A O OO O

0O 03/005203 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

00000 A

(10) International Publication Number

16 January 2003 (16.01.2003) PCT WO 03/005203 A2
(51) International Patent Classification’: GO6F 12/00 (74) Agents: PATHIYAL, Krishna, K. et al.; Research In Mo-
tion Limited, 295 Phillip Street, Waterloo, Ontario N2L
(21) International Application Number: PCT/CA02/01008 3W8 (CA).
(22) International Filing Date: 2 July 2002 (02.07.2002)
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(25) Filing Language: English AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(26) Publication Language: English GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

(30) Priority Data:

60/302,872 3 July 2001 (03.07.2001) US

(71) Applicant (for all designated States except US): RE-
SEARCH IN MOTION LIMITED [CA/CAJ; 295 Phillip
Street, Waterloo, Ontario N2L 3W8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAHMS, John, F.,
A. [CA/CA]; 296 Castlefield Avenue, Waterloo, Ontario
N2K 2N1 (CA). YACH, David, P. [CA/CA]; 254 Castle-
field Ave, Waterloo, Ontario N2K 2N1 (CA).

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM AND METHOD OF OBJECT-ORIENTED PERSISTENCE

2
N\ 8~ ADDRESSABLE
SPACE
12— 20, 14
STORAGE RAM - POWER
R t- T~
70B 30 - 5 10A
, .

, \

PERSISTED REFERENCE PE';%'E@?"E -

OBJECT B TABLE . A .’

\ !

' 7/
4~ N _:/_
APPLICATION |- — - — - =
A
6 i
MOBILE
COMMUNICATIONS

DEVICE

(57) Abstract: A system and method for handling an application’s access of persisted objects for use within a mobile communica-
tions device. The device includes a non-volatile storage device that has at least a portion of its storage locations addressable by the
application. A reference table contains the addresses of persisted objects contained in the storage device. Via the reference table, an
application can locate persisted objects stored in the storage device.

WO 03/005203

A2

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES,
FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, 1S, JP, KE,
KG,KP. KR KZ,LC, LK, LR, LS, LT, LU, LV, MA, MD, MG,
MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS,
MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, IE, IT, LU, MC, NI, PT, SE, SK, TR), OAPI patent (BF,
BJ, CE, CG, CI, CM, G4, GN, GQ, GW, ML, MR, NE, SN,
D, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY,
BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC,

EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN,
1S, JP KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent
(GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR),
OAPI patent (BE, BJ, CE CG, CI, CM, G4, GN, GQ, GW,
ML, MR, NE, SN, TD, TG)

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 03/005203

Title

System and Method of Object-Oriented Persistence

Related Application

This application claims priority to U.S. provisional application
Serial No. 60/302,872 entitled "System and Method of Object-Oriented
Persistence" filed July 3, 2001. By this reference, the full disclosure, including
the drawings, of U.S. provisional application Serial No. 60/302,872 is
incorporated herein.

Background

Field of the Invention

4 This invention relates to the field of information storage.
Particularly, this invention relates to storing object-oriented information within
an object-oriented environment.

Discussion of the Related Art

Presently known techniques for storing objects, such as the
serializable interface of the java.io package in Sun Microsystems Java™ 2 SE
(v1.3), may impose undue limitations such as assuming that the storage
involves an underlying file on a file system. For instance, known techniques
for storing objects may require that the object be first retrieved from storage,
then restored to a useable state, in order to be used.

Summary

The present invention overcomes such disadvantages as well as
others. In accordance with the teaching of the present invention, a system
and method are disclosed that handle an application's access of persisted

1

PCT/CA02/01008

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

objects for use within a mobile communications device. The device includes a .
non-volatile storage device that has at least a portion of its storage locations
addressable by the application. A reference table contains the addresses of
persisted objects contained in the storage device. Via the reference table, an
application can locate persisted objects stored in the storage device. Further
features of the invention will be described or will become apparent in the
course of the following detailed description.

Brief Description of the Drawings

In order that the invention be more clearly understood,
embodiments thereof will now be described in detail by way of example only,
with reference to the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating software and computer
components used in persisting and unpersisting objects;

FIG. 2 is a data structure diagram illustrating a reference table;

FIGS. 3 and 4 are block diagrams illustrating an example of a
format occupied by objects in RAM and that may be accessed via a reference
table;

FIGS. 5 and 6 are block diagrams illustrating an example of a
format occupied by persisted objects and that may be accessed via a
reference table; '

FIGS. 7 and 8 are block diagrams illustrating cooperation of
objects in RAM and non-volatile storage;

FIGS. 9 and 10 are block diagrams illustrating un-grouped
persistable objects;

FIG. 11 is a block diagram illustrating groupings of object
references;

FIG. 12 is a data structure diagram illustrating a reference table
for use in groupings of object references;

FIGS. 13 and 14 are block diagrams illustrating grouped
persisted objects;

FIG. 15 is a flowchart illustrating an example of persisting
objects;

10

15

20

25

30

WO 03/005203

FIG. 16 is a flowchart illustrating an example of object grouping;

FIG. 17 is a flowchart illustrating an example of un-persisting
objects; ‘

FIG. 18 is a flowchart illustrating an example of object un-
grouping; and

FIG. 19 is a flowchart illustrating an example of re-population of
a reference table with persisted object references.

The same reference numerals are used in different figures to
refer to similar elements.

Detailed Description of the Preferred Embodiment

FIG. 1 depicts a system 2 to handle an application's 4 access of
objects (é.g., 10A and 70B) within the environment of a mobile
communications device 6. Through use of a reference table 30, the
application 4 accesses desired objects 10A and 70B without special regard to
whether the objects 10A and 70B are stored in random access memory
(RAM) 20 or a non-volatile storage device 12, respectively. RAM 20 and the
storage device 12 have addresses that are within an addressable space.

