

656630

3
SPRUSON & FERGUSON
AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST: STANDARD PATENT

I/We, the Applicant(s)/Nominated Person(s) specified below, request I/We be granted a patent for the invention disclosed in the accompanying standard complete specification.

[70,71] Applicant(s)/Nominated Person(s):

NEC Corporation, incorporated in Japan, of 7-1, Shiba 5-chome,
Minato-ku, Tokyo, JAPAN

[54] Invention Title:

Ripple-Free Phase Detector Using Two Sample-and-Hold Circuits

[72] Inventor(s):

Masaki Ichihara

[74] Address for service in Australia:

Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia (Code SF)

Details of Basic Application(s):

[31] Appl'n No(s):

3-313437

[33] Country:

JP

[32] Application Date:

31 October 1991

DATED this SEVENTEENTH day of NOVEMBER 1992

NEC Corporation

By:

J. G. Grimes.

Registered Patent Attorney

IRN: 224424

INSTR CODE: 58588

Australia

SPRUSON & FERGUSON

Patents Act 1990

NOTICE OF ENTITLEMENT

I, John Gordon Hinde, of Spruson & Ferguson, St Martins Tower, 31 Market Street, Sydney, New South Wales 2000, Australia, being the patent attorney for the Applicant/Nominated Person in respect of an application entitled:

Ripple-Free Phase Detector Using Two Sample-and-Hold Circuits

state the following:-

The Applicant/Nominated Person has entitlement from the actual inventor(s) as follows:-

The Applicant/Nominated Person, by virtue of a Contract of Employment between the actual inventor(s) as employee(s) and the Applicant/Nominated Person as employer, is a person which would be entitled to have the patent assigned to it if a patent were granted on an application made by the actual inventor(s).

The Applicant/Nominated Person is the applicant of the basic application(s) listed on the Patent Request. The basic application(s) listed on the Patent Request is/are the application(s) first made in a Convention Country in respect of the invention.

DATED this SEVENTEENTH day of NOVEMBER 1992

.....
John Gordon Hinde

IRN: 224424

INSTR CODE: 58588

AU9227482

(12) PATENT ABRIDGMENT (11) Document No. AU-B-27482/92
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 656630

(54) Title
RIPPLE-FREE PHASE DETECTOR USING TWO SAMPLE-AND-HOLD CIRCUITS

(51)⁵ International Patent Classification(s)
H03L 007/091

(21) Application No. : **27482/92** (22) Application Date : **02.11.92**

(30) Priority Data

(31) Number (32) Date (33) Country
3-313437 **31.10.91** **JP JAPAN**

(43) Publication Date : **06.05.93**

(44) Publication Date of Accepted Application : **09.02.95**

(71) Applicant(s)
NEC CORPORATION

(72) Inventor(s)
MASAKI ICHIHARA

(74) Attorney or Agent
SPRUSON & FERGUSON, GPO Box 3898, SYDNEY NSW 2001

(56) Prior Art Documents
EP 414392
GB 2054298
US 5006817

(57) Claim

1. A phase detector comprising:

first ramp voltage generating means for receiving a first reference pulse of a predetermined constant frequency and an input pulse and developing a first voltage having a ramp portion and a constant portion, the constant portion of the first voltage being proportional to a phase difference between the first reference pulse and the input pulse;

delay means for receiving the first reference pulse and producing a second reference pulse delayed by a prescribed interval with respect to the first reference pulse;

second ramp voltage generating means for receiving the first and second reference pulses and developing a second voltage having a ramp portion and a constant portion, the constant portion of the second voltage being proportional to the prescribed interval;

means for generating a sampling pulse subsequent to the second reference pulse;

first sample-and-hold means for sampling the constant portion of the first voltage in response to the sampling pulse;

second sample-and-hold means for sampling the constant portion of the second voltage in response to the sampling pulse; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold means.

