05/006183 A2 I 1K 0 OO0 ORI OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

20 January 2005 (20.01.2005)

(10) International Publication Number

WO 2005/006183 A2

(51) International Patent Classification’: GOGF 9/30
(21) International Application Number:
PCT/US2004/020601

(22) International Filing Date: 24 June 2004 (24.06.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/611,344 30 June 2003 (30.06.2003) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors: MACY, William, Jr.; 151 Melville Avenue,
Palo Alto, CA 94301 (US). DEBES, Eric; 1365 Lex-
ington Street, Santa Clara, CA 95052 (US). ROUSSEL,
Patrice; 2034 NE 37th Avenue, Portland, OR 97212 (US).
NGUYEN, Huy; 16909 Isle Of Man Road, Pflugerville,
TX 78660 (US).

(74) Agent: VINCENT, Lester, J.; Blakely Sokoloff Tayor &
Zafman, 12400 Wilshire Boulevard, 7th Floor, Los Ange-
les, CA 90025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR SHUFFLING DATA

& (57) Abstract: Method, apparatus, and program means for shuffling data. The method of one embodiment comprises receiving a
first operand having a set of L. data elements and a second operand having a set of L. control elements. For each control element, data
from a first operand data element designated by the individual control element is shuffled to an associated resultant data element
position if its flush to zero field is not set and a zero is placed into the associated resultant data element position if its flush to zero

field is not set.

10

15

20

WO 2005/006183 PCT/US2004/020601

METHOD AND APPARATUS FOR SHUFFLING DATA

[0001] This patent application is a Continuation In Part of U.S. Patent Application No.
09/952,891, entitled “An Apparatus And Method For Efficient Filtering And Convolution
Of Content Data”, filed October 29, 2001.

[0002] The patent application is related to the following: co-pending U.S. Patent
ApplicationNo. _/ , ,entitled “Method And Apparatus For Parallel Table Lookup
Using SIMD Instructions” filed on June 30, 2003; and co-pending U.S. Patent Application
No. _/_,_, entitled “Method And Apparatus For Rearranging Data Between Multiple

Registers” filed on June 30, 2003.

FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of microprocessors and
computer systems. More particularly, the present invention relates to a method and
apparatus for shuffling data.

BACKGROUND OF THE INVENTION

[0004] Computer systems have become increasingly pervasive in our society. The
processing capabilities of computers have increased the efficiency and productivity of
workers in a wide spectrum of professions. As the costs of purchasing and owning a
computer continues to drop, more and more consumers have been able to take advantage
of newer and faster machines. Furthermore, many people enjoy the use of notebook
computers because of the freedom. Mobile computers allow users to easily transport their
data and work with them as they leave the office or travel. This scenario is quite familiar

with marketing staff, corporafe executives, and even students.

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0005] As processor technology advances, newer software code is also being
generated to run on machines with these processors. Users generally expect and demand
higher performance from their computers regardless of the type of software being used.
One such issue can arise from the kinds of instructions and operations that are actually
being performed within the processor. Certain types of operations require more time to
complete based on the complexity of the operations and/or type of circuitry needed. This
provides an opportunity to optimize the way certain complex operations are executed
inside the processor.

[0006] Media applications have been driving microprocessor development for more
than a decade. In fact, most computing upgrades in recent years have been driven by
media applications. These upgrades have predominantly occurred within consumer
segments, although significant advances have also been seen in enterprise segments for
entertainment enhanced education and communication purposes. Nevertheless, future
media applications will require even higher computational requirements. As a result,
tomorrow’s personal computing experience will be even richer in audio-visual effects, as
well as being easier to use, and more importantly, computing will merge with
communications.

[0007] Accordingly, the display of images, as well as playback of audio and video 7
data, which is collectively referred to as content, have become increasingly popular
applications for current computing devices. Filtering and convolution operations are some
of the most common operations performed on content data, such as image audio and video
data. Such operations are computationally intensive, but offer a high level of data
parallelism that can be exploited through an efficient implementation using various data
storage devices, such as for example, single instruction multiple data (SIMD) registers. A

number of current architectures also require unnecessary data type changes which
2

10

15

20

25

WO 2005/006183 PCT/US2004/020601

minimizes instruction throughput and significantly increases the number of clock cycles

required to order data for arithmetic operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example and not limitations in
the figures of the accompanying drawings, in which like references indicate similar
elements, and in which:

[0009] . Figure 1A is a block diagram of a computer system formed with a processor
that includes execution units to execute an instruction for shuffling data in accordance
with one embodiment of the present invention;

[0010] Figure 1B is a block diagram of another exemplary computer system in
accordance with an alternative embodiment of the present invention;

[0011]) Figure 1C is a block diagram of yet another exemplary computer system in
accordance with another alternative embodiment of the present invention;

[0012] Figure 2 is a block diagram of the micro-architecture for a processor of one
embodiment that includes logic circuits to perform data shuffle operations in accordance
with the present invention;

[0013] Figures 3A-C are illustrations of shuffle masks according t6 various
embodiments of the present invention;

[0014] Figure 4A is an illustration of various packed data type representations in
multimedia registers according to one embodiment of the present invention;

[0015] Figure 4B illustrates packed data-types in accordance with an alternative
embodiment;

[0016] Figure 4C illustrates one embodiment of an operation encoding (opcode)

format for a shuffle instruction;

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0017] Figure 4D illustrates an alternative operation encoding format;

[0018] Figure 4E illustrates yet another alternative operation encoding format;

[0019] Figure 5 is a block diagram of one embodiment of logic to perform a shuffle
operation on a data operand based on a shuffle mask in accordance with the present
invention;

[0020] Figure 6 is a block diagram of one embodiment of a circuit for performing a
data shufﬂing operation in accordance with the present invention;

[0021] Figure 7 illustrates the operation of a data shuffle on byte wide data elements
in accordance with one embodiment of the present invention;

[0022] Figure 8 illustrates the operation of a data shuffle operation on word wide data
elements in accordance with another embodiment of the present invention;

[0023] Figure 9 is a flow chart illustrating one embodiment of a method to shuffle
data;

[0024] Figures 10A-H illustrate the operation of a parallel table lookup algorithm
using SIMD instructions;

[0025] Figure 11 is a flow chart illustrating one embodiment of a method to perform a
table lookup using SIMD instructions;

[0026] Figure 12 is a flow chart illustrating another embodiment of a method to
perform a table lookup;

[0027] Figures 13A-C illustrates an algorithm for rearranging data between multiple
registers;

[0028] Figure 14 is a flow chart illustrating one embodiment of a method to rearrange
data between multiple registers;

[0029] Figures 15A-K illustrates an algorithm for shuffling data between multiple

registers to generate interleaved data; and

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0030] Figure 16 is a flow chart illustrating one embodiment of a method to shuffle

data between multiple registers to generate interleaved data.

DETAILED DESCRIPTION

[0031] A method and apparatus for shuffling data is disclosed. A method and
apparatus for parallel table lookup using SIMD instructions are also described. A method
and apparatus for rearranging data between multiple registers is also disclosed. The
embodiments described herein are described in the context of a microprocessor, but are
not so limited. Although the following embodiments are described with reference to a
processor, other embodiments are applicable to other types of integrated circuits and logic
devices. The same techniques and teachings of the present invention can easily be applied
to other types of circuits or semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of the present invention are
applicable to any processor or machine that performs data manipulations. However, the
present invention is not limited to processors or machines that perform 256 bit, 128 bit, 64
bit, 32 bit, or 16 bit data operations and can be applied to any processor and machine in
which shuffling of data is needed.

[0032] In the following description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention.
One of ordinary skill in the art, however, will appreciate that these specific details are not
necessary in order to practice the present invention. In other instances, well known
electrical structures and circuits have not been set forth in particular detail in order to not
necessarily obscure the present invention. In addition, the following description provides
examples, and the accompanying drawings show various examples for the purposes of

illustration. However, these examples should not be construed in a limiting sense as they
5

10

15

20

25

WO 2005/006183 PCT/US2004/020601

are merely intended to provide examples of the present invention rather than to provide an
exhaustive list of all possible implementations of the present invention.

[0033] In an embodiment, the methods of the present invention are embodied in
machine-executable instructions. The instructions can be used to cause a general-purpose
or special-purpose processor that is programmed with the instructions to perform the steps
of the present invention. Alternatively, the steps of the present invention might be
performed by specific hardware components that contain hardwired logic for performing
the steps, or by any combination of programmed computer components and custom
hardware components.

[0034] Although the below examples describe instruction handling and distribution in
the context of execution units and logic circuits, other embodiments of the present
invention can be accomplished by way of software. The present invention may be
provided as a computer program product or software which may include a machine or
computer-readable medium having stored thereon instructions which may be used to
program a computer (or other electronic devices) to perform a process according to the
present invention. Such software can be stored within a memory in the system. Similarly,
the code can be distributed via a network or by way of other computer readable media.
Thus a machine-readable medium may include any mechanism for storing or transmitting
information in a form readable by a machine (e.g., a computer), but is not limited to,
floppy diskettes, optical disks, Compact Disc, Read-Only Memory (CD-ROMs), and
magneto-optical disks, Read-Only Memory (ROMs), Random Access Memory (RAM),
Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable
Programmable Read-Only Memory (EEPROM), magnetic or optical cards, flash memory,
a transmission over the Internet, electrical, optical, acoustical or other forms of propagated

signals (e.g., carrier waves, infrared signals, digital signals, etc.) or the like.
6

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0035] Accordingly, the computer-readable medium includes any type of
media/machine-readable medium suitable for storing or transmitting electronic
instructions or information in a form readable by a machine (e.g., a computer). Moreover,
the present invention may also be downloaded as a computer program product. As such,
the program may be transferred from a remote computer (e.g., a server) to a requesting
computer (e.g., a client). The transfer of the program may be by way of electrical, optical,
acoustical, or other forms of data signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., a modem, network connection or the like).

[0036] Furthermore, embodiments of integrated circuit designs in accordance with the
present inventions can be communicated or transferred in electronic form as a database on
a tape or other machine readable media. For example, the electronic form of an integrated |
circuit design of a processor in one embodiment can be processed or manufactured via a
fab to obtain a computer component. In another instance, an integrated circuit design in
electronic form can be processed by a machine to simulate a computer component. Thus
the circuit layout plans and/or designs of processors in some embodiments can be
distributed via machine readable mediums or embodied thereon for fabrication into a
circuit or for simulation of an integrated circuit which, when processed by a machine,
simulates a processor. A machine readable medium is also capable of storing data
representing predetermined functions in accordance with the present invention in other
embodiments.

[0037] In modern processors, a number of different execution units are used to process
and execute a variety of code and instructions. Not all instructions are created equal as
some are quicker to complete while others can take an enormous number of clock cycles.
The faster the throughput of instructions, the better the overall performance of the

processor. Thus it would be advantageous to have as many instructions execute as fast as
7

10

15

20

25

WO 2005/006183 PCT/US2004/020601

possible. However, there are certain instructions that have greater complexity and require
more in terms of execution time and processor resources. For example, there are floating
point instructions, load/store operations, data moves, etc.

[0038] As more and more computer systems are used in internet and multimedia
applications, additional processor support has been introduced over time. For instance,
Single Instruction, Multiple Data (SIMD) integer/floating point instructions and Streaming
SIMD Extensions (SSE) are instructions that reduce the overall number of instructions
required to execute a particular program task. These instructions can speed up software
performance by operating on multiple data elements in parallel. As a result, performance
gains can be achieved in a wide range of applications including video, speech, and
image/photo processing. The implementation of SIMD instructions in microprocessors
and similar types of logic circuit usually involve a number of issues. Furthermore, the
complexity of SIMD operations often leads to a need for additional circuitry in order to
correctly process and manipulate the data.

[0039] Embodiments of the present invention provide a way to implement a packed
byte shuffle instruction with a flush to zero capability as an algorithm that makes use of
SIMD related hardware. For one embodiment, the algorithm is based on the concept of
shuffling data from a particular register or memory location based on the values of a
control mask for each data element position. Embodiments of a packed byte shuffle can
be used to reduce the number of instructions required in many different applications
that rearrange data. A packed byte shuffle instruction can also be used for any
application with unaligned loads. Embodiments of this shuffle instruction can be
used for filtering to arrange data for efficient multiply-accumulate operations.
Similarly, a packed shuffle instruction can be used in video and encryption

applications for ordering data and small lookup tables. This instruction can be used
8

10

15

20

25

WO 2005/006183 PCT/US2004/020601

to mix data from two or more registers. Thus embodiments of a packed shuffle with a
flush to zero capability algorithm in accordance with the present invention can be
implemented in a processor to support SIMD operations efficiently without seriously
compromising overall performance.

[0040] Embodiments of the present invention provide a packed data shuffle instruction
(PSHUFB) with a flush to zero capability for efficiently ordering and arranging data of
any size . In one embodiment, data is shuffled or rearranged in a register with byte
granularity. The byte shuffle operation orders data sizes, which are larger than bytes, by
maintaining the relative position of bytes within the larger data during the shuffle
operation. In addition, the byte shuffle operation can change the relative position of data
in an SIMD register and can also duplicate data. This PSHUFB instruction shuffles
bytes from a first source register in accordance to the contents of shuffle control
bytes in a second source register. Although the instruction permutes the data, the
shuffle mask is left unaffected and unchanged during this shuffle operation of this
embodiment. The mnemonic for the one implementation is “PSHUFB register 1,
register 2 / memory”, wherein the first and second operands are SIMD registers.
However, the register of the second operand can also be replaced with a memory
location. The first operand includes the source data for shuffling. For this
embodiment, the register for the first operand is also the destination register.
Embodiments in accordance to the present invention also include a capability of
setting selected bytes to zero in addition to changing their position.

[0041] The second operand includes the set of shuffle control mask bytes to
designate the shuffle pattern. The number of bits used to select a source data element
is log, of the number of data elements in the source operand. For instance, the

number of bytes in a 128 bit register embodiment is sixteen. The log, of sixteen is
9

10

15

20

25

30

WO 2005/006183 PCT/US2004/020601

four. Thus four bits, or a nibble, is needed. The [3:0] index in the code below refers
to the four bits. If the most significant bit (MSB), bit 7 in this embodiment, of the shuffle
control byte is set, a constant zero is written in the result byte. If the least significant
nibble of byte I of the second operand, the mask set, contains the integer J, then the shuffle
instruction causes the J™ byte of the first source register to be copied to the " byte
position of the destination register. Below is example pseudo-code for one embodiment of
a packed byte shuffle operation on 128 bit operands:
Fori=0to 15 {
if (SRC2[(i*8)+7]1==1)
DEST[(i*8)+7...(i*8)+0] € 0
else
index[3:0] € SRC2[(i*8)+3 ... SRC2(i*8)-+0]
DEST[(i*8)+7...(i*8)+0] < SRC1/DEST[(index*8+7)... (index*8+0)]
[0042] Similarly, this is example pseudo-code for another embodiment of a packed
byte shuffle operation on 64 bit operands:
Fori=0to 7 {
if (SRC2[(i * 8)+7]==1)
DEST[(i*8)+7...(i*8)+0] €« 0
else
index[2:0] € SRC2[(i*8)+2 ... SRC2(i*8)+0]

DESTI[(i*8)+7...(i*8)+0] €« SRCI/DEST[(index*8+7)... (index*8+0)]
}

Note that in this 64 bit register embodiment, the lower three bits of the mask are used as
there are eight bytes in a 64 bit register. The log, of eight is three. The [2:0] index in the
code above refers to the three bits. In alternative embodiments, the number of bits in a
mask can vary to accommodate the number of data elements available in the source data.
For example, a mask with lower five bits is needed to select a data element in a 256 bit
register.

[0043] Presently, it is somewhat difficult and tedious to rearrange data in a SIMD

register. Some algorithms require more instructions to arrange data for arithmetic
10

10

15

20

25

WO 2005/006183 PCT/US2004/020601

operations than the actual number of instructions to execute those operations. By
implementing embodiments of a packed byte shuffle instruction in accordance with
the present invention, the number of instructions needed to achieve data
rearrangement can be drastically reduced. For example, one embodiment of a packed
byte shuffle instruction can broadcast a byte of data to all positions of a 128 bit
register. Broadcasting data in a register is often used in filtering applications where
a single data item is multiplied by many coefficients. Without this instruction, the
data byte would have to be filtered from its source and shifted to the lowest byte
position. Then, that single byte would have to be duplicated first as a byte, then that
those two bytes duplicated again to form a doubleword, and that doubleword
duplicated to finally form a quadword. All these operations can be replaced with a
single packed shuffle instruction.

[0044] Similarly, the reversing of all the bytes in a 128 bit register, such as in
changing between big endian and little endian formats, can be easily performed with
a single packed shuffle instruction. Whereas even these fairly simple patterns require
a number of instructions if a packed shuffle instruction were not used, complex or
random patterns require even more inefficient instruction routines. The most straight
forward solution to rearrange random bytes in a SIMD register is to write them to a
buffer and then use integer byte reads/writes to rearrange them and read them back
into a SIMD register. All these data processing would require a lengthy code
sequence, while a single packed shuffle instructions can suffice. By reducing the
number of instructions required, the number of clock cycles needed to produce the
same result is greatly reduced. Embodiments of the present invention also use shuffle
instructions to access multiple values in a table with a SIMD instructions. Even in the

case where the a table is twice the size of a register, algorithms in accordance with the
11

10

15

20

25

WO 2005/006183 PCT/US2004/020601

present invention allow for accesses to data elements at a faster rate than the one data
element per instruction as with integer operations.