Some storage devices can be addressed like conventional RAM,
such as flash memory for instance. In the case where storage is addressed
like conventional RAM, a persisted object can be read directly from storage.
In this way, both reading and writing of persisted objects can be accomplished
while an object is persisted. The addressable space for RAM 20 and the
storage device 12 may comprise the same addressable space, or
substantially the same addressable space. In a different embodiment, the
addressable space may be different.

A persisted object (e.g., object 70B) is an object that has
achieved object-oriented persistence and is located in the storage device 12.
Similarly, an object that has the potential to be persisted (such as object 10A
in RAM 20) is defined as a persistable object. Persisting ah object is defined
as the process of providing a persisted object from a persistable object.
Unpersisting an object is defined as the converse, the process of providing a

3

PCT/CA02/01008

10

15

20

25

30

WO 03/005203

persistable object from a persisted object. Persisted objects are stored in the
storage device 12 whose contents are unaffected if power 14 is removed
(whéreas the contents of volatile memory 20 are lost when power 14 is no
longer supplied to it). As used in this description and in the appended claims,
object-oriented persistence may include the format being occupied by an
object in storage 12 being substantially similar to the format a corresponding
object occupies in RAM 20. By using the same format in storage 12 as in
RAM 20, only systematic operations are required to restore persisted objects
to a useable state.

Since virtually no operations are required in the system 2 to
restore a persisted object to a useable state, a persisted object can be used
directly from the storage device. A useable persisted object may continue to
be referenced by other objects residing in either RAM or storage, as well as
reference other objects. As a consequence, a mobile communications device
such as a PDA, cellular telephone, or data communications device can
selectively move objects to and from storage without consuming significant
resources. Once an object is persisted, it can continue to be used in
substantially the same way as an object in RAM. This is a significant
advantage over an unusable serialized object, which has to be loaded to be
used, and may typically take up to three orders of magnitude more time to
become useable. It is noted that file access times may be measured in
milliseconds whereas memory access may be measured in nanoseconds.

For example, in a mobile device address-book application, an
Address object might have a Name attribute and a Telephone attribute. Since
most address-book entries do not change very often and are used regularly, it
may be desirable to persist address-book entries so that they can be both
stc;red and read in the future. Address objects benefit by being persistable,
and benefit from being useable persisted objects. Since the Name and
Telephone attributes (being integral to an Address object) may also be
useable persisted objects, an object-oriented ruﬁtime is able to read useable
persisted Address objects directly while they reside in storage 12 without
need to retrieve Address objects from storage 12. This is a significant savings
that may allow a persisted object to take several orders of magnitude less

4,

PCT/CA02/01008

WO 03/005203

10

15

20

25

30

time to become useable in comparison to a serialized object. Furthermore, by
using substantially the same format in RAM 20 and in storage 12, persisted
objects are less likely to become obsolete.

The system 2 includes a reference table 30 that locates objects
10A and 70B whether they are in RAM 20 or the storage device 12. For
example where an application 4 wishes to access persistable object A 10A,
the reference table 30 provides the memory address of the persistable object
A 10A which is located in RAM 20. If the application 4 also has need to
access persisted object B 70B, then the reference table 30 provides the
memory address of the persisted object B 70B, which is located in the storage
device 12. It should be understood that the system 2 may store objects for
direct access by the application 4 in both the storage device 12 and RAM 20,
or solely in the storage device 12, or solely in RAM 20. The system 2 is
configured with the combination that best suits the application at hand. It
should also be understood that one or more applications may utilize the
system 2 to access the objeéts referenced in the reference table 30. Furtherit -
should be understood that the system 2 may include persistence of module
objects to provide useable persisted modules. Modules may be used, for
instance, to hold target-linked object cla_sses. If the module is not useéble

. from storage, virtually no operations are required to render it useable once

unpersisted. However, by useably persisting modules, it is possible to execute
code for an object-oriented runtime directly from storage 12.

FIG. 2 depicts a data structure of the reference table 30.
Indexed storage elements 32 within the reference table 30 contain addresses
34 to the objects stored in the storage device or in RAM. Given a desired
object's index 36 to a storage element 32, the desired object's address 38 is
obtained from the reference table 30. An object's address 34 in a storage
element 32 reflects whether the object is in a storage device or RAM. The
reference table 30 obviates an application having to specially recognize where
the object is stored.

FIGS. 3 and 4 depict an example of a format occupied by
objects in RAM and that may be accessed via the reference table: Two
objects 10A and 10B are shown as they might appear somewhere in RAM 20.

5

PCT/CA02/01008

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

The reference table 30 is also situated in RAM 20. The reference table 30 has
several storage elements 35A and 35B of a fixed size “w” 37 to simplify the
indexed access to storage elements. Each used storage element 35A and
35B corresponds to an object 10A and 10B which is somewhere in an
addressable space. For instance object A 10A finds correspondence with
storage element index “a” 35A whereas object B 10B finds correspondence
With storage element index “b” 35B. The address 40A and 40B of
corresponding objects 10A and 10B is stored in a storage element 35A and
35B, so that knowing the index of an object in the reference table 30 it is
possible to obtain the address 40A and 40B of an objecf. This is done by first
obtaining the address @R 50 of the reference table 30. Then, given an
object's reference, such as “a” 55A for object A 10A, the address of the
storage element @ (R+a*w) 60A can be obtained by multiplying the index 55A
“a” by the size “w” 37 of each storage element and adding to the resulting
value the address @R 50 of the reference table 30. The address of the
storage element @ (R+b*w) 60B corresponding to object B 10B can be
obtained using the same technique by using index “b” in lieu of “a”. Since the
“a” storage element 35A holds the address of the corresponding object A 10A,
resolving the contents of the storage element 35A provides the address @A
40A of object A 10A. Also shown is how each object 10A and 10B contains
within its format its own reference 55A and 55B related to the reference table
30. Also shown is how, for example, object A 10A contains within its format a
reference “b” 65B to object B 10B. This allows a runtime context within the
scope of object A 10A to be able to access object B 10B.

