I*I Innovation, Sciences et Innovation, Science and CA 2871036 C 2020/03/10

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 87 1 036
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépébt/Filing Date: 2014/11/13 (51) ClLInt./Int.Cl. GO6F 17/00(2019.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2015/09/06 GO6F 16/90(2019.01)
" . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2020/03/10 AGARWAL. PUNEET, IN:
(30) Priorité/Priority: 2014/03/06 (IN770/MUM/2014) SHROFF, GAUTAM, IN;

MALHOTRA, PANKAJ, IN

(73) Propriétaire/Owner:
TATA CONSULTANCY SERVICES LIMITED, IN

(74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre : RESOLUTION D'ENTITE A PARTIR DE DOCUMENT
(54) Title: ENTITY RESOLUTION FROM DOCUMENTS

100j‘

ENTImY RESOLUTION SYSTEM 102
PROCESSCR(S) 110 ] [ INTCRFACE(S) 112 I
MEMORY 174 I

MoDULE(s) 118

108-1

BLOCKING MODULE 120

GRAP+ GENERATION MODULE 122

CONPUTATION MODULE 124

OTHFR (8) MOCULE 126

— r—«r——l-—j
S W W —

108-N
Data 118
r BLOCKING DATA 128 ]
COMPUTATION DATA 130 I
[ OTHER (S) Dria 132 ]

(57) Abrégé/Abstract:

The present subject matter relates to entity resolution, and in particular, relates to providing an entity resolution from documents.
The method comprises obtaining a plurality of documents corresponding to a plurality of entities, from at least one data source.
Upon receiving the plurality of documents, the plurality of documents is blocked into at least one bucket based on textual similarity.
Further, a graph including a plurality of record vertices and at least one bucket vertex is created. The plurality of record vertices and
the at least one bucket vertex are indicative of the plurality of documents and the at least one bucket, respectively. Subsequently, a
notification is provided to a user for selecting one of a Bucket-Centric Parallelization (BCP) technique and a Record-Centric

Parallelization (RCP) technique for resolving entities from the plurality of documents. Based on the selection, a resolved entity-
document for each entity is created.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca ( Eal lada



CA 02871036 2014-11-13

ABSTRACT

The present subject matter relates to entity resolution, and in particular,
relates to providing an entity resolution from documents. The method comprises
obtaining a plurality of documents corresponding to a plurality of entities, from at
least one data source. Upon receiving the plurality of documents, the plurality of
documents is blocked into at least one bucket based on textual similarity. Further,
a graph including a plurality of record vertices and at least one bucket vertex is
created. The plurality of record vertices and the at least one bucket vertex are
indicative of the plurality of documents and the at least one bucket, respectively.
Subsequently, a notification is provided to a user for selecting one of a Bucket-
Centric Parallelization (BCP) technique and a Record-Centric Parallelization
(RCP) technique for resolving entities from the plurality of documents. Based on

the selection, a resolved entity-document for each entity is created.



10

15

20

25

CA 02871036 2014-11-13

ENTITY RESOLUTION FROM DOCUMENTS
TECHNICAL FIELD

[0001] The present subject matter relates, in general, to entity resolution and,

particularly but not exclusively, to entity resolution from a plurality of documents.
BACKGROUND

[0002] Generally, when data from different sources is analyzed, often
multiple records in the data may belong to the same real-world entity, such as a
customer, a product or an organization. In order to find different records that
belong to the same entity, a technique known as Entity resolution (ER) is widely
used. In various disciplines, ER is also referred to as record linkage, de-
duplication,  co-reference  resolution, reference  reconciliation,  object
consolidation, identity uncertainty and database hardening. ER has a wide scope
of application, for example, in government and public health data maintenance,
web search, e-commerce and law enforcement. In practice, dynamics pertaining to
the ER ‘rnay keep changing, e.g., corresponding data set may keep changing over a
period of time. Therefore, in order to accommodate such changes associated with
the data, ER has to be performed regularly to update an ER result set of resolved

entities.
BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of a reference number
identifies the figure in which the reference number first appears. The same
numbers are used throughout the drawings to reference like features and

components.
[0004] Fig. 1 illustrates a network environment implementing an entity
resolution system, in accordance with an embodiment of the present subject

matter.



10

15

20

25

CA 02871036 2014-11-13

[0005] Fig. 1(a) illustrates an example including a plurality of records and a
plurality of buckets for entity resolution, in accordance with an embodiment of

the present subject matter.

[0006] Fig. 1(b) illustrates an outcome of entity resolution from a plurality of
documents by executing Record-Centric Parallelization (RCP) technique for

entity resolution, in accordance with an embodiment of the present subject matter.

[0007] Fig. 2 illustrates a method for entity resolution from a plurality of

documents, in accordance with an embodiment of the present subject matter.
DETAILED DESCRIPTION

[0008] System(s) and method(s) for entity resolution from a plurality of
documents are described. The system(s) and method(s) can be implemented in a
variety of computing devices, such as laptops, desktops, workstations, tablet-PCs,
notebooks, portable computers, tablet computers, internet appliances, and similar
systems. However, a person skilled in the art will comprehend that the
embodiments of the present subject matter are not limited to any particular
computing system, architecture, or application device, as they may be adapted to

new computing systems and platforms as they become available.

[0009] In the last few decades, Entity Resolution (ER) has emerged as a
growing challenge in the realm of data management across industries. Often,
multiple records available in various data sources may pertain to the same real-
world entity, such as a person, a product, or an organization. To resolve such
situations, ER analysis is performed for identifying those records that refer to the
same entity and once identified, merging those records. The various records may
be interchangeably referred to as documents or textual documents. Therefore, in
the ER analysis, a plurality of documents obtained from the various data sources
may be matched, in pairs, for determining similarity among the plurality of textual
documents. Based on the determination, a set of textual documents related to an
entity may be identified, and the identified set of textual documents may then be

combined to create a merged document for the entity. As would be understood,



10

15

20

25

30

CA 02871036 2014-11-13

the merged document of an entity may include all the details disclosed in each of

the identified set of textual documents.

[0010] Usually, ER analysis includes a large number of records to be
processed in order to resolve the entities involved. For example, in case of a
citizen of a country being considered as an entity, the records may include identity
proofs, such as a passport, a voter ID, a driving license, a credit card, a Permanent
Account Number (PAN), a telephone number, and a bank account number.
Considering that each citizen owns an average of 3 of the above-mentioned [Ds,
the number of records to be processed for resolving entities may turn out to be in

millions, or even billions.

[0011] In order to make the ER analysis scalable, the conventional ER
techniques employ a blocking technique to divide the records in various blocks
based on some pre-defined parameters, such as textual similarity. Now, each
block may contain a relatively small number of potentially matching textual
documents. Thereafter, a pair-wise comparison of the textual documents is
performed in each block to identify a set of textual documents pertaining to an
entity. In the pair-wise comparison, based on a match function, two textual
documents are considered as matching. The match function may include but is not
limited to predefined rules, and binary classifiers derived using machine learning.
Therefore, based on the match function, a set of textual documents pertaining to
each entity may be identified, within each block. The set of textual documents
may then be merged to create a merged document for each entity. As may be
understood, the merged document contains all the information as disclosed in
each of the set of textual documents pertaining to the entity. Therefore, within
each block, the textual documents are resolved to entities, and such resolved

entities are referred to as partial entities.

[0012] However, the conventional blocking techniques may block different
textual documents belonging to a single entity into more than one block. In such a
case, multiple partial entities belonging to the same entity may be obtained from

multiple blocks. Such partial entities from different blocks may be connected by

3



10

15

20

25

30

CA 02871036 2014-11-13

the fact that the partial entities may share the same textual document. Therefore,
the textual documents pertaining to each of the pair of the partial entities can be
consolidated to form an entity-resolved document for an entity. As would be
gathered, an entity-resolved document of an entity may include all the information

pertaining to the entity as disclosed in each of the plurality of documents.

[0013] As mentioned previously, in the course of resolving the entities from
the records, the blocking techniques may result into formation of a plurality of
blocks for collection of potentially matching documents. Further, it may happen
that a large number of blocks formed are singletons, i.e., blocks including only
one textual document. This may indicate that, within a singleton bucket, such
textual documents may not have to be further processed or compared with other
textual documents. However, the conventional techniques may involve sending a
textual document to a singleton block the textual document is blocked to. As
would be understood, since no comparisons have to be performed within a
singleton block, sending of the textual document to the singleton block is
unnecessary. In fact, sending the textual documents to the singleton blocks would
result into wastage of resources and time, and therefore, may add to the cost of
ER analysis as well. The cost, resource and time wastage would be more in case
the documents are large in size, and therefore, may affect the overall economic

facet of the ER analysis.

[0014] Further, as a result of the execution of the blocking technique, there
may be instances where the records may be blocked in a skewed manner, i.€., size
of blocks, in terms of number of hashed textual documents, may turn out to be
uneven. In case there are more number of blocks, the textual documents may be
processed by employing a parallel computation technique. As may be understood,
in parallel computation, the blocks can be distributed across multiple processing
units for performing the analysis. In such scenarios, time to be utilized for
processing the textual documents in a block having more number of textual
documents may be disproportionately more than the time to be utilized for a block

having less number of textual documents. Therefore, a processing unit with

4



10

15

20

25

30

CA 02871036 2014-11-13

blocks having larger number of textual documents than other blocks may act as a
bottleneck for the overall ER analysis, and an overall time required for

completion of the ER analysis would be significantly more.