[0045] Figure 1A is a block diagram of an exemplary computer system formed with a
processor that includes execution units to execute an instruction for shuffling data in
accordance with one embodiment of the present invention. System 100 includes a
component, such as a processor 102 to employ execution units including logic to perform
algorithms for shuffling data, in accordance with the present invention, such as in the
embodiment described herein. System 100 is representative of processing systems based
on the PENTIUM® IIL, PENTIUM?® 4, Celeron®, Xeon™, Itanium®, XScale™ and/or
StrongARM™ microprocessors available from Intel Corporation of Santa Clara,
California, although other systems (including PCs having other microprocessors,
engineering workstations, set-top boxes and the like) may also be used. In one
embodiment, sample system 100 may execute a version of the WINDOWS™ operating
system available from Microsoft Corporation of Redmond, Washington, although other
operating systems (UNIX and Linux for example), embedded software, and/or graphical
user interfaces, may also be used. Thus, the present invention is not limited to any specific
combination of hardware circuitry and software.

[0046] The present enhancement is not limited to computer systems. Alternative
embodiments of the present invention can be used in other devices such as handheld
devices and embedded applications. Some examples of handheld devices include cellular
phones, Internet Protocol devices, digital cameras, personal digital assistants (PDAs), and
handheld PCs. Embedded applications can include a micro controller, a digital signal
processor (DSP), system on a chip, network computers (NetPC), set-top boxes, network
hubs, wide area network (WAN) switches, or any other system that performs integer

shuffle operations on operands. Furthermore, some architectures have been implemented
12

10

15

20

WO 2005/006183 PCT/US2004/020601

to enable instructions to operate on several data simultaneously to improve the efficiency
of multimedia applications. As the type and volume of data increases, computers and their
processors have to be enhanced to manipulate data in more efficient methods.

[0047] Figure 1A is a block diagram of a computer system 100 formed with a
processor 102 that includes one or more execution units 108 to perform a data shuffle
algorithm in accordance with the present invention. The present embodiment is described
in the context of a single processor desktop or server system, but alternative embodiments
can be included in a multiprocessor system. System 100 is an example of a hub
architecture. The computer system 100 includes a processor 102 to process data signals.
The processor 102 can be a complex instruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a very long instruction word
(VLIW) microprocessor, a processor implementing a combination of instruction sets, or
any other processor device, such as a digital signal processor, for example. The processor
102 is coupled to a processor bus 110 that can transmit data signals between the processor
102 and other components in the system 100. The elements of system 100 perform their
conventional functions that are well known to those familiar with the art.

[0048] In one embodiment, the processor 102 includes a Level 1 (L1) internal cache
memory 104. Depending on the architecture, the processor 102 can have a single internal
cache or multiple levels of internal cache. Alternatively, in another embodiment, the
cache memory can reside external to the processor 102. Other embodiments can also
include a combination of both internal and external caches depending on the particular
implementation and needs. Register file 106 can store different types of data in various
registers including integer registers, floating point registers, status registers, and

instruction pointer register.

13

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0049] Execution unit 108, including logic to perform integer and floating point
operations, also resides in the processor 102. The processor 102 also includes a microcode
(ucode) ROM that stores microcode for certain macroinstructions. For this embodiment,
execution unit 108 includes logic to handle a packed instruction set 109. In one
embodiment, the packed instruction set 109 includes a packed shuffle instruction for
organizing data. By including the packed instruction set 109 in the instruction set of a
general-purpose processor 102, along with associated circuitry to execute the instructions,
the operations used by many multimedia applications may be performed using packed data
in a general-purpose processor 102. Thus, many multimedia applications can be
accelerated and executed more efficiently by using the full width of a processor’s data bus
for performing operations on packed data. This can eliminate the need to transfer smaller
units of data across the processor’s data bus to perform one or more operations one data
element at a time.

[0050] Alternate embodiments of an execution unit 108 can also be used in micro
controllers, embedded processors, graphics devices, DSPs, and other types of logic
circuits. System 100 includes a memory 120. Memory 120 can be a dynamic random
access memory (DRAM) device, a static random access memory (SRAM) device, flash
memory device, or other memory device. Memory 120 can store instructions and/or data
represented by data signals that can be executed by the processor 102.

[0051] A system logic chip 116 is coupled to the processor bus 110 and memory 120.
The system logic chip 116 in the illustrated embodiment is a memory controller hub
(MCH). The processor 102 can communicate to the MCH 116 via a processor bus 110.
The MCH 116 provides a high bandwidth memory path 118 to memory 120 for instruction
and data storage and for storage of graphics commands, data and textures. The MCH 116

is to direct data signals between the processor 102, memory 120, and other components in
14

10

15

20

25

WO 2005/006183 PCT/US2004/020601

the system 100 and to bridge the data signals between processor bus 110, memory 120,
and system I/O 122. In some embodiments, the system logic chip 116 can provide a
graphics port for coupling to a graphics controller 112. The MCH 116 is coupled to
memory 120 through a memory interface 118. The graphics card 112 is coupled to the
MCH 116 through an Accelerated Graphics Port (AGP) interconnect 114.

[0052] System 100 uses a proprietary hub interface bus 122 to couple the MCH 116 to
the I/O controller hub (ICH) 130. The ICH 130 provides direct connections to some I/O
devices via a local I/O bus. The local I/O bus is a high-speed 1/O bus for connecting
peripherals to the memory 120, chipset, and processor 102. Some examples are the audio
controller, firmware hub (flash BIOS) 128, wireléss transceiver 126, data storage 124,
legacy 1/0 controller containing user input and keyboard interfaces, a serial expansion port
such as Universal Serial Bus (USB), and a network controller 134. The data storage
device 124 can comprise a hard disk drive, a floppy disk drive, a CD-ROM device, a flash
memory device, or other mass storage device.

[0053] For another embodiment of a system, an execution unit to execute an algorithm
with a shuffle instruction can be used with a system on a chip. One embodiment of a
system on a chip comprises of a processor and a memory. The memory for one such
system is a flash memory. The flash memory can be located on the same die as the
processor and other system components. Additionally, other logic blocks such as a
memory controller or graphics controller can also be located on a system on a chip.

[0054] Figure 1B illustrates an alternative embodiment of a data processing system
140 which implements the principles of the present inventioﬁ. One embodiment of data
processing system 140 is an Intel® Personal Internet Client Architecture (Intel® PCA)
applications processors with Intel XScale™ technology (as described on the world-wide

web at developer.intel.com). It will be readily appreciated by one of skill in the art that
15

10

15

20

25

WO 2005/006183 PCT/US2004/020601

the embodiments described herein can be used with alternative processing systems without
departure from the scope of the invention.

[0055] Computer system 140 comprises a processing core 159 capable of performing
SIMD operations including a shuffle. For one embodiment, processing core 159
represents a processing unit of any type of architecture, including but not limited to a
CISC, a RISC or a VLIW type architecture. Processing core 159 may also be suitable for
manufacture in one or more process technologies and by being represented on a machine
readable media in sufficient detail, may be suitable to facilitate said manufacture.

[0056] Processing core 159 comprises an execution unit 142, a set of register file(s)
145, and a decoder 144. Processing core 159 also includes additional circuitry (not
shown) which is not necessary to the understanding of the present invention. Execution
unit 142 is used for executing instructions received by processing core 159. In addition to
recognizing typical processor instructions, execution unit 142 can recognize instructions in
packed instruction set 143 for performing operations on packed data formats. Packed
instruction set 143 includes instructions for supporting shuffle operations, and may also
include other packed instructions. Execution unit 142 is coupled to register file 145 by an
internal bus. Register file 145 represents a storage area on processing core 159 for storing
information, including data. As previously mentioned, it is understood that the storage
area used for storing the packed data is not critical. Execution unit 142 is coupled to
decoder 144. Decoder 144 is used for decoding instructions received by processing core
159 into control signals and/or microcode entry points. In response to these control
signals and/or microcode entry points, execution unit 142 performs the appropriate
operations.

[0057] Processing core 159 is coupled with bus 141 for communicating with various

other system devices, which may include but are not limited to, for example, synchronous
16

10

15

20

25

WO 2005/006183 PCT/US2004/020601

dynamic random access memory (SDRAM) control 146, static random access memory
(SRAM) control 147, burst flash memory interface 148, personal computer memory card
international association (PCMCIA)/compact flash (CF) card control 149, liquid crystal
display (LCD) control 150, direct memory access (DMA) controller 151, and alternative
bus master interface 152. In one embodiment, data processing system 140 may also
comprise an I/O bridge 154 for communicating with various I/O devices via an I/O bus
153. Such I/O devices may include but are not limited to, for example, universal
asynchronous receiver/transmitter (UART) 155, universal serial bus (USB) 156, Bluetooth
wireless UART 157 and I/O expansion interface 158.

[0058] One embodiment of data processing system 140 provides for mobile, network
and/or wireless communications and a processing core 159 capable of performing SIMD
operations including a shuffle operation. Processing core 159 may be programmed with
various audio, video, imaging and communications algorithms including discrete
transformations such as a Walsh-Hadamard transform, a fast Fourier transform (FFT), a
discrete cosine transform (DCT), and their respective inverse transforms;
compression/decompression techniques such as color space transformation, video encode
motion estimation or video decode motion compensation; and modulation/demodulation
(MODEM) functions such as pulse coded modulation (PCM).

[0059] Figure 1C illustrates yet alternative embodiments of a data processing system
capable of performing SIMD shuffle operations. In accordance with one alternative
embodiment, data processing system 160 may include a main processor 166, a SIMD
coprocessor 161, a cache memory 167, and an input/output system 168. The input/output
system 168 may optionally be coupled to a wireless interface 169. SIMD coprocessor 161
is capable of performing SIMD operations including data shuffles. Processing core 170

may be suitable for manufacture in one or more process technologies and by being
17

10

15

20

25

WO 2005/006183 PCT/US2004/020601

represented on a machine readable media in sufficient detail, may be suitable to facilitate
the manufacture of all or part of data processing system 160 including processing core
170.

[0060] For one embodiment, SIMD coprocessor 161 comprises an execution unit 162
and a set of register file(s) 164. One embodiment of main processor 165 comprises a
decoder 165 to recognize instructions of instruction set 163 including SIMD shuffle
instructions for execution by execution unit 162. For alternative embodiments, SIMD
coprocessor 161 also comprises at least part of decoder 165B to decode instructions of
instruction set 163. Processing core 170 also includes additional circuitry (not shown)
which is not necessary to the understanding of the present invention.

[0061] In operation, the main processor 166 executes a stream of data processing
instructions that control data processing operations of a general type including interactions
with the cache memory 167, and the input/output system 168. Embedded within the
stream of data processing instructions are SIMD coprocessor instructions. The decoder
165 of main processor 166 recognizes these SIMD coprocessor instructions as being of a
type that should be executed by an attached SIMD coprocessor 161. Accordingly, the
main processor 166 issues these SIMD coprocessor instructions (or control signals
representing SIMD coprocessor instructions) on the coprocessor bus 166 where from they
are received by any attached SIMD coprocessors. In this case, the SIMD coprocessor 161
will accept and execute any received SIMD coprocessor instructions intended for it.
[0062] Data may be received via wireless interface 169 for processing by the SIMD
coprocessor instructions. For one example, voice communication may be received in the
form of a digital signal, which may be processed by the SIMD coprocessor instructions to
regenerate digital audio samples representative of the voice communications. For another

example, compressed audio and/or video may be received in the form of a digital bit
18

10

15

20

25

WO 2005/006183 PCT/US2004/020601

stream, which may be processed by the SIMD coprocessor instructions to regenerate
digital audio samples and/or motion video frames. For one embodiment of processing
core 170, main processor 166, and a SIMD coprocessor 161 are integrated into a single
processing core 170 comprising an execution unit 162, a set of register file(s) 164, and a
decoder 165 to recognize instructions of instruction set 163 including SIMD shuffle
instructions.

[0063] Figure 2 is a block diagram of the micro-architecture for a processor 200 of
one embodiment that includes logic circuits to perform shuffle operations in accordance
with the present invention. The shuffle operation may also be referred to as a packed data
shuffle operation and packed shuffle instruction as in the discussion above. For one
embodiment of the shuffle instruction, the instruction can shuffle packed data with a byte
granularity. That instruction can also be referred to as PSHUFB or packed shuffle byte.
In other embodiments, the shuffle instruction can also be implemented to operate on data
elements having sizes of word, doubleword, quadword, etc. The in-order front end 201 is
the part of the processor 200 that fetches the macro-instructions to be executed and
prepares them to be used later in the processor pipeline. The front end 201 of this
embodiment includes several units. The instruction prefetcher 226 fetches macro-
instructions from memory and feeds them to an instruction decoder 228 which in turn
decodes them into primitives called micro-instructions or micro-operations (also called
micro op or uops) that the machine know how to execute. The trace cache 230 takes
decoded uops and assembles them into program ordered sequences or traces in the uop
queue 234 for execution. When the trace cache 230 encounters a complex macro-
instruction, the microcode ROM 232 provides the uops needed to complete the operation.
[0064] Many macro-instructions are converted into a single micro-op, and others need

several micro-ops to complete the full operation. In this embodiment, if more than four
19

10

15

20

25

WO 2005/006183 PCT/US2004/020601

micro-ops are needed to complete a macro-instruction, the decoder 228 accesses the
microcode ROM 232 to do the macro-instruction. For one embodiment, a packed shuffle
instruction can be decoded into a small number of micro ops for processing at the
instruction decoder 228. In another embodiment, an instruction for a packed data shuffle
algorithm can be stored within the microcode ROM 232 should a number of micro-ops be
needed to accomplish the operation. The trace cache 230 refers to a entry point
programmable logic array (PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences for the shuffle algorithms in the micro-code ROM 232.
After the microcode ROM 232 finishes sequencing micro-ops for the current macro-
instruction, the front end 201 of the machine resumes fetching micro-ops from the trace
cache 230.

[0065] Some SIMD and other multimedia types of instructions are considered
complex instructions. Most floating point related instructions are also complex
instructions. As such, when the instruction decoder 228 encounters a complex macro-
instruction, the microcode ROM 232 is accessed at the appropriate location to retrieve the
microcode sequence for that macro-instruction. The various micro-ops needed for
performing that macro-instruction are communicated to the out-of-order execution engine
203 for execution at the appropriate integer and floating point execution units.

[0066] The out-of-order execution engine 203 is where the micro-instructions are
prepared for execution. The out-of-order execution logic has a number of buffers to
smooth out and re-order the flow of micro-instructions to optimize performance as they go
down the pipeline and get scheduled for execution. The allocator logic allocates the
machine buffers and resources that each uop needs in order to execute. The register
renaming logic renames logic registers onto entries in a register file. The allocator also

allocates an entry for each uop in one of the two uop queues, one for memory operations
20

10

15

20

25

WO 2005/006183 PCT/US2004/020601

and one for non-memory operations, in front of the instruction schedulers: memory
scheduler, fast scheduler 202, slow/general floating point scheduler 204, and simple
floating point scheduler 206. The uop schedulers 202, 204, 206, determine when a uop is
ready to execute based on the readiness of their dependent input register operand sources
and the availability of the execution resources the uops need to complete their operation.
The fast scheduler 202 of this embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per main processor clock cycle.
The schedulers arbitrate for the dispatch ports to schedule uops for execution.

[0067] Register files 208, 210, sit between the schedulers 202, 204, 206, and the
execution units 212, 214, 216, 218, 220, 222, 224 in the execution block 211. There is a
separate register file 208, 210, for integer and floating point operations, respectively. Each
register file 208, 210, of this embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been written into the register file to new
dependent uops. The integer register file 208 and the floating point register file 210 are
also capable of communicating data with the other. For one embodiment, the integer
register file 208 is split into two separate register files, one register file for the low order
32 bits of data and a second register file for the high order 32 bits of data. The floating
point register file 210 of one embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in width.

[0068] The execution block 211 contains the execution units 212, 214, 216, 218, 220,
222, 224, where the instructions are actually executed. This section includes the register
files 208, 210, that store the integer and floating point data operand values that the micro-
instructions need to execute. The processor 200 of this embodiment is comprised of a
number of execution units: address generation unit (AGU) 212, AGU 214, fast ALU 216,

fast ALU 218, slow ALU 220, floating point ALU 222, floating point move unit 224. For
21

10

15

20

25

WO 2005/006183 PCT/US2004/020601

this embodiment, the floating point execution blocks 222, 224, execute floating point,
MMX, SIMD, and SSE operations. The floating point ALU 222 of this embodiment
includes a floating point divider to execute divide, square root, and remainder micro-ops.
For embodiments of the present invention, any act involving a floating point value occurs
with the floating point hardware. For example, conversions between integer format and
floating point format involve a floating point register file. Similarly, a floating point
divide operation happens at a floating point divider. On the other hand, non-floating point
numbers and integer type are handled with integer hardware resources. The simple, very
frequent ALU operations go to the high-speed ALU execution units 216, 218. The fast
ALUs 216, 218, of this embodiment can execute fast operations with an effective latency
of half a clock cycle. For one embodiment, most complex integer operations go to the
slow ALU 220 as the slow ALU 220 includes integer execution hardware for long latency
type of operations, such as a multiplier, shifts, flag logic, and branch processing. Memory
load/store operations are executed by the AGUs 212, 214. For this embodiment, the
integer ALUs 216, 218, 220, are described in the context of performing integer operations
on 64 bit data operands. In alternative embodiments, the ALUs 216, 218, 220, can be
implemented to support a variety of data bits including 16, 32, 128, 256, etc. Similarly,
the floating point units 222, 224, can be implemented to support a range of operands
having bits of various widths. For one embodiment, the floating point units 222, 224, can
operate on 128 bits wide packed data operands in conjunction with SIMD and multimedia
instructions.