Although not expressly shown in the drawings, other attributes
such as references to other objects, or atomic data types, may be present
within the formats of objects. - Although not expressly shown in the drawings,
many instances of objects may exist in an addressable space. In the example
of FIG. 3, two instances 10A and 10B of classes have been illustrated. It
should be understood that each instance may be of a different class, or
alternatively that each instance may be of the same class. In the first case,

- the object A 10A may be an instance of class “A” whereas object B 10B may

be an instance of class “B”. For example, object A might be an instance of an
6

10

15

20

25

30

WO 03/005203 PCT/CA02/01008

Address class and object B might be an instance of a Name class. There
may be several instances of the Address class and Name class situated
somewhere in the addressable space, such as in RAM. For the sake of brevity
and clarity, only one instance of class “A” and “B” were discussed.
Alternatively in the second case, object A 10A and object B 10B could both be
instances of the same class. Objects A and B are used by way of example
only with the understanding that in practice there may be many objects which
are instances of many classes.

FIGS. 5 and 6 depict an example of the format occupied by
persisted objects and that may be accessed via a reference table. Two
useable persisted objects 70A and 70B are illustrated as they might appear
somewhere in storage, such as flash 80. The address of persisted objects
70A and 70B are stored in reference table 30 storage elements 35A and 35B,
so that by knowing the index of a persisted object in the reference table 30 it
is possible to obtain the address 90A, 90B of the persisted objects. By
obtaining the address @R 50 of the reference table 30, given a persisted
object's reference, such as “b” 55B for the example B persisted object 70B,
the address of the storage element @ (R+b*w) 60B can be obtained by
multiplying the index 55B “b” by the size “w” 37 of each storage element and
adding the resulting value to the address @R 50 of the reference table 30.
Since the “b” storage element 35B holds the address of the corresponding
persisted object B 7OB,'resolving the contents of the storage element 35B
provides the address @B 90B of persisted object B 70B. The same technique
can be used to provide the address 90A of persisted object 70A from the
address of storage element @ (R-+a*w) 60A. Also shown is how each
persisted object 70A and 70B contains within its format its own reference 55A
and 55B related to the reference table 30. Also shown is how, for example,
persisted object A 70A contains within its format a reference “b” 65B to
persisted object B 70B. This allows a runtime context within the scope of
persisted objec;t A 70A to be able to access persisted object B 70B.

Persisted objects A 70A and B 70B are situated in flash 80. The
format in flash 80 of persisted objects 70A, 70B of FIG. 5 is substantially
similar to corresponding objects 10A and 10B in RAM 20 of FIG. 3. Since

7

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

- flash 80 is addressable and can be read substantially in the same way as

RAM 20, and since the persisted objects 70A, 70B are substantially in the
same format as corresponding un-persisted objects 10A and 10B of FIG. 3,
persisted objects 70A, 70B can be referenced by the runtime context “as if”
they were in RAM 20, thereby making them useable persisted objects.

When power is shut off, persisted objects A 70A and B 70B will
remain stored in flash 80. However, reference table 30 will be lost making
persisted objects A 70A and B 70B temporarily unusable. When power is
restored, reference table 30 can be syétematically re-populated by reading
flash 80 since every persisted object 70A, 70B has within its format its own
reference, thereby restoring useable persisied objects A 70A and B 70B. Re-
population will be described in greater detail in reference to FIG. 19.

In reference to FIGS. 7 and 8, a block di‘agram illustrating the
cooperation of objects in RAM and persisted objects is described. An object
10A and a useable persisted object B 70B are iliustrated, as they might
appear somewhere in RAM 20 and flash 80 respectively. Also illustrated is a
reference table 30, situated somewhere in RAM 20. This allows a runtime
context within the scope of object A 10A to be able to access usable persisted
object B 70B, regardless of the fact that object B 70B is in flash 80 and object
A 70Ais in RAM 20.

A persisted object, suéh as object B 70B, may contain a
reference (not shown) to a non-persisted object, such as object A 10A. This
allows a runtime context within the scope of persisted object B 70B to be able
to access object A 10A, regardiess of the fact that object B 70B is in flash 80
and object A 70A is in RAM 20. Furthermore, a runtime context within the
scope of persisted object B 70B, such as an instance method context, may
receive an object reference to object A 10A as a parameter.

In reference to FIGS. 9 and 10, block diagrams illustrating un-
grouped persistable objects are described. Two objects 10A and 10B are
illustrated as they might appear somewhere in RAM 20. Also illustrated is a
reference table 30, situated somewhere in RAM 20. In situations where it is
desired to impose an upper limit on the amount of RAM 20 dedicated to
storing object references, reference table 30 may have a maximum of n

8

WO 03/005203

10

15

20

25

30

storage elements. This might be the case, for instance, in a device with limited
RAM 20. By imposing an upper limit n, the reference table 30 can be
maintained within a reasonable size. Each used storage element corresponds
to objects 10A and 10B which are somewhere in an addressable space, which
makes un-grouped objects 10A and 10B compatible with other objects thus
far described. For instance object A 10A finds correspondence with storage
element “a” 35A whereas object B 10B finds correspondence with storage
element “b” 35B. The address of corresponding objects 10A and 10B are
stored in storage element 35A, 35B, so that knowing the index of an object in
the reference table 30 it is possible to obtain the address 40A, 40B of an
object. This is done by first obtaining the address @R 50 of the reference
table 30. Then, given an objects reference 55A, such as “0 | a” for the
example A object 10A, the address of the storage element @ (R+a*w) 60A can
be obtained by multiplying the index 55A “a” by the size “w” 37 of each
storage element and adding to the result the address @R 50 of the reference
table 30. Similarly, the address of storage element @ (R+b*w) 60B can be
obtained given an objects reference 55B, such as “O|b” for the example B
object B 10B. The address of the object @A 40A is contained in the
corresponding storage element 35A. Similarly, the address of the object @B
40B is contained in the corresponding storage element 35B. The purpose of
the “offset” is described further in FIG. 11 in reference to grouped persisted
objects. Since both objects A 10A and B 10B are un-grouped, the “offset”
value is O for each, as is illustrated by the corresponding “this ref= 0|a” for
object A 10A and “this ref=0|b” for object B 10B. Also shown is how flash 80
might comprise several blocks 1.20, of which only 2 are illustrated for brevity.
This is meant to illustrate how some flash 80 may be addressed to be read in
a manner substantially similar to RAM 20, but may be only written to in blocks
120.

