57078552 A1 | IV Y0 OO 0 O

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 August 2005 (25.08.2005)

00 00 OO A OO

(10) International Publication Number

WO 2005/078552 Al

GO6F 1/00, 9/46

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2005/003976

(22) International Filing Date: 8 February 2005 (08.02.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/543,108 9 February 2004 (09.02.2004) US
60/543,356 9 February 2004 (09.02.2004) US

(71) Applicant (for all designated States except US): PALM-
SOURCE, INC. [US/US]; 1188 East Arques Avenue, Sun-
nyvale, CA 94085 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOFFMAN,
George, E. [US/US]; 804 Bond Place, Santa Clara, CA
95051 (US). HACKBORN, Dianne, k. [US/US]; 1941
Santa Inez Court, Santa Clara, CA 95051 (US).

(74)

(81)

(84)

Agents: NAG, Rupak et al.; Berry & Associates P.C.,
9255 Sunset Boulevard, Suite 810, Los Angeles, CA 90069
(Us).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SL, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR A SECURTY MODEL FOR A COMPUTING DEVICE

RECEIVE CALL FROM EXTERNAL OBJECT
TO AN INTERFACE OF TARGET OBJECT

-~ 602

!

DETERMINE WHETHER EXTERNAL OBJECT
HAS ACCESS TO OTHER INTERFACES

L~ 604

!

TARGET OBJECT GRANTS ACCESS TO OTHER
INTERFACES BY EXTERNAL OBJECT IF AUTHORIZED

L~ 606

(57) Abstract: A system, method and computer-readable media are disclosed for a security model and mode of enforcement in a
graphics subsystem in a computing device. A uniform, streamlined, and flexible procedure for creating objects that contain their own
security policies and are placed in protection domains when they are instantiated based on their specific security needs is described.
A process boundary is utilized as the primary security or protection boundary for enforcing the security model. The security model
takes advantage of the fact that most object models allow objects to have interfaces. An object’s interfaces are used to determine
& what caller objects are capable of accessing. Thus, there is a mapping of an object’s capabilities to interfaces. An object determines
& what a caller object is entitled to based on the investigation by the caller object and of what the caller object’s knowledge of the
object’s interface. The caller’s investigation determines what other aspects of the object the caller is entitled to. The method aspect
of the invention comprises an interface of a target object receiving a call from an external object which is aware of the existence of
the interface. At the target object, it is determined whether the external object has access to other interfaces of the target object based
on the first call. Access is granted to other interfaces based on this determination.

WO 2005/078552 Al

0 0000 00RO

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, §Z, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, B,
BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,

EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT LU,
LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, 87, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/078552 PCT/US2005/003976

PATENT APPLICATION

A METHOD AND SYSTEM FOR A SECURITY MODEL FOR A COMPUTING
5 DEVICE

Inventors: George E. Hoffman and Dianne K. Hackborn,
Filing Date: February 8, 2005
Assignee: PalmSource, Inc.
10
Prepared By:

Berry & Associates P.C.
9255 Sunset Blvd. Suite 810
Los Angeles, CA 90069
15 Phone: (310) 247-2860
Fax: (310) 247-2864

10

15

20

25

WO 2005/078552 PCT/US2005/003976

A METHOD AND SYSTEM FOR A SECURITY MODEL FOR A COMPUTING
DEVICE

PRIORITY CLAIM

[0001] The present invention claims priority to U.S. Provisional Patent Application No.
60/543,108 filed on February 9, 2004, the contents of which are incorporated herein by

reference.

RELATED APPLICATIONS

[0002] The present application relates to the following applications: (1) Attorney Docket
No. 4001.Palm.PSI entitled “A System and Method of Format Negotiation in a Computing
Device”; (2) Attorney Docket No. 4002.Palm.PSI entitled “A System and Graphics
Subsystem for a Computing Device”; and (3) Attorney Docket 4004.Palm.PSI entitled “A
System and Method of Managing Connections with an Available Network”, each of which
are filed on the same day as the present application, the contents of each Application are

incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
[0003] The present invention relates generally to operating system software. More
particularly, the invention relates to software for implementing a security model and
enforcement thereof in a graphics subsystem of a computing device.

2. Introduction
[0004] Graphics subsystems and operating systems generally allow external applications
and plug-in components, often authored by third-party developers (such as application

programmers) and other not fully trustworthy sources, to execute in their environments.

2

10

15

20

25

WO 2005/078552 e o e PCT/US2005/003976
Y e Y e TR T e

This often raises security concerns for the native system. If the third-party component is
poorly authored and thus has serious flaws, executing it within the operating system
environment might cause serious or fatal error conditions. If the third-party component is
malignant (such as a virus), it might intentionally steal sensitive data or perform
destructive operations. Some operating systems have no way to enforce protections
against poorly-written or malignant code, and so implicitly “trust” this code, when it is
run, to be well-written and benign.

[0005] However, it is preferable that native systems take precautions against external
faulty or malicious code from harming or infiltrating the system. Many modern systems
employ the use of processes as a unit of protection; for example, third-party components
like application programs might each run in their own process. In this model, code is
permitted to do anything it likes within its own process, but boundaries between processes
are enforced at the hardware level. Each process is provided by the system with a certain
set of permissions to access services outside of that process, and code running within each
process is limited to those external operations for which the process is grantéd permission.
This use of processes as a unit of protection can be said to be nearly ubiquitous among
operating systems beyond a certain level of complexity.

[0006] Implementing adequate safeguards using processes as the unit of protection
requires both a policy and associated method for partitioning code and components into
processes, and a policy and associated method for granting those processes permissions.
[0007] A policy and method for partitioning code into processes is important because this
policy establishes the boundaries between components that can be controlled and
manipulated by the system. If component A and component B are in the same process,
there are no guarantees the system can provide either component with that will ensure it is

protected from flaws or malice in the other. For example, code in component A could

10

15

20

25

WO 2005/078552 PCT/US2005/003976

PO SR O
access code or data in component B, getting access to component B’s sensitive data.
Similarly, if component B requests and gains access to external resource C, the system has
effectively given access to that resource to all code running in the same process as
component B. If, however, component A and component B are running in different
processes, the system can both reliably protect one’s code and data from flaws or
malicious code in the other, and can reliably grant a permission to one of these
components without granting it to the other.
[0008] One simple, common technique for protecting the system from flawed or malicious
action by components — and of protecting components from flawed or malicious action on
the part of other components — is to place each newly instantiated component into a
separate process of its own. For example, for each application that is to be run, a new
process is created and the application is placed in it, separated both from other third-party
components and from system components by secure process boundaries. However, there
is significant overhead associated with each process. This includes both the memory and
processing time associated with the creation and destruction of processes and the extra
processing required in order to send messages across process boundaries as compared to
that required for communication within a process. Thus, creating a process for each new
application can be highly inefficient. Often, components will have credentials that show
themselves to be trustworthy with respect to certain system operations (such as a
cryptographic signature that could not realistically be duplicated by a malicious imposter).
In other cases, two or more components may be regarded as trustworthy with relation to
each other but not with respect to sensitive system services (for example, component A
and component B might both be cryptographically signed by the same third-party
publisher or vendor, but this publisher is not necessarily trusted by the system itself), and

in this case it might be optimal to place both of these components into a single process.