[0069] In this embodiment, the uops schedulers 202, 204, 206, dispatch dependent
operations before the parent load has finished executing. As uops are speculatively
scheduled and executed in processor 200, the processor 200 also includes logic to handle

memory misses. If a data load misses in the data cache, there can be dependent operations
22

10

15

20

25

WO 2005/006183 PCT/US2004/020601

in flight in the pipeline that have left the scheduler with temporarily incorrect data. A
replay mechanism tracks and re-executes instructions that use incorrect data. Only the
dependent operations need to be replayed and the independent ones are allowed to
complete. The schedulers and replay mechanism of one embodiment of a processor are
also designed to catch instruction sequences for shuffle operations.

(0070] The term “registers” is used herein to refer to the on-board processor storage
locations that are used as part of macro-instructions to identify operands. In other words,
the registers referred to herein are those that are visible from the outside of the processor
(from a programmer’s perspective). However, the registers of an embodiment should not
be limited in meaning to a particular type of circuit. Rather, a register of an embodiment
need only be capable of storing and providing data, and performing the functions
described herein. The registers described herein can be implemented by circuitry within a
processor using any number of different techniques, such as dedicated physical registers,
dynamically allocated physical registers using register renaming, combinations of
dedicated and dynamically allocated physical registers, etc. In one embodiment, integer
registers store 32 bit integer data. A register file of one embodiment also contains eight
multimedia SIMD registers for packed data. For the discussions below, the registers are
understood to be data registers designed to hold packed data, such as 64 bits wide MMX™
registers (also referred to as ‘mm’ registers in some instances) in microprocessors enabled
with MMX technology from Intel Corporation of Santa Clara, California. These MMX
registers, available in both integer and floating point forms, can operated with packed data
elements that accompany SIMD and SSE instructions. Similarly, 128 bits wide XMM
registers relating to SSE2 technology can also be used to hold such packed data operands.
In this embodiment, in storing packed data and integer data, the registers do not need to

differentiate between the two data types.
23

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0071] In the examples of the following figures, a number of data operands are
described. For simplicity, the initial source data segments are labeled from letter A
onwards alphabetically, wherein A is located at the lowest address and Z would be located
at the highest address. Thus, A may initially be at address 0, B at address 1, C at address
3, and so on. Conceptually, a shuffle operation, as in the packed byte shuffle for one
embodiment, entails shuffling data segments from a first operand and rearranging one or
more of the source data elements into a pattern specified by a set of masks in a second
operand. Thus, a shuffle can rotate or completely rearrange a portion of or all of the data
elements into any desired order. Furthermore, any particular data element or number of
data elements can be duplicated or broadcasted in the resultant. Embodiments of the
shuffle instruction in accordance with the present invention include a flush to zero
functionality wherein the mask for each particular data element can cause that data
element position to be zeroed out in the resultant.

[0072] Figures 3A-C are illustrations of shuffle masks according to various
embodiments of the present invention. A packed data operand 310 comprised of a
plurality of individual data elements 311, 312, 313, 314, is shown in this example. The
packed operand 310 of this example is described in the context of a packed data operand
for containing a set of masks to indicate a shuffle pattern for corresponding packed data
elements of another operand. Thus, the mask in each of the data elements 311, 312, 313,
314, of packed operand 310 designates the contents in the corresponding data element
position of the resultant. For example, data element 311 is in the leftmost data element
position. The mask in data element 311 is to designate what data should be shuffled or
placed in the leftmost data element position of the resultant for the shuffle operation.
Similarly, data element 312 is the second leftmost data element position. The mask in data

element 312 is to designate what data should be placed in the second leftmost data element
24

10

15

20

25

WO 2005/006183 PCT/US2004/020601

position of the resultant. For this embodiment, each of the data elements in the packed
operand containing the shuffle masks has a one to one correspondence to a data element
position in the packed resultant.

[0073] In Fig. 3A, data element 312 used to describe the contents of an example
shuffle mask for one embodiment. The shuffle mask 318 for one embodiment is
comprised of three portions: a ‘set to zero flag’ field 315, a ‘reserved’ field 316, and a
‘selections bits’ field 317. The ‘set to zero flag’ field 315 is to indicate whether the
resultant data element position designated by the present mask should be zeroed out, or in
other words, replaced with a value of zero (‘0’). In one embodiment, thé ‘set to zero flag’
field is dominant wherein if the ‘set to zero flag’ field 315 is set, the rest of the fields in
the mask 318 are ignored and the resultant data element position is filled with ‘0’. The
‘reserved’ field 316 includes one or more bits that may or may not be used in alternative
embodiments or may have been reserved for future or special use. The ‘selection bits’
field 317 of this shuffle mask 318 is to.designate the source of the data for the
corresponding data element position in the packed resultant.

[0074] For one embodiment of a packed data shuffle instruction, one operand is
comprised of a set of masks and another operand is comprised of a set of packed data
elements. Both operands are of the same size. Depending on the number of the data
elements in the operands, a varying number of selection bits are needed to select an
individual data element from the second packed data operand for placement in the packed
resultant. For example, with a 128 bit source operand of packed bytes, at least four
selection bits are needed as sixteen byte data elements are available for selection. Based
on the value indicated by the selection bits of the mask, the appropriate data element from
the source data operand is placed in the corresponding data element position for that mask.

For example, the mask 318 of data element 312 corresponds to the second leftmost data
25

10

15

20

25

WO 2005/006183 PCT/US2004/020601

element position. If the selection bits 317 of this mask 318 contain a value of ‘X’, the data
element from data element position ‘X’ in the source data operand is shuffled into the
second leftmost data element position in the resultant. But if the ‘set to zero flag’ field
315 is set, the second leftmost data element position in the resultant is replaced with ‘0’
and the designation of the selection bits 317 ignored.

[0075] Fig. 3B illustrates the structure of a mask 328 for one embodiment that
operates with byte size data elements and 128 bit wide packed operands. For this
embodiment, the ‘set to zero’ field 325 is comprised of bit 7 and the ‘selection’ field 327
is comprised of bits 3 through 0 as there are sixteen possible data element selections. Bits
6 through 4 are not used in this embodiment and reside in the ‘reserved’ field 326. In
another embodiment, the number of bits used in the ‘selection’ field 327 can be increased
or decreased as needed in order to accommodate the number of possible data element
selections available in the source data operand.

[0076] Fig. 3C illustrates the structure of a mask 338 for another embodiment that
operates with byte size data elements and 128 bit wide packed operands, but with multiple
data element sources. In this embodiment, the mask 338 is comprised of a ‘set to zero’
field 335, a ‘source (src) select’ field 336, and a ‘selection’ field 337. The ‘set to zero’
field 335 and ‘selection’ field 337 function similar to the descriptions above. The ‘source
select’ field 336 of this embodiment is to indicate from which data source the data operand
specified by the selection bits should be obtained. For example, the same set of masks
may be used with multiple data sources such as a plurality of multimedia registers. Each
source multimedia register is assigned a numeric value and the value in the ‘source select’
field 336 points to one of these source registers. Depending on the contents of the ‘source
select’ field 336, the selected data element is selected from the appropriate data source for

placement at that corresponding data element position in the packed resultant.
26

10

15

20

WO 2005/006183 PCT/US2004/020601

[0077] Figure 4A is an illustration of various packed data type representations in
multimedia registers according to one embodiment of the present invention. Fig. 4A
illustrates a data types for packed byte 410, packed word 420, and a packed doubleword
(dword) 430 for 128 bits wide operands. The packed byte format 410 of this example is
128 bits long and contains sixteen packed byte data elements. A byte is defined here as 8
bits of data. Information for each byte data element is stored in bit 7 through bit 0 for byte
0, bit 15 through bit 8 for byte 1, bit 23 through bit 16 for byte 2, and finally bit 120
through bit 127 for byte 15. Thus, all available bits are used in the register. This storage
arrangement increases the storage efficiency of the processor. As well, with sixteen data
elements accessed, one operation can now be performed on sixteen data elements in
parallel.

[0078] Generally, a data element is an individual piece of data that is stored in a
operand (single register or memory location) with other data elements of the same length.
In packed data sequences relating to SSE2 technology, the number of data elements stored
in an operand (XMM register or memory location) is 128 bits divided by the length in bits
of an individual data element. Similarly, in packed data sequences relating to MMX and
SSE technology, the number of data elements stored in an operand (MMX register or
memory location) is 64 bits divided by the length in bits of an individual data element.
The packed word format 420 of this example is 128 bits long and contains eight packed
word data elements. Each packed word contains sixteen bits of information. The packed
doubleword format 430 of Fig. 4A is 128 bits long and contains four packed doubleword
data elements. Each packed doubleword data element contains thirty two bits of
information. A packed quadword is 128 bits long and contains two packed quad-word

data elements.

27

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[0079] Figure 4B illustrates alternative in-register data storage formats. Each packed
data can include more than one independent data element. Three packed data formats are
illustrated; packed half 441, packed single 442, and packed double 443. One embodiment
of packed half 441, packed single 442, and packed double 443 contain fixed-point data
elements. For an alternative embodiment one or more of packed half 441, packed single
442, and packed double 443 may contain floating-point data elements. One alternative
embodiment of packed half 441 is one hundred twenty-eight bits long containing eight 16-
bit data elements. One embodiment of packed single 442 is one hundred twenty-eight bits
long and contains four 32-bit data elements. One embodiment of packed double 443 is
one hundred twenty-eight bits long and contains two 64-bit data elements. It will be
appreciated that such packed data formats may be further extended to other register
lengths, for example, to 96-bits, 160-bits, 192-bits, 224-bits, 256-bits or more.

[0080] Figure 4C is a depiction of one embodiment of an operation encoding
(opcode) format 460, having thirty-two or more bits, and register/memory operand
addressing modes corresponding with a type of opcode format described in the "1A-32
Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Reference,”
which is which is available from Intel Corporation, Santa Clara, CA on the world-wide-
web (www) at intel.com/design/litcentr. The type of shuffle operation, may be encoded by
one or more of fields 461 and 462. Up to two operand locations per instruction may be
identified, including up to two source operand identifiers 464 and 465. For one
embodiment of a shuffle instruction, destination operand identifier 466 is the same as
source operand identifier 464. For an alternative embodiment, destination operand
identifier 466 is the same as source operand identifier 465. Therefore, for embodiments of
a shuffle operation, one of the source operands identified by source operand identifiers

464 and 465 is overwritten by the results of the shuffle operations. For one embodiment
28

10

15

20

25

WO 2005/006183 PCT/US2004/020601

of the shuffle instruction, operand identifiers 464 and 465 may be used to identify 64-bit
source and destination operands.

[0081] Figure 4D is a depiction of another alternative operation encoding (opcode)
format 470, having forty or more bits. Opcode format 470 corresponds with opcode
format 460 and comprises an optional prefix byte 478. The type of shuffle operation, may
be encoded by one or more of fields 478, 471, and 472. Up to two operand locations per
instruction may be identified by source operand identifiers 474 and 475 and by prefix byte
478. For one embodiment of the shuffle instruction, prefix byte 478 may be used to
identify 128-bit source and destination operands. For one embodiment of the shuffle
instruction, destination operand identifier 476 is the same as source operand identifier 474.
For an alternative embodiment, destination operand identifier 476 is the same as source
operand identifier 475. Therefore, for embodiments of shuffle operations, one of the
source operands identified by source operand identifiers 474 and 475 is overwritten by the
results of the shuffle operations. Opcode formats 460 and 470 allow register to register,
memory to register, register by memory, register by register, register by immediate,
register to memory addressing specified in part by MOD fields 463 and 473 and by
optional scale-index-base and displacement bytes.

[0082] Turning next to Figure 4E, in some alternative embodiments, 64 bit single
instruction multiple data (SIMD) arithmetic operations may be performed through a
coprocessor data processing (CDP) instruction. Operation encoding (opcode) format 480
depicts one such CDP instruction having CDP opcode fields 482 and 489. The type of
CDP instruction, for alternative embodiments of shuffle operations, may be encoded by
one or more of fields 483, 484, 487, and 488. Up to three operand locations per
instruction may be identified, including up to two source operand identifiers 485 and 490

and one destination operand identifier 486. One embodiment of the coprocessor can
29

10

15

20

25

WO 2005/006183 PCT/US2004/020601

operate on 8, 16, 32, and 64 bit values. For one embodiment, the shuffle operation is
performed on fixed-point or integer data elements. In some embodiments, a shuffle
instruction may be executed conditionally, using condition field 481. For some shuffle
instructions source data sizes may be encoded by field 483. In some embodiments of a
shuffle instruction, Zero (Z), negative (N), carry (C), and overflow (V) detection can be
done on SIMD fields. For some instructions, the type of saturation may be encoded by
field 484.

[0083] Figure 5 is a block diagram of one embodiment of logic to perform a shuffle
operation on a data operand based on a shuffle mask in accordance with the present
invention. The instruction (PSHUFB) for shuffle operation with a set to zero capability of
this embodiment begins with two pieces of information a first (mask) operand 510 and a
second (data) operand 520. For the following discussions, MASK, DATA, and
RESULTANT are generally referred to as operands or data blocks, but not restricted as
such, and also include registers, register files, and memory locations. In one embodiment,
the shuffle PSHUFB instruction is decoded into one micro-operation. In an alternative
embodiment, the instruction may be decoded into a various number of micro-ops to
perform the shuffle operation on the data operands. For this example, the operands 510,
520, are 128 bit wide pieces of information stored in a source register/memory having byte
wide data elements. In one embodiment, the operands 510, 520, are held in 128 bit long
SIMD registers, such as 128 bit SSE2 XMM registers. However, one or both of the
operands 510, 520, can also be loaded from a memory location. For one embodiment, the
RESULTANT 540 is also a MMX or XMM data register. Furthermore, RESULTANT
540 may also be the same register or memory location as one of the source operands.
Depending on the particular implementation, the operands and registers can be other

widths such as 32, 64, and 256 bits, and have word, doubleword, or quadword sized data
30

10

15

20

WO 2005/006183 PCT/US2004/020601

elements. The first operand 510 in this example is comprised of a set of sixteen masks (in
hexadecimal format): 0xOE, 0x0A, 0x09, 0x8F, 0x02, 0x0E, 0x06, 0x06, 0x06, 0xFO,
0x04, 0x08, 0x08, 0x06, 0x0D, and 0x00. Each individual mask is to specify the contents
of its corresponding data element position in the resultant 540.

[0084] The second operand 520 is comprised of sixteen data segments: P, O, N, M, L,
K,J,LLH, G,F,E,D,C,B,and A. Each data segment in the second operand 520 is also
labeled with a data element position value in hex format. The data segments here are of
equal length and each comprise of a single byte (8 bits) of data. If each data element was
a word (16 bits), doubleword (32 bits), or a quadword (64 bits), the 128 bit operands
would have eight word wide, four doubleword wide, or two quadword wide data elements,
respectively. However, another embodiment of the present invention can operate with
other sizes of operands and data segments. Embodiments of the present invention are not
restricted to particular length data operands, data segments, or shift counts, and can be
sized appropriately for each implementation.

[0085] The operands 510, 520, can reside either in a register or a memory location or a
register file or a mix. The data operands 510, 520, are sent to the shuffle logic 530 of an
execution unit in the processor along with a shuffle instruction. By the time the shuffle
instruction reaches the execution unit, the instruction should have been decoded earlier in
the processor pipeline. Thus the shuffle instruction can be in the form of a micro
operation (uop) or some other decoded format. For this embodiment, the two data
operands 510, 520, are received at shuffle logic 530. The shuffle logic 530 selects data
elements from the source data operand 520 based on the values in the mask operand S10
and arranges/shuffles the selected data elements into the appropriate positions in the

resultant 540. The shuffle logic 530 also zeroes out the given data element positions in the

31

10

15

20

WO 2005/006183 PCT/US2004/020601

resultant 540 as specified. Here, the resultant 540 is comprised of sixteen data segments:
0,K,J,0,C,0,G,G,F, ‘0’,E, L1, G, N, and A.

[0086] The operation of the shuffle logic 530 is described here with a couple few of
the data elements. The shuffle mask for the leftmost data element position in the mask
operand 510 is 0xOE. The shuffle logic 530 interprets the various fields of the mask
described as above in Fig. 3A-C. In this case, the ‘set to zero’ field is not set. The
selection field, comprising the lower four bits or nibble, has a hex value of ‘E’. The
shuffle logic 530 shuffles the data, O, in the data element position ‘OXE’ of the data
operand 520 to the leftmost data element position of the resultant 540. Similarly, the mask
at the second leftmost data element position in the mask operand 510 is 0x0A. The shuffle
logic 530 interprets the mask for that position. This selection field has a hex value of ‘A’.
The shuffle logic 530 copies the data, K, in the data element position ‘0xA’ of the data
operand 520 to the second leftmost data element position of the resultant 540.