The block technique may also use object grouping. Grouping
conserves reference table's RAM 20 usage. FIG. 11 shows groupings 102 of
object references so that objects integral to a “root” object are located in
addressable space in substantially close proximity to the “root” object. In this
way, RAM 20 can be used more efficiently since it only uses a single object

9

PCT/CA02/01008

10

15

20

25

30

WO 03/005203

reference element 104 in the reference table 30 for each “root” object in a
group. Grouped object references 102 are updated so that they are offset
relative to the “root” object. Object reference grouping is defined as relating
object addresses in a group of objects by an offset to a “root” object reference
that integrates the group.

FIG. 12 depicts a reference table data structure for use in
groupings of object references. Indexed storage elements 32 within the
reference table 30 contain addresses 104 to the "root" objects stored in the
storage device or in RAM. Given a desired object's root object's index 106,
the root object's address is obtained from the reference table 30. A root

" object's address in a storage element 32 reflects whether the object is in a

storage device or RAM. The “root” object 108 contains object references to
its integral grouped objects, such as the desired object. The desired object is
referenced in the format of the “root” object. The address 110 of the desired
object is related to the address of the “root” object by an “offset” as discussed
in greater detail in reference to FIGS. 13 and 14.

In reference to FIGS. 13 and 14, block diagrams illustrating
grouped persisted objects are described. Two persisted objects 70A, 70B are
illustrated -as they might appear in block 120 of flash 80. Also illustrated is a
reference table 30, situated somewhere in RAM 20. The reference table 30
has several storage elements 35 of a fixed size “w” 37 for the indexed access
to storage elements. Each used storage elen;lent, such as “a” 35A,
corresponds to an object 70A which is somewhere in an addressable space.
For instance object A 70A finds correspondence with storage element index
“a” 35A. However, object B 70B does not find immediate correspondence with
storage element index “b” — this is because object B 70B has been grouped
with object A 70A in order to conserve reference table 30 RAM 20 usage.
Note how object A 70A is still referenced in the reference table 30, and that its
reference 55A “0 | a” has an “offset” of 0. Object A 70A is therefore a “root”
object, harboring object references to its integral grouped objects, such as
object B 70B. Object B 70B is referenced in the format of the “root” object
70A, the address @B 90B of object B 70B is related to the address @A 90A
of “root” object A 70A by an “offset’. The “offset” 130 is the difference between

10

PCT/CA02/01008

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

the flash address @A 90A of object A and the flash address @B 90B of object
B. Note that all objects in the group 70A, 70B are in the same block 120 of
flash 80. The range of offset 130 is related to the size of block 120. For
instance, if flash 80 uses a block 120 of size 64K, then the offset can be
represented using 16 bits. The address of “root” object 70A is stored in
storage element 35A so that by knowing the index of a “root” object 70A in the
reference table 30 it is possible to obtain the address @A 90A of a “root”
object. Resolving the address @B 90B of object B 70B can still be related to
the reference table 30 via “root” object A 70A. By adding to the address of
reference table 30, @R 50 index “a” 35A (multiplied by the width 37) provides
the address of the storage element @(R+a*w) 60A (which contains the
address @A 90A of the “root” object A 70 A). From the “root” address @A
90A, by adding the “offset” 130.of object B’s 70B reference “offset | a” 65B in
the format of object A 70A, the resulting address @ (A+ offset) 60B provides
addréss @B 90B of the grouped object B 90B. Also shown is how each object
70A, 70B contains within its format its own reference 55A, 55B ultimately still
accessible via reference table 30 for “root” objects, and via “root” objects for
grouped objects.

With respect to the size of block 120 of flash 80, the number of
reference table Elements “n”, and the size of each reference table 30 storage
element “w” 37 can be adapted to suit particular needs. For example, if wis
32 bits, then a 32-bit addressable space may be uséd. If a flash block size of
64K is used, then 16 bits of object references 55A, 55B 65B may be used for
the offset and the remaining bits may be used as an index into the reference
table 30, as illustrated with the “offset | i” notation. The maximum number of
elements “n” depends on the number of object references desired, and
therefore imposes the range of the lower order bits representing the index “”
in object references. Of interest is using 16 bits for the index thereby providing
a 32-bit object reference, comparable in size to the addressable space
address size.

An example of potential RAM 20 savings is given next assuming
the values in the above paragraph. The example will illustrate the positive
combination of several of the techniques taught thus far. Consider an

11

10

15

20

25

30

WO 03/005203

embodiment within a mobile e-mail device. Assume that an Address object
instance might have 9 object references, whereas an Email object instance
might have 24 object references. To reference 5000 Address objects and
2000 Email objects simultaneously, without using grouped objects, then
100,000=(5000x10+2000x25) object references are needed. A minimum of
~400K of RAM would be required for a reference table. However, consider
the situation where each of the 5000 Address objects and each of the 2000
Email objects are “root” objects, and each of the 9 object references for each
Address object and each of the 24 object references for each Email object aré
grouped and “offset” from each group’s “root” Address or Email object. In this
grouped form only 7000=(5000+2000) object references for the “root” objects
need to be stored in the reference table. A minimum of ~ 28K of RAM would
be required for a reference table - this represents a significant 93% saving as
compared to the un-grouped case. If only 400K of RAM is actually available,
non-grouped 5000 Address objects and 2000 Email objects would quickly
cause a shortage of object references, whereas the scenario using grouped
objects leaves ample room to continue allocating new object references.
Furthermore, grouped objects may further conserve RAM 20 usage by being
persisted to storage, such as flash 80. Further still, by making the “root”
persisted objects usable directly from flash 80, Addresses and Emails can be
read and used directly from flash without consuming substantial RAM 20. If
flash 80 is block-writable, then when Addresses and Emails are grouped and
persisted, they can be considered “read-only”. In order to modify a “read-
only” object, the object is un-persisted and optionally un-grouped, modified,
and optionally grouped and persisted anew.