10

15

20

25

WO 2005/078552 o PCT/US2005/003976
CAE A BNV S R T R o U

Partitioning these trustworthy objects each into their own process can be very wasteful of
system resources, and can lower the overall performance of the system.

[0009] A policy and method for granting permissions to processes is important because
code running within a process can only access resources external to that process if the
system grants it permission to do so. If partitioning code into processes establishes the
“rule” (i.e. such and such component can only access those other components available in
the same process), granting permissions to processes establishes the “exceptions” to that
rule (i.e. except for these specific system services, which code running in that process has
the permission to use). In many systems this is done using a central repository for storing
all security knowledge, access control data, and so on. For example, if a system service
needs to process a request it might ask the central authority if the requestor has permission
to access that service. This design requires significant centralized knowledge of all
system-wide security policies, data and policy duplication between secured components
and the central authority that implements the policies, and constant communication
between the central authority and objects in the system, both of which are undesirable in a
dynamic, scalable, open system.

[0010] Also, in most systems, such permissions are defined and tracked in a static way
with respect to processes. For example, in such a system a component would be designed
to exist in its own dedicated process, and will declare security constraints for that process
rather than for the component. In a system where components are partitioned more
dynamically into processes, it would be preferable to define security policies at the
component level. This would allow per-component information to be used to make good
partitioning decisions, and would allow a network of interoperable components to define

their security policies in a distributed fashion, eliminating much of the need for

centralization and the overhead associated with it.

10

15

20

25

WO 2005/078552 PCT/US2005/003976
T L R T

[0011] What is needed in the art is a method by which components may be partitioned into
processes based on the security requirements of both the system itself and of components
running in it with relation to each other, such that desired protections can be enforced
while the inefficiencies associated with processes and crossing process boundaries are
minimized. Furthermore, in an environment where this first method exists and
components are distributed into processes based on dynamic criteria, what is required is a
method allowing security policies to be defined in a distributed manner by components
running in the system, both to inform process partitioning decisions and to allow for

application-specific security policies to be enforced in a lightweight, scalable manner.

SUMMARY OF THE INVENTION

[0012] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by practice of the invention. The features and advantages of the invention may be
realized and obtained by means of the methods, instruments and combinations particularly
pointed out in the appended claims. These and other features of the present invention will
become more fully apparent from the following description and appended claims, or may
be learned by the practice of the invention as set forth herein.

[0013] The present invention addresses the needs in the prior art for an improved system
and method for providing a security model for objects and enforcement of the model in the
graphics subsystem and operating system of a computing device. The present invention
comprises a system, method and computer-readable media that provide security and access
control for objects and components using a capabilities model in conjunction with the use
of object interfaces and enforcement of security using dynamic protection domains

implemented using the process as a protection boundary around objects.

10

15

20

25

WO 2005/078552 PCT/US2005/003976
-l W B ¥ R

m T Ll el
[0014] The method aspect of the invention relates to a uniform, streamlined, and flexible
procedure for creating objects that contain their own security policies and are placed in
protection domains when they are instantiated based on their specific security needs. The
method utilizes a process boundary as the primary security or protection boundary for
enforcing the security model. The security model takes advantage of the fact that most
object models allow objects to have interfaces. An object’s interfaces are used to
determine what caller objects are capable of accessing. Thus, there is a mapping of an
object’s capabilities to interfaces. An object determines what a caller object is entitled to
based on the investigation by the caller object and of what the caller is aware. The caller’s
investigation determines what other aspects of the object the caller is entitled to.
[0015] In one aspect of the present invention, a method for controlling access to an object
in an operating system of a computing device is described. An interface of a target object
receives a call from an external object which is aware of the existence of the interface. At
the target object, it is determined whether the external object has access to other interfaces
of the target object based on the first call. Access is granted to other interfaces based on
this determination.
[0016] In another aspect of the present invention a method for securing an object in a
computing device operating system is described. Access constraints for an object are
determined. A protection domain having a security profile that corresponds to the access
constraints of the first object are identified. The object is then placed in the protection
domain.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the

invention briefly described above will be rendered by reference to specific embodiments

10

15

20

WP os rosave POTDRNARITe
thereof which are illustrated in the appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not therefore to be considered to
be limiting of its scope, the invention will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:

[0018] FIG. 1 is a diagram showing two aspects of a graphics subsystem component of an
operating system for a mobile or handheld device in accordance with a preferred
embodiment of the present invention;

[0019] FIG. 2 is a diagram of a display of a mobile device having user interface elements,
a display server process, and a view hierarchy in accordance with a preferred embodiment
of the present invention;

[0020] FIGS. 3A and 3B are diagrams of a render stream object, a sample stream of
commands, and render strearh branching;

[0021] FIG. 4 is a diagram of display server components and their relationships to the
view hierarchy and the physical screen in accordance with a preferred embodiment of the
present invention;

[0022] FIG. 5 is a diagram of a view object and selected various interfaces for
communicating with other views in accordance with a preferred embodiment of the
present invention;

[0023] FIG. 6 is a flow diagram of a process of mapping capabilities to interfaces in
accordance with a preferred embodiment of the present invention;

[0024] FIG. 7 is a diagram illustrating objects in processes and conduits between
processes implementing dynamic protection domains;

[0025] FIG. 8 is a flow diagram of a process of instantiating a new object in a dynamic

protection domain; and

10

15

20

25

Wg,zfo.osmssz PCT/US2005/003976

..........

[0026] FIG. 9 is a block diagram of the basic components of a computing device in

accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION
[0027] Various embodiments of the invention are discussed in detail below. While
specific implementations are discussed, it should be understood that this is done for
illustration purposes only. A person skilled in the relevant art will recognize that other
components and configurations may be used without parting from the spirit and scope of
the invention.
[0028] The present invention provides for systems, methods and computer-readable media
that function as a graphics subsystem of an operating system intended for use primarily on
mobile and handheld devices, but also executable on any computing device as described in
the figures. Examples of other computing devices include notebook computers, tablets,
various Internet appliances, and laptop and desktop computers. In a preferred
embodiment, the graphics subsystem operates on a handheld mobile computing device
such as a combination cellular phone and PDA.
[0029] FIG. 1 is a diagram showing two primary aspects of a graphics subsystem 100 of
an operating system 10 in a preferred embodiment of the present invention. The two
aspects are a drawing (or rendering) model aspect 102 and a transport aspect 104.
Generally, a graphics subsystem is the component of an operating system that interfaces
with graphics and display hardware, provides application and system software access to
that hardware and to graphics-related services, and potentially multiplexes access to
graphics hardware between and among multiple applications.
[0030] The drawing model aspect 102 defines a highly expressive drawing language. It

allows a graphics subsystem programmer to describe an image using primitive drawing

10

15

20

25

WEY S s naare POTIUS20051003976
commands, including path filling and stroking, and to apply modulations of color,
blending, clipping and so on. Rendering is modeled explicitly as a definition of the value
of each pixel within a target area. The drawing language provides a small number of
drawing primitives to modify current pixel values, including two basic types of primitives:
parametric drawing operations (path definition) and raster drawing operations (blitting).
More complex rendering is accomplished by compositing multiple operations. Other
capabilities of the rendering model of the present invention include: arbitrary path filling,
alpha blending, anti-aliasing, arbitrary two-dimensional and color-space transformations,
linear color gradients, bitmap rendering with optional bilinear scaling, region-based
clipping and general color modulation (from Boolean clipping to spatial color
modulation). Components of the drawing model can be removed for lower-end devices.
For example, components can be removed in order to not support general color
modulation, anti-aliasing, or other such operations that are expensive to compute on low-
powered hardware. On the other hand, the model can be configured to benefit from a full
three-dimensional hardware accelerator. The drawing model aspect 102 also defines a
drawing API that is used by clients to express commands in the drawing language.