[0087] The shuffle logic 530 of this embodiment also supports the flush to zero
function of the shuffle instruction. The shufﬂe mask at the fourth data element position
from the left for the mask operand 510 is 0x8F. The shuffle logic 510 recognizes that the
‘set to zero’ field is set as indicated by a ‘1’ at bit 8 of the mask. In response, the flush to
zero directive trumps the selection field and the shuffle logic 510 ignores the hex value ‘F’
in the selection field of that mask. A ‘0’ is placed in the corresponding fourth data
element position from the left in the resultant 540. For this embodiment, the shuffle logic
530 evaluates the ‘set to zero’ and selection fields for each mask and does not care about
the other bits that may exist outside of those fields in the mask, such as reserved bits or a

source select field. This processing of the shuffle masks and data shuffling is repeated for

the entire set of masks in the mask operand 510. For one embodiment, the masks are all

32

10

15

20

25

WO 2005/006183 PCT/US2004/020601

processed in parallel. In another embodiment, a certain portion of the mask set and data
elements can be processed together at a time.

[0088] With embodiments of the present shuffle instruction, data elements in an
operand can be rearranged in various ways. Furthermore, certain data from particular data
element can be repeated at multiple data element positions or even broadcasted to every
position. For instance, the fourth and fifth masks both have a hex value of 0x08. Asa
result, the data, 1, at data element position 0x8 of the data operand 520 is shuffled into
both the fourth and fifth data element positions from the right side of the resultant 540.
With the set to zero functionality, embodiments of the shuffle instruction can force any of
the data element positions in the resultant 540 to 0.

[0089] Depending on the particular implementation, each shuffle mask can be used to
designate the content of a single data element position in the resultant. As in this example,
each individual byte wide shuffle mask corresponds to a byte wide data element position
in the resultant 540. In another embodiment, combinations of multiple masks can be used
to designate blocks of data elements together. For example, two byte wide masks can be
used together to designate a word wide data element. Shuffle masks are not restricted to
being byte wide and can be any other size needed in that particular implementation.
Similarly, data elements and data element positions can possess other granularities other
than bytes.

[0090] Figure 6 is a block diagram of one embodiment of a circuit 600 for performing
a data shuffling operation in accordance with the present invention. The circuit of this
embodiment comprises a multiplexing structure to select the correct result byte from the
first source operand based on decoding shuffle mask of the second operand. The source
data operand here is comprised of the upper packed data elements and the lower packed

data elements. The multiplexing structure of this embodiment is relatively simpler than
33

10

15

20

25

WO 2005/006183 PCT/US2004/020601

other multiplexing structures used to implement other packed instructions. As a result, the
multiplexing structure of this embodiment does not introduce any new critical timing path.
The circuit 600 of this embodiment includes a shuffle mask block, blocks to hold
lower/upper packed data elements from source operands, a first plurality of eight to one
(8:1) muxes for initial selection of data elements, another plurality of three to one (3:1)
muxes for selection of upper and lower data elements, mux select & zero logic and a
multitude of control signals. For simplicity, a limited number of the 8:1 and 3:1 muxes are
shown in Fig. 6 and represented by dots. However, their function is similar to those
illustrated and can be understood from the description below.

[0091] During a shuffle operation in this example, two operands are received at this
shuffle handling circuit 600: a first operand with a set of packed data elements and a
second operand with a set of shuffle masks. The shuffle masks are propagated to shuffle
mask block 602. The set of shuffle masks are decoded at the mux select and zero logic
block 604 to generate a variety of select signals (SELECT A 606, SELECT B 608,
SELECT C 610) and a set to zero signal (ZERO) 611. These signals are used to control
the operation of the muxes in piecing together the resultant 632.

[0092] For this example, the mask operand and data operand are both 128 bits long
and each are packed with of sixteen byte size data segments. The value N as shown on
various signals is sixteen in this case. In this embodiment, the data elements are separated
into a set of lower and upper packed data elements, each set having eight data elements.
This allows for the use of smaller 8:1 muxes during the data element selection rather than
16:1 muxes. These lower and upper sets of packed data elements are held at lower and
upper storage areas 612, 622, respectively. Starting with the lower data set, each of the
eight data elements are sent to the first set of sixteen individual 8:1 muxes 618A-D via a

set of lines such as routing lines 614. Each of the sixteen 8:1 muxes 618A-D are
34

10

15

20

25

WO 2005/006183 PCT/US2004/020601

controlled with one of the N SELECT A signals 606. Depending on the value of its
SELECT A 606, that mux is to output one of the eight lower data elements 614 for further
processing. There are sixteen 8:1 muxes for the set of lower packed data elements as it is
possible to shuffle any of the lower data elements into any of the sixteen resultant data
element positions. Each of the sixteen 8:1 muxes is for one of the sixteen resultant data
element positions. Similarly, sixteen 8:1 muxes are present for the upper paéked data
elements. The eight upper data elements are sent to each of the second set of sixteen 8:1
muxes 624A-D. Each of the sixteen 8:1 muxes 624A-D are controlled with one of the N
SELECT B signals 608. Based on the values of its SELECT B 608, that 8:1 mux is to
output one of the 'eight upper data elements 616 for further processing.

[0093] Each of the sixteen 3:1 muxes 628A-D corresponds to a data element position
in the resultant 632. The sixteen outputs 620A-D from the sixteen lower data muxes
618A-D are routed to a set of sixteen 3:1 upper/lower selection muxeé 628A-D as are the
outputs 626A-D from the upper data muxes 624A-D. Each of these 3:1 selection muxes
628D-D receives its own SELECT C 610 and a ZERO 611 signals from the mux select &
zero logic 604. The value on the SELECT C 610 for that ‘3:1 mux is to indicate whether
the mux is to output the selected data operand from the lower data set or from the upper
data set. The control signal ZERO 611 to each 3:1 mux is to indicate whether that mux
should force its output to zero (‘0’). For this embodiment, the control signal ZERO 611
supercedes the selection on SELECT C 610 and forces the output for that data element
position to ‘0’ in the resultant 632.

[0094] For example, 3:1 mux 628A receives the selected lower data element 620A
from 8:1 mux 618A and the selected upper data element 626A from 8:1 mux 624A for that
data element position. SELECT C 610 controls which of the data elements to sl,hufﬂe at its

output 630A into the data element position it manages in the resultant 632. However, if
35

10

15

20

25

WO 2005/006183 PCT/US2004/020601

signal ZERO 611 to the mux 628A is active, indicated that the shuffle mask for that data
element position states that a ‘0’ is desired, the mux output 630A is ‘0’ and neither of the
data element inputs 620A, 626A, are used. The resultant 632 of the shuffle operation is
composed of the outputs 630A-D from the sixteen 3:1 muxes 628A-D, wherein each
output corresponds to a specific data element position and is either a data element or a ‘0’.
In this example, each 3:1 mux output is a byte wide and the resultant is a data block
composed of sixteen packed bytes of data.

[0095] Figure 7 illustrates the operation of a data shuffle on byte wide data elements
in accordance with one embodiment of the present invention. This is an example of the
instruction “PSHUFB DATA, MASK”. Note that the most significant bit of shuffle
masks for byte positions 0x6 and 0xC of MASK 701 are set so the result in resultant
741 for those positions are zero. In this example, source data is organized into a
destination data storage device 721, which in one embodiment is also the source data
storage device 721, in view of a set of masks 701 that specify the address wherein
respective data elements from the source operand 721 are to be stored in the destination
register 741. The two source operands, mask 701 and data 721, each comprise of sixteen
packed data elements in this example, as does the resultant 741. In this embodiment, each
of the data elements involved is a eight bits or a byte wide. Thus mask 701, data 721, and
resultant 741 data blocks are each 128 bits long. Furthermore, these data blocks can reside
in memory or registers. For one embodiment, the arrangement of the masks is based on
the desired data processing operation, which may include for example, a filtering
operation or a convolution operation.

[0096] As shown in Fig. 7, mask operand 701 includes data elements with shuffle
masks of: 0xOE 702, 0x0A 703, 0x09 704, 0x8F 705, 0x02 706, 0xOE 707, 0x06 708, 0x06

709, 0x05 710, 0xFO 711, 0x04 712, 0x08 713, 0x08 714, 0x06 715, 0x0D 716, 0x00 717.
36

10

15

20

25

WO 2005/006183 PCT/US2004/020601

Similarly, data operand 721 includes source data elements of: P 722, O 723, N 724, M
725,1L 726,K 727,] 728,1729, H 730, G 731, F 732, E 733, D 734, C 735, B 736, A 737.
In the representations of data segments of Fig. 7, the data element position is also noted
under the data as a hex value. Accordingly, a packed shuffle operation is performed with
the mask 701 and data 721. Using the set of shuffle masks 701, processing of the data 721
can be performed in parallel.

[0097] As each of the data element shuffle masks are evaluated, the appropriate data
from the designated data element or a ‘0’ is shuffled to the corresponding data element
position for that particular shuffle mask. For instance, the right most shuffle mask 717 has
a value 0x00, which is decoded to designate data from position 0x0 of the source data
operand. In response, data A from data position 0x0 is copied to the right most position of
the resultant 741. Similarly, the second shuffle mask 716 from the right has a value of
0x0D, whicﬁ is decoded to be 0xD. Thus data N from data position 0xD is copied to the
second position from the right in the resultant 741.

[0098] The fourth data element position from the left in the resultant 741 is a ‘0’. This
is attributed to the value of 0x8F in the shuffle mask for that data element position. In this
embodiment, bit 7 of the shuffle mask byte is a ‘set to zero’ or ‘flush to zero’ indicator. If
this field is set, the corresponding data element position in the resultant is filled with a ‘0’
value instead of data from the source data operand 721. Similarly, the seventh position
from the right in the resultant 741 has a value of ‘0°. This is due to the shuffle mask value
of OXFO for that data element position in the mask 701. Note that not all bits in the shuffle
mask may be used in certain embodiments. In this embodiment, the lower nibble, or four
bits, of a shuffle mask is sufficient to select any of the sixteen possible data elements in
the source data operand 721. As bit 7 is the ‘set to zero’ field, three other bits remain

unused and can be reserved or ignored in certain embodiments. For this embodiment, the
37

10

15

20

25

WO 2005/006183 PCT/US2004/020601

‘set to zero’ field controls and overrides the data element selection as indicated in the
lower nibble of the shuffle mask. In both of these instances, the fourth data element
position from the left and the seventh position from the right, a shuffle mask value of 0x80
wherein the ‘flush to zero’ flag is set at bit seven can also cause the corresponding
resultant data element position to be filled with a ‘0’.

[0099] As shown in Fig, 7, the arrows illustrate the shuffling of the data elements per
the shuffle masks in mask 701. Depending on the particular set of shuffle masks, one or
more of the source data elements may not appear in the resultant 741. In some instances,
one or more ‘0’s can also appear at various data element positions in the resultant 741. If
the shuffle masks are configured to broadcast one or a particular group of data elements,
the data for those data elements may be repeated as a chosen pattern in the resultant.
Embodiments of the present invention are not restricted to any particular arrangements or
shuffle patterns.

[00100] As noted above, the source data register is also utilized as the destination data
storage register in this embodiment, thereby reducing the number of registers needed.
Although the source data 721 is thus overridden, the set of shuffle masks 701 is not altered
and is available for future reference. Overwritten data within the source data storage
device can be reloaded from memory or another register. In another embodiment, multiple
registers can be used as the source data storage device, with their respective data organized
within the destination data storage device as desired.

[00101] Figure 8 illustrates the operation of a data shuffle operation on word wide data
elements in accordance with another embodiment of the present invention. The general
discussion of this example is somewhat similar to that of Fig. 7. In this scenario, however,
the data elements of the data operand 821 and resultant 831 are word length. For this

embodiment, the data element words are handled as pairs of data element bytes as the
38

10

15

20

WO 2005/006183 PCT/US2004/020601

shuffle masks in the mask operand 801 are byte size. Thus a pair of shuffle mask bytes are
used to define each data element word position. But for another embodiment, the shuffle
masks can also have word granularity and describe word sized data element positions in
the resultant.

[00102] The mask operand 801 of this example includes byte wide data elements with
shuffle masks of: 0x03 802, 0x02 803, 0xOF 804, 0xOE 805, 0x83 806, 0x82 807, 0x0D
808, 0x0C 809, 0x05 810, 0x04 811, 0x0B 812, 0x0A 813, 0x0D 814, 0x0C 815, 0x01
816, 0x00 817. The data operand 821 includes source data elements of: H 822, G 823, F
824, E 835, D 836, C 827, B 828, A 829. In the representations of data segments of Fig.
8, the data element position is also noted under the data as a hex value. As shown in Fig.
8, each of the word size data elements in the data operand 821 have data position
addresses it occupies two byte size positions. For example, data H 822 takes up byte size
data element positions OxF and OxE.

[00103] A packed shuffle operation is performed with the mask 801 and data 821. The
arrows in Fig. 8 illustrate the shuffling of the data elements per the shuffle masks in mask
801. As each of the data element shuffle masks are evaluated, the appropriate data from
the designated data element position of the data operand 821 or a ‘0’ is shuffled to the
corresponding data element position in the resultant 831 for that particular shuffle mask.
In this embodiment, the byte size shuffle masks operate in pairs in order to designate word
size data elements. For example, the two leftmost shuffle masks 0x03 802, 0x02 803, in
the mask operand 801 together correspond to the leftmost word wide data element position
832 of the resultant 831. During the shuffle operation, the two data bytes, or single data
word, at data element byte positions 0x03 and 0x02, which in this case is data B 828, is

arranged into the two lefimost byte size data element positions 832 in the resultant 831.

39

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[00104] Furthermore, the shuffle masks can also be configured to force a word size data
element to ‘0’ in the resultant as shown with shuffle masks 0x83 806 and 0x82 807 for the
third word size data element position 834 in the resultant 831. Shuffle masks 0x83 806
and 0x82 807 have their ‘set to zero’ fields set. Although two shuffle mask bytes are
paired together here, different pairings can also be implemented to arrange four bytes
together as a quadword or eight bytes together to form a double quadword, for example.
Similarly, the pairings are not restricted to consecutive shuffle masks or particular bytes.
In another embodiment, word size shuffle masks can be used to designate word size data
elements.

[00105] Figure9 is a flow chart 900 illustrating one embodiment of a method to shuffle
data. The length value of L is generally used here to represent the width of the operands
and data blocks. Depending on the particular embodiment, L can be used to designate the
width in terms of number of data segments, bits, bytes, words, etc. At block 910, a first
length L packed data operand is received for use with a shuffle operation. A length L set
of M length shuffle masks designating a shuffle pattern is received at block 920. In this
example, L is 128 bits and M is 8 bits or a byte. In another embodiment, L and M can also
be other values, such as 256 and 16, respectively. At block 930, the shuffle operation is
performed wherein data elements from the data operand are shuffled arranged into a
resultant in accordance to the shuffle pattern.

[00106] The details of the shuffle at block 930 of this embodiment is further described
in terms of what occurs for each data element position. For one embodiment, the shuffling
for all of the packed resultant data element positions are processed in parallel. In another
embodiment, a certain portion of the masks may be processed together at a time. At block
932, a check is made to determine whether a zero flag is set. This zero flag refers to the

set/flush to zero field of each shuffle mask. If the zero flag is determined as set at block
40

10

15

20

25

WO 2005/006183 PCT/US2004/020601

932, the entry at the resultant data element position corresponding to that particular shuffle
mask is set to ‘0’. If the zero flag is found not set at block 932, the data from the source
data element designated by the shuffle mask is arranged into the destination data element
position of the resultant corresponding to that shuffle mask.

[00107] Currently, table lookups using integer instructions requires a large number of
instructions. An even greater number of instructions are needed per lookup if integer
operations are used to access data for algorithms implemented with SIMD instructions.
But by using embodiments of a packed byte shuffle instruction, the instruction count and
execution time is drastically reduced. For instance, sixteen data bytes can Be accessed
during a table lookup with a single instruction if the table size is sixteen bytes or less.
Eleven SIMD instructions can be used to lookup table data if the table size is between
seventeen and thirty two bytes. Twenty three SIMD instructions are needed if the table
size is between thirty three and sixty four bytes.