In situations where flash cannot be written to as easily as it is
read, then object grouping provides the additional indication that grouped
persistent object can be considered “read-only”.

It is within the scope of this invention that “root” objects reside in
RAM. The use of a “block” illustrates that the addresses within a “block” are
substantially proximate, regardless of whether the “block” is in RAM 20 or
storage 80. Removing the limitation of “block” writing-only flash 80 still allows
for the use of object grouping and un-grouping, and therefore the use of

12

PCT/CA02/01008

10

15

20

25

30

WO 03/005203 PCT/CA02/01008

grouping for all manner of objects is within the scope of this invention,
whether a grouped object is persisted, or is in RAM. An object need not be
persistable to be groupable, nor need be groupable to be persistable.

In reference to FIG. 15, a flowchart illustrating persisting objects
is described. At step 210, a persistable object’s 10 format is read from
memory 20. At step 220, a substantially similar persisted object 70 format is
written to storage 80. ‘

Optionally, at step 230 the reference table 30 is updated to

. reflect the change of address from memory address @Ar 40 to storage

address @Af 90. This makes the persisted object 70 useable in substantially
the same way as the persistable object 10, thereby allowing the persistable
object 10 to be destroyed and the persisted object 70 to transparently take its
place. |

Optionally, at step 300 the objects referenced in the format of
the persisted object 70 are persisted in substantially close proximity to the
persisted object, as is illustrated in further detail next in reference to FIG. 16.

In reference to FIG. 16, a flowchart illustrating object grouping
300 is described. At step 200, a persistable object 10B referenced in a root
object 70A is persisted, for instance according to the steps described in FIG.
15. The persisted object 70B is located substantially proximate to the root
object 70A, and offset 130 from it so as to facilitate grouping.

At step 310, the root object 70A reference is updated to point to
the persisted object of step 200, by using a reference which is offset from the
root object “offset | a”. Optionally, the reference of the persisted object 70B
within its format is also updated to “offset | a”. Optionally, at step 320 the
reference in reference table 30 to the grouped object 70B is removed. The
grouped object 70B is still useable via root object 70A.

In reference to FIG. 17, a flowchart illustrating un-persisting
objects 400 is described. At step 410, a persisted object’s 70 format is read
from storage. At step 420, a substantially similar persistable object 10 format
is written to memory 20. 7

Optionally, at step 430 the reference table 30 is updated to
reflect the change of address from storage address @Af 90 to memory

13

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

address @Ar 40. This makes the persistable object 10 useable in
substantially the same way as the persisted object 70, thereby allowing the
persisted object 70 to be destroyed and the persistable object 70 to
transparently take its place.

Optionally, at step 500 the objects referenced by offset, i.e.
grouped in the format of the persistable object 10 are ungrouped, as is
illustrated in further detail next in reference to FIG. 18.

In reference to FIG. 18, a flowchart illustrating object un-
grouping 500 will be described presently. At step 400, a grouped object 70B
referenced from a root object 70A is unpersisted, for instance according to the
steps of FIG. 17. After step 400, the grouped object 70B continues to exist
contemporaneously with the ungrouped 10B counterpart, as is illustrated by
the presence of the @ Af 90A reference in reference table 30. Ungrouping
may create new copies of all objects in the group, relocate all the references
between those objects, and return a new root object. Since reference to
grouped objects may still be in use when an object is ungrouped, grouped -
references continue to resolve properly to grouped objects for as long as the
references exist.

Optionally, at step 510, when it is ascertained that grouped
references are no longer in use, the grouped objects can be garbage
collected thereby recovering the resources used. This is illustrated by the
absence of reference @Af 90A in reference table 30. When garbage
collection has taken place, only the grouped dbj‘ect 70B is destroyed whereas
ungrouped object 10B may still exist. Garbage collection for root objectt 90A
and grouped object 90B can be triggered, for instance by explicitly setting all
grouped object references to null, and setting all root object references to null.

In reference to FIG. 19, a flowchart illustrating the re-population
of a reference table with persisted object references in one embodiment is
described. At step 610, a reference table 30 is created in memory 20. At step
620, at least one persisted object 70 reference is added to the reference table
30. Since each persisted object’s format containé its own reference, it is
possible to retrieve the reference directly from storage without having an entry
in the reference table.

14

WO 03/005203 PCT/CA02/01008

It will be appreciated that the above description relates to the
invention by way of example only. Many variations on the invention will be
obvious to those knowledgeable in the field, and such obvious variations are
within the scope of the invention as described and claimed, whether or not

expressly described.

15

WO 03/005203

10

15

20

25

30

It is claimed:

1. A system for handling an application's access of objects for use within a
mobile communications device, comprising:

random access memory (RAM) having storage locations
addressable within an addressable space, said RAM containing a persistable
first object having an address within the addressable space;

a non-volatile storage device having storage locations
addressable within an addressable space, said storage device containing a
persisted second object having an address within the storage device's
addressable space;

a reference table that contains the address of the persistable
first object contained in the RAM and the address of the persisted second
object contained in the storage device,

wherein the addresses of the persistable first object and the
persisted second object are obtained from the reference table so that the
persistable first object and persisted second object may be used by the
application.

2. The system of claim 1 wherein the persisted second object is unpersisted
into RAM, wherein format of the persisted second object and format of the
unpersisted second object are substantially similar.

3. The system of claim 1 wherein the persisted second object is in a usable
state by the application directly from the storage device.

4. The system of claim 3 wherein access time associated with access of the
persisted second object by the application via the reference table is at least
an order of magnitude less than access of an object having been persisted
through serialization.

16

PCT/CA02/01008

10

15

20

25

30

WO 03/005203 PCT/CA02/01008

5. The system of claim 1 wherein reading and writing of the persisted second
object occurs while the second persisted object is persisted.