[0015] Furthermore, consolidating merged documents to form entity-resolved
documents is a complex process as it involves determination of common textual
documents shared among partial entities, which is an iterative process. Therefore,
time spent and resources used for determining common textual documents are
significant. Thus, as is evident, the conventional ER techniques can be time-

extensive, inefficient, and expensive.

[0016] According to the present subject matter, an entity resolution system,
hereinafter referred to as a system, for entity resolution from a plurality of
documents is disclosed. In one implementation, the system may obtain the
plurality of documents corresponding to a plurality of entities from at least one
data source. The plurality of documents may be blocked into at least one bucket,
based on textual similarity among the plurality of documents. Further, a graph
including a plurality of record vertices and at least one bucket vertex may be
created. Subsequent to the generation of the graph, a notification may be provided
to a user for selecting one of a Bucket-Centric Parallelization (BCP) technique
and a Record-Centric Parallelization (RCP) technique for resolving entities from
the plurality of documents. The notification may include but is not limited to a
suggestion for selecting one of the BCP technique and the RCP technique based
on the blocking of the plurality of documents. Based on the sclection by the user,

a resolved entity document for each entity may be generated.

[0017] In one implementation, the plurality of documents may be
interchangeably referred to as records. As is generally understood, records can
include tangible objects, such as paper documents, like birth certificates, driver's
licenses, and physical medical x-rays, as well as digital information, such as
electronic office documents, data in application databases, web site content, and
electronic mail (email). Further, the at least one data source may include, but is

not limited to, an external database and/or an in-house database. Once the

5



10

15

20

25

30

CA 02871036 2014-11-13

plurality of documents is obtained, a blocking technique, e.g., Locality Sensitive

Hashing (LSH) may be employed to block the plurality of documents.

[0018] The LSH technique may use hash functions for grouping or blocking
the plurality of documents based on textual similarity among the plurality of
documents. In one implementation, a unique identification (ID) may be allotted to
each of the plurality of documents, and instead of blocking the plurality of
documents themselves, unique IDs of the documents may be blocked into the at
least one bucket. Further, singletons buckets, i.e., buckets having one document
may be discarded, and may not be considered for the further computations of the
ER analysis. As would be gathered, blocking of the plurality of documents may

facilitate in avoiding undesired comparisons among the plurality of documents.

[0019] In one implementation, computations to be performed for the ER
analysis may be distributed across multiple processing units. For example, the
buckets can be provided to multiple processing units for the subsequent stages of
the ER analysis. This would assist in parallel computation for performing ER
analysis and therefore, time to be utilized and complexity involved in the ER

analysis can be minimized.

[0020] Thereafter, a graph including a plurality of record vertices and at least
one bucket vertex may be created. The plurality of record vertices and the at least
one bucket vertex correspond to the plurality of documents and the at least one
bucket, respectively. In other words, each of the plurality of documents and the at
least one bucket may be considered as a vertex in the graph. In one
implementation, the plurality of record vertices and the at least one bucket vertex
may be connected to each other by edges, depending on the blocking of the

plurality of documents.

[0021] In one implementation, an adjacency list for each record vertex and
ecach bucket vertex may be generated. In one example, the adjacency list of a
record vertex may include details of bucket vertices to which the record vertex 1s
hashed to. The adjacency list of a record vertex may hereinafter be referred to as a

record adjacency list. Similarly, the adjacency list of a bucket vertex may include
6



10

15

20

25

30

CA 02871036 2014-11-13

details of record vertices hashed to the bucket vertex. The adjacency list of a

bucket vertex may hereinafter be referred to as a bucket adjacency list.

[0022] Subsequent to the creation of the graph, a notification may be provided
to a user for selecting at least one of a Bucket-Centric Parallelization (BCP)
technique and a Record-Centric Parallelization (RCP) technique for resolving
entities from the graph. In one implementation, the notification may include but is
not limited to a suggestion for selecting one of the BCP technique and the RCP
technique for resolving the entities from the plurality of documents. In one
implementation, the suggestion may be provided based on the blocking of the
plurality of documents. For example, in case the blocking of the plurality of
documents may result into substantially uniform distribution of the plurality of
documents among the buckets, the BCP technique for entity resolution may be
provided as the suggestion. On the other hand, in case the plurality of documents
is distributed among the buckets in a non-uniform manner, then the RCP
technique may be provided as the suggestion. This is due to the fact that the RCP
technique may utilize relatively lesser time than the BCP technique for entity

resolution in case of non-uniform distribution of the plurality of documents.

[0023] Further, in the BCP technique, the plurality of documents may be
compared at bucket vertices. On the other hand, in the RCP technique, the
plurality of documents may be compared at record vertices. In one
implementation, the BCP technique and the RCP technique may be employed

using a Pregel-based platform.

[0024] In one implementation, the user may select the BCP technique for
entity resolution. As mentioned earlier, initially, only IDs of documents hashed to
a bucket are available at a corresponding bucket vertex. Therefore, a value, i.¢.,
content of a corresponding document, of each record vertex may be provided to
one or more bucket vertices as provided in a record adjacency list. Once each
bucket vertex receives values of the record vertices hashed to the bucket vertex,
the documents are compared at each bucket vertex. In one implementation, an

Iterative Match Merge (IMM) technique may be used for comparing the

7



10

15

20

25

30

CA 02871036 2014-11-13

documents at a bucket vertex. In accordance with the IMM technique, at each
bucket vertex, at least one matching pair of documents may be identified and
merged to create a merged document for each entity. Entities resolved, at a bucket

vertex, by creating merged documents may be referred to as partial entities.

[0025] As per the IMM technique, multiple partial entities belonging to the
same entity can be obtained from multiple buckets. However, such partial entities
may share at least one document, and therefore can be considered to be
connected. In order to determine such shared or common or connected
documents, for each partial entity, one of the corresponding documents may be
considered as a central document, and one or more edges between a
corresponding central record vertex and each of the remaining record vertices of
the partial entity are created. Similar vertex-edge structures may be created for
each partial entity. In case a document is shared by multiple partial entities, the
document may appear in the vertex-edge structure of each of the multiple partial
entities. In such a case, all the record vertices belonging to the two partial entities
may be connected and may be considered to be belonging to the same entity.
Therefore, the connected record vertices, i.c., the connected documents can be
consolidated to form an entity-resolved document for the entity. As would be
gathered, an entity-resolved document of an entity may include all the information

pertaining to the entity as disclosed in each of the plurality of documents.

[0026] In an alternate implementation, the user may select the RCP technique
for entity resolution. In the RCP technique, from each bucket vertex, a
comparison message may be provided to one or more record vertices connected to
a bucket vertex, in order to schedule comparisons among the plurality of
documents using the IMM technique. For example, for each pair of record

vertices, a comparison message may be provided to one of the two record
vertices, e.g., {r;} is sent to j, if i<j.
[0027] Once a comparison message is received at a record vertex from the at

least one bucket vertex, a value of the record vertex may be sent to record vertices

whose IDs are received in the comparison message. In case if the two record IDs

8



10

15

20

25

CA 02871036 2014-11-13

r; and 1; co-occur in multiple bucket adjacency lists, the record vertex ri may
receive multiple comparison messages containing record ID rj, one from each
bucket vertex. However, the value of the record vertex rj may be provided to the

record vertex rj only once.

[0028] Based on the comparison messages, document corresponding to the
plurality of record vertices may be compared using a match function. In one
implementation, the match function may include but is not limited to predefined
rules, and binary classified derived using machine learning. For example, if a
value of a record vertex r matches a value of an incoming comparison message
containing an ID of a record vertex r', a match message {r, r'} containing IDs of
the two matched record vertices may be sent to the record vertex r and the record
vertex r'. For example, in case the record vertex r matches m record vertices, the
record vertex r may receive m corresponding match messages. Since the record
vertex r matches the m record vertices, the m+1 (including r) records may
considered to be belonging to the same entity. In such an implementation, at the
record-vertex r, pairs of record IDs received as match messages may be
consolidated to create a match set containing the m+1 IDs. As would be gathered,
a match set is indicative of a set including IDs of record vertices belonging to the
same entity. The match set may further be provided to one or more bucket-

vertices as defined in a bucket adjacency list of the record-vertex r.

[0029] Upon receiving the match sets from connected record vertices, at each
bucket-vertex, the match sets may be consolidated to form a consolidated match
set. Following the creation of the consolidated match set, older match sets utilized
for forming the consolidated match set may be deleted or removed. This is done
iteratively till all the match sets are disjoint. Further, new record vertices,
hereinafter referred to as partial-entity vertices, for each of such disjoint match
sets can be created. In one implementation, bi-directional edges between the
partial entity vertices and corresponding buckets vertices may be created.

Continuing with the present implementation, a partial-entity ID message may be



10

15

20

25

30

CA 02871036 2014-11-13

provided to each record-vertex in order to inform the record-vertices about their

corresponding partial-entity ID.

[0030] Once the record-vertex r receives a partial-entity ID message
containing the ID of a new partial-entity vertex rpg, the record-vertex r may
provide the value and the record adjacency list as a message, e.g., {vi, €}, where
v, is the value of the record vertex r and ¢; is the record adjacency list, to rpg. In
continuation with the receipt of values of connected record vertices, a value of the
partial-entity vertex rpp may be obtained by merging the received value vis as
received in the message. For every bucket vertex bi, to which the partial-entity
record vertex rpp is added, the partial-entity record vertex rpg may be compared
with the other documents and partial entities in a bucket adjacency list of bi. In
one implementation, the partial-entity vertices may be treated like record vertices
for next iteration of the above-mentioned steps. Finally, each record vertex, which
formed the partial-entity vertex rpg can be deleted. Such iterations may be

performed until no messages are further created.

