The current invention relates to the improvement of trabeculectomy surgery. The improvement more specifically resides in an extended lifetime of the sclera-corneal drainage channel created by trabeculectomy surgery. The improvement is obtained by post-surgical administration of a plasmin or active derivative thereof in the form of topical eye drops alone, by anterior chamber injection alone, or by any combination of these.
FIGURE 3
IMPROVEMENT TO TRABECULECTOMY

FIELD OF THE INVENTION

[0001] The current invention relates to the improvement of trabeculectomy surgery. The improvement more specifically resides in an extended lifetime of the sclera-corneal drainage channel created by trabeculectomy surgery. The improvement is obtained by post-surgical administration of a plasmin or active derivative thereof in the form of topical eye drops alone, by anterior chamber injection alone, or by any combination of these.

BACKGROUND OF THE INVENTION

[0002] Glaucoma is a multifactorial, neurodegenerative disease and the second most important cause of irreversible blindness (Quigley, 1996, Br J Ophthalmol 80, 389-393). This disease is characterized by progressive retinal ganglion cell apoptosis, resulting in visual field loss. Current treatment of this disease is directed towards the reduction of intraocular pressure (IOP), which is the main risk factor for glaucoma (Collaborative Normal-Tension Glaucoma Study Group, 1998, Am J Ophthalmol 126, 487-497).

[0003] Of all currently used treatments to lower IOP, filtration surgery (trabeculectomy) was shown to be the most effective (Burr et al., 2005, Cochrane Database Syst Rev 18(2):CD000439; Hitchings, 1998, Arch Ophthalmol 116, 241-242). A trabeculectomy creates a “controlled” leak of fluid (aqueous humor) from the eye, which percolates under the conjunctiva. During the operation a piece of trabecular meshwork in the drainage angle of the eye is removed, creating an opening. The opening is partially covered with a flap of tissue from the sclera and conjunctiva. A small conjunctival “bleb” (bubble) appears at the junction of the cornea and the sclera (limbus) where this surgically produced valve is made.

[0004] In 30% of the cases, however, the constructed channel closes due to excessive scar tissue formation, resulting in surgical failure (Addicks et al., 1983, Arch Ophthalmol 101, 795-798). The 4 important processes contributing to post-operative conjunctival scarring are: clot formation, inflammation, angiogenesis and fibrosis (Lee et al., 1995, J Ocul Pharmacol Ther 11, 227-232; Lama & Fechtner, 2003, Sury Ophthalmol 48, 314-346). Indeed, increased conjunctival infiltration of inflammatory cells and Tenon fibroblasts (Hitchings & Grierson, 1983, Trans Ophthalmol Soc UK 103, 84-88; Skuta & Parrish, 1987, Sury Ophthalmol 32, 149-170), and higher levels of bleb vascularisation (Jampel et al., 1998, Arch Ophthalmol 106, 89-94) are associated with surgical failure. These processes are mediated by various cytokines (e.g. IL-1 and INF-α2b) and growth factors (e.g. PDGF, FGF, TGF-β1 and VEGF) (Lama & Fechtner, 2003; Gillies & Su, 1991, Aust NZ J Ophthalmol 19, 299-304). Perioperative anti-mitotics, such as mitomycin-C and 5-Fluorouracil can improve surgical outcome (Quigley, 1996; Katz et al., 1995, Ophthalmol 102, 1263-1269). However, these antimetabolites carry a risk of vision-threatening complications such as scleral thinning and infections (Lama & Fechtner, 2003; Hitchings & Grierson, 1983; Skuta & Parrish, 1987; Jampel et al., 1988; Gillies & Su, 1991; Katz et al., 1995; Greenfield et al., 1998, Arch Ophthalmol 116, 443-447). Furthermore, blocking TGF-β seemed promising in animal models (Cordiero et al., 2003, Gene Ther 10, 59-71), but was not efficient in a clinical study (CAT-152 0102 Trabeculectomy Study Group, Kwah, Grehan, 2007, Ophthalmol 114, 1822-1830).