6. The system of claim 1 wherein the address space associated with the
RAM overlaps at least a portion of the address space associated with the
storage device.

7. The system of claim 1 wherein the address of the persisted second object
is obtained via the reference table based upon an index associated with the
persisted second object.

8. The system of claim 7 wherein the address of the persistable first object is
obtained via the reference table based upon an index associated with the
persistable first object.

9. The system of claim 8 wherein the reference table contains storage
elements having a width,

wherein the addresses of the persistable first object and
persisted second object are obtained via the reference table based upon the
objects' respective indexes and upon the width of the storage elements.

10. The system of claim 1 wherein the persisted second object contains
within its object format a reference to itself.

11. The system of claim 10 wherein the persisted second object contains
within its object format a reference to a persisted third object.

12. The system of claim 11 wherein the persisted third object contains within
its object format a reference to the persisted second object.

13. The system of claim 10 wherein the persisted second object contains
within its object format a reference to the persistable first object.

17

10

15

20

25

30

WO 03/005203 PCT/CA02/01008

14. The system of claim 13 wherein the persistable first object contains within
its object format a reference to the persisted second object.

15. The system of claim 10 wherein the reference contained within the
persisted second object is used to repopulate address data within the
reference table.

16. The system of claim 1 wherein module objects are persisted in the
storage device and whose addresses are stored in the reference table,
wherein the addresses of the persisted module objects are obtained from the
reference table so that the persisted module objects may be used by the
application.

17. The system of claim 16 wherein the module objects hold target-linked
object classes.

18. The system of claim 17 wherein code for an object-oriented runtime is
executable directly from the storage device via the reference table.

19. The system of claim 1 wherein the application comprises' an e-mail
address-book application.

20. The system of claim 1 wherein the mobile communications device is a
personal digital assistant.

21. The system of claim 1 wherein the mobile communications device is a
cellular telephone.

22. The system of claim 1 wherein the mobile communications device is a
data communications device.

23. The system of claim 1 wherein the storage device is flash memory.

18

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

24, The system of claim 23 wherein writing to the flash memory is performed
in blocks, wherein a persisted object is unpersisted prior to modification, and
then the unpersisted object is persisted back to the flash memory.

25. The system of claim 1 wherein data stored in the storage device remains
when electrical power is removed from the storage device.

26. The system of claim 1 wherein the reference table contains a root object
reference to a root object contained in the storage device.

27. The system of claim 26 wherein at least one object is stored in the
storage device whose address is determined based upon an offset and the
address of the root object.

28. The system of claim 26 wherein a group of objects is stored in the
storage device whose addresses are determined based upon an offset and
the address of the root object.

29. The system of claim 28 wherein the reference table contains a reference
to objects in the group only with a reference to the root object of the group.

30. The system of claim 28 wherein the storage device comprises divisions of
blocks, wherein range of the offset is based upon size of the blocks.

31. The system of claim 28 wherein the storage device is block-writable,
wherein modification to the persisted second object is performed via a
persistable second object that had been generated based upon the persisted
second object.

32. The system of claim 31 wherein the persistable second object is
ungrouped prior to the modification.

33. The system of claim 28 wherein the root object resides in RAM.

19

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

34. The system of claim 28 further comprising:
grouping means for grouping objects contained in RAM.

35. The system of claim 28 wherein the grouping means groups objects
contained in RAM.

36. A method for handling an application's access of objects for use within a
mobile communications device, comprising the steps of:

reading a first persistable object from random access memory
(RAM);

writing the first persistable object into a non-volatile storage
device at an address so as to creafe a first persisted object;

storing the address in a reference table; and

obtaining the address from the reference table so that the first
persisted object may be retrieved from the storage device and used by the
application, said first persisted object being in a usable state by the
application directly from the storage device.

37. The method of claim 36 further comprising the steps of:

unpersisting the first persisted object into RAM at a second
address so as to create the first persistable object; and

updating the reference table to reflect that the first persistable
object is located at the second address, wherein format of the first persisted
object and format of the first unpersisted object are substantially similar.

38. The method of claim 37 further comprising the step of:

obtaining the second address from the reference table so that
the first persistable object may be retrieved from the RAM and used by the
application. “

39. The method of claim 38 further comprising the step of:

20

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

obtaining a third address from the reference table so that a
second persisted object may be retrieved from the storage device and used
by the application, said second persisted object being in a usable state by the
application directly from the storage device.

40. The method of claim 38 wherein access time associated with access of
the first persisted object by the application via the reference table is at least
an order of magnitude less than access of an object persisted through
serialization means.

41. The method of claim 36 wherein address space associated with the RAM
overlaps at least a portion of address space associated with the storage
device.

42. The method of claim 36 wherein the address of the first persisted object
is obtained via the reference table based upon an index associated with the
persisted object.

43. The method of claim 36 wherein the reference table contains address
storage elements having a width, A

wherein the address of the first persisted object is obtained via
the reference table based upon the first persisted objects' index and upon the
width of at least one of the storage elements.

44. The method of claim 36 wherein the first persisted object contains within
its object format a reference to itself.

45. The method of claim 44 wherein the first persisted object contains within
its object format a reference to a second persisted object.

46. The method of claim 44 wherein the reference contained within the first
persisted object is used to repopulate address data within the reference table.

21

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

47. The method of claim 36 further comprising the step of:

‘ persisting module objects in the storage device, said module
objects having addresses stored in the reference table, wherein the
addresses of the persisted module objects are obtained from the reference
table so that the persisted module objects may be used by the application.

48. The method of claim 47 wherein the module objects hold target-linked
object classes.

49. The method of claim 36 wherein the mobile communications device is a
personal digital assistant.

50. The method of claim 36 wherein the mobile communications device is a
cellular telephone.

51. The method of claim 36 wherein the mobile communications device is a
data communications device.

52. The method of claim 36 wherein the storage device is flash memory.
53. The method of claim 52 wherein writing to the flash memory is performed
in blocks, wherein a persisted object is unpersisted prior to modification, and

then the unpersisted object is persisted back to the flash memory.

