time histograms from two representative neurons show that
these changes were associated with corresponding changes 1n neuronal activity that could be
consistently driven over many repeated trials (Figure 3, panel E). Indeed, across all recorded
neurons, 95% of single-units exhibited an increase 1n firing rate during D1-MSN stimulation
(Figure 5, panel F; n = 107/114 units over 8 animals; p < 0.05 onesided paired t-test). During
D2-MSN stimulation, only 1% of recorded units exhibited an increase in firing rate (n = 1/70
units over 5 animals; p < 0.05 one-sided paired t-test). In agreement with the IMRI BOLD

signal, however, 79% of cells exhibited a decrease 1n firing rate during D2- MSN stimulation
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(Figure 5, panel F; n = 55/70). Thus, the widespread opposing influences of direct and indirect
pathways on thalamic activity measured with ofMRI were also confirmed at a neuronal level.
[00147] Figure 5, panels A-F. Neuronal activity mirrors the polarity of {MRI
responses evoked in striatum and thalamus during D1- and D2-MSN stimulations. Figure
J, panel A, D1- and D2-MSN stimulations both drive robust, positive IMRI responses. mean +
s.t.e across animals (n = 12 and 11 for D1 and D2, respectively). Figure 5, panel B, Peri-event
time histograms of two representative neurons illustrate the immediate and sustained increase 1n
striatal neuronal activity during both direct and indirect pathway stimulation. Figure 5, panel C,
Virtually all cells recorded 1n striatum during D1- and D2-MSN stimulation exhibit increases in
firing rate. Figure 5, panel D, D1- MSN stimulation drives a robust positive BOLD response,
while D2- MSN stimulation drives a robust negative response 1n thalamus. mean + s.t.e across
animals (n =12 and 11 for D1 and D2, respectively). Figure 5, panel E, Stimulation of the direct
pathway evokes a sustained increase 1n neuronal activity, while stimulation of the indirect
pathway evokes an immediate and sustained decrease 1n neuronal activity. Figure 5, panel F,
Virtually all cells recorded during D1-MSN stimulation exhibit an increase 1n firing rate, while

the majority of recorded units during D2-MSN stimulation exhibit a decrease in firing rate.

Example 2: Computational modeling of the basal ganglia pathway’s dynamic regulation

of the whole brain circuit
Summary of Dynamical Causal Modelling (DCM )
[00148] DCM models the brain as a dynamic system of interconnected regions during a
series of specific perturbations, 1.e., the experimental task. Here, the perturbation was the optical
stimulation shown in Example 1. Assuming asingle input defined by u(7) encodes the influence
of optogenetic manipulation, 1.e., a square function of zeros and ones, the state and measurement

equations of DCM for optogenetic IMRI (ofMRI) responses are:

[00149] State model: dg;(tt) — f(x(t), Qn,u(t)) = Ax(t) + Cu(t) + w(t)

[00150] Measurement model: y(t) = g(8,) * x(t) + &(t)

[00151] (Equation 1. State and measurement equations of a DCM for ofMRI responses in
the time domain)

[00152] where x(7) represents the neuronal state, 0,, = (A,C) are the neuronal parameters,

A 1s a matrix of endogenous connection strengths, C denotes the strength of the optogenetic
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input, g(0h) 1s a nonlinear convolution operator that links the neuronal state x(7) to a predicted
BOLD signal y(7) via changes 1n vasodilatation, blood flow, blood volume, and
deoxyhemoglobin content, and &), are the hemodynamic parameters.

Spectral DCM

[00153] Spectral DCMs are based on deterministic models that generate predicted crossed
spectra from a biophysically plausible model of coupled neuronal fluctuations 1n a distributed
neuronal network.

[00154] Spectral DCM was used to model cell type specific ofMRI data. The
autoregressive models of first order, 1.e. AR(1) processes, that parameterized fluctuations at the

neuronal, 1.e., @(7), and observation level, 1.e., &(¢). Eq. 1 were rewritten 1n the frequency domain

as:

[00155] State model: X(f) = (j2nf — A)~Y(CU(f) + w(f))

[00156] Measurement model: Y(f) = G(0,)(j2nf — A)_l(CU(f)) + w(f) + &(f)
[00157] (Equation 2. State and measurement equations of a DCM for ofMRI responses in

the frequency domain)