(11) AU-B-27482/92

-2-

(10) 656630

2. A phase detector comprising:
 - a first integrated-circuit capacitor;
 - charging means for receiving a reference pulse of a predetermined constant frequency and an input pulse, and drawing a current at a constant rate into the first integrated-circuit capacitor during an interval corresponding to a phase difference between the reference pulse and the input pulse to develop a voltage proportional to the phase difference in the first integrated-circuit capacitor;
 - a first integrated-circuit sample-and-hold circuit connected to the first integrated-circuit capacitor;
 - second integrated-circuit sample-and-hold circuit connected to a source of constant voltage;
 - sampling means for causing the first and second integrated-circuit sample-and-hold circuits to sample the phase difference proportional voltage and the constant voltage, respectively, during an interval subsequent to the reference pulse; and
 - means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold circuits.

656630

S & F Ref: 224424

AUSTRALIA
PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

Name and Address
of Applicant:

NEC Corporation
7-1, Shiba 5-chome
Minato-ku
Tokyo
JAPAN

Actual Inventor(s):

Masaki Ichihara

Address for Service:

Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Invention Title:

Ripple-Free Phase Detector Using Two Sample-and-Hold
Circuits

The following statement is a full description of this invention, including the
best method of performing it known to me/us:-

TITLE OF THE INVENTION

"Ripple-Free Phase Detector Using Two Sample-and-Hold Circuits"

BACKGROUND OF THE INVENTION

The present invention relates generally to phase detectors for phase lock loops, 5 and more specifically to a sample-hold phase detector which generates a ramp voltage proportional to a phase difference between two input signals and samples and holds the ramp voltage to produce a phase detector output.

According to the prior art sample-hold phase detector, a "ramp" capacitor is charged for an interval corresponding to a phase difference between an input signal and 10 a reference signal to develop a ramp voltage proportional to the phase difference. A sample-and-hold circuit is connected to the ramp capacitor to sample and hold the ramp voltage in response to a sampling pulse. With the recent tendency toward LSI implementation of electronic circuitry, it is desirable to fabricate all components of the 15 sample-and-hold circuit on a single LSI chip. However, the value of the storage capacitor of the sample-and-hold circuit cannot be made sufficiently large to prevent the applied sampling pulse from bypassing the "sample" switch of the sample-and-hold circuit by way of the parasitic capacitance of the switch to the storage capacitor. Therefore, the phase detector output contains an undesirable ripple voltage which occurs at the same frequency as the reference signal.

20 SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a phase detector which enables the implementation of sample-hold phase detectors using LSI technology.

According to one aspect of the present invention there is disclosed a phase 25 detector comprising:

first ramp voltage generating means for receiving a first reference pulse of a predetermined constant frequency and an input pulse and developing a first voltage having a ramp portion and a constant portion, the constant portion of the first voltage being proportional to a phase difference between the first reference pulse and the input pulse;

30 delay means for receiving the first reference pulse and producing a second reference pulse delayed by a prescribed interval with respect to the first reference pulse;

second ramp voltage generating means for receiving the first and second reference pulses and developing a second voltage having a ramp portion and a constant portion, the constant portion of the second voltage being proportional to the prescribed interval;

means for generating a sampling pulse subsequent to the second reference 35 pulse;

first sample-and-hold means for sampling the constant portion of the first voltage in response to the sampling pulse;

second sample-and-hold means for sampling the constant portion of the second voltage in response to the sampling pulse; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold means.

According to another aspect of the present invention there is disclosed a phase detector comprising:

a first integrated-circuit capacitor;

charging means for receiving a reference pulse of a predetermined constant frequency and an input pulse, and drawing a current at a constant rate into the first integrated-circuit capacitor during an interval corresponding to a phase difference between the reference pulse and the input pulse to develop a voltage proportional to the phase difference in the first integrated-circuit capacitor;

a first integrated-circuit sample-and-hold circuit connected to the first integrated-circuit capacitor;

second integrated-circuit sample-and-hold circuit connected to a source of constant voltage;

sampling means for causing the first and second integrated-circuit sample-and-hold circuits to sample the phase difference proportional voltage and the constant voltage, respectively, during an interval subsequent to the reference pulse; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold circuits.