[0031}] As would be gathered, after the blocking of the plurality of documents,
providing IDs of the documents to the buckets instead of providing the documents
themselves assists in reducing communication cost and data traffic during the ER
analysis. Further, removal of singleton buckets in the early stages assists in
avoiding unnecessary transmission of textual documents to singleton buckets.
Eventually, this would lead to optimal utilization of resources, time and cost
associated with transmission of data for the ER analysis. In addition, the RCP
technique for ER analysis distributes the IMM computations for documents,
mapped to the same bucket, to the record vertices. Therefore, the load of large
IMM computations at bucket vertices is further parallelized. As a result, the
computations are better balanced even when record vertices are randomly
distributed across processors. Due to the balanced computations employed by the
present subject matter, the present subject matter is apt for ER analysis involving
billions of records and hundreds of millions of entities. All the above-mentioned

advantages lead to optimum utilization of time and resources, which would

10



10

15

20

25

CA 02871036 2014-11-13

facilitate in reducing the cost involved as well. Therefore, the entity resolution
system of the present subject matter provides a comprehensive and exhaustive

approach for a time-saving, accurate, and inexpensive ER analysis.

[0032] These and other advantages of the present subject matter would be
described in greater detail in conjunction with the following figures. While
aspects of described system(s) and method(s) for entity resolution from
documents can be implemented in any number of different computing systems,
environments, and/or configurations, the embodiments are described in the

context of the following exemplary system(s).

[0033] Fig. 1 illustrates a network environment 100 implementing an entity
resolution system 102, also referred to as system 102, according to an
embodiment of the present subject matter. In the network environment 100, the
system 102 is connected to a network 104. Further, the system 102 is connected to
a database 106. Additionally, the network environment 100 includes one or more
user devices 108-1, 108-2...108-N, collectively referred to as user devices 108 and

individually referred to as user device 108, connected to the network 104.

[0034] The system 102 can be implemented as any set of computing devices
connected to the network 104. For instance, the system 102 may be implemented
as workstations, personal computers, desktop computers, multiprocessor systems,
laptops, network computers, minicomputers, Servers, and the like. In addition, the

system 102 may include multiple servers to perform mirrored tasks for users.

[0035] Furthermore, the system 102 can be connected to the user devices 108
through the network 104. Examples of the user devices 108 include, but are not
limited to personal computers, desktop computers, smart phones, PDAs, and
laptops. Communication links between the user devices 108 and the system 102
are enabled through various forms of connections, for example, via dial-up
modem connections, cable links, digital subscriber lines (DSL), wireless or

satellite links, or any other suitable form of communication.

11



10

15

20

25

30

CA 02871036 2014-11-13

[0036] Moreover, the network 104 may be a wireless network, a wired
network, or a combination thereof. The network 104 can also be an individual
network or a collection of many such individual networks interconnected with
each other and functioning as a single large network, e.g., the internet or an
intranet. The network 104 can be implemented as one of the different types of
networks, such as intranet, local area network (LAN), wide area network (WAN),
the internet, and such. The network 104 may either be a dedicated network or a
shared network, which represents an association of the different types of networks
that use a variety of protocols, for example, Hypertext Transfer Protocol (HTTP),
Transmission Control Protocol/Internet Protocol (TCP/IP), etc., to communicate
with each other. Further, the network 104 may include network devices, such as
network switches, hubs, routers, host bus adapters (HBAs), for providing a link
between the system 102 and the user devices 108. The network devices within the
network 104 may interact with the system 102 and the user devices 108 through

communication links.

[0037] In said embodiment, the system 102 includes one or more processor(s)
110, interface(s) 112, and a memory 114 coupled to the processor 110. The
processor 110 can be a single processing unit or a number of units, all of which
could also include multiple computing units. The processor 110 may be
implemented as one or more MicCroprocessors, Microcomputers, microcontrollers,
digital signal processors, central processing units, state machines, logic circuitries,
and/or any devices that manipulate signals based on operational instructions.
Among other capabilities, the processor 110 is configured to fetch and execute

computer-readable instructions and data stored in the memory 114.

[0038] The interfaces 112 may include a variety of software and hardware
interfaces, for example, interface for peripheral device(s), such as a keyboard, a
mouse, an external memory, and a printer. Further, the interfaces 112 may enable
the system 102 to communicate with other computing devices, such as web
servers, and external data repositories, such as the database 106, in the network

environment 100. The interfaces 112 may facilitate multiple communications

12



10

15

20

25

30

CA 02871036 2014-11-13

within a wide variety of protocols and networks, such as the network 104,
including wired networks, e.g., LAN, cable, etc., and wireless networks, e¢.g.,
WLAN, cellular, satellite, etc. The interfaces 112 may include one or more ports

for connecting the system 102 to a number of computing devices.

[0039] The memory 114 may include any non-transitory computer-readable
medium known in the art including, for example, volatile memory, such as static
random access memory (SRAM) and dynamic random access memory (DRAM),
and/or non-volatile memory, such as read only memory (ROM), erasable
programmable ROM, flash memories, hard disks, optical disks, and magnetic
tapes. The non-transitory computer-readable medium, however, excludes a

transitory, propagating signal.

[0040] The system 102 also includes module(s) 116 and data 118. The
module(s) 116 include routines, programs, objects, components, data structures,
etc., which perform particular tasks or implement particular abstract data types. In
one implementation, the module(s) 116 include a blocking module 120, a graph
generation module 122, a computation module 124 and other module(s) 126. The
other module(s) 126 may include programs or coded instructions that supplement

applications and functions of the system 102.

[0041] On the other hand, the data 118 inter alia serves as a repository for
storing data processed, received, and generated by one or more of the module(s)

116. The data 118 includes, for example, blocking data 128, computation data
130, and other data 132. The other data 132 includes data generated as a result of

the execution of one or more modules in the module(s) 116.

[0042] In one implementation, the system 102 may resolve entities from a
plurality of documents, which may be interchangeably referred to as records. As
is generally understood, records can include tangible objects, such as paper
documents like birth certificates, driver's licenses, and physical medical x-rays, as
well as digital information, such as electronic office documents, data in
application databases, web site content, and electronic mail (email). For this, in

one implementation, the blocking module 120 may obtain the plurality of
13



10

15

20

25

30

CA 02871036 2014-11-13

documents from at least one data source. Each of the plurality of documents may
pertain to a real-world entity, e.g., a person, a product or an organization.
Generally, the plurality of documents may exist in form of textual documents, and
may include at least one attribute. For example, a passport may have attributes,

such as name, father's name, address, data-of-birth and contact number.

[0043] Once the plurality of documents is obtained, the blocking module 120
may utilize a blocking technique for blocking the plurality of documents. In one
implementation, the Map Reduce (MR) technique can be utilized for blocking the
plurality of documents using a Locality Sensitive Hashing (LSH) technique. The
LSH technique may utilize hash functions for blocking the plurality of documents
into one or more buckets based on textual similarity among the plurality of
documents. In one implementation, the blocking module 120 may hash the
plurality of documents with bucket IDs. Therefore, documents with high textual
similarity are likely to get at least one same hash-value, i.e., same bucket ID. On
the other hand, documents, which are not textually similar are less likely to get

hashed to the same bucket.

[0044]) Therefore, the blocking of the plurality of documents is performed
based on textual similarity as the documents with similar content are likely to
belong to the same real-world entity. For example, if attributes, such as a name,
an address, and a phone number are same in two documents, there might be a
possibility that the two documents are related to the same person. Similarly, if the
name is same in two documents whereas the address and the phone number differ,
the possibility of the two documents being related to the same person is relatively
lesser. Therefore, in case two documents A and B have a large number of words
in common, the documents A and B may be considered for further comparisons as

compared to a pair of documents, which may vary textually.

[0045] In one implementation, the blocking module 120 may hash potentially
matching documents with the same value and therefore, may block the potentially
matching documents hashed with the same value in the same bucket. In one

implementation, each bucket may be understood as a key-value pair. The key may

14



10

15

20

25

CA 02871036 2014-11-13

be understood as a corresponding bucket-ID, and value is a group of documents,
which may get hashed to this ‘key’. Therefore, once the blocking module 120
may hash each of the plurality of documents to their respective bucket IDs, each

bucket may contain documents with high textual similarity.

[0046] In one implementation, the blocking module 120 may allot a unique
identification (ID) to each of the plurality of documents, and may maintain an ID
file mapping record IDs to the corresponding documents. In such an
implementation, in order to reduce data traffic, instead of blocking the plurality of
documents themselves, the blocking module 120 may block unique IDs of the
documents into the at least one bucket. Further, in the course of blocking the
document IDs, one or more singleton buckets may also be formed. Singleton
buckets can be understood as buckets including one document ID. The blocking
module 120 may discard such singleton buckets. The blocking of the plurality of
documents may facilitate in avoiding unnecessary comparisons among the
plurality of documents. Further, removal of singleton buckets may assist in
reducing time to be utilized, resource consumption, and cost associated with
transmission of textual documents to singleton buckets at subsequent stages of the
ER analysis. In one implementation, the details pertaining to the blocking module

120 may be stored in the blocking data 128.

[0047] Thereafter, the graph generation module 122 may generate a graph
depicting the plurality of documents and the at least one bucket as vertices. For
example, the graph may include a vertex, hereinafter referred to as record vertex,
for each of the plurality of documents. Similarly, the graph may include a vertex,
hereinafter referred to as bucket vertex, for each of the at least one bucket.
Further, the plurality of record vertices and the at least one bucket vertex may be
connected to each other based on the blocking of the plurality of documents into
the at least one bucket. For example, if a document is blocked in a bucket, then an
edge may exist between a corresponding record vertex and a corresponding

bucket vertex. Such edges are bidirectional, i.e., if an edge exists from a record

15



10

15

20

25

30

CA 02871036 2014-11-13

vertex A to a bucket vertex B, then another edge exists from the bucket vertex B

to the record vertex A.