[00158] Cross-spectral responses: G, (f) = Y(f)Y ()" =S(f)G,(f)S(f)" + G(f)
[00159] (Equation 3. Cross-spectral responses)
[00160] where G, (f) = PSD{u(t)},
i
[00161] Ga) (f) — m, and
of
[00163] G, (f) is the power spectral density (PSD) of the experimental input, G, (f) is

the spectral density of endogenous neural fluctuations parameterized as autoregressive processes
of order 1, and G.(f) is the spectral density of the observation noise also parameterized as
autoregressive processes of order 1. 2 and ¢ are the variance of the above-mentioned
autoregressive processes and AR, and AR, . their corresponding autoregressive coefficients.
S(f) = G(0,)(j2rnf — A)~! denotes the transfer function (TF) and G;(f) = CG,(f)C' +

G, (f) the input function. With this mathematical formulation, endogenous neural fluctuations
could be included, i.e. the G, (f) term (stochastic modeling), or not be included (deterministic

modeling).
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Model inversion and Bayesian Model Selection (BMS)

[00164] Using the cross-spectral responses described in Eq. 3, models were inverted
using variational free energy under the Laplace approximation. In this study, an estimate of the
negative free-energy was used as an approximation to the log model evidence. To select the
optimal type of modeling (1.e. stochastic or deterministic), Bayesian model selection (BMS) for
fMRI responses was used. In this setting, searching for the optimal model corresponded to
selecting the model that represents the best balance between fit and complexity. A random
effects BMS scheme at the group level that accounts for potential heterogeneity across subjects
was also employed. Including the neural fluctuations resulted 1n better model fit.

Results

[00165] ofMRI was used to investigate the contribution of two cell-types on basal ganglia
pathways. Within this modelling unit, spectral DCM (spDCM) was used to estimate the
effective connectivity among brain regions. A 7-node brain network consisting of the following
regions was modeled: caudate-putamen aspect (CPu), globus pallidus external segment (GPe),
globus pallidus internal segment (GP1), subthalamic nucleus (STN), substantia nigra (SN),

thalamus (THL), and motor cortex (MOT) aspects ipsilateral to the stimulation site. To constrain
the models, anatomical connectivity information in the literature was searched to select the most

likely generative model for the data among neurobiologically plausible candidates (Figure 6).
[00166] The measured ofMRI responses with D1- and D2-MSN stimulations at 20 Hz
was modeled using spectral DCM. Connectivity that quantifies the overall information flow (not
anatomical connectivity) from one region to the other were estimated using spectral DCM
(Figures 7A-7C). The results clearly showed that connectivity estimates differed significantly
between stimulation of the two neuron types, reflecting the distinct dynamics of the two
pathways. More specifically, the striatal connections to the two output nuclei of the basal
ganglia were greater during D1-MSN stimulation 1n comparison to D2-MSN stimulation, a
finding well supported by the literature. Likewise, connection from motor cortex to thalamus
was also greater in D1-experiments. On the other hand, connection from subthalamic nucleus to
substantia nigra was stronger in D2-manipulations and connection from motor cortex to
subthalamic nucleus had negative polarity in D2-manipulations.

[00167] Thus, there was direct information flow from striatum (Cpu) to internal globus
pallidus (Gp1) and substantia nigra (SN) only in the D1-MSN direct pathway, consistent with the
classical model of basal ganglia circuitry. On the other hand, sub thalamic nucle1 (STN) to SN
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information flows were only present in the D2-MSN 1ndirect pathway. These results provide a
possible mechanistic link where beta band stimulation of D2-MSN resulted 1n strong 1nhibitory
influence from motor cortex to STN (Figure 7B).

[00168] Figures 7A-7C. Spectral dynamic causal modeling of whole brain circuit
function driven by basal ganglia pathways. Spectral dynamic causal modeling of the of MRI
data with D1- and D2- MSN stimulation at 20 Hz gives quantitative estimation of connectivity
(information flow) across the basal ganglia pathways. Connectivity with 20 Hz stimulation of
(Figure 7A) D1- and (Figure 7B) D2-MSN, respectively. (Figure 7C) Mean connectivity
estimates for D1- (black) and D2- (grey) MSN stimulation experiments. Black star indicates

locations that show statistically significant connections: * p<0.1, ** p<0.01, *** p<0.001.