According to a further aspect of the present invention there is disclosed a phase detector, wherein the source of constant voltage comprises:

delay means for receiving the reference pulse as a first reference pulse and producing a second reference pulse delayed by a prescribed interval with respect to the first reference pulse;

a second integrated-circuit capacitor; and

second charging means for receiving the first and second reference pulses and drawing a current at the constant rate into the second integrated-circuit capacitor during an interval corresponding to the prescribed interval.

According to a still further aspect of the present invention there is disclosed a phase detector comprising:

a switching pulse source for receiving a first reference pulse of a predetermined constant frequency and an input pulse and producing a first charge timing pulse of duration corresponding to a phase difference between the first reference pulse and the input pulse, for receiving a second reference pulse of the predetermined constant frequency and producing a second charge timing pulse of constant duration

corresponding to a phase difference between the first and second reference pulses, and for successively producing a sampling pulse and a discharge timing pulse during an interval following a trailing edge of the first reference pulse;

5 first and second identical constant current sources;

a first capacitor;

a first switch for drawing a current from the first constant current source into the first capacitor in response to the first charge timing pulse and a second switch for drawing a current from the first capacitor in response to the discharge timing pulse;

10 a first sample-and-hold circuit responsive to the sampling pulse for sampling a voltage developed in the first capacitor and holding the sampled voltage;

a second capacitor;

15 a third switch for drawing a current from the second constant current source into the second capacitor in response to the second charge timing pulse and a fourth switch for drawing a current from the second capacitor in response to the discharge timing pulse;

a second sample-and-hold circuit responsive to the sampling pulse for sampling a voltage developed in the second capacitor and holding the sampled voltage; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold circuits.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in further detail with reference to the accompanying drawings, in which:

Fig. 1 is a block diagram of a phase detector according to the present invention;

25 Fig. 2 shows details of each of the switches used in Fig. 1; and

Fig. 3 is a timing diagram showing waveforms of the various signals generated in Fig. 1.

DETAILED DESCRIPTION

Referring now to Fig. 1, the phase detector of the present invention comprises a first sample-and-hold circuit 30 and a second sample-and-hold circuit 31 identical to the first sample-and-hold circuit 30. First sample-and-hold circuit 30 includes a storage capacitor 5 connected between ground and the input of a buffer amplifier 3, and a sampling switch 9 connected between a first ramp capacitor 7 and the input of amplifier 3. A first charge timing switch 11 is connected to the ramp capacitor 7 for charging it with a current supplied from a p-channel MOS (metal oxide semiconductor) transistor 15 in response to a charge command pulse CP1 from a control circuit 32. A first discharge timing switch 13 is connected to the ramp capacitor 7 for discharging it in response to a discharge command pulse DP. Therefore, a first ramp voltage is developed across the first ramp capacitor 7. The sampling switch 9 is responsive to a

sampling pulse SP from the control circuit to sample and transfer the energy stored in the first ramp capacitor 7 into the storage capacitor 5 where the sampled voltage is held until the next sampling instant.

Likewise, the second sample-and-hold circuit 31 includes a storage capacitor 6 connected to the input of a buffer amplifier 4, and a sampling switch 10 connected between a second ramp capacitor 8 and the input of amplifier 4. A second charge timing switch 12 is connected to the second ramp capacitor 8 for charging it with a current supplied from a p-channel MOS transistor 16 in response to a pulse CP2 from the control circuit. A second discharge timing switch 14 is connected to the second ramp capacitor 8 for discharging it in response to the discharge command pulse DP. Therefore, a second ramp voltage is developed across the capacitor 8. Similar to sampling switch 9, sampling switch 10 is responsive to the sampling pulse SP to sample and transfer the energy stored in the second ramp capacitor 8 into the storage capacitor 6 to hold the sampled voltage.