The number of post-trabeculectomy interventions expressed as the incidence of post-surgery “bleb manipulations” was reported to be as high as 78% (King et al., 2007, Br J Ophthalmol 91, 873-877). Therefore, there is still a need for alternative strategies to prevent filtration failure and, thus, to reduce the incidence of bleb manipulations.

[0005] Microplasmin is a recombinant protein that dissolves blood clots by degrading fibrin. Recently, microplasmin has been shown to be efficient, well tolerated and safe for intra-ocular use in a phase II clinical trial to study its efficacy to induce non-surgical posterior vitreous detachment, PVD (Gandorfer, 2008, Eye 22, 1273-1277; WO 2004/052228) and is currently under investigation in phase III clinical trials. Plasmin was previously shown to be able to induce PVD as well (e.g. U.S. Pat. No. 5,304,118). The mechanism by which PVD is induced by plasmin or microplasmin is currently not fully understood. Unsupported by any or any conclusive experimental data, WO 2009/073457 and WO 2009/067407 propose subconjunctival plasmin injection for rescuing filtering blebs and the use of matrix metalloproteinase activating proteases for reducing IOP, respectively.

SUMMARY OF THE INVENTION

[0006] The invention relates to (the use of) a plasmin or an active truncated variant thereof (for the manufacture of a medicament) for treating filtration failure after trabeculectomy surgery of an eye, or for preventing, reducing or retarding the occurrence of filtration failure after trabeculectomy surgery of an eye.

[0007] Said plasmin or active truncated variant thereof, or said medicament, may be in a pharmaceutically acceptable formulation capable of being administered to an eye as topical eye drops. Alternatively, said plasmin or active truncated variant thereof, or said medicament, may be a in pharmaceutically acceptable formulation capable of being administered by injection into the anterior chamber of an eye.

[0008] The treatment of filtration failure after trabeculectomy surgery of an eye, or the prevention, reduction or retardation of the occurrence of filtration failure after trabeculectomy surgery of an eye may result from contacting said eye with an effective amount of topical eye drops comprising said plasmin or active truncated variant thereof. Alternatively, it may result from introduction into the anterior chamber of an eye of an effective amount of said plasmin or active truncated variant thereof in a further alternative, it may result from contacting said eye with an effective amount of topical eye drops comprising said plasmin or active truncated variant thereof, combined with introduction into the anterior chamber of an eye of an effective amount of said plasmin or active truncated variant thereof.

[0009] In any of the above, said active truncated variant of plasmin may be lacking one or more kringle domains and/or lacking parts of one or more kringle domains. More specifically, said active truncated variant of plasmin may be selected from the group consisting of miniplasmin, miniplasmin, microplasmin or deltaplasm.
more of an agent for controlling the intra-ocular pressure, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antiviral agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine, an anesthetic, an agent to induce mydriasis and an agent to induce cycloplegia. Alternatively, when said further agent(s) is/are not included in the pharmacologically acceptable formulation, or in the medication, said eye may be contacted further with one or more agents chosen from an agent for controlling the intra-ocular pressure, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antiviral agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine, an anesthetic, an agent to induce mydriasis and an agent to induce cycloplegia.

LEGENDS TO THE FIGURES

[0011] FIG. 1 shows the amino acid sequence with double numbering of the amino acid positions of wild-type human Glu-plasminogen (1 to 791) and of the plasmin catalytic domain (1 to 230, amino acid sequence and numbering in bold). Microplasminogen as used for demonstrating the invention starts at amino acid position 543 (numbering relative to Glu-plasminogen). Kringle domains (as derived from GenBank accession number AAA36451) are boxed and their amino acid sequences typed alternating in normal and italic letters. The catalytic triad amino acids are circled. **[0012]** FIG. 2 schematically depicts an eye after trabeculectomy. The arrow shaded with vertical lines indicates the flow of aqueous fluid from the eye’s anterior chamber to the outside through the filtration channel created by trabeculectomy. **[0013]** FIG. 3 depicts the results obtained after trabeculectomy combined with (i) post-operative administration of topical drops containing microplasmin (diamonds), (ii) pre-operative anterior chamber injection of microplasmin (triangles), or (iii) combined pre-operative administration of topical drops containing microplasmin and anterior chamber injection of microplasmin (squares). The data are normalized meaning that background values obtained with placebo treatment have been deducted from the values obtained with non-placebo treatment.