Example 3: Quantitative modeling of human tMRI data for the diagnosis of movement

disorders with cellular precision

[00169] Data previously collected as part of the K23 NS075097 and P50 AG047366

(Stanford ADRC) 1s used. Over the 5-year course of the project, imaging data from 498
individuals will be used. Specifically, 245 patients with Parkinson’s disease (PD) and 243
neurologically normal control data from these two studies will be included 1n this proposal. The
subjects with mild cognitive problems are included because the research hypotheses pertain to
these populations. The 118 participants (80 PD off and on medication and 38 normal control)
from K23 are already recruited and have completed all study procedures. The remaining 370
(165 PD off and on medication and 205 normal control) participants from P50 AG047366
(Stanford ADRC) are currently being recruited. For the scans 29 axial slices with 4.0 mm
thickness have been acquired, 0.5 mm skip were collected in parallel to the AC—PC line,
covering the whole brain, using a T2%- weighted gradient-echo spiral in—out pulse sequence
with the following parameters: repetition time = 2 sec, echo time = 30 msec, flip angle = 80°,
field of view was 20 cm, and matrix size of 64 x 64, providing an inplane spatial resolution of
3.125 mm. The ADRC data will be collected with TR =490 ms, TE = 30 ms, {lip angle = 45°,
1sotropic 3 mm resolution. Multiband acquisition 1s used with an acceleration factor of 6

(number of slices acquired simultaneously) acquiring 42 slices and acquire order of

[1:5:2:6:3:7:4], f1ield of view of 222 x 222 mm.
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Example 4: Brain Circuit Function with Dynamic Causal Modeling for Optogenetic

fMRI

Summary

[00170] Experiments were performed to develop a dynamic and cell-type-specific
connectivity map from simultaneous measurements across the brain. For such dynamic causal
modeling (DCM), optogenetic IMRI experiments were performed, which allowed for cell-type-
specific, brain-wide functional measurements to be obtained, which were used to parameterize
the causal relationships among regions of a distributed brain network with cell type specificity.
When applied to the brain-wide basal ganglia-thalamocortical network, DCM accurately
reproduced the empirically observed time series, and the strongest connections were key
connections of optogenetically stimulated pathways. Quantitative and cell-type-specific
descriptions of dynamic connectivity can be used to determine a systems-level understanding of

neuronal circuit dynamics and facilitate the design of more effective neuromodulation therapies.

Introduction

[00171] Many of the nervous system’s key functions are orchestrated by large-scale
distributed networks across the brain, including the basal ganglia-thalamocortical circuit,
responsible for motor control. The effective connectivity among multiple brain regions and
neuronal populations was determined 1n order to understand the circuit mechanism underlying
motor control. Effective connectivity 1s conventionally defined as the causal or directed
coupling between brain regions, whereas functional connectivity refers to the correlations
between them. Determining these causal relationships may facilitate a better understanding of
neurological disease involving the basal ganglia and allow for the optimization of therapies for
movement disorders, such as deep brain stimulation (DBS) for Parkinson’s disease.

[00172] Functional MRI (tMRI) provides non-invasive measurements of neural activity
across large-scale brain networks through surrogate hemodynamic responses like the blood
oxygenation level dependent (BOLD) signal. The basal ganglia-thalamocortical network can be
used to define cell-type-specific network function. The striatum—the primary input structure of
the basal ganglia—~has distinct cell types including D1- and D2-receptor-expressing medium
spiny neurons (D1- and D2-MSNs), which send unique inhibitory projections to surrounding
basal ganglia nuclei. D1-MSNs project directly to the two output nuclei of the basal ganglia—

the internal globus pallidus and the substantia nigra pars reticulata—and are thought to promote
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motor behavior via disinhibition of downstream thalamocortical circuits, while D2-MSNss
project indirectly to the two output nuclei via the external globus pallidus and subthalamic
nucleus, and are thought to inhibit movement by suppressing thalamocortical circuits.

[00173] Optogenetic fIMRI (ofMRI) can be used for monitoring of brain-wide functional
activity resulting from cell-type-specific perturbations. For example, opposing patterns of
activity across the basal ganglia-thalamocortical network were characterized upon selective
stimulation of either D1- or D2-MSNs. Temporal signal patterns across the brain were precisely
traced and found to generally match the underlying single-unit electrophysiology.

[00174] In the experiments performed herein, dynamic causal modeling (DCM) was used
to parameterize causal relationships among regions of a distributed brain network with cell type
specificity. DCM 1s a Bayesian procedure that allows one to estimate coupling (effective
connectivity) and evidence for different network models of neuroimaging data. A wide variety
of models may be used, including non-linear models, stochastic approaches, and spectral
formulations. In stochastic DCM, both the effective connectivity and endogenous (neuronal)
fluctuations are estimated. Stochastic DCM has been subject to neurobiological validation using
simultanecous EEG-fMRI recordings and has been shown to offer high reproducibility. Spectral
DCM (spDCM) parameterizes endogenous fluctuations and adapts a deterministic model of
neuronal activity, which leads to a significant increase in computation speed compared to
stochastic DCM.