[0031] Transport aspect 104 enables the transmission of drawing commands from where
they are expressed by calls to the drawing API, such as within a client process, to where
they are executed, typically within a server process. Transport aspect 104 addresses
asynchronous operational issues. For example, it addresses the issue of how a screen or
display controlled by a display server can multiplex drawing and update commands
coming from different client processes and optionally execute the commands out of order
if the display server determines that the resultant image would be identical.

[0032] Drawing commands originating from multiple simultaneous clients of a display

server are often not strongly ordered, i.e., they can often be executed in a different order

10

10

15

20

25

WO 2005/078552 PCT/US2005/003976

o Yo B e TR R

and obtain the same image as if they were executed in the order specified by clients. For
example, in a preferred embodiment transport aspect 104 and drawing model aspect 102 of
graphics subsystem 100 are responsible for ensuring that with drawing command
groupings A, B, and C specified in the order A to B to C, wherein the commands in C
overlay an area drawn into by A and B draws into an area that is not affected by either A
or C, A must be executed before C but B should be permitted to draw at any time. This is
very useful in situations where A, B and C originate from different client processes and
the client responsible for A is slow, blocked or has crashed, and the client responsible for
B is ready to continue processing. Transport aspect 104 also enables a display server to
communicate with a distributed hierarchy of views, wherein each view has partial or
complete ownership of certain portions of the screen, i.e., the actual pixels in those
portions of the display.

[0033] FIG. 2 is a diagram illustrating a display 204 of a mobile device, the display having
elements 204a, 204b, and 204c¢, a display server process 202, and a view hierarchy 206.
Display server 202 process controls the graphical features of the user interface shown on
screen 204, that is, which elements are displayed and how they are displayed. Display
server 202 communicates with a view object hierarchy 206 comprised of numerous views
arranged in a parent-child relationship with a root view 208 distinguishable from the other
views in that it is the only view directly communicated with by the display server.
Transport aspect 104 enables display server 202 to muitiplex drawing commands coming
from different views potentially distributed across different client processes, and execute
them in the correct order or in an order the display server determines is appropriate.

[0034] Drawing commands are transported from client views to the display server
responsible for graphical rendering utilizing objects that function as delivery conduits.

These objects, referred to as render streams, are a feature of transport aspect 104. FIG. 3A

11

10

15

20

25

WO 2005/078552 PCT/US2005/003976

TR R T R
is a diagram of a render stream object 302 and a sample stream of commands 304. Render
stream 302 transports commands 304 from one or more clients (such as views) in one or
more client processes to a display server in a server process. In a preferred embodiment,
render stream 302 is an object instantiated by display server 202 and performs as a one-
way pipe that transports commands from where they are expressed, in a client view, to
where they are executed, in the display server. The client view and display server can be
in different processes or can operate in the same process assuming proper security
measures have been taken if necessary, or if the system components are known to be
trustworthy. In a preferred embodiment, drawing commands expressed into a render
stream are buffered before being transported to the display server for greater efficiency
when transporting across process boundaries. There can be numerous active render
streams from views to the display server.

[0035] All types of drawing commands can be transported in render stream 302. In a
preferred embodiment, drawing commands, e.g., moveto, lineto, closepath, fill <color>,
stroke<color>, and so on, resemble Postscript commands. In a preferred embodiment,
render streams facilitate transmission of commands or any other data, such as pixels,
modulation data, etc., in one direction. Commands that typically do not require direct
responses are best suited to be transported utilizing render streams.

[0036] Drawing model aspect 102 can carry out its functions independent of any render
stream. For example, if the destination for drawing commands is local, such as to a
bitmap, rather than to the screen of a handheld device, the drawing model does not need to
utilize a render stream (although it may use other features of transport aspect 104). In
cases where the drawing model operates independent of a render stream, the same drawing
model API is used. However, depending on the context, commands may be rendered

immediately to a local surface, or may be transported to a display somewhere else.

12

10

15

20

25

WO 2005/078552 N PCT/US2005/003976
FOTE L e S

LN o

[0037] In a preferred embodiment, drawing by client views occurs when they are asked by
the display server to refresh the screen. This is done when a view, responsible for a
certain area of pixels on the screen is invalid or ‘dirty’ or needs to be re-drawn for any
reason, for example after some action or state change has occurred that changes the look
of one or more visible components, or that adds or removes views form the hierarchy. In
response to an update event, views send drawing commands to the display server so the
server can change those pixels according to these commands. In a preferred embodiment,
this is the only mechanism by which a view may draw to the screen.

[0038] This sequence of events encompassing the request made by the display server and
the resulting drawing that occurs by clients is referred to as an update cycle. The display
server initiates such a cycle by sending an update event to the root view, which will then
distribute the event throughout the view hierarchy as needed to invoke views to draw,
together composing the final image. Render streams are used during an update cycle to
transport rendering commands from client views to the display server when the server
operates in a different process or device from that of one or more of the client views, or
when there are multiple systems of views operating asynchronously with respect to one
another and conjoined within the same view hierarchy. These conjoined systems of views
are asynchronized with respect to one another by the use of view layout root objects, as
detailed below.

[0039] The graphics subsystem of the present invention allows an update to be executed
serially by each view synchronously following the drawing of its predecessor in the
hierarchy within a single system of views, or in parallel by multiple systems of views
which operate asynchronously with respect to one another. This is enabled in part by the
ability of a render stream to branch. Branching is a procedure whereby an offshoot or

branched render stream is created and passed to a child view to draw at some later point

13 °

10

15

20

25

\;{Y“(?z 0‘?5/0;8“5"52 I RCTI L POTIUS20051003976
that the child chooses (i.e. asynchronously with respect to the parent view performing the
branching operation), while the original or parent render stream continues to be used
synchronously to transport subsequent drawing commands expressed by the parent view.
[0040] FIG. 3B illustrates render stream branching. For example, a client process
encompassing one or more views in hiérarchy 206 may have an application user interface
it wants drawn on the screen. The display server ultimatély controls what is displayed on
the screen and client views have the information needed to describe the desired image, and
so the display server needs a render stream with which to receive drawing commands from
these views. In a preferred embodiment, the display server instantiates a render stream
and passes it to root view 208 along with an update event, initiating an update cycle. The
commands necessary to draw the application’s imagery are divided into three sequences
A, B, and C, and each sequence is generated by a subset of the views comprising the
application. Sequence A is generated and placed into the original render stream 306, after
which render stream 308 is branched from it and given to the subset of views that generate
sequence B to be used to express and transport those commands. Following this, sequence
C is generated and placed into the original render stream 306. Render stream 308 is thus
branched from render stream 306 at a point after commands in group A has been
expressed (though perhaps buffered and not necessarily transported) but before the first
command in group C has been expressed. Data transported in render stream 306 includes
commands from sequence A, a token for render stream 308, and commands from sequence
C. Commands in render stream 308 are from sequence B., and this render stream uses
TOKEN B to identify itself when returning drawing commands to the display server.
[0041] Each act of branching creates a possibility of re-ordering by the display server.