[0048] Following the creation of the graph, the graph generation module 122
may generate an adjacency list for each record vertex and each bucket vertex. In
one example, an adjacency list of a record vertex, hereinafter referred to as record
adjacency list, may include details of bucket vertices to which the record vertex is
hashed to. On the other hand, an adjacency list of a bucket vertex, hereinafter
referred to as bucket adjacency list, may include details of record vertices hashed
to the bucket vertex. In one implementation, the details pertaining to the graph

generation module 122 may be stored in the blocking data 128.

[0049] In one implementation, the computation module 124 may provide a
notification to a user for selecting at least one of Bucket-Centric Parallelization
(BCP) technique and a Record-Centric Parallelization (RCP) technique for
resolving entities from the plurality of documents. Further, the notification may
include but is not limited to a suggestion for selecting one of the BCP technique
and the RCP technique for resolving the entities from the plurality of documents.
In one implementation, the computation module 124 may provide the suggestion
based on the blocking of the plurality of documents. For example, in case the
blocking of the plurality of documents may result into substantially uniform
distribution of the plurality of documents among the buckets, the computation
module 124 may provide the suggestion to select the BCP technique. On the other
hand, in case the plurality of documents is distributed among the buckets in a non-
uniform manner, then the computation module 124 may provide the suggestion to
select the RCP technique for entity resolution. In one implementation, the
computation module 124 may define a threshold to set a degree of non-
uniformity, above which the RCP technique may be suggested for entity

resolution.

[0050] In one implementation, the BCP technique and the RCP technique may
be employed using a Pregel-based platform. In another implementation, Apache

Giraph is the Pregel-based platform to be used for employing the abovementioned

16



10

15

20

25

30

CA 02871036 2014-11-13

techniques. As is generally understood, Apache Giraph is an iterative graph
processing system built for high scalability, and an open source implementation of

Pregel.

[0051] In one implementation, in response to the notification, the computation
module 124 may receive an instruction from the user to implement the BCP
technique for the entity resolution. In order to provide a better clarity and
understanding of the present subject matter, Fig. 1(a) illustrates an example with a
plurality of documents and buckets. The example is cited to provide a better
understanding of the present subject matter, and therefore, should not be
construed as limiting. Further, it would be better to refer to Fig. 1(a) in

conjunction with the description of Fig. 1.

[0052] In accordance with the cited example, there are four documents ry, 1,
r3, and 1y such that all the four documents belong to the same entity 11234, and two
buckets b, and by. Continuing with the present implementation, the computation
module 124 provide a value of each of the plurality of record vertices to one or
more bucket vertices connected to the record vertex, based on a corresponding
adjacency list of the record vertex. The value of a record vertex may include but is

not limited to content of a corresponding document of the record vertex.

[0053] In the present example, the computation module 124 may provide a
value of the record vertex r, to the bucket vertex by and the bucket vertex bs.
Once, each bucket vertex may receive values of the record vertices hashed to the
bucket vertex, the computation module 124 may compare the corresponding
documents at each bucket vertex. In one implementation, the computation module
124 may utilize an Iterative Match Merge (IMM) technique for comparing the
documents at each bucket vertex. In another implementation, the computation
module 124 may employ an R-swoosh based IMM technique for performing the

comparison.

[0054] In one implementation, the computation module 124 may consider two
documents as "Matching" if the two documents may return a value, e.g., "True"

under some match function. In one implementation, a match function may be a
17



10

15

20

25

30

CA 02871036 2014-11-13

Boolean function defined over two documents that may return "True", when the
two documents are determined to be belonging to the same entity. On the other
hand, in case the two documents may return a value "False", the two documents
are determined to be not-matching. Further, the match functions can be
implemented in multiple ways, e.g., as pre-defined rules or as Machine Learning
based classifiers. In one implementation, a match function may be based on at
least one rule defined over attribute values of the two documents being compared.
For example, a match function may be defined that the two documents may return
"True", if (name matches) AND (address matches) AND (date-of-birth matches).

Otherwise, the two documents may return "False".

[0055] In one implementation, in accordance with the R-Swoosh based IMM
technique, within a bucket, the computation module 124 may divide the
documents into two sets, e.g., a set X and a set Y. The set X may contain all the
documents from a bucket, and the set Y may contain the documents, which may
already have been compared with each other. As would be gathered, at the
starting of the execution of the IMM technique, the set Y may be empty. In such
an implementation, the computation module 124 may, at each bucket vertex,
compare two documents to start the execution of the IMM technique. Once, the
set Y may include at least one document which is compared with at least one of
the documents from the bucket, the computation module 124 may iterate over
each of the documents in the set X. For example, the computation module 124
may remove a document D from the set X, and may then compare the document
D with each document available in the set Y. In case the document D may not
have a matching document in the set Y, the computation module 124 may add the

document D to the set Y.

[0056] On the other hand, if the document D may have a matching document
P in the set Y, then the computation module 124 may remove the document P
from the set Y. In continuation to the removal of the document P from the set Y,
the computation module 124 may merge the document D and the document P to

create a merged document DP. Further, the computation module 124 may add the

18



10

15

20

25

30

CA 02871036 2014-11-13

merged document DP to the set X. As would be gathered, although the document
D may not match any other document in the set Y, the merged document DP may
match a document in the set Y. Therefore, by the end of the IMM process, the set
X may be empty, and the set Y may contain the final result of the IMM process,
i.e., the merged documents corresponding to a plurality of entities. As would be
gathered, in each bucket, the computation module 124 may create a merged
document for each entity. The merged document of an entity may contain all the
information as disclosed in each of the documents, at each bucket vertex,
pertaining to the entity. In other words, at each bucket vertex, the computation
module 124 may resolve the documents to entities. The entities resolved from the

documents at each bucket vertex are referred to as partial entities.

[0057] As per the IMM technique, multiple partial entities belonging to the
same entity can be obtained at multiple bucket vertices. However, such partial
entities may share at least one document or at least one corresponding record
vertex, and therefore, can considered to be connected. In order to determine such
shared or common or connected documents, the computation module 124, for
each partial entity, may select one of the record vertices as a central record vertex.
Further, the computation module 124 may create a bi-directional edge between
the central record vertex and each of the remaining record vertices of the partial
entity. Therefore, the computation module 124 connects the record vertices

involved in a partial entity to each other through the central record vertex.

[0058] The computation module 124 may create similar vertex-edge
structures for each partial entity. In case a document or a corresponding record
vertex is shared by multiple partial entities, the corresponding record vertex may
appear in the vertex-edge structure of each of the multiple partial entities. In such
an implementation, record vertices belonging to the two partial entities may be
connected and may be considered to be belonging to the same entity. Further, the
computation module 124 may provide a connected component ID (CCID) to each
of the connected record vertices. The CCID is indicative of the entity a record

vertex is resolved to. Subsequent to the determination of the connected

19



10

15

20

25

CA 02871036 2014-11-13

components, the computation module 124 may consolidate documents
corresponding to the connected record vertices to form an entity-resolved
document for the entity. As would be gathered, an entity-resolved document of an
entity may include all the information pertaining to the entity as disclosed in each

of the plurality of documents.

[0059] For the example cited in Fig. 1(a), the computation module 124 may
merge documents corresponding to the record vertices 11, 1, and r; to give a
partial-entity rj>4 at the bucket vertex b,. Further, for the partial entity ri24 the
computation module 124 may select the record vertex r; as a central record, and
therefore, may create a bi-directional edge between the record vertex r; and each
of the record vertex r, and the record vertex r4. Similarly, at the bucket-vertex b,
the computation module 124 may merge documents corresponding to the record
vertex 1, and the record vertex r3 to create a merged document and therefore, a
partial-entity r»3. Further, the computation module 124 may create a bi-directional
edge between the record vertex r; and the record vertex r;. As would be gathered,
the computation module 124 may determine a connected component including the
record vertices rj, 12, 13 and ry. Based on the determination, the computation
module 124 may consolidate the documents pertaining to the record vertices 1, 12,

13 and 14 to create a resolved entity document 1234, which corresponds to an entity.

[0060] In an alternate implementation, in response to the notification, the
computation module 124 may receive an instruction from the user for
implementing the RCP technique for entity resolution. In order to provide a better
clarity and understanding of the present subject matter, Fig. 1(b) illustrates an
example of entity resolution from the plurality of documents using the RCP
technique. As would be noticed, for an ease of understanding, the example cited
in Fig. 1(b) is same as that of the Fig. 1(a). The example is cited to provide a
better understanding of the present subject matter, and therefore, should not be
construed as limiting. Further, it would be better to refer to Fig. 1(b) in

conjunction with the description of Fig. 1.

20



10

15

20

25

30

CA 02871036 2014-11-13

[0061] In the RCP technique, the computation module 124, from each bucket
vertex, may provide a comparison message to one or more record vertices
connected to a bucket vertex, in order to schedule comparisons among the
plurality of documents using the IMM technique. For example, for each pair of
record vertices from a set of record vertices connected to the bucket, the
computation module 124 may provide a comparison message to one of the two
record vertices, e.g., ID {rj} of a record vertex rj may be provided to a record
vertex 1, if i<j. Otherwise, the computation module 124 may provide the

comparison message {1} to the record vertex rj.