DETAILED DESCRIPTION OF THE INVENTION

[0014] The present invention is based on the effect of administration of microplasmin on the clinical outcome of trabeculectomy surgery, said effect being positive and resulting in the prevention, reduction or retardation of the occurrence of filtration failure. As known from clinical practice, each patient that underwent trabeculectomy surgery is at significant risk to develop filtration failure.

[0015] Therefore, the invention relates to (the use of) a plasmin or an active truncated variant thereof (for the manufacture of a medicament) for treating filtration failure after trabeculectomy surgery of an eye, or for preventing, reducing or retarding the occurrence of filtration failure after trabeculectomy surgery of an eye.

[0016] "Plasmin", also known as fibrinolysin or lysofibrin, is a serine-type protease which results from the activation of the zymogen plasminogen. Activation is the result of a proteolytic cleavage between amino acids 561 and 562 (numbering relative to human Glu-plasminogen). Plasmin carries a heavy chain comprising 5 kringle domains and a light chain comprising the catalytic domain. Plasminogen can be enriched from blood plasma, e.g., via lysine affinity-chromatography (Deutsch & Mertz, 1970, Science 170, 1095-1096). Truncation of the plasmin molecule is possible as long as the catalytic domain remains functional, such truncation thus results in the formation of an “active truncated variant” of plasmin. As such, one or more of the 5 kringle domains can be deleted wholly or partially. Truncated plasmins lacking one or more kringle domains and/or lacking parts of one or more kringle domains therefore are envisaged by the current invention. Examples of truncated variants of plasmin include, but are not limited to, “midplasmin”, “miniplasmin”, “microplasmin”, and “delta-plasmin”. Midplasmin is basically lacking kringle domains 1 to 3 (e.g. Christensen et al., 1995, Biochim J 305, 97-102). Miniplasmin was originally obtained by limited digestion of plasmin with elastase and is basically lacking kringle domains 1 to 4 (e.g. Christensen et al., 1979, Biochim Biophys Acta 567, 472-481; Powell & Castellino, 1980, J Biol Chem 255, 5329). Miniplasmin has subsequently been produced recombinantly (WO 2002/050290). Microplasmin was originally obtained by incubation of plasmin at elevated pH and is basically lacking all kringle domains (e.g. WO 89/01336). Whereas the microplasmin obtained from incubation of plasmin at elevated pH is containing the 30-31 carboxy-terminal amino acids of the heavy chain, a recombinantly produced microplasmin variant contains the 19 carboxy-terminal amino acids of the heavy chain (WO 2002/050290). Delta-plasmin is a recombinant version of plasmin in which kringle domain 1 is linked directly with the catalytic domain (WO 2005/105990). The above described truncated variants of plasmin are obtained by activation of “midplasmin”, “miniplasmin”, “microplasmin” and “delta-plasmin”, respectively. In order to be activatable, a truncated plasminogen needs to comprise a minimum number of amino acids of the linker between the kringle 5 domain and the catalytic domain (see, e.g., Wang et al., 1995, Protein Science 4, 1758-1767). As alternative to plasmin or an active truncated variant thereof, an activatable plasminogen or an activatable truncated variant thereof can be used in the context of the current invention (see, e.g. EP 0480906; U.S. Pat. No. 5,304,383; EP 0631786; U.S. Pat. No. 5,520,912; U.S. Pat. No. 5,597,808; U.S. Pat. No. 5,776,452). “Plasminogen” refers to any form of plasminogen e.g. Glu-plasminogen or Lys-plasminogen (starting with Arg at position 68 or Lys at positions 77 or 78). When using activatable plasminogen or an activatable truncated variant thereof, the activation to plasmin may be delayed and will occur after contacting it with an organ, tissue or body fluid. In yet another alternative, the plasmin or an active truncated variant thereof can be substituted in the context of the current invention for an activatable plasminogen or an activatable truncated variant thereof in conjunction with a plasminogen activator (such as tissue plasminogen activator (tPA), urokinase, streptokinase or staphylokinase; see, e.g. U.S. Pat. No. 6,733,750; U.S. Pat. No. 6,585,972; U.S. Pat. No. 6,899,877; WO 03/30019). In yet a further alternative, a mixture of any of (i) plasmin or an active truncated variant thereof, (ii) activatable plasminogen or an activatable truncated variant thereof, and (iii) a plasminogen activator can be used in the context of the current invention (see, e.g. US 2004/0081643). To ensure stability of the plasmin (or plasminogen), it will generally be stored at lower temperatures (e.g. 4 degrees Celsius or ~20 degrees Celsius) in a stabilizing composition such as low pH (pH 4 or lower; obtained by e.g. 1 mM to 250 mM of an acid such as citric
acids, see, e.g., Castellino et al., 1976, Methods Enzymol 45, 273-286; WO 01/36608; WO 01/36609; WO 01/36611) or high glycerol content (30-50% v/v, e.g., Castellino & Sodetz, 1976, Methods Enzymol 45, 273-286), alternatively in or in conjunction with one or more further stabilizers such as an amino acid (e.g., lysine or an analogue thereof), a sugar (e.g., mannitol) or any stabilizer as known in the art (e.g., dipeptides, WO 97/01631). Further included in the genus "plasmin" is any active derivative thereof (or of an active truncated plasmin variant), or similar derivative of activatable plasminogen (or of activatable truncated variant thereof). Such derivatives include e.g., labeled plasmin or plasminogen (or truncated variants thereof) such as Te²⁹⁹-labeled plasmin (Deacon et al., 1980, Br J Radiol 53, 673-677) or pegylated or acylated plasmin or plasminogen (or truncated variants thereof; EP 9879, WO 93/15189). Said derivatives further include hybrid or chimeric plasmin or plasminogen molecules comprising e.g., a truncated plasmin or plasminogen according to the invention fused with e.g., a fibrin-binding molecule (such as kringle 2 of tPA, an apolipoprotein kringle, the finger domain of tPA or fibroectin and the Fab domain of a fibrin-binding antibody).