54. The method of claim 36 wherein data stored in the storage device
remains when electrical power is removed from the storage device.

-55. The method of claim 36 wherein the reference table contains a root object

reference to a root object contained in the storage device.

56. The method of claim 55 wherein at least one object is stored in the
storage device whose address is determined based upon an offset and the
address of the root object.

22

WO 03/005203 PCT/CA02/01008

10

15

20

25

30

57. The method of claim 55 wherein a group of objects is persisted in the
storage device and whose addresses are determined based upon an offset
and the address of the root object.

58. The method of claim 57 wherein the reference table contains a reference
to objects in a group only with a reference to the root object of the group.

59. The method of claim 57 wherein the storage device comprises divisions
of blocks, wherein range of the offset is based upon size of the blocks.

60. The method of claim 57 wherein the root object resides in RAM.

61. The method of claim 57 furthér comprising the steps of:
unpersisting the group of objects; and
performing garbage collection upon at least one of the
unpersisted object. ”

62. A system for handling an appliéation's access of objects for use within a
mobile communications device, comprising:

a non-volatile storage device having storage locations
addressable within an addressable space, said storage device containing a
persisted object having an address within the addressable space;

a reference table that contains the address of the persisted
object contained in the storage device,

wherein the address of the persisted object is obtained from the
reference table so that the persisted object may be used by the application,
said persisted object being in a usable state by the application directly from
the storage device.

63. A system for handling an application's access of objects, comprising:

23

WO 03/005203 PCT/CA02/01008

10

15

storage means having storage locations addressable within an
addressable space, said storage means containing an object having an
address within the addressable space;

a reference table that contains the address of the object
contained in the storage means,

wherein the address of the object is obtained from the reference
table so that the object may be used by the application, said object being in a
usable state by the application directly from the storage means.

64. The system of claim 63 wherein the storage means comprises non-
volatile storage means.

" 65. The system of claim 64 wherein the storage means comprises volatile

storage means.

66. The system of claim 63 wherein the storage means comprises volatile

storage means.

24

PCT/CA02/01008

119

I "OId 3I0IAAC
SNOILYOINNININOD
I190N

H ~~9

—-—- —1 NOILVYOI'lddV |«

WO 03/005203

y . ~. /. N P
/ v \
. . | I1gvL g 103rdo
| 103rd0 e
\ TIAVLSISHId) JONIHI4TY @31sISHad
voL—"- .7 o€ g0L
HaIMOd |—> VY | JOVHOLS
. . N
N~y N—0z2 ct
30VdS

31vSSIHAAY —g s

PCT/CA02/01008

WO 03/005203

2/19

125

SS3ayaav

S.103rgo d3dis3ad

—g¢

S3SS3HAAv
193rao

¢ Old

J1avi
d0N3d3434

- d3dIs3d

X3ANI 1O3rdo w

—0g

—

N—9¢

PCT/CA02/01008

WO 03/005203

3/19

€ 9Old

g 104rdo

,— VOl

Vv 103rdo

/[~ <ov

Y®

319V1L
JON3d3434

0€ —

-

PCT/CA02/01008

WO 03/005203

4/19

SaLnaidLly
H3H1O

a0l

H3H10

q=d0ld3d

S3alNndidLlLy

¥ OId

&

7743 Skl e=434 SIHL vol
955 d v
— X ygg X
m| T €ov <| T vor
® © N
q e 0
A / 7 /| m
z age s vae I8
¥ +
= = T1gvL IONIHI43H
@ ® Y,
[/ - o0g

PCT/CA02/01008

WO 03/005203

5/19

G "Old

a103rao

a0.

d06

v 103rao

V0.

— V06

319V.L
3ON3H343d

PCT/CA02/01008

WO 03/005203

6/19

g=434
g
gss

S3LNdidLLY
d3H10

a04

SIHL

a99
vas

~—g06

9

a=g0L43y
=434 SIHL

Y

old

@A

©

0
Ho
M (

LS
319dV.L 3ON3H343Y)

/om

PCT/CA02/01008

WO 03/005203

7/19

—d0.

g 103rdo

HSV14,

- 906

L "Old

— VOl

v 103rdo

“ vOovy

L — 0€

J71av.L
JON3H3434

0g

WYY

PCT/CA02/01008

WO 03/005203

8/19

a0/ w._u_
S3INGIHLLY S3LNGIHLLY O
H3IHLO HIHLO
d=9g 0.l 434 voi
o_u“_mm SIHL e L
ass g59 v
N vas X
o —8% <[~ vor
B S J
q o ,
M
= “-age = -vee
o = L
C k:
] =} 3719V.1 3ONIHI43Y)
= s E/|<8 ~ .

PCT/CA02/01008

WO 03/005203

9/19

¢ M001d

1 MOO1d

N-o0z1

HSV14)

6 'Old

j
) VOl
7 .
vioargo Y o
vov J1gvL
L — g0l JON3HI4TY
g 103rd0 A@
S
a0y
L Ay
N 02

PCT/CA02/01008

WO 03/005203

10/19

S3lNdidlly

a0l

"3HLO
_ alo=9 0L 434 oL ©Id
dlo=434 SIHL elo=134 SIHL ;
ges X
q e 0
> ~ M
@ N_gce @ N—vge ,
‘o © L&
+ +
= = 319v1 3ON3H343Y)
- g09 - vo9 0)
Y
SINENERE
379v1 JONIHI4TY

40 H3adINNN =u

Ho

PCT/CA02/01008

WO 03/005203

11/19

ONIdNOYHD
- L1 @_H_ 30IA3IA
SNOILVOINNWINOD
TGON /lm
SdNoYD 0 SdNOH9
\ / !-Iiv NOILLYOITddY \ /
i \\.VJ}./ Ny
4 \ 7 ?om_q,mo \ 7/ \ \ (Lo3argo / (193rg0 (193rgo
.\ .\ .\ zwwmw_mv_o [Lood) Tiave | [1o0w) 100H)
i | ... v103r80 [*7| goN3y34ad g 103rdo W 103rgo
AL I = | BT W W 31gvL galsisHad a31SIsy3ad
\\\ -sisyad ,/ \\'\ _Sisdad ./
/,./Vurll.\ N .7 /I
<ot Hv s3ss3Haav cot
193rg0 LOOH
HaIMOd |—» NvYd IOVHOLS -
~—z
N—vi

3J0VdS 319vSS3HAav

PCT/CA02/01008

WO 03/005203

12119

21n1onJ1s ejep a|gel souaialel dnoib- g} 9|4

\INO_.