[0062] In another example, if a bucket adjacency list of a bucket vertex
includes k record vertices 1y, Ia,...., Tk, then the computation module 124 may
provide the record vertex r; with comparison messages {ra,....., rc}. Similarly, the
computation module 124 may provide the record vertex r with comparison
messages {I3,...., Tx}. In one implementation, a pair of documents may co-exist in
multiple buckets. In other words, a pair of corresponding record vertices may be
connected to multiple bucket vertices. In such an implementation, the
computation module 124 may provide multiple comparison messages, one from
each of the multiple buckets, to the same record vertex, e.g., the record vertex
with lower ID. With reference to the example cited in Fig. 1(b), for the bucket
vertex by, the computation module 124 may send a comparison message {r2, 14}
and {r;} to the record vertex r; and the record vertex ra, respectively. Similarly,
for the bucket vertex b,, the computation module 124 may send a comparison

message {13} to the record vertex rp

[0063] Once a record vertex may receive one or more comparison messages,
the record vertex may become active. In continuation to the receipt of one or more
comparison messages by the record vertex, the computation module 124 may send
a value of the record vertex to record vertices whose IDs are received in the
comparison message. In one implementation, a pair of record vertices r; and T
may be connected to multiple bucket vertices, and therefore the record vertex rj

may receive multiple comparison messages with an ID of the record vertex rj.

21



10

15

20

25

30

CA 02871036 2014-11-13

However, the computation module 124 may send a value of the record vertex r; to
the record vertex r; once. With regard to the example cited in Fig. 1(b), the
computation module 124 may provide a value of the record-vertex r; to the record
vertex 1, and the record vertex rs4, based on the comparison messages received
from the bucket vertex b;. Similarly, the computation module 124 may provide a
value of the record vertex 1 to the record vertex r3 and the record vertex 14, based
on the comparison messages received from the bucket vertex b, and the bucket

vertex by, respectively.

[0064] Based on the comparison messages, the computation module 124 may
compare the plurality of record vertices using a match function. In one
implementation, the match function may include but is not limited to pre-defined
rules and Machine Learning based classifiers. For example, if a value of a record
vertex r matches a value of an incoming comparison message containing an ID of
a record vertex r', the computation module 124 may deliver a match message {r,
r'} containing IDs of the two matched record vertices to the record vertex r and
the record vertex r'. With reference to the example cited in Fig. 1(a), at the record
vertex 1y, the computation module 124 may compare the values of the record
vertex r; and the record vertex rp. In one implementation, the computation module
124 may determine the record vertex r; and the record vertex rp to be matching,
and therefore, may provide a match message {ri, 12} to the record vertex r; and
the record vertex rp. Similarly, at the record vertex r3, the computation module
124 may provide a match message {r2, r3} to the record vertex r, and the record
vertex ;. Further, at the record vertex 14, the computation module 124 may
generate match messages {ry, ra} and {r, rs}. The computation module 124 may
provide the match message {r1, 4} to the record vertex r; and the record vertex 1.
Similarly, the match message {r2, r4} may be provided to the record vertex r and

the record vertex ra.

[0065] As mentioned earlier, if a document corresponding to the record vertex
r, matches m documents corresponding to m record vertices, the record vertex T;

may receive m corresponding match messages. Now, as the record vertex r;

22



10

15

20

25

30

CA 02871036 2014-11-13

matches the m record vertices, the m+1 (including r;) documents may considered
to be belonging to the same entity. In such an implementation, at the record-
vertex r;, the computation module 124 may consolidate the pairs of record IDs
received as match messages to create a match set containing the m+1 IDs.
Therefore, a match set is indicative of a set including IDs of record vertices
belonging to the same entity. In one implementation, the computation module 124
may provide the match set to one or more bucket-vertices as defined in the bucket
adjacency list of the record-vertex r; With reference to the example cited in Fig.
1(b), the computation module 124, at the record vertex r1, may consolidate match
messages {11, r;} and {ry, r4} to create a match set {ry, rp, r4}. The match set {ri,
1, 14} may further be provided to the bucket vertex by. Similarly, at the record
vertex 1, the computation module 124 may consolidate the match messages {r1,
1.}, {12, r3} and {r, 14} to create a match set {ry, rz, 13, 14} for further forwarding
to the bucket vertex b; and the bucket vertex by. Further, at the record vertex r3,
the computation module 124 may send a match set {r, 13} to the bucket vertex by.
Furthermore, at the record vertex rs, the computation module 124 may forward a

match set {r|, p, 4} to the bucket vertex b;.

[0066] Upon receiving the match sets from connected record vertices, at each
bucket-vertex, the computation module 124 may consolidate the match sets, and
may create new record IDs accordingly. For example, in case any two match sets

M; and M; received by a bucket vertex may include a common document ID, i.e.,
M; N M; = @, the computation module 124 may consolidate the IDs of the match

sets. As a result, the computation module 124 may create a new consolidated set
M; = M; U M,;, and upon creation of the new consolidated set, may delete the
match sets M; and M;. In one implementation, the computation module 124 may

create the consolidated set till all the match sets are disjoint.

[0067] Further, the computation module 124 may create a record vertex for
each disjoint consolidated set. Such record vertices may be referred to as partial
entity vertices. In one implementation, the computation module 124 may create

bi-directional edges between the partial entity vertices and the corresponding

23



10

15

20

25

30

CA 02871036 2014-11-13

buckets vertices. Further, IDs of the partial entity vertices are allotted based on
the consolidated sets M;. Therefore, even if a partial entity is created from
multiple buckets, a corresponding partial entity vertex may be created once. In
one implementation, the computation module 124 may provide a partial-entity ID

message to each of the record vertex the partial entity is connected to.

[0068] With reference to the example cited in Fig. 1(b), the computation
module 124 may provide the bucket vertex b; with the match sets {r1, 12, 14}, {11,
13, 13, 14} and {ry, ra, 14}, which may then be consolidated to get a consolidated set
{r1, 12, 13, 14}. Accordingly, the computation module 124 may create a partial-
entity-vertex with ID ry4. Similarly, the computation module 124 may provide
the bucket vertex b, with match sets {r}, 1, 13, r4} and {r,, r3}, which may then be
consolidated to get {r1, 12, 13, 14}. The computation module 124 may further create
a corresponding partial entity vertex with ID ri34. As would be noticed, the
computation module 124 may create the same partial entity vertex for the bucket
vertex b; and the bucket vertex by. Further, the computation module 124 may
create a bi-directional edge between 11234 and each of the bucket vertex by and the
bucket vertex by. In one implementation, the computation module 124 may
provide partial-entity ID message with the ID ri234 to the corresponding record

vertices connected to each of the bucket vertex by and the bucket vertex by

[0069] In one implementation, upon receiving a partial-entity ID message
including the ID of a new partial-entity vertex rpg, the computation module 124
may provide the value and the record adjacency list of the record r; as a message,
e.g., {vi, &} to the partial-entity vertex rpg. The v; and e; may be understood as the
value and the record adjacency list of the record vertex ri. With reference to the
example cited in Fig. 1(b), the computation module 124 may provide messages
{vi, e1}, {Va, €2}, {v3, €3}, and {Vs, es} to the partial entity vertex r234 from the

record vertices 17, I2, 3 and ry respectively.
[0070] Subsequent to the receipt of values of the connected record vertices,

the computation module 124 may merge the received values vis as received in the

messages to create the value of the partial-entity vertex rpg. In one

24



10

15

20

25

30

CA 02871036 2014-11-13

implementation, for every bucket vertex bi, to which the partial-entity record
vertex rpg is added, the computation module 124 may compare the partial-entity
record vertex rpg with the other documents and partial entities in a bucket
adjacency list of b;. In one implementation, the partial-entity vertices may be
treated like record vertices for next iteration of the above-mentioned steps.
Finally, the computation module 124 may delete each record vertex, which

formed the partial-entity vertex rpg.

[0071] With reference to the example cited in the Fig. 1(b), the computation
module 124 may provide the values of the record vertices 1y, 12, I3 and 14 to the
partial entity vertex ri»34 in order to update the corresponding value. Further, the
computation module 124 may create bi-directional edges between the partial
entity vertex rj34 and each of the bucket vertex b; and the bucket vertex b,. In one
implementation, the computation module 124 may delete the record vertices 1y, 12,

r3 and ry.

[0072] As mentioned earlier, initially, all the bucket-vertices were active, i.e.,
were involved in the ER analysis. However, in the subsequent iterations of the
RCP technique, bucket-vertices that receive messages from the final stages of the
RCP technique may remain active. Such iterations may continue until no more

final messages are generated.

[0073] In one implementation, each bucket vertex may have old as well as
new document IDs in a corresponding adjacency list at the end of an iteration of
the abovementioned steps. The computation module 124 may not compare
documents pertaining to a bucket vertex, which may have been already compared.
In order to avoid such comparisons, the computation module 124 may maintain a
set P for each bucket-vertex, which may contain the pairs o document IDs which

have already been compared in previous iterations.

[0074] For example, a bucket b may include 4 documents, namely 11, 17, I3
and 14 in a corresponding bucket adjacency list. In one implementation, as a result
of a first iteration of abovementioned sequence of steps, the document r; and the

document r, may get merged to form a new record r12. In such an implementation,
25



10

15

20

25

30

CA 02871036 2014-11-13

the bucket adjacency list of the bucket b may be {ri2, 13, 4}, and the set P may
include {{r1, 12}, {r1, 13}, {r1, ta}, {r2, 14}, {13, 14} }. Therefore, in the next iteration
of the abovementioned sequence of steps, the computation module 124 may
compare pairs, namely {{ri2, 13}, {ri2, 14} }. With reference to the Fig. 1(b), the
bucket vertices b; and b, may have one document ID, i.e., {rixa} in their
respective bucket adjacency lists. Therefore, in the present example, the
computation module 124 may not perform further comparisons, and terminate the
ER analysis. In one implementation, details pertaining to the computation module

124 may be stored in the computation data 130.