Transistors 15 and 16 are of identical structure and their gate electrodes are connected together to the gate electrode of a p-channel MOS transistor 17 which is connected to ground through a resistor 18. Specifically, transistor 17 provides a drain current I_a which is given by:

$$I_a = (V_{DD} - V_{GS})/R \quad (1)$$

where V_{DD} is the source voltage and V_{GS} is the gate-source voltage of transistor 17, and R is the value of resistor 18. Transistor 15 forms a current mirror circuit with transistor 17 and the drain current I_b of transistor 15 is:

$$I = (I_b)(N_1) \quad (2)$$

where $N_1 = (W_{15}/L_{15})(L_{17}/W_{17})$, where W_{15} and W_{17} are channel widths of transistors 15, 17, and L_{15} and L_{17} are channel lengths of transistors 15,

1 17. Likewise, transistor 16 forms a current mirror circuit with transistor 17,
2 and therefore, the drain current I_C of transistor 16 is given by:

3 $I_a = (I_C)(N_2)$ (3)

4 where $N_2 = (W_{16}/L_{16})(L_{17}/W_{17})$, where W_{16} and L_{16} are the channel
5 width and length of transistor ¹⁶₁₅, respectively. Since transistors 15 and 16
6 are of identical structure, $N_1 = N_2 = N$, and hence, currents I_b and I_c are of the
7 same value and are uniquely determined by resistor 18. Therefore, the
8 voltages developed in the first and second ramp capacitors 7 and 8 are
9 respectively linearly proportional to the duration of the charge command
10 pulses CP1 and CP2.

11 All capacitors of the phase detector are implemented using LSI
12 technology and incorporated into the same LSI chip with other circuit
13 elements of the phase detector.

14 As shown in Fig. 2, all switches of the phase detector are implemented
15 with analog transmission gates that allows a voltage of any amplitude
16 value to be passed from its input to its output in response to a switching
17 pulse applied from the control circuit. Each switch comprises a pair of
18 complementary MOS transistors 37 and 38 with the source and drain
19 electrodes of each transistor being connected to the corresponding
20 electrodes of the other and the gate of transistor 38 being coupled
21 through an inverter 39 to the gate of transistor 37.

22 The outputs of buffer amplifiers 3 and 4 are coupled respectively to
23 inputs of a differential amplifier, or subtractor 2, which is typically
24 implemented with an operational amplifier 20, resistors ^{21, 22}_{20, 21} through
25 which the buffer amplifier outputs are respectively coupled to the inverting
26 and noninverting inputs of the operational amplifier, and a resistor 23
27 coupling the noninverting input to ground. The output of operational
28 amplifier 20 is connected to the phase detector output terminal 1.

29 Control circuit 32, driven by externally generated clock pulses, receives
30 a reference pulse which occurs at interval T and an input pulse supplied

1 from an external source. The phase timing of the input pulse is compared
 2 with the reference pulse to produce a first charge timing pulse CP1 of
 3 duration corresponding to the phase difference θ as shown in Fig. 3. The
 4 reference pulse is also input to a delay circuit 33 where it is delayed by a
 5 prescribed interval ϕ to produce a delayed reference pulse, which is input
 6 to control circuit 32. Control circuit 32 produces a second charge timing
 7 pulse CP2 of duration corresponding to the prescribed interval ϕ . Control
 8 circuit 32 further generates a sampling pulse SP and a discharge timing
 9 pulse DP in succession during the interval between the trailing edge of a
 10 reference pulse and the leading edge of the next reference pulse.

11 The following is a description of the operation of the phase detector of
 12 the present invention with reference to Fig. 3.