[00175] In this Example, spectral DCM was used to investigate the interactions among
basal ganglia-thalamocortical network regions with cell type specificity and link the observed
activation patterns to quantitative parameters that represent effective connectivity strengths. The
dynamic causal modeling approach was used to determine functional relationships underpinning

brain-wide networks with cell type speciticity beyond the basal ganglia.

Results
Dynamic Causal Modeling of ofMRI Data
[00176] In order to computationally model the D1- and D2-MSN stimulation ofMRI data

and 1dentify effective connective strengths, spectral DCM was used. For IMRI, DCMs can
either be fitted to the time series directly (standard DCM) or to the cross spectral density of the
data after applying a Fourier transform (spectral DCM). Both standard and spectral DCM can

also 1include endogenous fluctuations beyond experimental effects. Although experimental
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effects and endogenous fluctuations are normally not considered together, the IMRI time series
used 1n this Example were elicited under optogenetically controlled experimental stimuli (1.e., a
deterministic input), which allowed for a comparison of deterministic and stochastic models of
the same data. It was also determined whether stochastic endogenous fluctuations were
necessary for explaining the data. Therefore, a Bayesian model comparison was performed
using spectral DCM with and without endogenous fluctuations. To quantify the quality of fit of
the spectral DCM, the posterior estimates from the spectral DCM were used as priors in a
standard (stochastic) DCM and the time series was reinverted. This provided predicted
responses 1n the time domain that were then compared to the observed signal. A network model
was selected to use as the a prior1 generative model based on known basal ganglia anatomy. A
seven-node brain network was used, which included the caudate-putamen (CPu), external
globus pallidus (GPe), internal globus pallidus (GP1), subthalamic nucleus (STN), substantia
nigra (SN), thalamus (THL), and motor cortex (MCX). An alternative network defined by the
replacement of motor cortex with sensory cortex (SCX) was also modeled to examine the
network’s stability, defined here as the stability of connectivity estimates upon perturbations to
the network.

[00177] Anatomical regions of interest were defined for each node and a voxel-averaged
fMRI time series was extracted (Figure 9, panels A-D). Figure 10, panels A and B, depict the a
priori connection scheme of the generative model employed throughout the study. Connectivity
estimates were computed after low-pass filtering the time series with ten different cutoff
frequencies, and the significance of each connection was determined at each cutotf by testing 1ts
connectivity estimate against zero across subjects (D1: n =12 and D2: n = 10). False discovery
rate (FDR) was used to correct the resulting p values for multiple tests of network connections
(at the between-subject level). Significant variability in the p values was observed across cutoff
frequencies (Figure 11). For the model’s final output, the filter cutoff was selected that
maximized a weighted sum of the number of significant and close-to-significant connections.
Connections with a corrected p value less than 0.05 were considered significant, while those
having a corrected p value between 0.05 and 0.10 were considered close-to-significant. The
same criteria were applied for statistical significance when comparing connections under D1-
and D2-MSN stimulations and MCX and SCX networks.

[00178] To model endogenous fluctuations and observation noise parameters within the

model, autoregressive models of order one to four, parameterized by amplitude and
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autoregressive model coefficients, were used. As described above, the importance of
endogenous fluctuations in each network was also determined by comparing results with and
without endogenous fluctuations 1n the model equations for stochastic and deterministic
modeling, respectively. In particular, random effects Bayesian model selection (BMS) was used
to select which of the two modeling approaches provided the greatest model evidence—in other
words, the best balance between accuracy and complexity—and to examine the optimal order of
autoregressive processes. The experiments described herein included autoregressive modeling, a
comparison of models with and without endogenous fluctuations, and the optimized selection of

a low-pass filter cutoff frequency.