[0017] Many assays exist to determine whether or not a plasmin species is proteolytically active. Easy and straightforward assays are based on the digestion of a chromogenic substrate by plasmin present in a sample; chromogenic substrates include S-2403 and S-2251 which release p-nitroaniline (pNA) upon proteolytic cleavage. The amount of pNA formed can be measured by light absorbance at 405 nm. An alternative assay for determining plasmin activity is a potentiometric assay. Colorimetric (using a chromogenic substrate) and potentiometric assays are described in e.g., Castellino & Sodetz (1976, Methods Enzymol 45, 273-286). A further alternative assay for determining plasmin activity is a caseinolytic assay (e.g., Robbins & Summara, 1970, Methods Enzymol 19, 184-199; Ruysse & Lauwers, 1978, Chapter IX—Plasmin, In "Pharmaceutical Enzymes", Story-Scientia, Gent, Belgium, pp. 123-131). Yet another alternative assay for determining plasmin activity is a fibrinolytic assay (e.g., Astrup & Mullertz, 1952, Arch Biochem Biophys 40, 346-351). Any suitably labeled natural substrate of plasmin can in fact be used by the skilled person to design a plasmin activity assay.

[0018] The "trabecular meshwork (TM)" is a mesh-like structure inside the eye at the iris-scleral junction of the anterior chamber angle. The TM filters the aqueous fluid and controls its flow into the canal of Schlemm prior to its leaving the anterior chamber. Increased resistance in the TM leads to reduced aqueous fluid outflow and thus increased intra-ocular pressure (IOP).