[0075] Fig. 2 illustrates a method 200 for entity resolution from a plurality of
documents, according to one embodiment of the present subject matter. The
method 200 may be implemented in a variety of computing systems in several
different ways. For example, the method 200, described herein, may be

implemented using an entity resolution system 102, as described above.

[0076] The method 200, completely or partially, may be described in the
general context of computer executable instructions. Generally, computer
executable instructions can include routines, programs, objects, components, data
structures, procedures, modules, functions, etc., that perform particular functions
or implement particular abstract data types. A person skilled in the art will readily
recognize that steps of the method can be performed by programmed computers.
Herein, some embodiments are also intended to cover program storage devices,
e.g., digital data storage media, which are machine or computer readable and
encode machine-executable or computer-executable programs of instructions,
wherein said instructions perform some or all of the steps of the described method

200.

[0077] The order in which the method 200 is described is not intended to be
construed as a limitation, and any number of the described method blocks can be
combined in any order to implement the method, or an alternative method.
Additionally, individual blocks may be deleted from the method without

departing from the spirit and scope of the subject matter described herein.

26



10

15

20

25

30

CA 02871036 2014-11-13

Furthermore, the methods can be implemented in any suitable hardware, software,
firmware, or combination thereof. It will be understood that even though the
method 200 is described with reference to the system 102, the description may be

extended to other systems as well.

[0078] With reference to the description of Fig. 2, for the sake of brevity, the
details of the components of the entity resolution system 102 are not discussed
here. Such details can be understood as provided in the description provided with

reference to Fig. 1.

[0079] The method 200 may provide an entity resolution from a plurality of
documents. At block 202, a plurality of documents corresponding to a plurality of
entities may be obtained from at least one data source. In one implementation, the
plurality of documents may be documents. In one implementation, the blocking
module 120 of the entity resolution system 102 may obtain the plurality of

documents.

[0080] Following the obtaining of the plurality of documents, at block 204,
the plurality of documents may be blocked into at least one bucket based on
textual similarity. In one implementation, a blocking technique known as Locality
Sensitive Hashing (LSH) may be adopted for blocking the plurality of documents
into the at least one bucket. The LSH technique may use hash functions for
grouping or blocking the plurality of documents based on textual similarity
among the plurality of documents. In one implementation, the plurality of
documents may be hashed with bucket IDs. Therefore, the documents which are
determined to be textually similar can be grouped in the same bucket. In one
implementation, the blocking module 120 of the entity resolution system 102 may

block the plurality of documents into one or more buckets.

[0081] At block 206, a graph may be created including a plurality of record
vertices and at least one bucket vertex. The plurality of record vertices and the at
least one bucket vertex may correspond to the plurality of documents and the at
least one bucket, respectively. In one implementation, based on the blocking of

the plurality of documents, the plurality of record vertices and the at least one
27



10

15

20

25

CA 02871036 2014-11-13

bucket vertex may be connected to each other by edges. In one implementation,
the graph generation module 122 of the entity resolution system 102 may create

the graph.

[0082] At block 208, a notification may be provided to a user for selecting
one of a Bucket-Centric Parallelization (BCP) technique and a Record-Centric
Parallelization (RCP) technique for resolving entities from the graph. In one
implementation, the notification may include a suggestion to select one of the
BCP technique and the RCP technique, based on the blocking of the plurality of
documents. In one implementation, the BCP technique and the RCP technique
may be employed using a Pregel-based platform. In the BCP technique, an
Tterative Match Merge (IMM) technique may be employed at each bucket vertex.

[0083] In accordance with the BCP technique, a value of each record vertex
may be provided to one or more bucket vertices based on an adjacency list of a
record vertex. The adjacency list of the record vertex is indicative of a list of
bucket vertices the record vertex is blocked to. Further, the value of a record
vertex may include a document corresponding to the record vertex. In one
implementation, at each bucket vertex, a merged document may be created for
each entity based on IMM technique. The IMM technique may identify, from the
plurality of documents, at least one matching pair of documents and merges the at
least one matching pair of documents to create the merged document for each
entity.

[0084] On the other hand, in the RCP technique, a match function may be
utilized at each record vertex. In other words, instead of comparing the documents
at the bucket vertices, the comparison of documents is distributed among the
record vertices. In accordance with the RCP technique, a comparison message
may be provided to each of the plurality of record vertices to schedule
comparisons among the plurality of documents corresponding to the record
vertices. A comparison message sent to a record vertex may include IDs of

documents to be compared with a document corresponding to the record vertex.

28



10

15

20

CA 02871036 2014-11-13

Further, a value of the record vertex may be sent to record vertices whose IDs are

received by the record vertex in the comparison message.

[0085] In one implementation, a match message may be delivered to each of a
pair of record vertices based on matching of a pair of documents corresponding to
the pair of record vertices, wherein the match message includes an ID of each of
the pair of record vertices. Continuing with the present implementation, at each
record vertex, IDs of the record vertices received as one or more match messages
may be consolidated to create a match set, wherein the match set is indicative ofa
set including IDs of record vertices belonging to the same entity. Further, at each
bucket vertex, the one or more match sets received from the record vertices
blocked in a bucket vertex may be combined to create a merged document for
cach entity. In one implementation, a computation module 124 of the entity
resolution system 102 may provide the notification to a user to select one of the

BCP technique and the RCP technique for entity resolution.

[0086] At block 210, a resolved entity document for each entity may be
generated based on the selection of a user. Therefore, the entities are resolved
from the plurality of documents. In one implementation, the computation module
124 of the entity resolution system 102 may generate a resolved entity document

for each entity.

[0087] Although implementations of a method for resolving entities from a

plurality of documents have been described in language specific to structural
features and/or methods, it is to be understood that the present subject matter is

not necessarily limited to the specific features or methods described.

29



CLAIMS:
1. A method for resolving entities from a plurality of documents, the method comprising:

obtaining, by a processor, the plurality of documents, corresponding to a plurality of
entities, from at least one data source, and assigning a unique identification (ID) to each of the

plurality of documents;

blocking, by the processor, the plurality of documents into a plurality of buckets based on
textual similarity by providing the unique IDs of the plurality of documents to the plurality of

buckets instead of blocking the plurality of documents themselves;
discarding one or more singleton buckets having only one document;

creating, by the processor, a graph including a plurality of record vertices and a plurality
of bucket vertices, wherein the plurality of record vertices and the plurality of bucket vertices are
indicative of the plurality of documents and the plurality of buckets, respectively, wherein each
of the plurality of documents and the plurality of buckets are indicated as a vertex in the graph,
and the plurality of record vertices and the plurality of bucket vertices are connected to each
other by edges, depending on the blocking of the plurality of documents, wherein each of the
edges between the record vertices and the bucket vertices are bi-directional;

creating an adjacency list for each record vertex and each bucket vertex, wherein the
adjacency list of the record vertex includes information of bucket vertices to which the record
vertex hashed to, and an adjacency list of the bucket vertex includes information of record

vertices hashed to the bucket vertex,

selecting one of a Bucket-Centric Parallelization (BCP) technique and a Record-Centric
Parallelization (RCP) technique for resolving entities from the plurality of documents based on
the blocking of the plurality of documents into the plurality of buckets, wherein the Bucket-
Centric Parallelization (BCP) technique is selected when the blocking of the plurality of
documents into the plurality of buckets is uniform and the Record-Centric Parallelization (RCP)
technique is selected when the blocking of the plurality of documents into the plurality of buckets
is non-uniform, wherein the RCP technique utilizes less time than the BCP technique for entity
resolution in a case of a non-uniform distribution of the plurality of documents in the plurality of
buckets, wherein in the BCP and RCP techniques, the record vertices and the bucket vertices
are communicating with each other in a distributed computing setting via message passing, and
the bucket vertices and the record vertices are distributed across multiple processors, and

wherein the BCP technique comprises:

30

CA 2871036 2019-10-30



providing, by the processor, a value of each record vertex to one or more bucket vertices
based on the adjacency list of a record vertex, wherein the adjacency list of the record vertex is
indicative of a list of bucket vertices the record vertex is blocked to, and the value includes a

document content corresponding to each record vertex;

receiving the document content of the record vertices hashed to each bucket vertex at
each bucket vertex and creating, by the processor, at each bucket vertex, a merged document
for each entity based on an lterative Match-Merge (IMM) technique, wherein at each bucket
vertex, from the plurality of documents available at each bucket vertex, at least one matching
pair of documents is identified and the at least one matching pair of documents is merged to
create the merged document for each entity termed as a ‘partial entity’ at each bucket vertex,

wherein a set of partial entities are created at each bucket vertex;

obtaining a plurality of partial entities from the sets of partial entities, belonging to the
same entity from the plurality of bucket vertices, wherein the plurality of partial entities belonging
to the same entity share at least one record vertex and thereby the plurality of partial entities are

connected to each other, wherein one or more connected record vertices are identified by,

selecting, for each partial entity, one of the record vertices as a central record

vertex,

creating a bi-directional edge between the central record vertex and each of the
remaining record vertices of the partial entity, thereby connecting the record vertices
involved in each of the partial entity to each other through the central record vertex; and

identifying the one or more connected record vertices, wherein the record
vertices belonging to two or more partial entities are connected and considered to be

belonging to the same entity;

providing a connected component ID (CCID) to each of the connected record vertices,
wherein the CCID is indicative of the entity to which the record vertex is resolved; and

generating, by the processor, a resolved entity-document for each entity by consolidating
the merged documents corresponding to the connected record vertices pertaining to each entity

from each bucket; and

wherein the RCP technique comprises handling the non-uniform distribution of the
records at the plurality of buckets by performing the iterative match merge computation for the

records mapped to the same bucket back to the record vertices themselves to achieve