13 When the phase detector receives a reference pulse 40 and an input
 14 pulse 41 at intervals θ , a CP1 command pulse 43 of duration θ is output
 15 from control circuit 32 to the first charge timing switch 11, thus drawing a
 16 current I_b from the transistor 15 into the first ramp capacitor 7 to develop a
 17 ramp voltage V_1 which is given by:

$$18 \quad V_1 = (I_b)(\theta)(T)/(2\pi)(C_7) \quad (4)$$

19 where C_7 is the value of ramp capacitor 7 and the delay interval θ is given
 20 in units of radian. By substituting Equation (2) into Equation (4), the
 21 following relation is obtained:

$$22 \quad V_1 = (\theta)(T)(N)(V_{DD} - V_{GS})/(2\pi)(C_7)(R) \\ 23 \quad = (K)(\theta)/(C_7)(R) \quad (5)$$

24 where K is the phase-to-voltage conversion coefficient and is given by the
 25 relation $(T)(N)(V_{DD} - V_{GS})/2\pi$.

26 Concurrently, a CP2 command pulse 44 of duration ϕ is applied to the
 27 second charge timing switch 12. A current I_c is drawn from the transistor
 28 16 into the second ramp capacitor $8 \supseteq C_8$ to develop a ramp voltage V_2 which
 29 is given by:

$$30 \quad V_2 = (I_c)(\phi)(T)/(2\pi)(C_8) \quad (6)$$

$$\begin{aligned} &= (\phi)(T)(N)(V_{DD} - V_{GS})/(2\pi)(C_8)(R) \\ &= (K)(\phi)/(C_8)(R) \end{aligned} \quad (7)$$

In response to a sampling pulse 45 the first and second sampling switches 9 and 10 are operated to sample and transfer the voltages V_1 and V_2 from the ramp capacitors 7 and 8 to the storage capacitors 5 and 6, respectively. A discharge command pulse 46 is then input to switches 13 and 14 to discharge the ramp capacitors 7 and 8 completely. If the value of each storage capacitor is much smaller than the value of the corresponding ramp capacitor, the voltages stored in the capacitors 5 and 6 are substantially equal to voltages V_1 and V_2 , respectively.

Through buffer amplifiers 3 and 4, the sampled voltages V_1 and V_2 appear respectively as voltages V_A and V_B at the inputs of subtracter 2 where the difference between the input voltages V_A and V_B is detected and output to the terminal 1. Since voltage V_2 attains a constant amplitude at the instant it is sampled as given by Equation (7), the difference between sampled voltages V_1 and V_2 , and hence V_A and V_B is proportional to the phase difference θ .

Because of the small capacitance values of the storage capacitors 5 and 6, a feedthrough effect occurs through the sampling switches 9 and 10. Therefore, the sampling pulse applied to the first sample-and-hold circuit 30 finds a leakage path through switch 9 to capacitor 5 to develop a ripple voltage, as indicated by hatching 47, which is superposed on the sampled voltage V_1 . In like manner, the sampling pulse applied to the second sample-and-hold circuit 31 finds a leakage path through switch 10 to capacitor 6 to develop a ripple of the same magnitude as ripple voltage 47, as indicated by hatching 48, which is superposed on the sampled voltage V_2 . However, due to the differential action of subtracter 2, the leakage voltages 47 and 48 are cancelled out, thus producing a phase detector output voltage V_0 indicative of the difference between voltages V_A and V_B at the output terminal 1.

Since the second ramp voltage attains a constant level in so far as the interval between the non-delayed and delayed reference pulses remains constant, it could equally well be provided by an external source of

NE-477

- 7 -

- 1 constant voltage, instead of by the ramp voltage generating circuit formed
- 2 by capacitor 8, switches 12, 14, delay circuit 33 and control circuit 32.

The claims defining the invention are as follows:

1. A phase detector comprising:

first ramp voltage generating means for receiving a first reference pulse of a predetermined constant frequency and an input pulse and developing a first voltage having a ramp portion and a constant portion, the constant portion of the first voltage being proportional to a phase difference between the first reference pulse and the input pulse;

5 delay means for receiving the first reference pulse and producing a second reference pulse delayed by a prescribed interval with respect to the first reference pulse;

10 second ramp voltage generating means for receiving the first and second reference pulses and developing a second voltage having a ramp portion and a constant portion, the constant portion of the second voltage being proportional to the prescribed interval;

15 means for generating a sampling pulse subsequent to the second reference pulse;

first sample-and-hold means for sampling the constant portion of the first voltage in response to the sampling pulse;

20 second sample-and-hold means for sampling the constant portion of the second voltage in response to the sampling pulse; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold means.