D1- and D2-MSN Stimulation Networks

[00179] Significant connections during D1-MSN stimulations were largely consistent
with direct pathway activation (Figures 12, panels A and D). Mean connectivity estimates with
95% confidence 1ntervals across subjects and uncorrected and corrected p values are provided in
Table 3, which 1s shown 1n Figure 13. Remarkably, the projections exhibiting the strongest
connectivity estimates in both MCX and SCX networks were those from CPu to GP1 (mean

connectivity estimate: 0.9177 Hz, p value [corrected]: 0.0072, in the MCX network) and from
CPu to SN (mean connectivity estimate: 0.9155 Hz, p value [corrected]: 3.6572 x 107, in the

MCX network), the two defining connections of the direct pathway. Upon using the posterior
estimates from the spectral DCM as priors 1n a standard (stochastic) DCM, the resulting time
series reproduced the amplitude, polarities, and delays of the empirically observed BOLD
responses across brain regions for both MCX and SCX network models (Figure 12, panels B
and E). In general, stochastic models (with endogenous fluctuations) were better than
deterministic models. For the MCX network, the exceedance probability of stochastic modeling
(1.e., the probability that this modeling approach was more likely than any other modeling
approach considered) was 0.9148 (Figure 12, panel C). For the SCX network, the model
exceedance probability of stochastic modeling was 0.5918 (Figure 12, panel F).

[00180] The brain-wide {MRI responses to D2-MSN stimulation significantly differed
from those evoked by D1-MSN stimulation. In particular, many of the subcortical regions
exhibited a decrease 1n signal during stimulation. Importantly, using the same a prior1 network
described above now led to significant connections that reflected activation of the indirect

pathway (Figure 14, panels A and D). Mean connectivity coetficients with 95% confidence
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intervals across subjects and uncorrected and corrected p values are listed 1n Table 4, which 1s

shown 1n Figure 135. The greatest connection 1n both MCX and SCX network models was from

GPe to STN (mean connectivity estimate: 1.1176 Hz, p value (corrected): 5.7809 X 107, in the
MCX network), a key projection of the indirect pathway. The time series calculated from these
posterior estimates also accurately matched the distinct BOLD responses elicited by D2-MSN
stimulation, such as the robust negative signal within the thalamus (Figure 14, panels B and E).
As with D1-MSN stimulations, stochastic models were better than deterministic models 1n a
majority of subjects. The exceedance probability of stochastic modeling was 0.6025 for the
MCX network (Figure 14, panel C) and 0.7529 for the SCX network (Figure 14, panel F).
[00181] In light of the close relationship between model estimates and underlying
physiology, the same modeling framework was used to estimate networks during D1- and D2-
MSN stimulations. The generative model, fluctuations, and priors remained the same. This

demonstrated that the proposed algorithm can be generalized for use in parameterizing different

optogenetic IMRI experiments.

Comparison between MCX and SCX Network Models

[00182] The stability of D1-MSN-driven networks was examined. The exchange of MCX
with SCX did not change the strength of any connection within the model (Figure 16, panel A;
and Figure 17, Table 5), supporting the 1dea that motor and sensory cortices generally exert
homologous influence on basal ganglia circuitry during D1-MSN stimulations. Similarly, the
replacement of motor cortex with sensory cortex for the D2-MSN stimulation models did not
significantly change the strength of inter-regional connectivity estimates (Figure 16, panel B;
and Figure 17, Table 5). Only the self-connection within cortex was different in strength after
replacement (close-to-significant, p < 0.10). Collectively, these results demonstrated the

stability of dynamic causal modeling in D1- and D2-MSN stimulation networks.

Comparison between D1- and D2-MSN Stimulation Network Models

[00183] To provide a quantitative comparison of the D1- and D2-MSN
[00184] stimulation network models, statistical comparisons
[00185] of each model’s resulting connectivity estimates were performed (Figure 18; and

Figure 19, Table 6). Connections from CPu to GP1 and from CPu to SN — the defining

projections of the direct pathway — were significantly greater during D1-MSN stimulations 1n
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both MCX and SCX networks. The connection from STN to SN — another significant projection
within the indirect pathway — was greater during D2-MSN stimulations in the SCX network
(close-to-significant, p < 0.10). Differences were also observed 1n the strength of cortical
efferents between the D1- and D2-MSN stimulations. On the other hand, the connection from
MCX to THL was significantly greater during D1-MSN stimulations. These projections were
generally positive during D1-MSN stimulation and negative during D2-MSN stimulations.
There were also several significant differences in intra-regional estimates between D1- and D2-
MSN stimulations (Figure 19, Table 6).