Thus, in this scenario branching has created the possibility that the commands in render

stream 308 can execute concurrently or out-of-order with commands in render stream 306.

14

10

15

20

WO 2005/078552 PCT/US2005/003976
e Y S e g 2 TG

Actual parallel execution can be employed using multiple processors or hardware
accelerators, or greater efficiency can be reached by re-ordering commands sent to a single
graphics accelerator. The display server receives these commands from render stream 306
and 308 in parallel and decides the actual order in which the commands will be executed
based on the expressed order and on the dependencies between and among the commands.
[0042] FIG. 4 is a diagram of display server components and their relationship to the view
hierarchy and the physical screen. The display server 202 controls the screen and is the
only entity with direct access to it. The graphics driver is divided into two components: a
driver 402, which provides full access to graphics hardware registers and resides in the I/O
subsystem or kernel of the host operating system, and a graphics accelerant 404, which
resides in the display server 202 and provides memory-mapped access to the frame buffer
and access\to any graphics functions implemented by graphics acceleration hardware. The
display server is comprised of the graphics accelerant, a low-level renderer 406 (also
known as mini-GL), which is responsible for region filling and pixel operations, and a
high-level renderer 408 which provides memory buffer management, drawing path
manipulation such as stroking, rendering state management, and so on.

[0043] The display server 202 has explicit knowledge of only one view, the root view 208.
From the display server perspective, root view 208 is responsible for handling events
(including input and update events) for the entire screen. On simple devices the root view
may in fact be the only view. If there is a single process that uses only one view and no
re-ordering of views, the complexity of the design collapses into a simple code path |
between the display server and view hierarchy, which is highly efficient on weak
hardware. On devices with more advanced hardware and user interfaces the root view

distributes its responsibility for handled update and input events to a hierarchy of views.

15

10

15

20

25

WO 2005/078552 PCT/US2005/003976

BT L R
[0044] FIG. 5 is a diagram of a basic view object 502, which has three separate interfaces
named [View 504, [ViewParent 506, and [ViewManager 508. The view hierarchy operates
by the interaction of parents and children within the hierarchy accessing these interfaces
on one another. IView 504 allows manipulation of the core state and properties of a view,
as well as allowing it to be added to another view as a child, such as child view 510.
IView 504 is the interface that a parent sees on its children. Input, update, layout and other
event types are propagated down the hierarchy from the display server to leaf views by
each parent view making calls on its childrens’ /View 504 interfaces, and those views in
turn (either synchronously or asynchronously) making calls on their own children’s IView
504 interfaces, and so on. The [ViewParent 506 interface is the interface that a child
view sees on its parent, such as parent view 512 and which it can use to propagate events
up the hierarchy, such as invalidate events or requests for a layout to be performed.
1IViewManager 508 is the interface that a child view would use on its parent to manipulate
its siblings, or that a third-party piece of code would use to add or remove children to a
view.
[0045] The loose coupling of the view hierarchy is enforced in part by the hiding of
certain of these interfaces from a caller that has access to certain others. For example, the
default security policy for views (which can be overridden by each view as desired) is that
a child view which is initially given an /ViewParent 506 interface for its parent will not be
able to convert that to an IView 504 interface. The view itself stores state such as the
spatial 2D transformation that should apply to that view’s drawing, a reference to its
parent, and so on.
[0046] A capability-like security model that establishes a peer-to-peer trust network
between and among a set of active objects is described in FIGS. 6 and 7. The security

model allows for each object in the system to declare its own security policies, and for the

16

10

15

20

25

T e T e T b POTIUS20051003976
trust network to be implicitly and dynamically established by the application of each
policy by each individual object.

[0047] Capability éecurity models are based on a set of simple principles. Primary among
those principles is the Principle of Least Authority, which states that if an object requires
access only to resour;:e (or capability) A in order to perform its duties, it should be given
access only to A, and not, for example, to arbitrary other capabilities like B and C.
Additionally, if an object determines that it requires capability D, it must explicitly ask for
D using another capability which permits and may grant this request.

[0048] Many object models and object-oriented programming languages allow an object
defined using them to expose or publish one or more well-defined interfaces that operate
on it. Each interface that an object publishes defines a set of messages that can be sent to
the object or methods that can be called on it. In most interface-based object models, a
client that wishes to make use of an object must first obtain a reference to an interface of
that object by inspecting the object and requesting the desired interface, and then make
method calls on or send messages to that interface. Such an interface is typically the
smallest granularity at which access to the object is granted.

[0049] In a preferred embodiment of the present invention, security policies are defined
and implemented by requiring any request to an object for a given interface to be ﬁade
using an already-known well-defined interface of that object, by informing the object at
the time of such request as to which interface the request was made using, by allowing
each object to customize which interfaces they publish based on — among other factors —
which interface the request was made using, and by mapping each object interface to its
own capability-like secure communication channel when that interface is referenced or

used by an object within another process or device (in other words, when a method call or

message passing is performed on an interface across a secure boundary).

17

10

15

20

25

WO 2005/078552 PCT/US2005/003976

S N I B R N L R R g
[0050] When an object (the “caller” object) wishes to make a request for an interface B of
another object (the “callee” object), that request must be made using some interface A of
the callee that the caller has already obtained through some means. This interface A
could, for example, have been provided to the caller at the time it was created by the
creating object, or could have been requested by the caller in an interaction with another
object. The callee object will receive the request for B, and will be informed at this time
that the request was made using interface A. Based on this knowledge, on whether the
callee actually implements interface B, and on any other policies the callee wishes to
define, the callee can decide whether or not to provide the caller with the requested
interface B.

[0051] In addition, other calls made on or messages exchanged using an interface (i.e.
those which do not perform interface inspection requests) can themselves return interfaces
published by the called object or by any other object. In each such interaction — either
explicit interface inspection or the sharing by one object with another a reference to the
interface of a third — a trust network among a network of peer objects is progressively and
dynamically defined. This trust network defines the range of what operations are
permissible by a given object. For example, if a caller object has a reference to interface
A of a callee object, it could easily obtain access (and thus should be considered as having
access to) any other interfaces on the callee it can obtain by making interface requests
through interface A, as well as those interfaces on other objects that the callee might have
access to and might make available through A.

[0052] The decisions that each object makes as to how, when, and with whom to share its
own interfaces or those of another object are up to the specific object implementation, and
can be dependent on any number of factors that the object chooses to consider. In the

preferred embodiment of the present invention, the primary or sole factor used to

18

10

15

20

25

WO 2005/078552 PCT/US2005/003976
S R R RN L -

determine which interfaces of a callee can be successfully requested by'a caller is simply
which interface the request was made using. While other factors such as cryptographic
signatures, password protection, and user verification may be used by any particular object
to establish special rules based on particular situational needs, using these types of factors
would require a central authority to be contacted and for certain tests to be performed on
the caller to determine whether or not the caller has the necessary permissions. If an
object gets a call on one of its interfaces, the object knows that the calling object has
authority or permission to make that call, by virtue of having had a reference to that
interface in the first place. In a preferred embodiment within any given object, the
knowledge of which particular interface was used to request another is all of the
information that is needed to determine which interfaces get exposed in response to that
request, and thus how the trust network is built. Thus, constant permission checks with a
central authority for each call to an object interface are not necessary.