Ss103rdo
40 dNOYHO LSHIH

SS3HAaav
S.103rgo a3dis3da

N—o1}

-mmmma% Emao'
1OOH 1SHIH

193rdo

1004

801

31dv.1 3ON3H343d

\—og

X3ANI
193rdo 1004
S.L03rdo d3dlIs:

N—0901

PCT/CA02/01008

WO 03/005203

13/19

a0, —
0Ek —

VO.L —

¢ X004

1 00714

W g 103rao

~—021

oy
103rg0
a

®
(c

HSV 14

/om

€L Old

— d06

— V06

31av.L

3ON3IH343d

0S

PCT/CA02/01008

WO 03/005203

14/19

ellesjo=434 SIHL

a99

S3aLNgidlly
H3H10

d

a0.

S3LNgGIHLLY 1 Ol
HIH1O
do@ [((1esyo+v)® eliosyo = g O 434
259 — _ e|0=434 SIHL voz
qo6 — €09 v
N
S I
1-u e 0 (
HO
M
—gee S v
E /€
+
i 378V JONIHILIH)
®
PR N og

V09

J

<
SINENERE!
319v.L 3ONIHI43Y
40 HIanNN = u

PCT/CA02/01008

WO 03/005203

15/19

anN3

GlL 'Old
Wo=e
T1avl
S3IONIHI4TH 193190 FONIH3434 oT:
0og —] F1avLSISHId dnoHO o0e—"
0S

% oz —"]
ssayaav ,
—P»

oez—| OLINIOd OL 378vL -

JONIHI43H I1vadn AHOINE

.2, 103rdo 1VINHOL 103rg0 0€ —\
aaLsISH3d <«———1 @3I1SISHAd UV TINIS -
— AH,H ATIVLINVLSENS 3LIHM vl
0L g 0gg —" » JONIHIITY
SOVHOLS m|©\ |
1YIWNHO4 103rg0 e, 10argo K09
/ 08 olz—"1 319visisy3d av3ad - 319V.LSISHId
)
or—" o

AHOWNS

PCT/CA02/01008

WO 03/005203

16/19

d0. —~_

«dw 103ra0
a3.1sisy3d
aadnodd

elo=9q 43y
__.m__ I—lom —Jmo
100H

V0. I\

V06

«dn LO3r90
d3.Lsisy3ad

qlo =g 43y
.2, 103rg0
1004

YOI —
V06

3OVHOLS

. vo=e
I7avL
3JONIHI4TH
, HO
om|\\,.
o NEISERELS 05
103rg0 a3dnoys IAOWIY >
omml\
oz—"] AHON:
193790 .LOOH. /08
OL 135440 S3ON34H343Y e o
103rg0 a3.1SIsyad 31vadn Vo=t lg0=q
J1avl
+ JONIYIATY (
193rg0 LOOoY
OL ILVAIXOHd ATIVILNVLISNS fe— mu_wﬂwwm__mm_w q
193rgo aIONIHI43Y 1SISHAd .
190
mofl\\
a0y
om.\\\ AHOWN:

PCT/CA02/01008

WO 03/005203

17/19

JAROIE S 08—\
IYyo=e
Tavl o
SIONIYI43H 103rg0 JON3HIJTY .
Q3LSISHAd dNOYDHNN H®
|, d3lsisyad
Vo=¢e ssIdaav)
J1avL 0S OL INIOd OL 378Vl > o1 VO
FONIH343d JONIHI4TH 31vaAdn % o
%@ 02 AHOW:
osy — A
8. 103rg0
Iigvisisyad LYWHO4 103rd0
. <«— 31av.SISH3d UV TINIS
—7 ATIVILNY.LSENS TLIHM
Ot ob
AHOWAN 0z — A
0L —
0z—" <
1VINHOA
<«—) &, 103rd0
103rg0 g3LSISHId avay Ay
N®
oy —" 06
08 _/ JDHVHO,

ooV

@)

PCT/CA02/01008

WO 03/005203

18/19

d0.L /

-%Q:
103rdo a06

aidnodd n
: |~

Jefiesyo = q 43y
4B, 1203190
looH

V0. I\

V06

dOVHOLS

VoL~
19]0=9 434 81 OI
A8, 103rgao an3
a3adNOYDNN
A@ q
~— OF 4
0¢ ~_ v 015
IOVaHvO oL
Javl _—
JONIHI4TY |
A 1g0=9 434
S N Om __‘_.m.. :_IOM—JmO O
: a3dNOYHNN
__._Q_. Fomqamo ‘_<©
a3dNOHHNN 0e
~_ ? X o <
g0l T—gov Vo=
19@=19‘'dy @=le
AHOW3N JavL 0¢
< 0z JONIHI4TY b7
| 123rao
- Q3dNOYH <) g, 103rd0
N 1SISH3IANN A3adNOYHNN
~—og1 |\ .
005 0oy — = |\mov
AHOWN3
/ 08 14VIS

PCT/CA02/01008

WO 03/005203

19/19

61 "Old

an3
. €06 vo=e
193090 . T1avlL
. gaLsisHad 3ONIYI4TH 3ONIHI4TY
] 193rq0 a3Lsisyad —
= INO 1SYIT 1V aay 0e |
029 — 0z
1004 el
g31siSH3d
YOL I\ V06
IOVHOLS
379V IONIHI43Y
0a—" 31v3H0
> Favl
. =To \ETERE
|\ 019
009 A — AN@H
1HVIS 02 0S —yowan

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