[0019] When left untreated, this elevated IOP leads to glaucomatous damage to the optic nerve and retina nerve fibers, and leads to loss of vision. This vision loss can be prevented or halted by administering medication, an "agent for controlling the intra-ocular pressure", which controls the intra-ocular pressure. Such medications include adrenergic blocking agents (beta blockers or sympatholytic drugs such as betaxolol, carteolol, levobunolol, metipranol and timolol), adrenergic stimulating agents (sympathomimetic drugs such as apropoline, epinephrine, hydroxyamphetamine, phenylephrine, naphazoline and tetrahydrozoline), carbonic anhydrase inhibitors (such as systemic acetazolamide, and topical brinzolamide and dorzolamide), miotics (cholinergic stimulating agents, parasympathomimetic drugs such as carbachol and pilocarpine), osmotic agents (such as glycerin and mannitol), prostaglandin and prostaglandin analogues (prostamide, bimatoprost, unoprostone isopropyl, travoprost, latanoprost, natural prostaglandin, prostaglandin F₂α, and FP prostamoid receptor agonists). When such medications are not efficient (or not anymore), then filtration surgery is a viable treatment.

[0020] "Trabeculectomy", "trabeculectomy surgery" or "filtration surgery", is defined as a surgical procedure on the eye wherein part of the trabecular meshwork is removed whereby a filtration site (a scleral-corneal drainage channel) is created that increases the outflow of aqueous fluid from the eye; this type of filtering procedure is commonly used in the treatment of glaucoma, and more specifically to reduce the IOP in an eye subject to suffering from glaucoma. FIG. 2 is a schematic representation of the result of trabeculectomy surgery.

[0021] "Filtration failure" is a condition reversing the clinically desired effect of trabeculectomy surgery, i.e., reversing the desired drop in IOP. The initial post-operative time is crucial in the sense that eye-healing activities are highest in this period. This period of high eye-healing capacity is dependent upon the species and spans about 2 weeks for rabbits and up to 1-2 months in humans. Upon contacting plasmin or an active truncated variant thereof (or any alternative thereof as described above) with an eye according to the current invention, the frequency of occurrence of filtration failure over a given period of time is lowered. Plasmin or an active truncated variant thereof (or any alternative thereof as described above) used according to the current invention thus results in the prevention, reduction or retarding of the occurrence of filtration failure.

[0022] The plasmin or active truncated variant thereof of the invention, or the medicament containing one or more of them, for treating filtration failure after trabeculectomy surgery of an eye, or for preventing, reducing or retarding the occurrence of filtration failure after trabeculectomy surgery of an eye may be in a pharmaceutically acceptable formulation capable of being administered to an eye as topical eye drops. Alternatively, the plasmin or active truncated variant thereof of the invention, or the medicament containing one or more of them, is in a pharmaceutically acceptable formulation capable of being administered by injection into the anterior chamber of an eye. The composition of the eye drop is formulated and the formulation for injection into the anterior chamber of an eye may be the same or different. To obtain optimal clinical outcomes, the compositions of the formulations may need to be adjusted to their mode of application and may thus need to be different.

[0023] The treatment of filtration failure after trabeculectomy surgery of an eye, or the prevention, reduction or retardation of the occurrence of filtration failure after trabeculectomy surgery of an eye may result from contacting said eye with an effective amount of topical eye drops comprising said plasmin or active truncated variant thereof. In other words, for treatment of filtration failure after trabeculectomy surgery of an eye, or for prevention, reduction or retardation of the occurrence of filtration failure after trabeculectomy surgery of an eye, the effective amount of plasmin or active truncated variant thereof may be or is to be administered in the form of topical eye drops.

[0024] Alternatively, the treatment of filtration failure after trabeculectomy surgery of an eye, or the prevention, reduction or retardation of the occurrence of filtration failure after...
trabeculectomy surgery of an eye may result from introduction into the anterior chamber of an eye of an effective amount of said plasmin or active truncated variant thereof. In other words, for treatment of filtration failure after trabeculectomy surgery of an eye, or for prevention, reduction or retardation of the occurrence of filtration failure after trabeculectomy surgery of an eye, the effective amount of plasmin or active truncated variant thereof may be or is to be administered by introduction or injection into the anterior chamber of an eye.