[00108] There are some applications with data parallelism that cannot be implemented
with SIMD instructions due to their use of lookup tables. The quantization and deblocking
algorithms of the video compression method H.26L is an example of an algorithm that
uses small lookup tables that may not fit into a 128 bit register. In some cases, the lookup
tables used by these algorithms are small. If the table can fit in a single register, the table
lookup operation can be accomplished with one packed shuffle instruction. But if the
memory space requirement of the table exceeds the size of a single register, embodiments
of a packed shuffle instruction can still work via a different algorithm. One embodiment
of a method for handling oversized tables divides a table into sections, each equal to the
capacity of a register, and accesses each of these table sections with a shuffle instruction.
The shuffle instruction uses the same shuffle control sequence to access each section of

the table. As a result, a parallel table lookup can be implemented in these cases with the
41

10

15

20

25

WO 2005/006183 PCT/US2004/020601

packed byte shuffle instruction, thus permitting the use of SIMD instructions to improve
algorithm performance. Embodiments of the present invention can help improve
performance and reduce the number of memory accesses needed for algorithms that use
small lookup tables. Other embodiments also permit access of multiple lookup table
elements using SIMD instructions. A packed byte shuffle instruction in accordance to the
present invention permits efficient SIMD instruction implementation instead of less
efficient integer implantation of algorithms that use small lookup tables. This embodimént
of the present invention demonstrates how to access data from a table that requires
memory space larger than a single register. In this example, the registers contain different
segments of the table.

[00109] Figures 10A-H illustrate the operation of a parallel table lookup algorithm
using SIMD instructions. The example described in Figs. 10A-H involves the lookup of
data from multiple tables and wherein certain selected data elements as specified in a set
of masks are shuffled from these multiple tables into a merged block of resultant data.

The discussion below is explained in the context of packed operations, especially a packed
shuffle instruction as disclosed in the earlier above text. The shuffle operation of this
example overwrites the source table data in the register. If the table is to be reused
following the lookup operation, the table data should be copied to another register before
the operation is executed so that another load is not needed. In an alternative embodiment,
the shuffle operation makes use of three separate registers or memory locations: two
source and one destination. The destination in an alternative embodiment is a register or
memory location that is different from either of the source operands. Thus, the source
table data is not overridden and can be reused. In this example, the table data is treated as
coming from different portions of a larger table. For example, LOW TABLE DATA 1021

is from a lower address region of the table and HIGH TABLE DATA 1051 is from a
42

10

15

20

25

WO 2005/006183 PCT/US2004/020601

higher address region of the table. Embodiments of the present invention are not
restrictive as to where the table data can originates. The data blocks 1021, 1051, can be
adjacent, far apart, or even overlapping. Similarly, table data can also be from different
data tables or different memory sources. It is also envisioned that such a table lookup and
data merging can be performed on data from multiple tables. For instance, instead of
coming from different parts of the same table, LOW TABLE DATA 1021 can be from a
first table and HIGH TABLE DATA 1051 can be from a second table.

[00110] Fig. 10A illustrates a packed data shuffle of a first set of data elements from a
table based on a set of shuffle masks. This first set of data elements is grouped as an
operand named LOW TABLE DATA 1021. MASK 1001 and LOW TABLE DATA 1021
are each comprised of sixteen elements in this example. A shuffle operation of MASK
1001 and LOW TABLE DATA 1021 yields a resultant TEMP RESULTANT A 1041.

The lower portion of a shuffle control mask selects the data element in the register. The
number of bits needed to select a data element is the number of register data elements in
log,. For example, if the register capacity is 128 bits and the data type is bytes, the
number of register data elements is sixteen. In this case, four bits are need to select a data
element. Fig. 10B illustrates a packed data shuffle of a second set of data elements from a
table based on the same set of shuffle masks of Fig. 10A. This second set of data elements
is grouped as an operand named HIGH TABLE DATA 1051. HIGH TABLE DATA 1051
is also comprised of sixteen elements in this example. A shuffle operation of MASK 1001
and HIGH TABLE DATA 1051 yields a resultant TEMP RESULTANT B 1042.

[00111] Because the same set of masks 1001 were used with both the LOW TABLE
DATA 1021 and HIGH TABLE DATA 1051, their respective resultants 1041, 1042,
appear to have similarly positioned data, but from different source data. For example, the

leftmost data position of both resultants 1041, 1042, have data from data element OxE
43

10

15

20

25

WO 2005/006183 PCT/US2004/020601

1023, 1053, of its respective data source 1021, 1051. Fig. 10C illustrates a logical packed
AND operation involving SELECT FILTER 1043 and the set of shuffle masks MASK
1001. SELECT FILTER in this case is a filter to distinguish which of the shuffle masks in
MASK 1001 are related to the first table data 1021 and which to the second table data
1051. The shuffle masks of this embodiment utilize the source select field, SRC SELECT
336, as discussed previously in Fig. 3C. Lower bits of a shuffle control byte are used to
select a data element position in a register and the upper bits, excluding the most
significant bit, are used to select the segment of the table. For this embodiment, the bits
immediately above and adjacent to those used to select the data select the section of the
table. SELECT FILTER 1043 applies 0x10 to all the shuffle masks in MASK 1001
separate out the source select field from the shuffle masks. The packed AND operation
yields a TABLE SELECT MASK 1044 that to indicate which data element position in the
end resultant should be from the first data set 1021 or the second data set 1051.

[00112] The number of bits to select the table section is equal to the number of table
sections in log;. For example, in the case of table sizes ranging from seventeen to thirty
two bytes with sixteen byte registers, the lowest four bits select the data and the fifth bit
selects the table section. Here, source select uses the lowest bit of the second nibble, bit 4,
of each shuffle mask to designate the data source as there are two data sources 1021, 1051.
The section of the table with indices between zero and fifteen is accessed with the packed
shuffle instruction in Fig. 10A. The section of the table with indices between sixteen and
thirty one is accessed with the packed shuffle instruction in Fig. 10B. The field that
selects the section of the table is isolated from the shuffle control bytes/indices in Fig.
10C. In implementations with a larger number of data sources, additional bits may be
needed the source select fields. In the case of a thirty two byte table, the shuffle control

bytes 0x00 to 0xOF would select table elements zero through fifteen in the first table
44

10

15

20

25

WO 2005/006183 PCT/US2004/020601

section and shuffle control bytes 0x10 to 0x1F would select table elements sixteen through
thirty one in the second table section. For instance, consider a shuffle control byte
specifies 0x19. The bit representation of 0x19 is 0001 1001. The lower four bits, 1001,
select the ninth byte (counting from 0) and the fifth bit, which is set to 1, selects the
second table of two tables. A fifth bit equal to 0 would select the first table.

[00113) A mask to selects data values accessed from the first table section with indices
zero to fifteen is computed with a packed compare equal operation for this embodiment in
Fig. 10D by selecting the shuffle control bytes whose fifth bit is a zero. Fig. 10D
illustrates a packed “compare equal operation” of LOW FILTER 1045 and TABLE
SELECT MASK 1044. The low table select mask produced in Fig. 10D for the first table
section selects data elements accessed from the first table section with another packed
shuffle operation. LOW FILTER 1045 in this instance is a mask to pull out or highlight
the data element positions indicated by the shuffle masks as coming from the first data set
1021. If the source select field is ‘0’ in this embodiment, then the data source is to be
LOW TABLE DATA 1021. The compare equal operation yields a LOW TABLE
SELECT MASK 1046 with OxFF values for the data element positions that have a source
select value of ‘0’.

[00114] A mask to selects data values accessed from the second table section with
indices sixteen to thirty one is computed with a packed compare equal operation in Fig.
10E by selecting the shuffle control bytes whose fifth bit is a one. Fig. 10E illustrates a
similar compare equal operation on HIGH FILTER 1047 and TABLE SELECT MASK
1044. The high table select mask produced in Fig. 10E for the second table section selects
data elements accessed from the second table section with a packed shuffle operation.
HIGH FILTER 1047 is a mask to pull out the data element position indicated by the

source select fields of the shuffle mask as coming from the second data set 1051. If the
45

10

15

20

25

WO 2005/006183 PCT/US2004/020601

source select field is ‘1’ in this embodiment, then the data source is to be HIGH TABLE
DATA 1051. The compare equal operation yields a HIGH TABLE SELECT MASK 1048
with OXFF values for the data element position that have a sburce select value of “1°.
[00115] The data elements selected from the two table sections are merged at Fig. 10F.
At Fig. 10F, a packed AND operation on LOW TABLE SELECT MASK 1046 and TEMP
RESULTANT A 1041 is shown. This packed AND operation filters out the selected
shuffled data elements from the first data set 1021 per the mask 1046 that is based on the
source select fields. For example, the source select field in the shuffle mask 1002 for the
leftmost data element position has a value of ‘0’ as shown in TABLE SELECT MASK
1044. Accordingly, LOW TABLE SELECT MASK 1046 has a 0xFF value in that
position. The and operation here in Fig. 10F between that OxFF and the data in the
leftmost data element position causes the data O to transfer to SELECTED LOW TABLE
DATA 1049. On the other hand, the source select field in the shuffle mask 1004 for the
third data element position from the left has a value of ‘1’ to indicate that the data is to
come from a source other than the first data set 1021. Accordingly, LOW TABLE
SELECT MASK 1046 has a 0x00 value in that position. The and operation here does not
pass the data J to SELECTED LOW TABLE DATA 1049 and that position is left empty
as 0x00.

[00116] A similar packed AND operation on HIGH TABLE SELECT MASK 1048 and
TEMP RESULTANT B 1042 is shown in Fig. 10G. This packed AND operation filters
out the selected shuffled data elements from the second data set 1051 per the mask 1048.
Unlike the packed AND operation described in Fig. 10F, the mask 1048 allows data
designated by the source select fields as coming from the second set of data to pass to

SELECTED HIGH TABLE DATA 1050 while the other data element positions are left

empty.
46

10

15

20

WO 2005/006183 PCT/US2004/020601

[00117] Fig. 10H illustrates the merging of the selected data from the first data set and
the second data set. A packed logical OR operation is performed on SELECTED LOW
TABLE DATA 1049 and SELECTED HIGH TABLE DATA 1050 to obtain MERGED
SELECTED TABLE DATA 1070, which is the desired resultant of the parallel table
lookup algorithm in this example. In an alternative embodiment, a packed addition
operation to add together SELECTED LOW TABLE DATA 1049 and SELECTED HIGH
TABLE DATA 1050 can also yield MERGED SELECTED TABLE DATA 1070. As
shown in Fig. 10H, either SELECTED LOW TABLE DATA 1049 or SELECTED HIGH
TABLE DATA 1050 has a 0x00 value for a given data position in this embodiment. This
is because the other operand that does not have the 0x00 value is to contain the desired
table data selected from the appropriate source. Here, the leftmost data element position
in the resultant 1070 is O, which is shuffled data 1041 from the first data set 1021.
Similarly, the third data element position from the left in fhe resultant 1070 is Z, which is
shuffled data 1042 from the second data set 1051.

[00118] The method for looking up data in oversized tables in this example
embodiment can be summarized generally with the following operations. First, copy or
load the table data into registers. Table values from each table section are accessed with a
packed shuffle operation. The source select fields that identify the table section are
extracted from the shuffle masks. Compare-if-equal operations on the source select fields
with the table section number to determine which table sections are the appropriate
sources for the shuffled data elements. The compare-if-equal operations provides masks
to further filter out the desired shuffled data elements for each table section. The desired
data elements from the appropriate table sections are merged together to form the end

table lookup resultant.

47

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[00119] Figure 11 is a flow chart illustrating one embodiment of a method to perform a
table lookup using SIMD instructions. The flow described here generally follows the
methodology of Fig. 10A-H, but is not restricted as such. Some of these operations can
also be performed in different order or using various types of SIMD instructions. At block
1102, a set of shuffle masks designating a shuffle pattern is received. These shuffle masks
also include source fields to indicate from which table or source to shuffle data elements to
obtain the desired resultant. At block 1104, the data elements for a first portion of a table
or a first data set is loaded. The first portion data elements are shuffled in accordance to
the shuffle pattern of block 1102 at block 1106. Data elements for a second portion of a
table or a second data set is loaded at block 1108. The second portion data elements are
shuffled in accordance to the shuffle pattern of block 1102 at block 1110. At block 1112,
table selects are filtered out from the shuffle masks. The table selects of this embodiment
involve the source select fields that designate where a data element is supposed to
originate from. At block 1114, a table select mask is generated for the shuffled data from
the first portion of the table. A table select mask is generated for the shuffled data from
the second portion of the table at block 1116. These table select masks are to filter out the
desired shuffled data elements for specific data element positions from the appropriate
table data source.

[00120] At block 1118, data elements are selected from the shuffled data of the first
table portion in accordance with a table select mask of block 1114 for the first table
portion. Data elements are selected at block 1120 from the shuffled data of the second
table portion in accordance with the table select mask of block 1116 for the second table
portion. The shuffled data elements selected from the first table portion at block 1118 and
from the second table portion at block 1120 are merged together at block 1122 to obtain

merged table data. The merged table data of one embodiment includes data elements
48

10

15

20

25

WO 2005/006183 PCT/US2004/020601

shuffled from both the first table data and the second table data. For another embodiment,
the merged table data can include data looked up from more than two table sources or
memory regions.

[00121] Figure 12 is a flow chart illustrating another embodiment of a method to
perform a table lookup. At block 1202, a table having a plurality of data elements are
loaded. A determination is made at block 1204 as to whether the table fits in a single
register. If the table fits into a single register, the table lookup is performed with a shuffle
operation at block 1216. If the data does not fit into a single register, table lookup is to be
performed with shuffle operations for each relevant portion of the table at block 1206. A
logical packed AND operation is performed to obtain the bits or field that select the table
portion or data source. A “compare-if-equal” operation at block 1210 creates a mask to
select table data from the relevant portions of the table to be looked up. At block 1212, a
logical AND operation is used to look up and select data items from the table sections. A
logical OR operation merges the selected data at block 1214 to obtain the desired table
lookup data.

[00122] One embodiment of the packed shuffle instruction is implemented into an
algorithm for rearranging data between multiple registers using the flush to zero
capability. The objective of a mix operation is to merge the contents of two or more
SIMD registers in a single SIMD register in a selected arrangement in which the positions
of data in the resultant differ from their original position in the source operands. Selected
data elements are first moved to desired result positions and unselected data elements are
set to zero. The positions to which selected data elements were moved for one register are
set to zero in other registers. Consequently, a single one of the result registers may
contain a nonzero data item in a given data element position. The following general

instruction sequence can be used to mix data from two operands:
49

10

15

20

25

WO 2005/006183 PCT/US2004/020601

packed byte shuffle DATA A, MASK A;

packed byte shuffle DATA B, MASK B;

packed logical OR RESULTANT A, RESULTANT B.
[00123] Operands DATA A and DATA B contain elements that are to be rearranged or
set zero. Operands MASK A and MASK B contain shuffle control bytes that specify
where data elements are to be moved and which data elements are to be set to zero. For
this embodiment, data elements in destination positions not set to zero by MASK A are set
to zero by MASK B and destination positions not set to zero by MASK B are set to zero
by MASK A. Figures 13A-C illustrates an algorithm for rearranging data between
multiple registers. In this example, data elements from two data sources or registers 1304,
1310, are shuffled together into an interleaved data block 1314. The data blocks including
masks 1302, 1308, source data 1304, 1310, and resultants 1306, 1312, 1314, of this
example are each 128 bits long and composed of sixteen byte size data elements.
However, alternative embodiments can include data blocks of other lengths having various
sized data elements.
[00124] Fig. 13A illustrates a first packed data shuffle operation of a first mask, MASK
A 1302, on a first source data operand, DATA A 1304. For this example, the desired
interleaved resultant 1314 is to include an interleaved pattern of one data element from a
first data source 1304 and another data element from a second data source 1310. In this
example, the fifth byte of DATA A 1304.is to be interleaved with the twelfth byte of
DATA B 1310. MASK A 1302 includes a repeated pattern of “0x80” and “0x05” in this
embodiment. The 0x80 value in this embodiment has the set to zero field set, wherein the
associated data element position is filled with ‘0’. The 0x05 value states that the
associated data element position for that shuffle mask should be arranged with data F,
from data element 0x5 of DATA A 1304. In essence, the shuffle pattern in MASK A 1302

arranges and repeats data F1 at every other resultant data element position. Here, data F1
50

10

15

20

WO 2005/006183 PCT/US2004/020601

is the single piece of data to be shuffled from DATA A 1304. In alternative embodiments,
data from various number of source data elements can be shuffled. Thus embodiments are
not restricted to patterns involving a single piece of data or any particular pattern. The
arrangement combinations for mask patterns are open to all kinds of possibilities. The
arrows in Fig. 13A illustrate the shuffling of the data elements per the shuffle masks of
MASK A 1302. RESULTANT A 1306 of this shuffle operation is thus comprised of a
pattern of ‘0’ and F; per the mask pattern 1302.

[00125] Fig. 13B illustrates a second packed data shuffle operation involving a second
mask, MASK B 1308, together with a second source data operand, DATA B 1310.
MASK B 1308 includes a repeated pattern of “0x0C” and “0x80”. The 0x80 value causes
the associated data position for that shuffle mask to receive ‘0’. The 0xCO value causes
the resultant data element position corresponding to that shuffle mask to be arranged with
data M, from data element 0xC of DATA B 1310. The shuffle pattern of MASK B 1308
arranges data M, to every other resultant data element position. The arrows in Fig. 13B
illustrate the shuffling of the data elements per the set of shuffle masks in MASK B 1308.
RESULTANT B 1312 of this shuffle operation is thus comprised of a pattern of ‘0’ and
M, per the mask pattern 1308.