[0053] Security policies can be established by dividing an object’s functionality into
interfaces that define categories of services grouped by what level or type of permission is
required to access the service. For example, an object can have an interface that grants
minimal access and can give this capability to objects that cannot necessarily be fully
trusted, and can provide other interfaces that grant full access to all capabilities to other
objects that can be trusted.

[0054] As shown in FIG. 5, in an exemplar of the preferred embodiment, a graphical view
object has three interfaces: /ViewManager, IViewParent, and I[ViewChild.. A hierarchy of
such views operates by the interaction of parents and children within the hierarchy
accessing these interfaces on one another.

[0055] The default security policy for views (which can be overridden by each view object

as desired) is that /ViewManager and [ViewParent (if even implemented by the object) are

19

10

15

20

WO 2005/078552 PCT/US2005/003976

T R S T e T
both exposed to any request made using the /View interface, but that /View is hidden from
any requests made using the other two interfaces (i.e. a request for an /View interfaces
using either the IViewManager or IViewParent interfaces will fail), and that /ViewParent
is hidden from IViewManager. In other words, a caller requesting interfaces for the view
using the IView interface will be able to obtain both /ViewParent and IViewManager, a
caller requesting interfaces using /ViewParent will be able to obtain /ViewManager, and a
caller requesting interfaces through IViewManager will see no additional interfaces.
[0056] Each of these interfaces grants a specific set of permissions to any object obtaining
a reference to it, and this default view security policy is designed around the assumption
that a view essentially owns its children and can manipulate them as desired, but that a
child should not in general be able to directly control or manipulate its parent. A parent
has an IView interface for each child, and thus can control each child completely because
it can access all known interfaces of the child. But because a child view is only given an
IViewParent interface for its parent when it is added to the hierarchy, it is not able to
obtain an IView interface for the parent, which would allow it, for example, to move or
resize its parent, or to obtain yet other information such as a reference to its parent’s
parent. This gives the child only indirect influence over views above it in the hierarchy, as
provided by the limited /ViewParent interface. For a specific object with specific needs, a
parent view could decide whether or not to provide the /ViewManager interface in
response to requests made on the /ViewParent interface, which would in effect be granting
or denying to its children the permission to gain direct access to manipulate its siblings.
This permission might make sense in some situations and not in others, and so each object

could choose to override the default policy as it sees fit.

20

10

15

20

25

WY s nm s POTIUSTNS00376
[0057] Abiding by this policy allows a view hierarchy to cross many processes and
propagate messages up and down the hierarchy in a uniform way without the need of
special interfaces, while maintaining security.

[0058] FIG. 6 is a flow diagram of a process for an object determining security access
based on an interface call in accordance with a preferred embodiment of the present
invention. At step 602 a target object receives a call at one of its interfaces from an
external object. For example, the target interface may have three interfaces A, B, and C,
each granting varying degrees of access to the target object’s functions. Interface A
granting the highest degree of access and interface C, the lowest. At step 604 the target
object determines whether the external object is allowed access to other interfaces by
checking its own security policies. In a preferred embodiment, the target object does not
check with a central authority storing security data for all objects in the system. If the
external object is calling on interface A, the target object may determine that the external
object has access to interfaces B an C. At step 606 the target object grants access to the
external object to allow access to other interfaces as determined at step 604.

[0059] What is described above is how objects behave and define security policies
regardless of what processes they exist in. For example, the caller and callee objects can
be in the same or in different processes. The policy or pattern by which objects are
distributed across processes does not have to be known at the time code is written or the
time security policies are defined. The code is written assuming that the implicit security
policies between objects as defined by interface inspection policies will be reliably
enforced by the system.

[0060] However, what is described above only provides mechanisms for defining security

policies. There are various classes of methods of enforcing such a model, including

memory protection and language-based security. In a preferred embodiment, one such

21

10

15

20

25

WO 2005/078552 PCT/US2005/003976

Rt o (LU (N

&

method of enforcement separates objects that must be protected from one another into
separate processes.

[0061] In a preferred embodiment of the present invention, when an object in one process
obtains an interface on an object in a different process (on the same device or on another),
a secure conduit between those processes is established and associated with that interface
reference. For each single interface on a particular object in one process, a single secure
conduit exists between it and another process if that other process contains objects that
hold a reference on that interface. This secure conduit is used to transmit messages and
method calls on a particular interface from one process to another, and to return any result
values to the caller. This is shown in FIG. 7. Thus, if an object 702 in a process 704 has
an interface 706, and a reference to interface 706 is held by an object 708 in a process 710
and objects 712, 714, 716 in process 718, two secure conduits exist: one conduit 720
between process 704 and process 710 and another conduit 722 between process 718 and
process 704. All calls or interactions with a given interface on a given object from the
same remote process will be routed through the same secure conduit.

[0062] These secure conduits are created on-demand as needed, whenever an interface is
shared with a particular remote process for the first time. The use of these secure conduits
allows an object to be assured that when a request arrives from a remote process, that the
caller is authorized to have made the request by virtue of having had a reference to the
interface, and that this interface on which the request was made can be reliably identified.
A secure conduit is only created when a process boundary exists between two
communicating objects, as shown by the broken lines in FIG. 7. If an object wishes to
make calls on another object in the same process, that object is referred to and called
directly without the use of a secure conduit. This makes the case of local communication

between objects very fast.

22

10

15

20

‘Y?(EZOO"S /0735532, RN I L e PETUS200/003976
[0063] While the security policies established by the objects themselves (as detailed
above) are always in effect, separating objects into distinct prbcesses — and thus forcing
the use of secure conduits to be used to exchange messages, data and interface references
between them — is a reliable way to enforce those policies. The goal is to protect the
object from malicious or faulty code, and to protect existing objects from it. But
enforcement of security policies can have significant performance and memory usage
implications. For example, if each object in the system were given its own process, the
resulting overhead would be unacceptable. Yet, in an enforcement scheme based on
processes and implemented using hardware memory protection, this is what would be
needed if strict enforcement of security policies was required for every object in the
system. Therefore, it is desirable to only apply enforcement of these policies when such
enforcement is deemed necessary.

[0064] There are various reasons that enforcement of security policies may be deemed
unnecessary. For example, if all of the components that are interacting with one another
within a network of objects were authored by the same vendor, it is highly unlikely that
they will be malicious with respect to one another, and thus they do not need to be
protected from one another. Another example is two or more otherwise unrelated objects
with identical security constraints and permissions (such as two normal third-party
applications that do not deal with sensitive or private data). In both cases, clustering the
set of objects into a common process would greatly reduce the memory overhead required
as compared to having one process per object, and the objects themselves would be able to
interact very efficiently without the creation of secure conduits to route messages between

interfaces. This separation is done judiciously, for example, when it is not overridden by a

blanket of trust extended to all objects published by the same vendor.