[0025] In a further alternative, the treatment of filtration failure after trabeculectomy surgery of an eye, or the prevention, reduction or retardation of the occurrence of filtration failure after trabeculectomy surgery of an eye may result from contacting said eye with an effective amount of topical eye drops comprising said plasmin or active truncated variant thereof, combined with introduction into the anterior chamber of an eye of an effective amount of said plasmin or active truncated variant thereof. The effective amount of plasmin or active truncated variant thereof may in this case be reached only by the combined administrations. In other words, for treatment of filtration failure after trabeculectomy surgery of an eye, or for prevention, reduction or retardation of the occurrence of filtration failure after trabeculectomy surgery of an eye, the effective amount of plasmin or active truncated variant thereof is to be administered in the form of topical eye drops combined with introduction or injection into the anterior chamber of an eye. In the above, the amount or concentration of active substance in the eye drop formulation and in the formulation for anterior chamber intracameral injection may be the same or different. The amounts or concentrations of active substance may need to be adjusted such as to the mode of application or such as to minimize eventual side effects that may occur when e.g. administering a high amount or concentration of active substance by either one of the administration routes. In the latter case, the effective amount of active substance can still be reached by compensation of a low amount or concentration of active substance via one administration route by a higher amount or concentration of active substance via the other administration route.

[0026] In an embodiment of the above, said active truncated variant of plasmin may be lacking one or more kringle domains and/or lacking parts of one or more kringle domains. More specifically, said active truncated variant of plasmin may be selected from the group consisting of miniplasmin, miniplasmin, microplasmin or deltaplasmin.

[0027] The invention further covers the (use of) a plasmin or an active truncated variant thereof (for the manufacture of a medicament) for treating filtration failure after trabeculectomy surgery of an eye, or for preventing, reducing or retardation the occurrence of filtration failure after trabeculectomy surgery of an eye, which is in a pharmaceutically acceptable solution that may further comprise one or more of an agent for controlling the intra-ocular pressure, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antiviral agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine, an anesthetic, an agent to induce mydriasis and an agent to induce cycloplegia. Alternatively, when said further agent(s) is(are) not included in the pharmaceutically acceptable solution or medicament containing said plasmin or an active truncated variant thereof, said eye may be contacted further with one or more agents chosen from an agent for controlling the intra-ocular pressure, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antiviral agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine, an anesthetic, an agent to induce mydriasis and an agent to induce cycloplegia.

[0028] Methods of treatment of filtration failure after trabeculectomy surgery of an eye, and in particular methods of preventing, reducing or retarding the occurrence of filtration failure after trabeculectomy surgery of an eye are also envisaged. These methods comprise the step of contacting said eye after trabeculectomy surgery with a medicament comprising plasmin or an active truncated variant thereof wherein said contacting results in said treatment of filtration failure, or in said preventing, reducing or retarding the occurrence of filtration failure. Modalities of said medicament, plasmin or an active truncated variant thereof according to the invention, and contacting are as described above.

[0029] In any of the above-described medical uses and methods, the plasmin can be substituted for plasminogen, plasminogen activators or any possible combination (whether or not in the same formulation or as separate solutions or medicaments) of plasmin (or any active truncated variant thereof), plasminogen, plasminogen activators, etc. as described earlier in the definition of “plasmin”.

[0030] “Contacting” means any mode of administration that results in interaction between a composition such as a medicament and an object (such as conjunctiva or subconjunctival tissue) with which said composition is contacted. The interaction between the composition and the object can occur starting immediately or nearly immediately with the administration of the composition, can occur over an extended time period (starting immediately or nearly immediately with the administration of the composition), or can be delayed relative to the time of administration of the composition. More specifically the “contacting” may result in delivering an effective amount of the medicament to the object.