[00126] Fig. 13C illustrates the merging of the shuffled data, RESULTANT A 1306
and RESULTANT B 1312 to achieve INTERLEAVED RESULTANT 1314. The
merging is accomplished with a packed logical OR operation. The pattern of ‘0’ values in
RESULTANT A 1306 and RESULTANT B 1312 allow for the interleaving of the M2 and
F1 data values 1314. For example, at the leftmost data element position, the logical OR of
‘0’ and M2 results in M2 in the leftmost data element position of the resultant 1314.

Similarly, at the rightmost data element position, the logical OR of F, and ‘0’ results in F,

51

10

15

20

25

WO 2005/006183 PCT/US2004/020601

in the rightmost data element position of the resultant 1314. Thus data from multiple
registers or memory locations can be rearranged into a desired pattern.

[00127] Figure 14 is a flow chart illustrating one embodiment of a method to rearrange
data between multiple registers. Data is loaded from a first register or memory location at
block 1402. The first register data is shuffled at block 1404 based on a first set of shuffle
masks. At block 1406, data is loaded from a second register or memory location. This
second register data is shuffled at block 1408 in accordance with a second set of shuffle
masks. The shuffled data from the first and second register shuffles are merged at block
1410 with a logical OR to arrive at an interleaved data block with data from the first and
second register.

[00128] Figures 15A-K illustrates an algorithm for shuffling data between multiple
registers to generate interleaved data. This is an example of an application that interleaves
planar color data. Image data is often processed in separate color planes and then these
planes are later interleaved for display. The algorithm described below demonstrates
interleaving for red plane, green plane, and blue plane data as used by image formats such
as bitmaps. Numerous color spaces and interleave patterns are possible. As such, this
approach can easily be extended to other color spaces and formats. This example
implements an often used image processing data format process wherein red (R) plane,
green (G) plane, and blue (B) plane data are interleaved into an RGB format. This
example demonstrates how the flush to zero capability in accordance to the present
invention significantly reduces memory accesses.

[00129] Data from three sources are combined together in an interleaved fashion. More
particularly, the data relates to pixel color data. For example, color data for each pixel can
include information from red (R), green (G), and blue (B) sources. By combining the

color information, the red/green/blue (RGB) data can be evaluated to provide the desired
52

10

15

20

25

WO 2005/006183 PCT/US2004/020601

color for that particular pixel. Here, the red data is held in operand DATA A 1512, the
green data in data operand DATA B 1514, and the blue data in DATA C 1516. This
arrangement can exist in an graphics or memory system where data for each separate color
is stored together or collected separately as in streaming data. In order to use this
information in recreating or displaying the desired image, the pixel data has to be arranged
into an RGB pattern wherein all the data for a particular pixel is grouped together.

[00130] For this embodiment, a set of masks having predefined patterns are used in
interleaving together the RGB data. Fig. 15A illustrates as set of masks: MASK A 1502
having a first pattern, MASK B 1504 having a second pattern, and MASK C 1506 having
a third pattern. Data from each register is to be spaced three bytes apart so that it can be
interleaved with data from the two other registers. Control bytes with hex values 0x80
have the most significant bit set so that the corresponding byte is flushed to zero by the
packed byte shuffle instruction. In each of these masks, every third shuffle mask is
enabled to select a data element for shuffling while the two intervening shuffle masks have
values of 0x80. The 0x80 value indicates that the set to zero fields in the masks for those
corresponding data element positions are set. Thus ‘0’s will be placed in the data element
positions associated with that mask. In this example, the mask patterns are to basically
separate out the data elements for each color in order to accomplish the interleaving. For
example, when MASK A 1502 is applied to a data operand in a shuffle operation, the
MASK A 1502 causes six data elements (0x0, 0x1, 0x2, 0x3, 0x4, 0x5) to be shuffled
apart with two data element spaces between each data element. Similarly, MASK B 1504
is to shuffle apart data elements at 0x0, 0x1, 0x2, 0x3, 0x4. MASK C 1506 is to shuffle
apart data elements at 0x0, 0x1, 0x2, 0x3, 0x4.

[00131] Note that in this implementation, the shuffle mask for each particular

overlapping data element position has two set to zero fields set and one shuffle mask
53

10

15

20

25

WO 2005/006183 PCT/US2004/020601

designating a data element. For example, referring to the rightmost data element position
for the three sets of masks 1502, 1504, 1056, the shuffle mask values are 0x00, 0x80, and
0x80, for MASK A 1502, MASK B 1504, and MASK C 1506, respectively. Thus only the
shuffle mask 0x00 for MASK A 1502 will specify data for this position. The masks in this
embodiment are patterned so that the shuffled data can be easily merged to form the
interleaved RGB data block.

[00132] Fig. 15B illustrates the blocks of data to be interleaved: DATA A 1512, DATA
B 1514, and DATA C 1516. For this embodiment, each set of data has an data entry with
color information for sixteen pixel positions. Here, the subscript notion accompanying
each color letter in a data element represents that pixel number. For instance, RO is the red
data for pixel 0 and G15 is the green data for pixel 15. The hex values at each data
element illustrated is the number of that data element position. The color data (DATA A
1512, DATA B 1514, DATA C 1516) may be copied into other registers so that the data is
not overwritten by the shuffle operation and can be reused without another load operation.
In the example of this embodiment, three passes with the three masks 1502, 1504, 1506,
are needed to complete the pixel data interleaving. For alternate implementations and
other amounts of data, the number of passes and shuffling operations can vary as needed.
[00133] Fig. 15C illustrates the resultant data block, MASKED DATA A 1522, for a
packed shuffle operation on red pixel data, DATA A 1512, with the first shuffle pattern,
MASK A 1502. In response to MASK A 1502, the red pixel data is arranged into every
third data element position. Similarly, Fig. 15D illustrates the resultant data block,
MASKED DATA B 1524 for a packed shuffle operation on green pixel data, DATA B
1514, with the second shuffle pattern, MASK B 1504. Fig. 15E illustrates the resultant
data block, MASKED DATA C 1526 for a shuffle operation on blue pixel data, DATA C

1516, with a third shuffle pattern, MASK C 1506. For the mask patterns of this
54

10

15

20

25

WO 2005/006183 PCT/US2004/020601

embodiment, the resultant data blocks from these shuffle operations provide data elements
that are staggered so that one of the data elements has data while two have ‘0’s. For
instance, the leftmost data element position of these resultants 1522, 1524, 1526, contain
Rs, ‘0%, and ‘0, respectively. At the next data element position, the pixel data for another
one of the RGB colors is presented. Thus when merged together, a RGB type of grouping
is achieved.

[00134] In this embodiment, the above shuffled data for the red data and the green data
are first merged together with a packed logical OR operation. Fig. 15F illustrates the
resultant data, INTERLEAVED A & B DATA 1530, for the packed logical OR-ing of
MASKED DATA A 1522 and MASKED DATA B 1524. The shuffled blue data is now
merged together with the interleaved red and green data with another packed logical OR
operation. Fig. 15G illustrates the new resultant, INTERLEAVED A, B, & C DATA
1532, from the packed logic OR-ing of MASKED DATA C 1526 and MASKED DATA A
& B 1530. Thus the resultant data block of Fig. 15G contains the interleaved RGB data
for the first five pixels and a portion of the sixth pixel. Subsequent iterations of the
algorithm of this embodiment will yield the interleaved RGB data for the rest of the
sixteen pixels.

[00135] At this point, one third of the data in DATA A 1512, DATA B 1514, and
DATA C 1516 has been interleaved. Two approaches can be used to process the
remaining data in these registers. Another set of shuffle control bytes can be used to
arrange the data to be interleaved or the data in DATA A 1512, DATA B 1514, and
DATA C 1516 can be shifted right so that the shuffle masks 1502, 1504, 1506, can be
used again. In the implementation shown here, data is shifted to avoid making the
memory accesses required to load additional shuffle control bytes. Without these shifting

operations, nine sets of control bytes would be needed in this embodiment instead of three
55

10

15

20

25

WO 2005/006183 PCT/US2004/020601

(MASK A 1502, MASK B 1504, MASK C 1506). This embodiment can also be applied
in architectures where a limited number of registers are available and memory accesses are
long.

[00136] In alternative embodiments where a large number of registers are available,
keeping all or a large number of mask sets in registers so that shift operations are not
necessary can be more efficient. Furthermore, in an architecture with many registers and
execution units, all of the shuffle operations can be performed in parallel without having to
wait for the shifting to occur. For instance, an out-of-order processor with nine shuffle
units and nine mask sets can perform nine shuffle operations in parallel. In the
embodiment above, the data has to be shifted before the masks are reapplied.

[00137] The data elements in the original color data of DATA A 1512, DATA B 1514,
and DATA C 1516, are shifted in accordance to the number of data elements already
processed for that particular color. In this example, data for six pixels has been processed
above for red, so the data elements for red data operand DATA A 1512 is shifted to the

right by six data element positions. Similarly, data for five pixels has been processed for

both green and blue, so the data elements for green data operand DATA B 1514 and for

blue data operand DATA C 1516 are shifted right by five data element positions each.
The shifted source data is illustrated as DATA A' 1546, DATA B' 1542, and DATA C'
1544, for the colors red, green, and blue, respectively, in Fig. 15H.

[00138] The shuffle and logical OR operations as discussed above with Fig. 15A-G are

- repeated with this shifted data. Subsequent packed shuffle operations on DATA B' 1542,

DATA C' 1544, and DATA A' 1546, together with MASK A 1502, MASK B 1504, and
MASK C 1506, respectively, in combination with packed logical OR operations on the
three packed shuffle resultants, provides interleaved RGB data for another four pixels and

parts of another two. This resultant data, INTERLEAVED A', B, AND C' DATA 1548 is
56

10

15

20

25

WO 2005/006183 PCT/US2004/020601

illustrated in Fig. 151. Note that the rightmost two data elements relate to the sixth pixel,
which already had its red data Rs arranged with the first interleaved data set 1532. The
raw pixel color data is shifted again by the appropriate number of places per the
processing results of the second pass. Here, data for five additional pixels has been
processed for red and blue, so the data elements for red data operand DATA A' 1546 and
for blue data operand DATA C' 1544 are shifted to the right by five data element
positions. Data for six pixels has been processed for green, so the data elements for green
data operand DATA B' 1542 is shifted to the right by six positions. The shifted data for
this third pass is illustrated in Fig. 15J. A repeat of the packed shuffle and logical OR
operations above are applied to DATA C" 1552, DATA A" 1554, and DATA B" 1556.
The resultant interleaved RGB data for the last of the sixteen pixels is illustrated in Fig.
15K as INTERLEAVED A", B" DATA 1558. The rightmost data element with B10
relates to the eleventh pixel, which already has its green data G10 and red data R10
arranged with the second interleaved data set 1548. Thus, by way of a series of packed
shuffle with a set of mask patterns and packed logical OR operations, data from multiple
sources 1512, 1514, 1516, can be merged and rearranged together in a desired fashion for
further use or processing like these resultants 1532, 1548, 1558.

[00139] Figure 16 is a flow chart illustrating one embodiment of a method to shuffle
data between multiple registers to generate interleaved data. For example, embodiments
of the present method can be applied to the generation of interleaved pixel data as
discussed in Fig. 15A-K. Although the present embodiment is described in the context of
three data sources or planes of data, other embodiments can operate with two or more
planes of data. These planes of data can include color data for one or more image frames.
At block 1602, frame data for a first, second, and third plane are loaded. In this example,

RGB color data for a plurality of pixels are available as individual colors from three
57

10

15

20

25

WO 2005/006183 PCT/US2004/020601

different planes. The data in the first plane is for the color red, the data in the second
plane is for green, and the data in the third plane is for blue. At block 1604, a set of masks
with shuffle control patterns (M1, M2, and M3) are loaded. These shuffle control patterns
determine the shuffle patterns and arrangement of data in order to interleave the colors
together. Depending on the implementation, any number of shuffle patterns can be
employed in order to generate the desired data arrangement.

[00140] At block 1606, an appropriate control pattern is selected for each plane of data.
In this embodiment, the shuffle pattern is selected based on which order the color data is
desired and which iteration is presently being executed. The frame data from the first data
set, red, is shuffled with a first shuffle control pattern at block 1608 to obtain shuffled red
data. The second data set, green, is shuffled at block 1610 with a second shuffle control
pattern to obtain shuffled green data. At block 1612, the third data set, blue, is shuffled
with a third shuffle control pattern to achieve shuffled blue data. Although the three
masks and their shuffle control patterns are different from each other in this embodiment,
a mask and its shuffle pattern can be used on more than a single data set during each
iteration. Furthermore, some masks may be used more often than others.

[00141] At block 1614, the shuffled data of blocks 1608, 1610, 1612, for the three data
sets are merged together to form the interleaved resultant for this pass. For example, the
resultant of the first pass can look like the interleaved data 1532 of Fig. 15G, wherein the
RGB data for each pixel is grouped together as a set. At block 1616, a check is made to
determine whether there is more frame data loaded in the registers to shuffling. Ifnot, a
check is made at block 1620 to determine whether there is more data from the three planes
of data to be interleaved. If not, the method is done. If there is more plane data available
at block 1620, the process proceeds back to block 1602 to load more frame data for

shuffling.
58

10

15

20

25

WO 2005/006183 PCT/US2004/020601

[00142] If the determination at block 1616 is true, the frame data in each plane of color
data is shifted by a predetermined count that corresponds to whichever mask pattern was
applied to the data set for that particular color during the last pass. For example, in
keeping with the first pass example from Fig. 15G, the red, green, and blue data in the
first, second, and third planes are shifted six, five, and five positions, respectively.
Depending on the implementation, the shuffle pattern selected for each color data may be
different each pass or the same one reused. During the second pass for one embodiment,
the three mésks from the first iteration are rotated such that first plane data is now paired
with the third mask, second plane data is paired with the first mask, and third plane data is
paired with the third mask. This mask rotation allows for the proper continuity of
interleaved RGB data from one pass to the next, as illustrated in Fig. 15G and 151. The
shuffling and merging continues as in the first pass. Should a third or more iterations be
desired, the shuffle mask patterns of this embodiment continue to be rotated among the
different planes of data in order to generate more interleaved RGB data.

[00143] Embodiments of algorithms using packed shuffle instructions in accordance
with the present invention can also improve processor and system performance with
present hardware resources. But as technology continues to improve, embodiments of the
present invention when combined with greater amounts of hardware resources and faster,
more efficient logic circuits, can have an even more proféund impact on improving
performance. Thus, one efficient embodiment of a packed shuffle instruction having byte
granularity and a flush to zero option can have different and greater impact across
processor generations. Simply adding more resources in modern processor architectures
alone does not guarantee better performance improvement. By also maintaining the
efficiency of applications like one embodiment of the parallel table lookup and the packed

byte shuffle instruction (PSHUFB), larger performance improvements can be possible.
59

10

WO 2005/006183 PCT/US2004/020601

[00144] Although the examples above are generally described in the context of 128 bits
wide hardware/registers/operands to simplify the discussion, other embodiments employ
64 or 128 bits wide hardware/registers/operands to perform packed shuffle operations,
parallel table lookups, and multiple register data rearrangement. Furthermore,
embodiments of the present invention are not limited to specific hardware or technology
types such as MMX/SSE/SSE2 technologies, and can be used with other SIMD
implementations and other graphical data manipulating technologies.

[00145] In the foregoing specification, the invention has been described with reference
to specific exemplary embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereof without departing from the broader spirit
and scope of the invention as set forth in the appended claims. The specification and

drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

60

10

15

20

25

WO 2005/006183 PCT/US2004/020601

CLAIMS
What is claimed is:
1. A method comprising:
receiving a first operand having a set of L data elements and a second operand
having a set of L control elements; and
for each control element, shuffling data from a first operand data element
designated by said control element to an associated resultant data element position if
its flush to zero field is not set and placing a zero into said associated resultant data
element position if its flush to zero field is not set.
2. The method of claim 1 wherein each of said L control elements occupies a
particular position in said second operand and is associated with a similarly located data
element position in a resultant.
3. The method of claim 2 wherein each of said L data elements occupies a particular
position in said first operand.
4. The method of claim 3 wherein said control element is to designate a first operand
data element by a data element position number.
5. The method of claim 4 wherein each of said control elements is comprised of:
a flush to zero field, said flush to zero field to indicate whether a data element
position associated with this control element is to be filled with a zero value; and
a selection field, said selection field to indicate which first operand data element to
shuffle data from.
6. The method of claim 5 wherein each of said control elements is further comprised
of a source select field.
7. The method of claim 2 further comprising outputting a resultant data block

comprising data that was shuffled from said first operand in response to said control
61

10

15

20

25

WO 2005/006183 PCT/US2004/020601

elements of said second operand.

8. The method of claim 1 wherein each of said data elements comprises a byte of
data.
9. The method of claim 8 wherein each of said control elements is a byte wide.