[00186] The self-connection parameters within the CPu were significantly greater in
magnitude (more negative) during D1-MSN stimulations 1n both MCX and SCX networks. In
the GPe, the self-connection parameter was significantly greater in magnitude (more negative)
during D2-MSN stimulations in the MCX network. The self-connection parameters in GP1 were
also greater in magnitude (more negative) during D2-MSN stimulations 1n the SCX network
(close-to-significant, p < 0.10). Likewise, the self-connection parameter in STN was greater in
magnitude (more negative) during D2-MSN stimulations 1n the MCX network (close-to-
significant, p < 0.10). The self-connection parameters within SN were significantly greater in
magnitude (more negative) during D2-MSN stimulations 1n both MCX and SCX networks.
Finally, in the SCX network, the self-connection parameter in SCX was significantly greater in

magnitude (more negative) during D2-MSN stimulations.

Discussion

[00187] While circuit diagrams of basal ganglia pathways have been traditionally
delineated by measuring anatomical connectivity and electrophysiological activity 1n 1solation,
they have never been simultaneously and directly measured across the brain. The presently
disclosed model makes use of brain-wide optogenetic IMRI measurements to construct a cell-
type-specific dynamic brain circuit diagram based on data measured in live subjects. In these
experiments, a computational approach was developed that can parameterize the brain-wide
network function measured by tMRI responses evoked during cell-type-specific stimulations of
D1- or D2-receptor-expressing striatal MSNs. Surprisingly, the strongest connections during
D1-MSN stimulation were the efferents from the CPu to GP1 and SN, while the strongest
connection during D2-MSN stimulation was from GPe to STN, the key projections of the direct

and indirect pathways, respectively. Comparisons of connectivity estimates between the two

48



CA 03012463 2018-07-24

WO 2017/136285 PCT/US2017/015659

stimulation groups also showed that connections belonging to the direct pathway were greater
during D1-MSN stimulation, and connections belonging to the indirect pathway were greater
during D2-MSN stimulation. These findings confirmed the presently disclosed method’s ability
to detect selective changes in effective connectivity within a distributed network under cell-
type-specific interventions and underscore how effective connectivities among regions may
depend on the cell types activated. Formally, this paper offers a construct validation of
optogenetic IMRI DCM by appealing to the known functional anatomy and synaptic circuitry of
the basal ganglia-thalamocortical system.

[00188] Stochastic models were better than deterministic models across networks and
stimulation groups. The greater model evidence exhibited by the stochastic models suggested
that there were neuronal processes that cannot be explained strictly by the experimental
stimulus. Stochastic modeling, which accounted for endogenous fluctuations, may therefore be
optimal for future modeling studies and offer greater generalization across experiments, as it
provides the best balance between accuracy and complexity for explaining the measured data
(1.e., the greatest model evidence) (Figure 20, panels A-D). The optimal degree of complexity
for these endogenous fluctuations was also examined by fitting autoregressive models of
increasing order. The results indicated that a relatively low order of local temporal correlations
(e.g., AR(1) or AR(2) processes) was optimal across networks and stimulation groups (Figure 20,
panels E-H).

[00189] Replacement of the motor cortex with sensory cortex demonstrated a stability of
the connectivity parameters within the basal ganglia-thalamocortical circuit. No significant
differences were observed 1n the strength of inter-regional connectivity estimates when
replacing MCX by SCX (Figure 17, Table 5), and both network models yielded similar
connections (Figure 13, Table 3 and Figure 15, Table 4). This property holds true in order for a
causal estimation algorithm to be considered robust. It should be noted, however, that the
selection of one model or the other did alter statistical effects across D1- and D2-MSN
stimulations (Figure 13, Table 3 and Figure 15, Table 4). For example, the connection from
thalamus to cortex was not statistically significant in the SCX network model during D2-MSN
stimulations, leaving no pathway from the stimulation site to cortex and thus compromising the
interpretation of causality within the basal ganglia-thalamocortical system (Figure 14, panel D).
In this respect, the MCX network model may offer more mechanistic insight than the SCX

network model, as 1t exhibited causality between regions across the overall system, including
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connections from thalamus to cortex and from cortex to striatum during both perturbations
(Figures 12 and 14). A causal relationship from thalamus to sensory cortex during D2-MSN
stimulation was not detected, which may indicate that thalamus may directly influence motor —
but not sensory — cortex during D2-MSN stimulations. This did not prevent the accurate
prediction of observed responses with either network model. This may be due to the inclusion of
endogenous fluctuations in the model equations, which were able to account for hidden neuronal
responses that were not explicitly included in the network models.