[0031] The term “effective amount” refers to the dosing regimen of the medicament according to the invention, in particular of the active ingredient of the medicament according to the invention, i.e., plasmin or an active truncated variant thereof (or any alternative therefore as described above). The effective amount will generally depend on and will need adjustment to the mode of contacting or administration. The effective amount of the medicament, more particular its active ingredient, is the amount required to obtain the desired clinical outcome or therapeutic or prophylactic effect without causing significant or unnecessary toxic effects. To obtain or maintain the effective amount, the medicament may be administered as a single dose or in multiple doses. The effective amount may further vary depending on the severity of the condition that needs to be treated or the expected severity of the condition that needs to be prevented or treated: this may depend on the overall health and physical condition of the patient and usually the treating doctor’s or physician’s assessment will be required to establish what is the effective amount. The effective amount may further be obtained by a combination of different types of contacting or administration. In the context of the present invention the effective amount may more particularly be obtained by either one or more of administration of topical eye drops, administration by injection into the anterior chamber of an eye or administration by subconjunctival injection. A typical dose of a single administration of the medicament of the invention may comprise 10 μg to 1 mg of the active compound (i.e., a plasmin or an active truncated variant thereof, or any alternative thereto as described higher). Administration of the medicament of the invention by means of injection typically is kept to a mini-
mum, i.e., the frequency of repeat injections is kept to a minimum. Administration of the medicament of the invention by means of topical eye drops can be done more frequently, e.g., once per hour, or e.g. 1 to 6 times a day. As the first weeks or months post-trabeculectomy (species dependent as described higher) are crucial in the sense that eye-healing activities are highest in this period, the duration of treatment with a medicament according to the present invention should be adjusted to this period. Initial dosage and administration frequency may thus be relatively high and may be gradually decreased when the risk of the occurrence of filtration failure is decreasing.

[0032] In general, the mediciant or composition of the invention comprising a plasmin (or any variant or derivative thereof or alternative thereto) according to the invention may, depending on its ultimate use and mode of administration, comprise one or more further active ingredients such as an agent controlling the intraocular pressure (see higher), an anticoagulant, a thrombolytic agent, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antifungal agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine or anesthetic.

[0033] “Anticoagulants” include hirudins, heparins, coumarins, low-molecular weight heparin, thrombin inhibitors, platelet inhibitors, platelet aggregation inhibitors, coagulation factor inhibitors, anti-fibrin antibodies and factor VIII-inhibitors (such as those described in WO 01/04269 and WO 2005/016455).

[0034] “Thrombolytic agents” include urokinase, streptokinase, tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and staphylokinase or any variant or derivative of any thereof such as APSAC (anisoylated plasminogen streptokinase activator complex), alteplase, reteplase, tenecteplase, and scuPA (single chain uPA).

[0035] “Anti-inflammatory agents” include steroids (e.g. prednisolone, methylprednisolone, cortisone, hydrocortisone, prednison, triamcinolone, dexamethasone) and non-steroidal anti-inflammatory agents (NSAIDs; e.g. acetaminophen, ibuprofen, aspirin).

[0036] “Antiviral agents” include trifluridine, vidarabine, acyclovir, valacyclovir, famciclovir, and doxuridine.

[0037] “Antibacterial agents” or antibiotics include ampicillin, penicillin, tetracycline, oxytetracycline, franycecin, gatifloxacin, gentamicin, tobramycin, bacitracin, neomycin and polymyxin.

[0038] “Anti-mycotic/fungistatic/antifungal agents” include fluconazole, amphotericin, clotrimazole, econazole, itraconazole, miconazole, 5-fluorocytosine, ketoconazole and natamycin.

[0039] “Anti-angiogenic agents” include antibodies (or fragments thereof) such as anti-VEGF (vascular endothelial growth factor) or anti-P1GF (placental growth factor) antibodies and agents such as macugen (pegaptanib sodium), tryphophanol-1RNA synthetase (TipRPS), anecortave acetate, combretastatin A4 prodrug, AdP/pK (adenovector capable of expressing pigment epithelium-derived factor), VEGF-trap, inhibitor of VEGF receptor-2 inhibitors of VEGF, P1GF or TGF-β, Sirolimus (riparmycin) and endostatin.