23

10

15

20

25

WO 2005/078552 N PCT/US2005/003976

[0065] In a preferred embodiment of the present invention, a security model is enforced
selectively by allowing the system to allocate objects at creation time into distinct domains
referred to as dynamic protection domains. This is illustrated in FIG. 8. At step 802 a
caller determines that it needs to instantiate a new object. An object instantiation facility
is provided in which a caller makes a request that an object be instantiated or created as
shown in step 804. The request provides that the object being instantiated be created
within a dynamic protection domain which the system determines to be most appropriate.
At step 806, an instantiation facility creates an object based on a variety of security factors
such as security constraints and requirements declared by active objects in the system, the
system’s own global security policies, and any trade-offs that the system is willing to
make, of security vs. performance and optimal resource utilization. At step 808 the object
is placed in an existing dynamic protection domain or a new protection domain,
implemented in a preferred embodiment by processes. The system may also create new
dynamic protection domains if this is deemed necessary, to host the newly created object.
[0066] The object that is returned from this instantiation facility may be a reference to an
interface on a remote object that was created in a remote protection domain (for example,
if the newly created object needs to access sensitive data that the creator does not have
permissions to access), or it might be a local object within the same process (for example,
if the newly created object is cryptographically signed by a publisher that the creator has
declared it trusts). Because the creator is using the interface abstraction facilities
discussed above, it does not need to know or behave differently depending on whether the
resulting object has been created locally or remotely. The constraints, policies and
requirements used to make these decisions are implementation specific, and can vary from
device to device. In a preferred embodiment of the present invention, a dynamic

protection domain is implemented as a process.

24

10

15

20

25

WO 2005/078552 PCT/US2005/003976

(S i P R B L D
[0067] Objects are clustered into protection domains based on protection policies, but are
placed as “close” as possible to the caller or to a delegate that the caller designates while
still obeying those policies. In other words, if an object can be created in the same process
as those objects that will be interacting with it without violating security considerations, it
will be.
[0068] In a preferred embodiment, in a view hierarchy, a parent view may instantiate a
“plug-in” child view object without having prior knowledge of what that component does
or what vendor has provided it. Based on the security constraints and policies of the
parent, the parent’s process, the system, and the child, the system can decide whether to
load the child component into the parent’s process (which would allow the greatest
performance), to create a new process for the child to live in (which would provide the
greatest protection), or to place the new child into some other existing process that
happens to fit the child’s security needs and which contains no objects holding private
information (which would provide a good level of security and robustness for the parent
and the system while not requiring a wholly new process to serve only a single child view
object). This allows the view hierarchy, for example, to be built dynamically out of
cooperating pieces of third-party code without the hierarchy configuration being known by
any one component, but while still allowing protections to be maintained between those
components that express a need for such protections.
[0069] Inasmuch as one embodiment of the invention described above relates to a
hardware device or system, the basic components associated with a computing device are
discussed below.
[0070] FIG. 9 and the related discussion are intended to provide a brief, general
description of a suitable computing environment in which the invention may be

implemented. Although not required, the invention has been described, at least in part, in

25

10

15

20

25

WO 2005/078552 PCT/US2005/003976
A M RO R LY A e :

the general context of computer-executable instructions, such as program modules, being
executed by a personal computer or handheld computing device. Generally, program
modules include routine programs, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types. Moreover, those skilled in the
art will appreciate that the invention may be practiced with other computer system
configurations, including handheld devices, multiprocessor systems, microprocessor-based
or programmable consumer electronics, network PCs, minicomputers, mainframe
computers, communication devices, cellular phones, tablets, and the like. The invention
may also be practiced in distributed computing environments where tasks are performed
by remote processing devices that are linked through a communications network. In a
distributed computing environment, program modules may be located in both local and
remote memory storage devices.

[0071] With reference to FIG. 9, an exemplary system for implementing the invention
includes a general purpose computing device 9, including a central processing unit (CPU)
120, a system memory 130, and a system bus 110 that couples various system components
including the system memory 130 to the CPU 120. The system bus 110 may be any of
several types of bus structures including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures. The system memory 130
includes read only memory (ROM) 140 and random access memory (RAM) 150. A basic
input/output (BIOS) contains the basic routine that helps to transfer information between
elements within the personal computer 9, such as during start-up, is stored in ROM 140.
The computing device 9 further includes a storage device such as a hard disk drive 160 for
reading from and writing data. This storage device may be a magnetic disk drive for
reading from or writing to removable magnetic disk or an optical disk drive for reading

from or writing to a removable optical disk such as a CD ROM or other optical media.

26

10

15

20

25

WO 2005/07855{2 PCT/US2005/003976
i e

e o g i hrep, * nfl " &
I RN T B e B Vel 2 e

The drives and the associated computer-readable media provide nonvolatile storage of
computer readable instructions, data structures, program modules and other data for the
computing device 9.

Although the exemplary environment described herein employs the hard disk, the
removable magnetic disk and the removable optical disk, it should be appreciated by those
skilled in the art that other types of computer readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memory (RAM), read only memory (ROM),
and the like, may also be used in the exemplary operating environment.

[0072] FIG. 9 also shows an input device 160 and an output device 170 communicating
with the bus 110. The input device 160 operates as a source for multi-media data or other
data and the output device 170 comprises a display, speakers or a combination of
components as a destination for multi-media data. The device 170 may also represent a
recording device that receives and records data from a source device 160 such as a video
camcorder. A communications interface 180 may also provide communication means
with the computing device 9.

[0073] As can be appreciated, the above description of hardware components is only
provided as illustrative. For example, the basic components may differ between a desktop
computer and a handheld or portable computing device. Those of skill in the art would
understand how to modify or adjust the basic hardware components based on the particular
hardware device (or group of networked computing devices) upon which the present
invention is practiced.

[0074] Embodiments within the scope of the present invention may also include
computer-readable media for carrying or having computer-executable instructions or data

structures stored thereon. Such computer-readable media can be any available media that

27

10

15

20

25

M R A e R T PCT/US2005/003976

can be accessed by a general purpose or special purpose computer. By way of example,
and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to carry or store desired program code
means in the form of computer-executable instructions or data structures. When
information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or combination thereof) to a computer, the
computer properly views the connection as a computer-readable medium. Thus, any such
connection is properly termed a computer-readable medium. Combinations of the above
should also be included within the scope of the computer-readable media.

[0075] Computer-executable instructions include, for example, instructions and data
which cause a general purpose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of functions. Computer-
executable instructions also include program modules that are executed by computers in
stand-alone or network environments. Generally, program modules include routines,
programs, objects, components, and data structures, etc. that perform particular tasks or
implement particular abstract data types. Computer-executable instructions, associated
data structures, and program modules represent examples of the program code means for
executing steps of the methods disclosed herein. The particular sequence of such
executable instructions or associated data structures represents examples of corresponding
acts for implementing the functions described in such steps.