[00190] The si1gns of significant connections during D1- and D2-MSN stimulations were
consistent with the diversity of temporal profiles and polarities of IMRI responses. During D1-
MASN stimulations, for example, the time series throughout the basal ganglia increased during
stimulation. As expected, significant connectivity estimates throughout the basal ganglia-
thalamocortical system were positive (Figure 12; and Figure 13, Table 3). While the 1nitial drop
In sensory cortex may be seen as an exception to this, the experimental model interpreted this
transient as a reflection of a delay in cortical activations. During D2-MSN stimulations,
connectivity estimates were positive all the way from CPu to cortex (Figure 14; and Figure 15,
Table 4). However, the BOLD responses, especially in thalamus, generally decreased during
stimulation. The feedforward aspect of the indirect pathway therefore did not explain the
decreasing responses observed within STN, GP1, SN, and thalamus. Nevertheless, this 1ssue
might be resolved once the signal passes through the cortex. As shown 1n Figure 14, the
connection from cortex to STN was significantly negative, while the connections from STN to
GP1, GP1to THL, and STN to SN were positive. Applying the multiplication operation along
this pathway led to a negative response within the STN, GP1, SN, and THL and indicated that 1t
may be the hyperdirect pathway, which was statistically significant and negative during D2-
MSN stimulations, that explained the negative BOLD responses within these regions.

[00191] Beyond an understanding of normal basal ganglia information processing, the
results offered 1insight into the mechanisms of movement disorders that originate from defects 1n
this network. Optogenetically driving D2-MSNs, for example, simulated the loss of dopamine in
striatum that 1s associated with Parkinson’s disease (PD) by creating an imbalance in direct and
indirect pathway activity. The connectivity analyses from D2-MSN stimulation revealed several
features commonly observed 1n PD. First, systematically more negative self-connection
parameters were observed within the basal ganglia’s nucle1 (STN, GPe, GP1, and SN) during
D2-MSN stimulations compared to D1-MSN stimulations. Many of the self-connections
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exhibited a statistically significant or close-to-significant difference between D1- and D2-MSN
stimulations for both the MCX and SCX network models (Figure 19, Table 6). Based on the
mathematical solution of the state equation (see Method Details, below), a more negative self-
connection strength indicated that less time was needed to reach the activation state. One
interpretation of this was that brain regions within the basal ganglia synchronized faster during
D2-MSN stimulation. Increased synchrony and neural oscillations in the STN and GP1 have
been observed 1n primate and rodent models of PD. It has also been shown that STN activity
correlates with downstream basal ganglia activity in PD monkeys. Although the causal link
between STN oscillations and PD symptoms remain elusive it has been shown that pathological
oscillations are suppressed by volitional movement, dopamine replacement therapy, and STN-
DBS therapy. As another possible link to PD, statistically significant MCX-STN and close-to-
significant SCX-STN connections during D2-, but not D1-MSN stimulations was observed.
Cortical-STN interactions have been implicated in PD mechanisms. In some cases, the
antiparkinsonian effects of STN stimulation result from selective activation of the M1-STN
pathway.

[00192] Neurostimulation therapy for PD aims at modulating neuronal activity of the
basal ganglia-thalamocortical system. Clinically, the most common brain regions targeted to
treat PD motor symptoms with DBS are the STN and GPi1. While the exact mechanism of action
for DBS 1n PD remains unclear, many hypotheses have been proposed. For example, DBS may
modulate abnormal synchronous oscillatory activity between the basal ganglia and cortical
regions such as M1. As a therapeutic alternative, recent data have indicated that epidural chronic
motor cortex stimulation (MCS) could also improve symptoms resulting from movement
disorders like PD. Among the possible mechanisms of action for MCS, it 1s hypothesized to
reduce synchronized oscillatory activities 1in basal ganglia nuclei, similar to STN stimulation.
The connectivity analyses developed in the presently disclosed experiments may be used to
elucidate the effectiveness of different regions as therapeutic targets. For example, the finding
that motor cortex exhibits greater connectivity with subcortical structures during D2-MSN
stimulation indicated that motor cortex modulation may restore balance to Parkinsonian
circuitry and indicated that this region plays a significant role in the descending modulation of
basal ganglia network activity.

[00193] There were distinct, approximately orthogonal patterns of significant and close-

to-significant interregional connections between D1- and D2-MSN stimulations (Pearson’s
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r=-0.0036 and -0.0165 for MCX and SCX network models, respectively). In distributed spatial
representations, orthogonal arrangements of effective connectivity may be used to maximize
discriminability. For example, they could be valuable in maintaining the separate 1dentity and
processing content of two populations with distinct cell types. In addition, orthogonal patterns
can be employed to emit two independent sequences (e.g., a set of motor programs)
simultaneously and to separate the received information afterward (e.g., within the cerebral
cortex).