2. A phase detector comprising:

a first integrated-circuit capacitor;

25 charging means for receiving a reference pulse of a predetermined constant frequency and an input pulse, and drawing a current at a constant rate into the first integrated-circuit capacitor during an interval corresponding to a phase difference between the reference pulse and the input pulse to develop a voltage proportional to the phase difference in the first integrated-circuit capacitor;

30 a first integrated-circuit sample-and-hold circuit connected to the first integrated-circuit capacitor;

second integrated-circuit sample-and-hold circuit connected to a source of constant voltage;

35 sampling means for causing the first and second integrated-circuit sample-and-hold circuits to sample the phase difference proportional voltage and the constant voltage, respectively, during an interval subsequent to the reference pulse; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold circuits.

3. A phase detector as claimed in claim 2, wherein the source of constant voltage comprises:

5 delay means for receiving the reference pulse as a first reference pulse and producing a second reference pulse delayed by a prescribed interval with respect to the first reference pulse;

a second integrated-circuit capacitor; and

second charging means for receiving the first and second reference pulses and drawing a current at the constant rate into the second integrated-circuit capacitor during an interval corresponding to the prescribed interval.

10 4. A phase detector comprising:

a switching pulse source for receiving a first reference pulse of a predetermined constant frequency and an input pulse and producing a first charge timing pulse of duration corresponding to a phase difference between the first reference pulse and the input pulse, for receiving a second reference pulse of the predetermined constant frequency and producing a second charge timing pulse of constant duration corresponding to a phase difference between the first and second reference pulses, and for successively producing a sampling pulse and a discharge timing pulse during an interval following a trailing edge of the first reference pulse;

first and second identical constant current sources;

20 a first capacitor;

a first switch for drawing a current from the first constant current source into the first capacitor in response to the first charge timing pulse and a second switch for drawing a current from the first capacitor in response to the discharge timing pulse;

25 a first sample-and-hold circuit responsive to the sampling pulse for sampling a voltage developed in the first capacitor and holding the sampled voltage;

a second capacitor;

30 a third switch for drawing a current from the second constant current source into the second capacitor in response to the second charge timing pulse and a fourth switch for drawing a current from the second capacitor in response to the discharge timing pulse;

a second sample-and-hold circuit responsive to the sampling pulse for sampling a voltage developed in the second capacitor and holding the sampled voltage; and

means for detecting a voltage difference between the voltages sampled by the first and second sample-and-hold circuits.