[0076] Those of skill in the art will appreciate that other embodiments of the invention
may be practiced in network computing environments with many types of computer
system configurations, including personal computers, hand-held devices, multi-processor

systems, microprocessor-based or programmable consumer electronics, network PCs,

28

10

15

VV{r(_)’J FZ__QO{S‘/O"ZS'SSZ PCT/US2005/003976

B 0 o S
minicomputers, mainframe computers, and the like. Embodiments may also be practiced
in distributed computing environments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links, wireless links, or by a
combination thereof) through a communications network. In a distributed computing
environment, program modules may be located in both local and remote memory storage
devices.
[0077] Although the above description may contain specific details, they should not be
construed as limiting the claims in any way. Other configurations of the described
embodiments of the invention are part of the scope of this invention. For example, objects
may use features other than interfaces of the object model to which capabilities can be
matched. In another example, a protection domain can be defined by a component of the
system other than a process, such as memory protection or language-based security.
Accordingly, the appended claims and their legal equivalents should only define the

invention, rather than any specific examples given.

29

10

15

20

2005/078552
Vel s nan e PCT/US2005/003976

CLAIMS
We claim:
1. A method for controlling access to an object in an operating system, the method
comprising:

receiving a call from an external object to a first interface of a target object;
at the target object, determining whether the external object has access to other
interfaces of the target object based on the call to the first interface; and

granting access to the other interfaces according to the determination.

2. A method as recited in claim 1, wherein determining whether the external object
has access to other interfaces of the target object further comprises examining a security

policy contained within the target object.

3. A method as recited in claim 2, wherein the security policy is contained entirely

within the target object.

4. A method as recited in claim 1, further comprising determining whether the

external object and the target object operate in the same process.

5. A method as recited in claim 1, wherein determining whether the external object
has access to other interfaces of the target object further comprises:
identifying other interfaces of the target object that can be accessed when the first

interface is being requested by the external object.

30

10

15

20

VVl(gn HZQO%/OZS‘(SSZ__, . PCT/US2005/003976
7 e #00d

W R T T
6. A method as recited in claim 1, further comprising determining a first process of
the target object.
7. A method as recited in claim 6, further comprising determining a second process of

the external object.

8. A method as recited in claim 7, further comprising performing a cross-process

communication between the target object and the external object.

9. A method as recited in claim 1, further comprising securing a channel for each

interface of the target object.

10. A method as recited in claim 1, wherein determining whether the external object

has access to other interfaces of the target object further comprises analyzing access

constraints within the target object.

11. A method as recited in claim 1, further comprising analyzing interface access data

stored within the target object.

12. A method as recited in claim 1, further comprising determining whether the target

object and the external object are in a same protection domain.

13. A method as recited in claim 12, wherein the protection domain is a process.

31

10

15

20

25

WO 2005/078552 PCT/US2005/003976

BT B U e R R T

14. A method as recited in claim 1, wherein the target object sets its own security

policy.

15. A method as recited in claim 1, wherein determining whether the external object
has access to other interfaces further comprises determining the capabilities of the external

object.

15. A method as recited in claim 14, further comprising mapping the capabilities of the

external object to the interfaces of the target object.

16. A method as recited in claim 1, wherein the target object and the external object

are created using a same methodology.

17. A method as recited in claim 1, wherein the target object and the external object

are views in a view hierarchy.

18. A method as recited in claim 17, wherein a view has a parent calling interface, a

child calling interface, and a child managing interface.

19. A system that controls access to an object in an operating system, the system
comprising:

a module configured to receive a call from an external object to a first interface of
a target object;

a module configured to determining whether the external object has access to other

interfaces of the target object based on the call received at the first interface; and

32

10

15

20

25

WO 2005/078552 » PCT/US2005/003976
R S I R S B

a module configured to grant access to the other interfaces according to the

determination.

20. A system that controls access to an object in an operating system, the system
comprising:

means for receiving a call from an external object to a first interface of a target
object;

means for determining, at the target object, whether the external object has access
to other interfaces of the target object based on the call to the first interface; and

means for granting access to the other interfaces according to the determination.

21. A computer readable medium storing instructions for controlling a computer
device to control access to an object in an operating system, the instructions comprising:
receiving a call from an external object to a first interface of a target object;
at the target object, determining whether the external object has access to other
interfaces of the target object based on the call to the first interface; and

granting access to the other interfaces according to the determination.

22. A method for securing an object in a computing device operating system, the
method comprising:

determining one or more access constraints of a first object;

identifying a protection domain that has a security profile that corresponds to the
one or more access constraints of the first object; and

placing the first object in the protection domain.

33

10

15

20

WO 2005/078552 PCT/US2005/003976
BT O DRI

23. A method as recited in claim 22, further comprising creating the first object and a

second object using the same methodology.

24. A method as recited in claim 23, wherein the first object and the second object can

communicate transparently across two or more protection domains.

25. A method as recited in claim 22, wherein the protection domain is a process.

26. A method as recited in claim 22, further comprising creating an object-to-object

security model wherein security constraints for an object are contained within the object.

27. A method as recited in claim 22, wherein identifying a protection domain further
comprises attempting to identify a protection domain that is local relative to the first

object.

28. A method as recited in claim 22, further comprising creating a process based on

security requirements of the operating system.

28. A method as recited in claim 28, further comprising clustering objects in the

process based on security policies of the objects.

29. A system for securing an object in a computing device operating system, the

system comprising:

means for determining one or more access constraints of a first object;

34

W8‘2u005u/07‘_8}§52] PCT/US2005/003976

..... L 0 oy Y kel ey
means for identifying a protection domain that has a security profile that

corresponds to the one or more access constraints of the first object; and

means for placing the first object in the protection domain.

35

WO 2005/078552 PCT/US2005/003976

4003,PALM.PSI

1/6
FIG. 1

DRAWING MODEL [_~ 102
ASPECT

TRANSPORT [~ 104

GRAPHICS SUBSYSTEM 100

OPERATING SYSTEM 10

TG 2 204
202 _ P /’ y;% /-42040
§ -7 i LL_204c
DISPLAY 4
SERVER (SS S 204
PROCESS | __-~"| 828382885

206
\

ROOT VIEW 208

-

O

1/6

WO 2005/078552

4003,PALM.PSI

2/6

TG 3 g,

302 —

FIG. 3B

302 —

1

TOKEN B—

1

—r

<cmd #1>
<cmd #2>
<emd #3>
<emd #4>
<cmd #5>
<cmd #6>
<cmd #7>

<cmd #1>
<cmd #2>
<ecmd #3>

<cmd #4>
<emd #5>
<cmd #6>

2/6

<emd #x>
<cmd #y>
<cmd #z2>

I

PCT/US2005/003976

308

WO 2005/078552 PCT/US2005/003976

4003.PALM.PSI
3/ 6
FI g. 4
\206
ROOT VIEW 208
202\ HIGH LEVEL 1 —~408
RENDERER

MINI-GL 406

404 —11 GRAPHICS
ACCELERATOR

402—T DRIVER

-204q
bathathal 204c¢

/4
(S5S o an—204b

3/6

WO 2005/078552 PCT/US2005/003976

4003.PALM.PSI

4/6

4/6

WO 2005/078552 PCT/US2005/003976

4003.PALM.PSI

5 /6
FIG. 6

RECEIVE CALL FROM EXTERNAL OBJECT
TO AN INTERFACE OF TARGET OBJECT — 602

/

DETERMINE WHETHER EXTERNAL OBJECT 604
HAS ACCESS TO OTHER INTERFACES

|

TARGET OBJECT GRANTS ACCESS TO OTHER -~ 606
INTERFACES BY EXTERNAL OBJECT IF AUTHORIZED

PROCESS BOUNDARY

122

PROCESS BOUNDARY

5/6

WO 2005/078552 PCT/US2005/003976

4003.PALM.PSI

6/6
FIG. 8

A CALLER REQUIRES INSTANTATION OF A L~ 802
NEW OBJECT

Y

REQUEST IS MADE THAT NEW OBJECT BE -~ 804
CREATED

INSTANTIATION FACILITY EXAMINES VARIOUS 1~ 806
SECURITY-RELATED FACTORS

/

NEW OBJECT IS PLACED IN AN EXISTING PROCESS {~ 808
OR A NEW PROCESS

FIG. 9
\
130 140 150 160
o] WU |) } {
DEVICE | STORAGE
MEMORY | | RoM RAM e
OUTPUT]
170 I I
DEVICE ‘j‘ | AU
A
_| communicaTion '
1801 " INTERFACE [, 110
PROCESSOR
)