100194 ] Methods of the present disclosure may be used to determine causal influences
among brain regions driven by a specific cell type, which can be quantified and compared 1n the
healthy and diseased brain by utilizing optogenetic IMRI and the network models disclosed
herein. Knowing how neural pathways driven by specitic cell populations contribute to diseases
like PD will aid the development of treatments based on quantitative circuit mechanisms of
disease, which will lead to improved targeted therapies with better efficacy and reduced adverse

effects.

Method Details

Experimental Model and Subject Details
Mice

[00195] Bacterial artificial chromosome (BAC)-mediated transgenic mouse lines from the
gene expression nervous system atlas (GENSAT) were used as subjects (male, 18-20 g, ~4
weeks old). Mice expressed Cre recombinase under control of either the dopamine D1 receptor
(BAC-Cre Drdla-262 mice, RRID: MMRRC_017264-UCD) or dopamine D2 receptor (BAC-
Cre Drd2-44 mice, RRID: MMRRC_017263-UCD) regulatory elements. The double-floxed
inverted (DIO) recombinant AAV1 virus AAV-EF1a-DIOhChR2(H134R)-EYFP was 1njected
into the dorsomedial striatum (+0.48 mm AP, -1.50 mm ML, -3.00 mm DV), resulting in
channelrhodopsin2 expression in either D1- or D2-expressing medium spiny neurons. Virus was
acquired from the University of North Carolina vector core using Addgene plasmid #20298.
Animals were housed individually following cannula implantation and provided with food and
water ad libitum. All experimental procedures and animal husbandry were performed 1n strict
accordance with the NIH, UCLA Institutional Animal Care and Use Committee (IACUC), and
Stanford University IACUC guidelines. Animals were involved in behavioral rotation tests to

confirm functional opsin expression prior to of MRI experiments, but were otherwise naive and
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healthy. No randomization procedure was necessary for allocating animals to experimental
groups, since the groups being compared (D1- and D2-MSN stimulation) were determined
simply by the genetic strain of the animal (1.e., D1-Cre and D2-Cre). No procedures were used

for sample size estimation.

Method Details

ofMRI Experiments
[00196] fMRI scanning was performed using a 7 Tesla Bruker Biospec small animal MRI

system. A single ofMRI scan included six 20 s pulse trains of optical stimulation delivered once
per minute over 6 min. Photostimulation was delivered at 20 Hz with a 30% duty cycle via a
105 mm diameter optical fiber. The optical fiber, coupled to a 473 nm laser source (Laserglow
Technologies, Toronto, ON), was calibrated to have a 2.5mW output power. During IMRI
scanning, animals were placed 1nto the 1so-center of the magnet while very lightly anesthetized
with a calibrated vaporizer (Vet Equipment, Pleasanton, CA, USA) using a mixture of O,
(35%), N,O (65%), and 1soflurane (0.4%—0.7%; Henry Schein, Melville, NY, USA). Body
temperature was maintained at 36-38°C using an airflow heater (SA Instrument, Stony Brook,

NY, USA). Gradient recalled echo (GRE) BOLD methods were used to acquire IMRI 1images

during photostimulation. The fMRI 1image acquisition was designed to have 25 X 25 mm” in-

plane field of view (FOV) and 0.36 x 0.36 x 0.5 mm" spatial resolution with a sliding window
reconstruction to update the 1mage every repetition time (TR). The two-dimensional, multi-slice
gradient-echo sequence used a four-interleave spiral readout, 750 ms TR, and 12 ms echo time,
resulting 1n 23 coronal slices. The spiral k-space samples were reconstructed through a 2-
dimensional gridding reconstruction method. Finally, real-time motion correction was
performed using a custom-designed GPU-based system.

[00197] Precautions were taken during ofMRI experiments to avoid heating and visual-
related artifacts. To ensure that visual-related artifacts were not generated, the eyes of each
subject were carefully covered with black electrical tape. The connection between the fiber optic
cable and the implanted cannula was also covered with black tape to prevent any leakage of
light. Furthermore, to prevent heating, the stimulations were 2.5 mW with a 30% duty cycle.
These numbers, taking into account the 105 mm diameter fibers employed, lead to a time-
averaged light power density of 86.6 mW/mm~. The time-averaged light-intensity range of 56-

167 mW/mm?~ is far below the range that generated any artifact-derived responses. These data,
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in addition