10. The method of claim 9 wherein L is 8 and wherein said first operand, said second
operand, and said resultant are each comprised of 64-bit wide packed data.
11. The method of claim 9 wherein L is 16 and wherein said first operand, said second
operand, and said resultant are each comprised of 128-bit wide packed data.
12. An apparatus comprising:
an execution unit to execute a shuffle instruction including a first operand
comprised of a set of L data elements and a second operand comprised of a set of L
control elements, said shuffle instruction to cause said execution unit to:
for each individual control element, determine whether its flush to zero
field is set, and place a zero into an associated resultant data element position if
true, otherwise shuffle data from a first operand data element designated by
said individual control element to said associated resultant data element
position.
13. The apparatus of claim 12 wherein each of said L control elements occupies a
position in said second operand and is associated with a similarly located data element
position in a resultant.
14. The apparatus of claim 13 wherein each individual control element is to designate
a first operand data element by a data element position number.
15. The apparatus of claim 14 wherein each of said control elements is comprised of:
a flush to zero field, said flush to zero field to indicate whether a data element

position associated with this control element is to be filled with a zero value; and
62

10

15

20

25

WO 2005/006183 PCT/US2004/020601

a selection field, said selection field to indicate which first operand data element to
shuffle data from.
16. The apparatus of claim 15 wherein each of said control elements is further

comprised of a source select field.

17. The apparatus of claim 16 wherein said shuffle instruction is to further cause said

execution unit to generate a resultant having L data element positions that have been filled

based on said set of L control elements.
18. The apparatus of claim 12 wherein each of said data elements comprises a byte of
data and each of said control elements is a byte wide.
19. The apparatus of claim 18 wherein L is 8 wherein said first operand, said second
operand, and said resultant are each comprised of 64-bit wide packed data.
20. The apparatus of claim 18 wherein L is 16 and wherein said first operand, said
second operand, and said resultant are each comprised of 128-bit wide packed data.
21. An article comprising a machine readable medium that stores data representing a
predetermined function comprising:
receiving a first operand having a set of L data elements and a second operand
having a set of L control elements; and
for each control element, shuffling data from a first operand data element
designated by said control element to an associated resultant data element position its
flush to zero field is not set and placing a zero into said associated resultant data
element position its a flush to zero field is not set.
22. The article of claim 21 wherein said data stored by sad machine readable medium
represents an integrated circuit design, which when fabricated performs said
predetermined function in response to a single instruction.

23. The article of claim 22 wherein said predetermined function further comprises
63

10

15

20

25

WO 2005/006183 PCT/US2004/020601

generating a resultant having L data element positions that been filled in accordance to
said set of L control elements.
24. The article of claim 23 wherein each of said L control elements is associated with a
similarly located data element position in a resultant.
25. The article of claim 24 wherein each individual control element is to designate a
first operand data element by a data element position number.
26. The article of claim 25 wherein each of said data elements comprises a byte of
data.
27. The article of claim 26 wherein each of said control elements is comprised of:
a flush to zero field, said flush to zero field to indicate whether a data element
position associated with this control element is to be filled with a zero value; and
a selection field, said selection field to indicate which first operand data element to
shuffle data from.
28. The article of claim 27 wherein each of said control elements is further comprised
of a source select field.
29. The article of claim 21 wherein said data stored by said machine readable medium
represents a computer instruction, which, if executed by a machine, causes said machine to
perform said predetermined function.
30. A method comprising:
receiving a first operand having a set of L data elements;
receiving a second operand having a set of L masks, wherein each of said L masks
occupies a particular position in said second operand and is associated with a similarly
located data element position in a resultant, each of said L masks to include a flush to
zero field;

for each mask, determining whether its flush to zero field is set, and placing a zero
64

10

15

20

25

WO 2005/006183 PCT/US2004/020601

into an associated resultant data element position if true; and
if its flush to zero field is not set, shuffling data from a first operand data element
designated by said mask to said associated resultant data element position.
31. The method of claim 30 wherein each of said L masks occupies a particular
position in said second operand and is associated with a similarly located data element
position in said resultant.
32. The method of claim 31 wherein each of said L masks is comprised of:
a flush to zero field, said flush to zero field to indicate whether a data element
position associated with this control element is to be filled with a zero value; and
a selection field, said selection field to indicate which first operand data element to
shuffle data from.
33. The method of claim 32 wherein each of said masks is further comprised of a
source select field.
34. The method of claim 33 wherein said first operand, said second operand, and said
resultant are each comprised of 64-bit wide packed data.
35. The method of claim 33 wherein said first operand, said second operand, and said
resultant are each comprised of 128-bit wide packed data.
36. A method comprising:
receiving a first operand having a set of L data elements;
receiving a second operand having a set of L shuffle masks, each of said L shuffle
masks associated with a similarly located data element position in a resultant;
for each individual shuffle mask, determining whether its flush to zero field is set,
and placing a zero into an associated resultant data element position if true, otherwise
shuffling data from a first operand data element designated by said individual shuffle

mask to said associated resultant data element position.
65

WO 2005/006183 PCT/US2004/020601

37. The method of claim 36 wherein each of said L shuffle masks is comprised of:
a flush to zero field, said flush to zero field to indicate whether a data element
position associated with this control element is to be filled with a zero value; and
a selection field, said selection field to indicate which first operand data element to
5 shuffle data from.
38. The method of claim 37 wherein each of said masks is further comprised of a
source select field.
39. An apparatus comprising:
a first memory location to store a plurality of source data elements;

10 a second memory location to store a plurality of control elements, each of said
control elements to correspond to a resultant data element position, and each of said
control elements to include a flush to zero field and a selection field;

control logic coupled to said second memory location, said control logic in
response to values of said control elements to generate a plurality of selection signals

15 and a plurality of flush to zero signals;

a first plurality of multiplexers coupled to said first memory location and said
plurality of selection signals, each of said first plurality of multiplexers to shuffle a
data element for a specific resultant data element position in response to a selection
signal corresponding to said specific resultant data element position; and

20 a second plurality of multiplexers coupled to said first plurality of multiplexers and
to said plurality of flush to zero signals, each of said second plurality of multiplexers
associated with a specific resultant data element position, each of said second plurality
of multiplexers to output a zero if its flush to zero signal is active or to output a data
element shuffled for that specific resultant data element position.

25 40. The apparatus of claim 39 wherein said plurality of source data elements is a first
66

WO 2005/006183 PCT/US2004/020601

packed data operand.
41. The apparatus of claim 40 where said plurality of control elements is a second
packed data operand.
42. The apparatus of claim 40 wherein said first and second memory locations are a
5 single instruction multiple data registers.
43, The apparatus of claim 42 wherein:
said first packed operand is 64 bits long and each of said source data elements is a
byte wide; and
| said second packed operand is 64 bits long and each of said control elements is a
10 byte wide.
44, The apparatus of claim 42 wherein:
said first packed operand is 128 bits long and each of said source data elements is a
byte wide; and
said second packed operand is 128 bits long and each of said control elements is a
15 byte wide.
45. An apparatus comprising:
control logic to receive a set of L shuffle masks, wherein each shuffle mask is
associated with a unique resultant data element position, said control logic to provide a
select signal and a flush to zero signal for each resultant data element position;

20 a set of L multiplexers coupled to said control logic, wherein each multiplexer is
also associated with a unique resultant data element position, each multiplexer to
output a zero if its associated flush to zero signal is active and to output data shuffled
from a set of M data elements based on its associated select signal if its associated
flush to zero signal is inactive.

25 46. The apparatus of claim 45 further comprising a register with L unique data element
67

WO 2005/006183 PCT/US2004/020601

positions, each data element position to hold an output from its associated multiplexer.
47. The apparatus of claim 46 wherein L is 16 and M is 16.
48. A system comprising:
a memory to store data and instructions;
5 a processor coupled to said memory on a bus, said processor operable to perform a
shuffle operation, said processor comprising:

a bus unit to receive an instruction from said memory, said instruction to
cause a data shuffle on at least one of L data elements from a first operand
based on a set of L shuffle control elements from a second operand,;

10 an execution unit coupled to said bus unit, said execution unit to execute
said instruction, said instruction to cause said execution unit to:
for each shuffle control element, shuffle data from a first operand
data element designated by said shuffle control element to an associated
resultant data element position if its flush to zero field is not set and
15 place a zero into said associated resultant data element position if its
flush to zero field is not set.
49. The system of claim 48 wherein each shuffle control element is comprised of:
a flush to zero field, said flush to zero field to indicate whether a data element
position associated with this shuffle control element is to be filled with a zero value;
20 and
a selection field, said selection field to indicate which first operand data element to
shuffle data from.
50. The system of claim 49 wherein each shuffle control element is further comprised
of a source select field.

25 51. The system of claim 48 wherein said instruction is a packed byte shuffle
68

WO 2005/006183 PCT/US2004/020601

instruction with flush to zero capability.

52. The system of claim 48 wherein each data element is a byte wide, each shuffle
command element is a byte wide, and L is 8.

53. The system of claim 48 wherein said first operand is 64 bits long and said second

operand is 64 bits long.

69

WO 2005/006183

1/30

PCT/US2004/020601

PRO?gg’SOR EXECUTION UNIT 108
PACKED INSTRUCTION
CACHE REGISTER FILE SET 108
104 106
p PROCESSOR BUS
110 J \ |
MEMORY
GRAPHICS! [\ MEMORY /_'\ INSTRUCTION
VIDEO 114 CONTROLLER [118
CARD \r——l/ HUB \J—|/
112 DATA
116 120
imi
LEGACY /0
DATA (N _.CONTROLLER
STORAGE (}:’> : USER
124 INPUT
...... INTERFACE
/0
WIRELESS — CONTROLLER
TRANSCEIVER HUB SERIAL EXPANSION
126 K= PORT
FLASH BIOS <,‘:|'> AUDIO
K= CONTROLLER
128 130
NETWORK
CONTROLLER F I G 1 A
100 134 :

WO 2005/006183

2/30

PCT/US2004/020601

A

A

A

A

A

A

A

v

v

{k

PROCESSING 141
CORE 144
J159 [142 T
143 |l 145 >
SDRAM g
> > I/0 BRIDGE <
CTL N
146 o
- 154
SRAM R
i’ CTL " > UART
147 155
R BURST FLASH R > usB 156
> INTERFACE >
148
| BLUETOOTH
> UART
» PCMCIA/CF CARD CTL |e» 157
149
j /0 EXPANSION
> LCD CTL > INTERFACE
150 158
> DMA CTL PR :

151 153

A

ALTERNATE BUS MASTER

INTERFACE

152

N

140

FIG. 1B

v

PCT/US2004/020601

WO 2005/006183

3/30

691
JOV4H3LNI
SSIATIAHIM

891
W31SAS O/l

. 191

09l

Gol

3JHOVO

991

dOSS300dd NIVIN

991
| agol |
(R R]

9L |le—»| €91
L9
MOSSI00Ud0D ANIS

PCT/US2004/020601

WO 2005/006183

4/30

JHOVD 3 13ATT 0L

IHOVD § TRATI OL
* 3
V2T T2 02 BIz ne oz
3AOW dd dd NVMOTIS NTv 1SV nov nov
A / (¥4
- B : o018
o2 o oo
SRHOMLIN R
SEVAAR / TI HILSIOT b MHOMLIN SSVAAS / T4 HILSIOFY HIOILNI
A y i) L Y 7y
=4 =
L 4 1 —+
mm:%mwzom oz oz HINAIHOS
TN HIINAIHOS d1 WVHINIDMOTS YFINCIHOS 1SV4 AHOW3MN
3N3ND dON INIOd ONLLYONS AH3OILNI o ommwwwu s_
[YIWYNIY ¥ILSIOIY HOLYIOTTY B
/ , £0z
PET 08T INIONT ¥3QYO0 40 1No
3nN3n0 don IHOVD J0VaL
ze 4 .
000U o34 ooz
¥360930
N0 HOSSIO0Ud
' mwx%mwﬂmma
ON3 INOu4 NOILDNH1SNI N y w \ &

PCT/US2004/020601

WO 2005/006183

5/30

(€€ 9ee - gge .
- NOILO313S | 10313s0ods | 0O¥3Z0L13S I€ Ol
8ee 0 1598 4 . 9 L
128 9z¢ 74> .
_— NOILO313S aany3sIY 0¥3z 01 138 g¢ old
8ce 0 15384 . 9 - L ,
LIE oLe Sie .
1 |suanNoILD313sS| a3AN3SIY |OV14 O¥3IZ 01 138 vE Ol
gie | » — . . .
piE erle | zie - LiE
INENERE! INENERE L W INIW3T3 5| IN3W33
v.1vQ v.1va e Viva v.1va
l 1
ANYH3IdO a3axMovd /
oLe

PCT/US2004/020601

WO 2005/006183

6/30

vy 9Old

ddoM319noa aaxdovd

oey

/

0 dadom3aignoa o o o € adoMm3angnoda
Lg ¢¢ G6 96 VXA’
oz
QYoM aINOVd \
0 d4OM | A4OM o o o 9 d40OM . 40M
Gl 91 L€ 2¢ G6 96 LLL 2LL yx4"
oLy
3149 3OV \
0 l e € ® ° ° ¢l ¢l 14* Gl
J1A89 | 1AG | 91A9 | 3LAG d1A9 | 31LAG | 31LAG | 1AL
L8 Sl 91 €¢ v¢ l¢ ¢¢ G6 96 €0l $0L LiL 2L 6L1 021 yXA"

PCT/US2004/020601

WO 2005/006183

7/30

gy 9ld

ey
319n0A a3xOVd \
0 31dnod | 319Nnod
€9 $9 4"
Zvy
J71ONIS IOV \
0 FT1ONIS I ATONIS ¢ 319DNIS € d19ONIS
lE 2¢ €9 ¥9 G6 96 yXA"
Loy
47VH a3Novd \
0 41vH I 47VH ¢ 4VH ¢ 41vH v 471VH G 41vH 9 471vH L 47TVH
gL gl g ¢¢ Ly 8Y €9 ¥9 6/ 08 G6 96 LLL 2L X A"

WO 2005/006183 PCT/US2004/020601

8/30

o o
w0 0
© N~
o (4p)
© o~ © N
¢ { o 5o
<t <+
© N~
(op] (4]
Ty 0
© ©
(ap] (ap]
«© N~
(4p) (40
~ ~
© ©
N N
© :I' N~ :I'
(40] (3]
n n
o (!’ 0 (D
© th © LL\
« A
A &
v
® -

32 31

378

39

WO 2005/006183 PCT/US2004/020601

9/30

390

4
389

388

87

387

12 11

386

FIG. 4E

0
o0
(40)
o
o
~
>
o
- lap) \co
o~ <
o~
~
op]
(e 0]
(ap]
o
~
<
N
(9]
(e 0]
(a9
N
~N
©
~

381

31

PCT/US2004/020601

WO 2005/006183

10/30

G Ol ovs
: INVIINS3Y \
v N 9] | | 310 1| 3 O 9101010 r A @)
'y .
8¢l ,
0gs
2901 I144NHS
A A
, 0cs
8¢l , \
viva 0XO | LXO | TX0 | €X0 | ¥X0 | GXO | 9X0 | %0 | &x0 .mxo VX0 | GX0 | OXQ | QX0 { 3IX0 | X0
v g 0 a 3 4 9] H | r A 1 W N O d
) , 0LS
ge) A \
-1
00X0 | Q0X0 | S0X0 | 80X0 | 80X0 | ¥0X0 | 04%0 | SOXO | 90X0 { 90X0 | 30X0 | 20X0 | 48X0 | 60X0 | VOX0 | IOX0 ASVIN

PCT/US2004/020601

WO 2005/006183

11/30

TaTe! INVLINS3Y

29
009 e r\ t
(aoe9 20€9 g0€9 VO£ A 019
e | 219313S
2829 / mw.m.m_ v8e9
. 8%0 oo mm.nﬁ.
1o313s
X X .
N \\
N \\
229 NA
800 /1
09
2I9071043Z %
103713S XN
219
JOHNO0S 40 SLN3NITF VIVG ADIDVd €3IMOT
: z09
MSYI

9 94

JT744NHS

PCT/US2004/020601

WO 2005/006183

12/30

Z Old

LNVLINSTY

374

/

18L 96. GS.L V¥S. €6. TSL

\\\

/

/

V6L 0SL 6vL 8pL Lv. 9OvL SbL Vvi ev. VL

/

[/

!/

/[L/

[/

3 O o)
3744NHS
a3axovd

0x0 | 1X0 | 2%0 | £x0 | m0 | 5%0 | sx0 | %0 | %0 | 60 | wxo | 8x0 | o%0 | ax0 | o | o V2L
v|igjoja|3|d[O]|H]I riydj1JWIN]J]O|d viva

ANA N AN

L8L 1 9EL | GEL | vEL | €€L | CEL

N A AN

ANAR AR AR

beL | 0L | 62L | 8CL | LeL | 92L | G2l | veL | €2L | 2TL

00%0 | QOX0 | 90%0 | 80X0 | 80X0 { YOX0 | 04X0 | SOXO | 90X0 | 90X0 | 30X0 | 20X0 | 48%0 | 60X0 | YOXO | 30X0 XMWM2
LIL GiL /// €L L 604 /// FALA /// S0L mom ///
9tL 1424 [AYA 1174 80. 90. 0L 0L

PCT/US2004/020601

WO 2005/006183

13/30

. 18
mw mmvsn* INVLINSTY \\
r]
6e8 geg 1£8 oe8 ge8 es g8 ze8
v 9 4 0 9 O H g
F144NHS
aanovd
0X0 X0 | ZX0'EX0 | ¥X0'SX0 | X0 'IX0 | 8X0'6%0 | VX0'@x0 | OX0'Qx0 | 3¥0 '9x0 128
v g 9 a 3 F o H VLYQ
A / A / A / A / A / A / A / A M
628 8z8 128 928 5z8 +28 cz8 z28
00X0 | LOXO | O0X0 | QOX0 | VOXO0 | S0X0 | ¥OX0 | SOX0O | DOX0 | QOX0Q | 28X%0 | €8X0 | 30X0 | J0X0 | 20X0 | €0%X0 v._meuw_Z
218 518 €18 /// 118 608 208 mow/// €08 ///
918 vig 218 018 808 908 y08 Z08