31

CA 2871036 2019-10-30



parallelization of load of IMM computations of the records vertices, wherein the RCP technique

comprises:

a) providing, from each bucket vertex, by the processor, a comparison message to each
of the plurality of record vertices hashed to the corresponding bucket vertex to schedule
comparisons among the plurality of documents corresponding to the record vertices, wherein
the comparison message sent to a record vertex includes the IDs of the documents to be
compared with a document corresponding to the record vertex, wherein each record vertex

becomes active after receiving the comparison message;

b) sending, by the processor, a value of the record vertex to the record vertices whose
iDs are received by the record vertex in the comparison message, wherein the value includes

the document of the record vertex;

c) delivering, by the processor, a match message to each of a pair of record vertices
based on matching of a pair of documents corresponding to the pair of record vertices, wherein

the match message includes the IDs of each of the pair of record vertices;

d) consolidating, by the processor, at each record vertex, the IDs of the record vertices
received as one or more match messages to create a match set, wherein the match set is
indicative of a set including |IDs of record vertices belonging to the same entity and sending one

or more match sets to the corresponding bucket vertices;

e) upon receiving the one or more match sets of connected record vertices, combining,
by the processor, at each bucket vertex, the one or more match sets received from the record
vertices blocked in the bucket vertex by consolidating IDs of the match sets to create a new
consolidated set, wherein the consolidated sets are created until all of the match sets are
disjoint; "

f) creating a record vertex for each disjoint consolidated set referred to as partial entity
vertices, and creating bi-directional edges between the partial entity vertices and the
corresponding buckets vertices and proViding a partial-entity ID message to each of the record

vertex the partial entity vertex is connected to;

_g) upon receiving the partial-entity ID message including the ID of the partial entity
vertex, providing the value and the record adjacency list of the record vertex as a message to
the partial entity vertex; and upon receiving the values of the connected record vertices,

merging the received values to create the value of the partial entity vertex; and creating bi-

32

CA 2871036 2019-10-30



directional edges between the partial entity vertex and each of the corresponding bucket

vertices and deleting the corresponding record vertices;

iterating the steps ‘d’ to ‘g’ until no match messages generated by treating the partial
entity vertices as new record vertices, wherein already compared documents are not compared

again in next iterations;

generating, by the processor, a resolved entity-document for each entity by consolidating

the merged documents pertaining to each entity from each bucket; and

thereby generating, by the processor, the resolved entity-document for each entity,
based on the selected technigue.

2. The method as claimed in claim 1, wherein the BCP technique and the RCP technique
are executed on a graph-parallel Pregel-based platform.

3. The method as claimed in claim 1, wherein the textually similar documents are blocked
using a Locality Sensitive Hashing (LSH) technique.

4. An entity resolution system for entity resolution from a plurality of documents, the entity
resolution system comprising:

a processor;
a blocking module, coupled to the processor, to:

obtain the plurality of documents corresponding to a plurality of entities, from at
least one data source, and assign a unique identification (ID) to each of the plurality of
documents; and

block the plurality of documents into a plurality of buckets based on textual
similarity by providing the unique IDs of the plurality of documents to the piurality of
buckets instead of blocking the plurality of documents themselves;

discard one or more singleton buckets having only one document a graph

generation module, coupled to the processor, to:

33

CA 2871036 2019-10-30



create a graph including a plurality of record vertices and a plurality of bucket
vertices, wherein the plurality of record vertices and the plurality of bucket vertices are
indicative of the plurality of documents and the plurality of buckets, respectively, and
wherein each of the plurality of documents and the plurality of buckets are indicated as a
vertex in the graph, and the plurality of record vertices and the plurality of bucket vertices
are connected to each other by edges, depending on the blocking of the plurality of
documents, wherein each of the edges between the record vertices and the bucket

vertices are bi-directional;

create an adjacency list for each record vertex and each bucket vertex, wherein
the adjacency list of the record vertex includes information of bucket vertices to which
the record vertex hashed to, and the adjacency list of the bucket vertex includes

information of record vertices hashed to the bucket vertex; and
a computation module, coupled to the processor, to:

select one of a Bucket-Centric Parallelization (BCP) technique and a Record-
Centric Parallelization (RCP) technique, for resolving entities from the plurality of
documents based on the blocking of the plurality of documents into the plurality of
buckets, wherein the Bucket-Centric Parallelization (BCP) technique is selected when
the blocking of the plurality of documents into the plurality of buckets is uniform and the
Record-Centric Paralielization (RCP) technique is selected when the blocking of the
plurality of documents into the plurality of buckets is non-uniform, wherein the RCP
technique utilizes less time than the BCP technique for entity resolution in case of a non-
uniform distribution of the plurality of documents in the plurality of buckets, wherein in
the BCP and RCP technigues, the record vertices and the bucket vertices are
communicating with each other in a distributed computing setting via message passing,
and the bucket vertices and the record vertices are distributed across multiple

processors;

receive an instruction indicative of selection of the BCP technique for resolving
entities from the plurality of documents, wherein to execute the BCP technique, the

computation module is coupled to the processor, to:

provide a value of each record vertex to one or more bucket vertices based on

the adjacency list of a record vertex, wherein the adjacency list of the record vertex is

34

CA 2871036 2019-10-30



indicative of a list of bucket vertices the record vertex is blocked to, and the value

includes a document corresponding to each record vertex;

receive the document content of the record vertices hashed to each bucket
vertex at each bucket vertex and create at each bucket vertex, a merged document for
each entity based on an Iterative Match-Merge (IMM) technique, wherein at each bucket
vertex, from the plurality of documents available at each bucket vertex, at least one
matching pair of documents is identified and the at least one matching pair of documents
is merged to create the merged document for each entity termed as a ‘partial entity’ at

each bucket vertex, wherein a set of partial entities are created at each bucket vertex;

obtain a plurality of partial entities from the sets of partial entities, belonging to
the same entity from the plurality of bucket vertices, wherein the plurality of partial
entities belonging to the same entity share at least one record vertex and thereby the
plurality of partial entities are connected to each other, wherein one or more connected

record vertices are identified by,
select for each partial entity, one of the record vertices as a central record vertex,

create a bi-directional edge between the central record vertex and each of the
remaining record vertices of the partial entity, thereby connect the record vertices
involved in each of the partial entity to each other through the central record vertex; and

identify the one or more connected record vertices, wherein the record vertices
belonging to two or more partial entities are connected and considered to be belonging
to the same entity;

provide a connected component ID (CCID) to each of the connected record vertices,

wherein the CCID is indicative of the entity to which the record vertex is resolved; and

generate a resolved entity-document for each entity by consolidating the merged
documents corresponding to the connected record vertices pertaining to each entity from each

bucket; and

the RCP technique comprises handling a non-uniform distribution of the records at the
plurality of buckets by performing the iterative match merge computation for the records
mapped to the same bucket back to the record vertices themselves to achieve parallelization of
load of IMM computations of the records vertices, wherein to execute the RCP technigue, the
computation module, coupled to the processor, to:

35

CA 2871036 2019-10-30



a) provide from each bucket vertex, a comparison message to each of the
plurality of record vertices hashed to the corresponding bucket vertex to schedule
comparisons among the plurality of documents corresponding to the record vertices,
wherein the comparison message sent to a record vertex includes the 1Ds of the
documents to be compared with a document corresponding to the record vertex, wherein
each record vertex becomes active after receiving the comparison message;

b) send a value of the record vertex to the record vertices whose IDs are
received by the record vertex in the comparison message, wherein the value includes

the document of the record vertex;

c) deliver a match message to each of a pair of record vertices based on
matching of a pair of documents corresponding to the pair of record vertices, wherein the
match message includes the IDs of each of the pair of record vertices;

d) consolidate at each record vertex, the IDs of the record vertices received as
one or more match messages to create a match set, wherein the match set is indicative
of a set including 1Ds of record vertices belonging to the same entity and send one or

more match sets to the corresponding bucket vertices;

e) upon receiving the one or more match sets of connected record vertices,
combine at each bucket vertex, the one or more match sets received from the record
vertices blocked in the bucket vertex, by consolidating IDs of the match sets to create a
new consolidated set, wherein the consolidated sets are created until all of the match

sets are disjoint;

f) create a record vertex for each disjoint consolidated set referred to as partial
entity vertices, and create bi-directional edges between the partial entity vertices and the
corresponding buckets vertices and provide a partial-entity ID message to each of the
record vertex the partial entity vertex is connected to;

g) upon receiving the'partia|-entity ID message including the ID of the partial
entity vertex provide the value and the record adjacency list of the record vertex as a
message to the partial entity vertex; and upon receiving the values of the connected
record vertices, merge the received values to create the value of the partial entity vertex;
and create bi-directional edges between the partial entity vertex and each of the

corresponding bucket vertices and deleting the corresponding record vertices;

36

CA 2871036 2019-10-30



iterate the steps ‘d’ to ‘g’ until no match messages generated by treating the
partial entity vertices as new record vertices, wherein already compared record

documents are not compared again in next iterations; and

generate a resolved entity-document for each entity by consolidating the merged
documents pertaining to each entity from each bucket; and

thereby generate the resolved entity-document for each entity, based on the

selected technique.