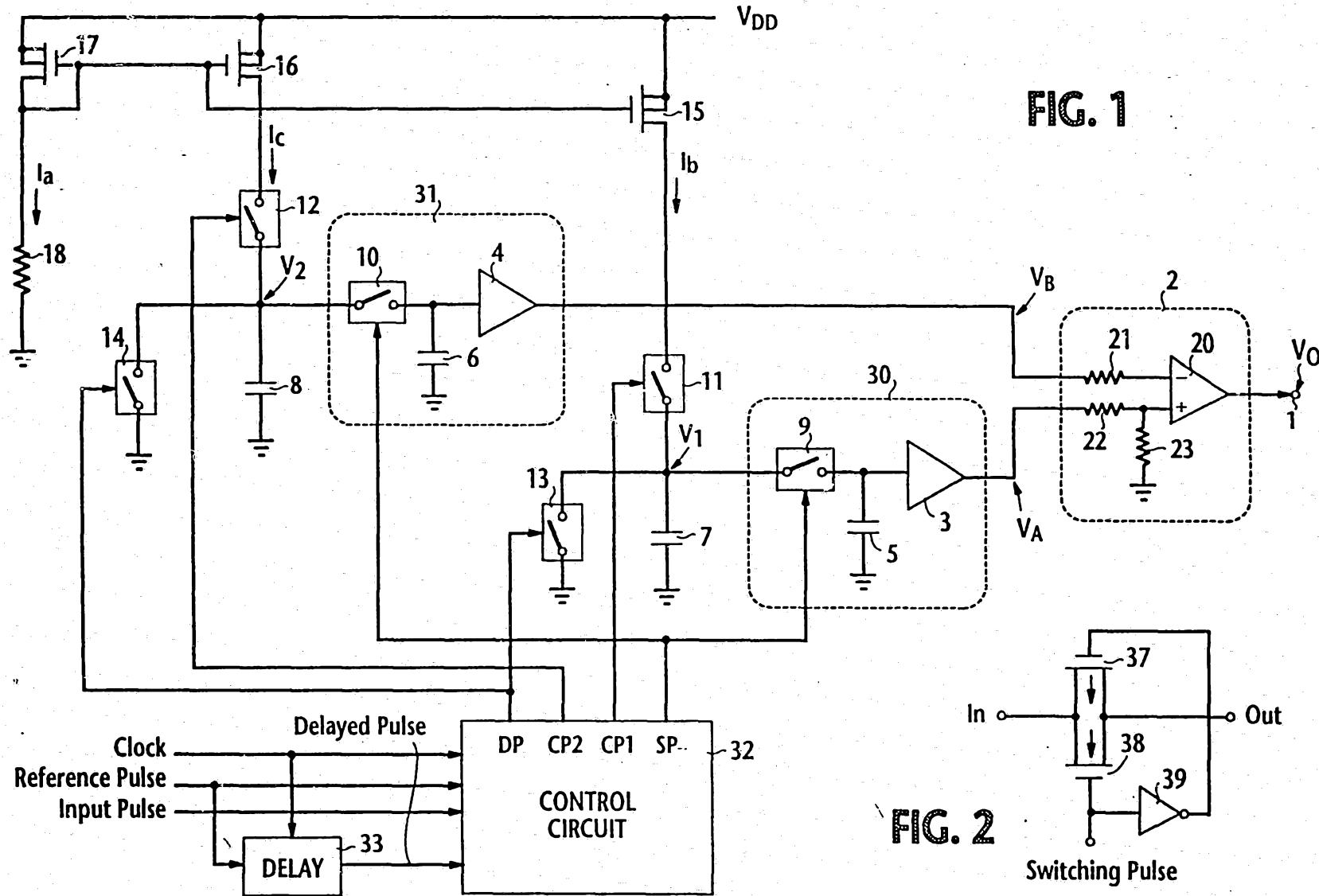
35 5. A phase detector substantially as described in the specification with reference to Figs. 1-3 of the accompanying drawings.