PCT/US2004/020601

WO 2005/006183

14/30

9¢6
INVLINSTY
30 NOLLISOd ves
IN3W3T3 VIva o,
NOILYNILS3Q 1VHL oL NS Y 1va
HO NSVIN IHL A8 LVHL ¥Od ANING 138
Q3LYNOIS3A INIWI3
V1va 308N0S
WOYS VLYA AdOD
ON S3A

L6
4138 OVd
oy3az

‘NOILISOd IN3W3T3 V1Va HOV3 HO4

6 Ol4

006 \

0e6
NY3LLVd 3744NHS O1 3ONVQHOO0V
Ni SINIWIT3 Viva IT44NHS

026
NYILLVd 3134NHS ¥
ONILYNDIS3IA SHSYW 40 135 V IAIZO3Y

0L6
aONVY3dO
VLVQA T HIONTT 1SYHI4 V IAIB03Y

1yvis

PCT/US2004/020601

WO 2005/006183

15/30

vol "9l

V INVLINST3Y dN3L

(34015

/

d

3

O

0X0

1Xx0

[A0)

£X0

a

X0

3

gx0

d

9%X0

)

X0

H

8X0

6X0

r

w0
N

X0
L

X0

W

axo

N

3x0

O

40
d

A\ AN

LE0L [9E01 | GEOL | ¥EOL | €€01 | 2E0L | LEOL | OE0L | 6201 | 8201 | L0k | 9201 | SZOL | 201 | €201 | 2201

\

\

\

\

\

\

\

A A\

\

\

\

00X0 | QLX0 | 91X0 | 80X0 | 80X0 | POXO | LOXO | SOXO | 91X0 | 90X0 | 30X0 | X0 | OLX0 | 61X0 | VOXO | 30%0
2101 Giol €10l / LLOL 6001 001 GooL €001 /
9101 yiol ciol oiol 8001 9001 ¥001L

¢001

31ddNHS
aaMovd

120t
vivd
Jiavi

/ MO

L00L
ASYIN

PCT/US2004/020601

WO 2005/006183

16/30

g0l Old

g LINVLINS3Y dW3L

<yol

/

Slaaimi| A AN o AT MM 331 " {00} Z | W 33
3F144NHS
ad3amovd

S . , 1SOL
0XO | LXO | 20 | X0 | ¥XO0 | GX0O | OXO | /X0 | 8XD | 6X0 | VX0 | 9%0 | OX0 | QX0 X0 | 4x0 viva

Ot ¥ S LN A M} X A Z VY880]|0a|33]4d 378vL

A A\

3

\

N

AN

2901 | 9901 | 901 | 901 | €901 | 2901 | LSO | 0901 | 6504 | 8501 | LS0) | 9S04 | SSOL | S04 | €501 | 2501

\

A\

\

\

\

\

\

\

/ HOIH

ooxo | aixo | 91xo | soxo | soxo | voxo | Loxo | soxo | 9ixo | 9oxo | 30%0 | 1ixo | o1xo | s1x0 | voxo | 30%0 v%w?
2404 10l /// €101 LL0L /// 600} /// 004 5001 /// 001 ///
9101 P10} Z1L01 0101 8001 9004 001 Z00L

PCT/US2004/020601

WO 2005/006183

17/30

g9voL
NSYIN 103138 IT18VL MO \

3:%0 | 00%0 | 00%0 | 39%0 | 49%0 | 49%0 | 35%0 | 33%0 | 00x0 | %0 | 33%0 | 00%0 | 00%0 | 00%0 | 33%0 | 24%0
00ox0 | 01x0 | 0ix0 | 00X0 | 0OX0 [00X0 | COX0 | 00X0 | OLXO | O0X0 04X0 | OLXO | OLXD | 00X0 | 00X0
TIVAD3 IUVAIROD GINIOVd
00X0 § 0OX0 | 00X0 { 00x0 | 00X0 | 00X0 | 00%0 | 0OX0 | 0OX0 | 00X0 00x0 | 00%0 | 00X0 | 000 | 00X0

YO}
YSVIN 10313S 318VL \

00%0 | 01x0 § 0Lx0 | 0OXQ | 00X0 { 00X0 { 00XQ | 00X0 { OLX0 | 00X0 01X0 { 0iXD | OLX0 | 00X0 | 00X0
00%0 { O1X0 | 94%0 | BOX0 | 8OX0 | YOXO | LOX0 § GOX0 | 9LX0 | G0X0 { 30XQ | L1X0 1 DIX0 | 64X0 | YOXO | 30X0
dNV a3axMovd
OLx0 § O1X0 § OsX0 § OLX0O | OLXO | OLXD { OL¥0 { OLX0 | OLXD | OLX0 QLX0 { OiXQ { OLXQ § OLXO | OLXQ

|

aot ol4

$¥0L
ASYIN
103138
Jigvli

S¥Cl
¥317d
MO

01 "9Old

100}
ASYN

£p0l
3L
103138

PCT/US2004/020601

WO 2005/006183

18/30

6v01
v1VQ 318YL MO G310313S \

vV jooxojooxof | | | | 3§ 8] 4 jooco] O O jooojooxo]jocxof M | O
VIiN|IO |1 |3]8|d]9|9]j0]lainW]rix]|oO
ANV g3aNOvd
34%0 | 00X0 | 00X | 34%0 | 44%0 | 44%0 | 43X | 44X0 | 00%0 | 3P0 | 340 | 00%0 | 00%0 | 00%0 | 34%0 | %0

8v0}
MSYW 103738 318VL HOIH \
]
00XQ | 44%0 | 44%0 | 00XD | 00XO | 00XD | 00X | 00X0 | 44%0 | 00X0 | 00%0 | 4:4%0 | 34%0 | 44%0 | 00%0 | 00%0
00X0 | ObXO | 04X0 | 00X0 | 00XD | 00XO | DOXO | 00X | OLX0 | 00%0 | 00X0 | 01LX0 | 01X0 | 01x0 | 00%0 | 00X
IVND3 IHVYIINOD AaMovd
01X0 { 01x0 | 0LX0 OLX0 | 04XQ | 0LXO | O1X0 | OLX0 { OLx0 | O1X0 | 01X0 | O1X0 | OtxD | OLx0 | OLX0

0Lxp

40} Old

70}
v
LNVLINS3H
dW3lt

o9Pol
ASYW
103138
Javi
MOT

30} "9OId

baqt]3
MSYIN
1037138
31avl

b0l
¥3ald
HOH

PCT/US2004/020601

WO 2005/006183

19/30

004

vivQa 378vVL 43103138 G30Y3IN \

4
YV 1adim } { 3 g 3 M} O1T071¥d 1001 2 pu (o}
000] aa | m {ooxo | ooxo | ooxo oo |ooxo| m |ooolooo| 8 | 00| Zz |ooxo]ooo
HO aaMovd
v |ooofooo| 1 { 1 { 3| 8| 4 loxol © | O |ooo|oocxolomol W | O
0504
v1va 318VL HOIH Q3103138 \
)
000 | Q| M }ooxo|ooxo|ooxof{ooxofooxo| M fooxaojooxo] ¥ | DO Z |ooxo| coxo
O 1A M A A N o A M IMI33] 810201 Z VYW |33
IVND3 UVAINOD GaXoVd
00%0 | 44%0 | 44%0 | 00%0 | 00%0 | 00%0 | 00%0 | 00%0 | 4:4%0 | 00%0 | 00%0 | 4:%0 | 24%0 | 33x0 | 00x0 | cox0

HO! "Old

0504
vY1iva
318Y.L HOH
Q3103138

6¥01

viva
VYL MO
a310313s

901 Old

(44018
a
INVLINS3Y
diN3L

8¥01L
HSYIN
103713s
318Vl
HOIH

WO 2005/006183 PCT/US2004/020601

20/30
START
RECEIVE A SET OF MASKS DESIGNATING GENERATE TABLE SELECT MASK FOR
A SHUFFLE PATTERN FIRST PORTION OF THE TABLE
1102 1114
LOAD DATA ELEMENTS FOR A FIRST GENERATE TABLE SELECT MASK FOR
PORTION OF A TABLE SECOND PORTION OF THE TABLE
1104 ' 1118
SHUFFLE FIRST PORTION DATA SELECT DATA ELEMENTS FROM
ELEMENTS IN ACCORDANCE SHUFFLED FIRST PORTION
TO SHUFFLE PATTERN IN ACCORDANCE WITH
1106 FIRST TABLE SELECT MASK
1118

: 1

LOAD DATA ELEMENTS FOR A SECOND
PORTION OF THE TABLE SELECT DATA ELEMENTS FROM
1108 SHUFFLED SECOND PORTION
IN ACCORDANCE WITH
SECOND TABLE SELECT MASK
l 1120
SHUFFLE SECOND PORTION DATA
ELEMENTS IN ACCORDANCE
TO SHUFFLE PATTERN
1110 GENERATE MERGED TABLE DATA WITH
SELECTED FIRST AND SECOND PORTION
DATA ELEMENTS
1122

FILTER OUT TABLE SELECTS FROM MASK
1112

(=)
FIG. 11 1100

WO 2005/006183 PCT/US2004/020601

21/30

START

LOAD TABLE
1202

FIG. 12

TABLE FITS IN
ONE REG?
1204

YES

NO

v

TABLE LOOKUP WITH SHUFFLES TABLE LOOKUP WITH SHUFFLE
FOR EACH PORTION 1216
1208

l

LOGICAL AND SELECTS BITS THAT
SELECT TABLE
1208

l

COMPARE-IF-EQUAL OPERATION
CREATES MASK TO SELECT TABLE DATA
1210

|

LOGICAL AND SELECTS DATA ITEMS IN
TABLE SECTIONS
1212

l

LOGICAL OR MERGES SELECTED DATA
1214

D— -y

PCT/US2004/020601

WO 2005/006183

22/30

veELlL OId

YV INVLINS3Y

90¢t

4
}

0 4 0,
mxo —«xo mxo mxo wxo m_.xo orxo mwxo mwo mwxo Axo m_.xo nwxo Amxo m«_xo uﬁxo
vita|l'o|tata ||| lw|'N]|'0]|"

3744NHS A3INOVd
GOXO | 08X0 | SOXO | 08%X0 { SOXO | 08X0 | SOX0 | 080 | SOXO | 08X0 | SOXO | 08X0 | SOX0 { 08X0 | SOXO | 080

voet
vV vivd

coel
YV ASVN

PCT/US2004/020601

WO 2005/006183

23/30

gel old

ciel
g INVLINSTY \

I]
olmlolwmlolwlolwwlolwlolwlolw!ol!lwn
oxo _wxo mxo mxo v«xo mmxo mxo mwxo wWo mwxo VX0 | gX0 on mxo wxo ...mxo
lgllalalYg]|D]H]l 4| M| WIN]|%] 4

3144NHS AaMOVd
08X0 | D0X0 | 08%X0 | DOX0 | 08X0 | O0X0D | O8X0 | DOX0 | 08X0 § D0X0 | 08%X0 | O0X0 | 08X0 | D0OX0 | 08X0 | D0OX0

oLel
8 vLvd

80EL
g 1SV

PCT/US2004/020601

WO 2005/006183

24/30

o€l Old

14394
INVLIINSIH A3AVIATHILNI \
= I BTV AR T BTV R T TV BRSNSV B N TV RS BV LI TV IS BTN
= 8051
\ g INVLINS3Y
ol wnlolwlolwlolw|lolwlolWw]olaw!l.olw
HO gIMOVd -
\ VY INVLTINS3IY
'qlolHlolaloldlol3lolsaloltalolte] 0

WO 2005/006183 PCT/US2004/020601

25/30

START

LOAD FIRST REGISTER DATA
1402

.

SHUFFLE FIRST REGISTER DATA BASED
ON FIRST SET OF MASKS
1404

.

LOAD SECOND REGISTER DATA
1406

'

SHUFFLE SECOND REGISTER DATA
BASED ON SECOND SET OF MASKS
1408
LOGICAL OR MERGES TOGETHER
SHUFFLED FIRST AND SECOND

REGISTER DATA
1410

(=)
FIG. 14

PCT/US2004/020601

WO 2005/006183

26/30

golveleelee e feo oo oo Tee [xo e e [ee e]2
gl d| 9|89} 848} 98j8]ag]9 g| da|{"8}]"8y'9|"89
wxc wxo on mxo on mxo wxo »xo ch mxo %pxo mﬂo NO«xo M_rxo vm—xo m._wo
D] 9]} ©] 91| 9] O] 9] O] 9] 9102 9] 9|9
golpoTeoTeepoTooTool ol oo oo yalgaTgo [go zo] g0
R IR R A R A R e N R e A T T e A
08%0 | 08X0 | 00X0 | 080 { 08X0 | 100 | 08X0 | 0SX0 | ZOXO { 08%0 | 08X0 | €£0X0 08%0 | 08%0 | v0x0 | 08%0
08%0 | 00X0 | 08%0 | 08X0 | 10X0 | 08X0 | 08X0 | ZOXO | 08%0 | 08XD | £OXO | 08X0 | 08X0 | YOXQ | 08X0 | 08X0
08%0 | 08X0 | LOXO0 | 08%0 | 08%0 | ZOXQ | 08X0 €0%0 | 08X0 | 08%0 | ¥OX0 | 08%0 | 08x0

08x0

S0%0

g6l Old

9154
Jviva

14313
avyLva

CiSi
v viva

VGl ‘Old

90S1
O MSVYW

¥oSE
aMsvn

2051
YV ASYWN

PCT/US2004/020601

WO 2005/006183

27/30

961 Old

‘g

™y

€

9

451 "Ol4

0.

g

)

0

-ov

361 Ol

O

’g

‘g

ast oid

0,

O

o}

0,

oGt Old

0

S|

0.

K

[AX13
vivade'a'v
QSAVITIILNI

(3,54
vivagsyv
Q3AVITHILNI

9251
oviva
UIASYN

¥esi
8 viva
AISYW

2251
vviva
QIHSYWN

PCT/US2004/020601

WO 2005/006183

28/30

ISL "Old

Yiva.0 % 8"V 3AVITYILNI

mmu mm mm w@ mm hw_ ho \.m mm mmu mm mm m@ mm o—m o«mu
Im\‘ G\H\ 9¥SL
Y vlva
90 } X0 | 8X0 } ©X0 | KO | O | QX0 DO DOI A0l 0l ol ol ol o]0
PR NCRE B VI OO LV IRV IOV IOV AU ILLo VTN Rl LA B B el e
k4412
QD VYivd
X0 | 9¥0 | /X0 | 8X0 | B0 | WXO | 8XO | X0 } QMO | FXOF O o o 6 0] 0
gi{a|a|®a|%a|%a|"a|%a|%a| Mg || " ||| |”
ysi
8 v.iva
X0 | 9¥0 | [X0 | §¥0 | 6X0 | X0 | 8X0 | BX0 | O PO 04 51 6] 0 | 0 | 0
ol | |%|%|%|"|%|%0|"0|%o| > | V| | PP

PCT/US2004/020601

WO 2005/006183

29/30

MGl Ol

Viva.0? .8 .V G3AVITHYILNI

8651

3 4
o-m tm_ :O :wm me N_O N-m mwm QO m.m pm_ Smu Sm mFm 30 m_m
\.. m h mu\l 9561
4 Vviva
axo | O%0 | Gx0 | 3x0 | %0
P FO NFo n*w vF o er -o- -o_ ‘°~ -O- -o~ -o- .o- -o- .o- .o- -o-
14°1°12
- Vivd
gxp | Ox0 | gx0 | 3X0 | JX0
F?m Nwm m—.m vrm m—-m —o- .o- —o- _c_ —O- .o- —o_ . 50- .O~ -o~ .o-
2661
QO Vvivd
vX0 | X0 | Ox0 | gx0 | 3X0 | dX0
Sm :m N,m mrm ﬁm ﬁm 0, O, 0, 0, 0, 0, .0, 0 0, 0,

WO 2005/006183

< START }

y

LOAD FRAME DATA FOR FIRST, SECOND,
AND THIRD PLANE
1602

y

LOAD SHUFFLE CONTROL
PATTERNS M1, M2, & M3
1604

30/30

PCT/US2004/020601

FIG. 16

)

y

SELECT APPROPRIATE CONTROL
PATTERN FOR EACH PLANE DATA
FOR THIS PASS
1606

3

SHUFFLE FIRST PLANE FRAME DATA
WITH ONE OF THE CONTROL PATTERNS
1608

A

SHUFFLE SECOND PLANE FRAME DATA
WITH ANOTHER CONTROL PATTERN
1610

A 4

SHUFFLE THIRD PLANE FRAME DATA
WITH YET ANOTHER CONTROL PATTERN
1612

MERGE TOGETHER SHUFFLED DATA FOR
RESULTS OF THIS PASS
1614

SHIFT FRAME DATA

1618

A

YES

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