120

6/6

IN&RNATIONAL SEARCH REPORT

Inter, nal Application No

PCT/US2005/003976

CLASSIFICATION OF SUBJECT MATTER

TPe 7 R06F1/00 C06F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation 10 the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 138 238 A (SCHEIFLER ET AL) 1-29
24 October 2000 (2000-10-24)
abstract; figures 4,5
column 4, line 57 - column 5, line 3
column 6, line 10 - line 33
column 7, line 35 - line 43
column 8, line 12 - line 30
column 8, line 43 - Tine 47
column 9, Yine 65 - column 10, line 8
column 11, line 21 - coiumn 13, line 45
A US 5 136 712 A (PERAZZOLI, JR. ET AL)
4 August 1992 (1992-08-04)
A US 6 282 652 B1 (SCHEIFLER ROBERT W)
28 August 2001 (2001-08-28)
D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered fo be of particular relevance

"E* earlier document but published on or afterthe international
filing date

invention

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principfe or theory underlying the

X document of panicular relevance; the claimed invention
cannot be considered novel or cannot be considered to
L' document which may throw doubls on priofity claim(s) or involve an inventive step when the document is taken alone

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Fax: (+31-70) 340-3016

which is cited to establish the publication date of another “y* document of : . . f N
liow . . particular relevance; the claimed invention

citation or other special reason (as speciied) cannot be considered to involve an inventive step when the
‘0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-

other means ments, such combination being obvious to a person skilled
'P* document published prior to the international filing date but in the art.

later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report

23 May 2005 01/06/2005

Name and mailing address of the ISA Authorized officer

Tel. (+31-70) 3402040, Tx. 31 651 epo n|, Powell D
H

Form PCT/ISA/210 (second shest) {(January 2004}

IN'IiRNATIONAL SEARCH REPORT

‘ormation on patent family members

Inter

PCT/US2005/003976

al Application No

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6138238 A 24-10-2000 US 6192476 Bl 20-02-2001
AU 2769899 A 15-09-1999
CN 1298512 A 06-06-2001
EP 1062584 A2 27-12-2000
JP 2002505476 T 19-02-2002
Wo 9944137 A2 02-09-1999
us 6708171 Bl 16-03-2004
us 6389540 B1 14-05-2002
AU 2680299 A 15-09-1999
AU 2680399 A 15-09-1999
AU 2680499 A 15-09-1999
AU 2686699 A 15-09-1999
AU 2686799 A 15-09-1999
AU 2766199 A 15-09-1999
AU 2770199 A 15-09-1999
AU 2770299 A 15-09-1999
AU 2770399 A 15-09-1999
AU 2770499 A 15-09-1999
AU 2770599 A 15-09-1999
AU 2787699 A 15-09-1999
AU 2787799 A 15-09-1999
AU 2787899 A 15-09-1999
AU 2876899 A 15-09-1999
AU 2876999 A 15-09-1999
AU 2878399 A 15-09-1999
AU 2878499 A 15-09-1999
AU 3297199 A 15-09-1999
Al 3297299 A 15-09-1999
AU 3300499 A 15-09-1999
AU 3300599 A 15-09-1999
AU 3309199 A 15-09-1999
CN 1292115 A 18-04-2001
CN 1292116 A 18-04-2001
CN 1292113 A 18-04-2001
CN 1292117 A 18-04-2001
CN 1292192 A 18-04-2001
CN 1292118 A 18-04-2001
CN 1298502 A 06-06-2001
CN 1298503 A 06-06-2001
CN 1298504 A 06-06-2001
CN 1298505 A 06-06-2001
CN 1298523 A 06-06-2001
CN 1298524 A 06-06-2001
CN 1298506 A 06-06-2001
CN 1298507 A 06-06-2001
CN 1298508 A 06-06-2001
CN 1298509 A 06-06-2001
CN 1298510 A 06-06-2001
CN 1298511 A 06-06-2001
CN 1298513 A 06-06-2001

Us 5136712 A 04-08-1992 NONE

US 6282652 Bl 28-08-2001 AU 3300599 A 15-09-1999
CN 1292116 A 18-04-2001
EP 1057093 A2 06-12-2000
JP 2002505459 T 19-02-2002
Wo 9944115 A2 02-09-1999

Form PCT/ISA/210 (patent family annex) (January 2004)

INLTERNATIONAL SEARCH REPORT

PMiformation on patent family members

Inter, nal Application No

PCT7US2005/003976

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6282652 Bl us 6708171 Bl 16-03-2004
AU 2680299 A 15-09-1999
AU 2680399 A 15-09-1999
AU 2680499 A 15-09-1999
AU 2686699 A 15-09-1999
AU 2686799 A 15-09-1999
AU 2766199 A 15-09-1999
AU 2769899 A 15-09-1999
AU 2770199 A 15-09-1999
AU 2770299 A 15-09-1999
AU 2770399 A 15-09-1999
AU 2770499 A 15-09-1999
AU 2770599 A 15-09-1999
AU 2787699 A 15-09-1999
AU 2787799 A 15-09-1999
AU 2787899 A 15-09-1999
AU 2876899 A 15-09-1999
AU 2876999 A 15-09-1999
AU 2878399 A 15-09-1999
AU 2878499 A 15-09-1999
AU 3297199 A 15-09-1999
AU 3297299 A 15-09-1999
AU 3300499 A 15-09-1999
AU 3309199 A 15-09-1999
CN 1292115 A 18-04-2001
CN 1292113 A 18-04-2001
CN 1292117 A 18-04-2001
CN 1292192 A 18-04-2001
CN 1292118 A 18-04-2001
CN 1298502 A 06-06-2001
CN 1298503 A 06-06-2001
CN 1298504 A 06-06-2001
CN 1298505 A 06-06-2001
CN 1298523 A 06-06-2001
CN 1298524 A 06-06-2001
CN 1298506 A 06-06-2001
CN 1298507 A 06-06-2001
CN 1298508 A 06-06-2001
CN 1298509 A 06-06-2001
CN 1298510 A 06-06-2001
CN 1298511 A 06-06-2001
CN 1298512 A 06-06-2001
CN 1298513 A 06-06-2001
CN 1298514 A 06-06-2001

Fomrn PCT/AISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