5. The entify resolution system as claimed in claim 4, wherein the BCP technique and the

RCP technique are executed on a graph-parallel Pregel-based platform.

6. The entity resolution system as claimed in claim 4, wherein the blocking module blocks

textually similar documents using a Locality Sensitive Hashing (LSH) technique.

7. A non-transitory computer-readable medium having embodied thereon a computer
program for executing a method resolving entities from a plurality of documents, the method

comprising:

obtaining, by a processor, the plurality of documents corresponding to a plurality of
entities, from at least one data source, and assigning a unique identification (ID) to each of the

plurality of documents;

blocking, by the processor, the plurality of documents into a plurality of buckets based on
textual similarity by providing the unique IDs of the plurality of documents to the plurality of
buckets instead of blocking the plurality of documents themselves;

discarding one or more singleton buckets having only one document;

creating, by the processor, a graph including a plurality of record vertices and a plurality
of bucket vertices, wherein the plurality of record vertices and the plurality of bucket vertices are
indicative of the plurality of documents and the plurality of buckets, respectively, and wherein
each of the plurality of documents and the plurality of buckets are indicated as a vertex in the
graph, and the plurality of record vertices and the plurality of bucket vertices are connected to

37

CA 2871036 2019-10-30



each other by edges, depending on the blocking of the plurality of documents, wherein each of
the edges between the record vertices and the bucket vertices are bi-directional;

create an adjacency list for each record vertex and each bucket vertex, wherein the
adjacency list of the record vertex included information of bucket vertices to which the record
vertex hashed to, and the adjacency list of the bucket vertex includes information of record
vertices hashed to the bucket vertex;

select one of a Bucket-Centric Parallelization (BCP) technique and a Record-Centric
Parallelization (RCP) technique for resolving entities from the plurality of documents based on
the blocking of the plurality of documents into the plurality of buckets, wherein the Bucket-
Centric Parallelization (BCP) technique is selected when the blocking of the plurality of
documents into the plurality of buckets is uniform and the Record-Centric Parallelization (RCP)
technique is selected when the blocking of the plurality of documents into the plurality of buckets
is non-uniform, wherein the RCP technique utilizes less time than the BCP technique for entity
resolution in case of a non-uniform distribution of the plurality of documents in the plurality of
buckets, wherein in the BCP and RCP technique, the record vertices and the bucket vertices
are communicating with each other in a distributed computing setting via message passing, and
the bucket vertices and the record vertices are distributed across multiple processors, wherein
the BCP technique comprises:

providing, by the processor, a value of each record vertex to one or more bucket vertices
based on the adjacency list of a record vertex, wherein the adjacency list of the record vertex is
indicative of a list of bucket vertices the record vertex is blocked to, and the value includes a

document content corresponding to each record vertex;

receiving the document content of the record vertices hashed to each bucket vertex at
each bucket vertex and creating, by the processor, at each bucket vertex, a merged document
for each entity based on an Iterative Match-Merge (IMM) technique, wherein at each bucket
vertex, from the plurality of documents available at each bucket vertex, at least one matching
pair of documents is identified and the at least one matching pair of documents is merged to
create the merged document for each entity termed as a ‘partial entity’ at each bucket vertex,

wherein a set of partial entities are created at each bucket vertex;

obtaining a plurality of partial entities from the sets of partial entities, belonging to the

same entity from the plurality of bucket vertices, wherein the plurality of partial entities belonging

38

CA 2871036 2019-10-30



to the same entity share at least one record vertex and thereby the plurality of partial entities are
connected to each other, wherein one or more connected record vertices are identified by,

selecting, for each partial entity, one of the record vertices as a central record

veriex,

creating a bi-directional edge between the central record vertex and each of the
remaining record vertices of the partial entity, thereby connecting the record vertices

involved in each of the partial entity to each other through the central record vertex; and

identifying the one or more connected record vertices, wherein the record
vertices belonging to two or more partial entities are connected and considered to be
belonging to the same entity,

providing a connected component ID (CCID) to each of the connected record vertices,
wherein the CCID is indicative of the entity to which the record vertex is resolved, and

generating, by the processor, a resolved entity-document for each entity by consolidating
the merged documents corresponding to the connected record vertices pertaining to each entity
from each bucket; and

wherein the RCP technique comprises handling the non-uniform distribution of the
records at the plurality of buckets by performing the iterative match merge computation for the
records mapped to the same bucket back to the record vertices themselves to achieve
parallelization of load of IMM computations of the records vertices, wherein the RCP technique

comprises:

a) providing, from each bucket vertex, by the processor, a comparison message to each
of the plurality of record vertices hashed to the corresponding bucket vertex to schedule
comparisons among the plurality of documents corresponding to the record vertices, wherein
the comparison message sent to a record vertex includes the [Ds of the documents to be
compared with a document corresponding to the record vertex, wherein each record vertex

becomes active after receiving the comparison message;

b) sending, by the processor, a value of the record vertex to the record vertices whose
IDs are received by the record vertex in the comparison message, wherein the value includes
the document of the record vertex;

39

CA 2871036 2019-10-30



¢) delivering, by the processor, a match message to each of a pair of record vertices
based on matching of a pair of documents corresponding to the pair of record vertices, wherein

the match message includes the IDs of each of the pair of record vertices;

d) consolidating, by the processor, at each record vertex, the IDs of the record vertices
received as one or more match messages to create a match set, wherein the match setis
indicative of a set including IDs of record vertices belonging to the same entity and sending one

or more match sets to the corresponding bucket vertices;

e) upon receiving the one or more match sets of connected record vertices, combining,
by the processor, at each bucket vertex, the one or more match sets received from the record
vertices blocked in the bucket vertex by consolidating IDs of the match sets to create a new
consolidated set, wherein the consolidated sets are created until all of the match sets are
disjoint;

f) creating a record vertex for each disjoint consolidated set referred as a partial entity
vertices, and creating bi-directional edges between the partial entity vertices and the
corresponding buckets vertices and provide a partial-entity ID message to each of the record
vertex the partial entity vertex is connected to;

g) upon feceiving the partial-entity ID message including the ID of the partial entity
vertex, providing the value and the record adjacency list of the record vertex as a message to
the partial entity vertex; and upon receiving the values of the connected record yertices,
merging the received values to create the value of the partial entity vertex; and creating bi-
directional edges between the partial entity vertex and each of the corresponding bucket

vertices and deleting the corresponding record vertices;

iterating the steps ‘d’ to ‘g’ until no match messages generated by treating the partial
entity vertices as new record vertices, wherein already compared record documents are not

compared again in next iterations;

generating, by the processor, a resolved entity-document for each entity by consolidating

the merged documents pertaining to each entity from each bucket; and

thereby generating, by the processor, the resolved entity-document for each entity,
based on the selected technique.

40

CA 2871036 2019-10-30



CA 02871036 2014-11-13

ZE 1 Viva (S) ¥aHLO

€1 VLva NOILYLNdWOD

Q71 Vivad ONIXDOOTY

gLl viva

9z I1NAON (S) ¥3IHLO

21 31NGOW NOILY.LNANOD

Z 1 3TNACW NOILYHIANIO HdVYD

¢1L 3ITINAOW ONIMO01Y

911 (8)31naow

Vil AYOW3W

ZIT (S)30v4u3LN| H H 011 (8)d0ossanodd

Z01 WILSAS NOILNTOS3Y ALILNT

N-801L

$0T MHOMLIN

¢-801

901
--— — 3svavivq

1-801

(oov



CA 02871036 2014-11-13

(Y4 €2 <2 “T1)o810 N

vect

Au3j

Ajnugj panjosay

pi-Aljug

spl-pJo33y | pl-1jong

HS1-3unjolg




CA 02871036 2014-11-13

g




CA 02871036 2014-11-13

[— 200

202
OBTAINING A PLURALITY OF DOCUMENTS CORRESPONDING TO A PLURALITY
OF ENTITIES

204 l

BLOCKING THE PLURALITY OF DOCUMENTS INTO AT LEAST ONE BUCKET
BASED ON TEXTUAL SIMILARITY AMONG THE PLURALITY OF DOCUMENTS

l

CREATING A GRAPH INCLUDING A PLURALITY OF RECORD VERTICES AND AT
LEAST ONE BUCKET VERTEX CORRESPONDING TO THE PLURALITY OF
DOCUMENTS AND THE AT LEAST ONE BUCKET

!

PROVIDING A NOTIFICATION TO A USER TO SELECT ONE OF A BUCKET-
CENTRIC PARALLELIZATION (BCP) TECHNIQUE AND A RECORD-CENTRIC
PARALLELIZATION (RCP) TECHNIQUE FOR RESOLVING ENTITIES FROM THE
PLURALITY OF DOCUMENTS

l

GENERATING A RESOLVED-ENTITY DOCUMENT FOR EACH ENTITY BASED ON
THE SELECTION OF A USER

»

206

Y

208

— = =

210

J

Fig. 2



1DUW

ENTITY RESOLUTION SYSTEM 102
PROCESSOR(S) 110 ] [ INTERFACE(S) 112

3 MevoRy 114 |

D -
A‘&ASE MobuLe(s) 116

BLOCKING MODULE 120

(GRAPH GENERATION MODULE 122

NETWORK 104
COMPUTATION MODULE 12

— r—ﬁTr—j
WD W W

OTHER (S} MODULE 126

s
, DaTa 118

COMPUTATION DATA 130 I

QOTHER (8) DATA 132 ]

BLOCKING DATA 128 ]

/
Y e

J—




	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - CLAIMS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - REPRESENTATIVE_DRAWING