DATED this Second Day of November 1994

NEC Corporation

Patent Attorneys for the Applicant

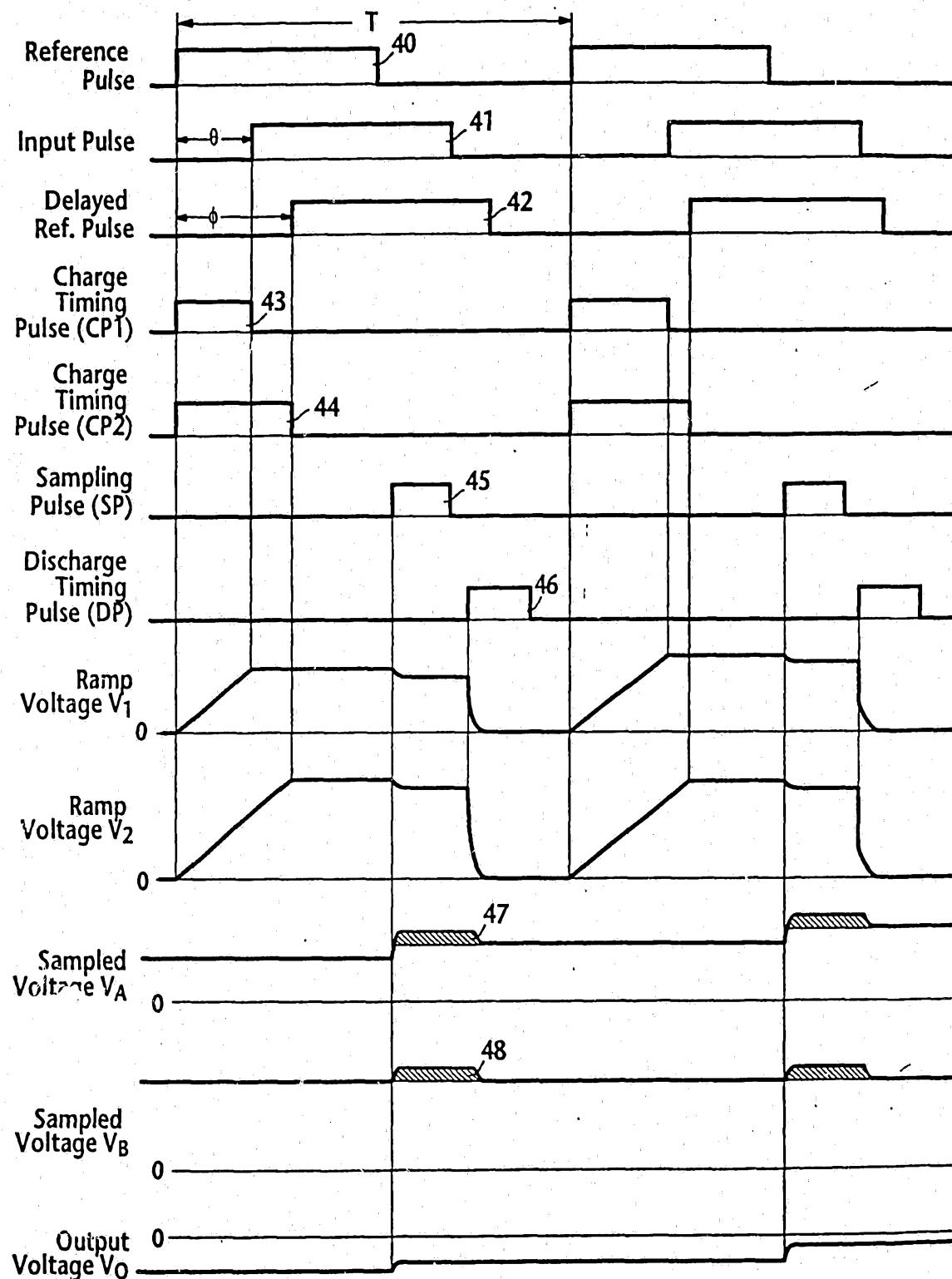
SPRUSON & FERGUSON



Ripple-Free Phase Detector Using Two Sample-and-Hold Circuits

Abstract of the Disclosure

A phase detector comprises a ramp voltage generator (7) for receiving a reference pulse of a constant frequency and an input pulse 5 and producing a ramp voltage proportional to the phase difference between these pulses. A first sample-and-hold circuit (30) samples the ramp voltage in response to a sampling pulse and holds the sampled voltage. To eliminate ripple component, a second sample-and-hold circuit (31) is provided, which is also responsive to the sampling pulse for sampling a 10 voltage from a constant voltage source and holding the sampled voltage. The voltages sampled by the first and second sample-and-hold circuits (30, 31) are input to a subtractor (2) where the voltage difference between the two input voltages (V_A, V_B) is detected. Ripple 15 components generated by the two sample-and-hold circuits (30, 31) are cancelled out by the subtractor (2).


Figure 1.

27482/92

NE-477 (1/2)

FIG. 3