[0040] “Anti-mitotic agents” include mitomycin C and 5-flourouracil.

[0041] “Antihistamine” includes ketotifen fumarate and pheniramine maleate.

[0042] “Anesthetics” include benzocaine, butamben, dibucaine, lidocaine, oxygenpocaine, pramoxine, proparacaine, proxymetacaine, tetracaine and amethocaine.

[0043] Other adjunct agents or drugs that can be used in conjunction with the plasmin or active variant thereof (or any alternative thereto as described above) according to the invention include scopolamine, atropine or tropicamide, to induce mydriasis (pupillary dilution) and/or cycloplegia (paralysis of the eye focusing muscle).

[0044] In addition to plasmin or active truncated variant thereof (or any of the alternatives thereof as described above), each of the above listed agents as well as antihistamine and anesthetics is to be considered as an “active ingredient”.

[0045] A “pharmacologically acceptable formulation” is, in the context of the current invention more particular an “ophthalmologically acceptable formulation”. A formulation in general is a composition comprising a carrier, diluent or adjuvant compatible with the one or more active ingredients to be formulated, the whole formulation being compatible with the intended use in the intended tissue or organ, etc. Examples of pharmaceutically acceptable formulations as well as methods for making them can be found, e.g., in Remington’s Pharmaceutical Sciences (e.g. 20th Edition; Lipincott, Williams & Wilkins, 2000) or in any Pharmacopeia handbook (e.g. US-, European- or International Pharmacopeia).

[0046] “Topical eye drops” typically contains an active ingredient (such as plasmin or an active truncated variant thereof or any alternative thereto as described higher) or a combination of active ingredients in a saline solution, and optionally one or more lubricants.

[0047] “Lubricants” include propylene glycol, glycerin, carboxymethylcellulose, hydroxypropylmethyl cellulose, soy lecithin, polyvinyl alcohol, white petrolatum, mineral oil, povidone, carbopol 980, polylsorbate 80, dextran 70.

EXAMPLES

[0048] The Examples included hereunder demonstrate the invention and are not construed to be limiting the scope of the invention in any way.

Example 1

Rabbit Model for Glaucoma Filtration Surgery

[0049] Female New-Zealand rabbits, aged 12 to 14 weeks and weighing 2 to 3 kg, underwent a filtration surgery (trabeculectomy) in both eyes in the same way as in human eyes, except that in rabbits a much more aggressive postoperative fibrosis occurs, resulting in a filtration failure after 10 to 14 days (Miller et al., 1985, Trans Ophthalmol Soc UK 104, 893-897).

[0050] General anesthesia was induced with an intramuscular injection of Ketalar (50 mg/ml) and Rompun (2%). Before the operation the IOP was measured in both eyes by using the Tono-Pen® tonometer (Medtronic Solan) under topical anesthesia (Unicanic, 4 mg/ml).

[0051] Briefly, for the trabeculectomy a Vicryl 9/0 corneal traction suture was placed superiorly and the eye was pulled down. A limbus-based conjunctival flap was raised after which a blunt dissection of subconjunctival space was performed. After a scleral flap of 5 mm to 5 mm was formed, a piece of the trabecular meshwork was removed and an iride-
tomy was performed. The conjunctival and scleral flaps were closed by using a Nylon 10-0 suture. At the end of the operation a bleb was formed.

[0052] Postoperative follow up of the rabbits took place daily during the first week and two days until they were sacrificed. Examination of both eyes was done and all measurements were performed under topical anesthesia. The IOP-recordings were performed by using a Tono-Pen® tonometer. Bleb characteristics including the bleb area (width and length) and the conjunctival vascularity were investigated according to the Moorfields bleb grading system. During the first week there was an assessment of the anterior segment and of the presence of blood clots around the filtration channel by slit lamp examination.

Example 2

Immunohistochemical Investigation

[0053] On day 30 after surgery, rabbits were killed using a lethal intravenous injection of Ropunpun under general anesthesia. Both eyes were enucleated, fixed overnight in 4% PFA and embedded in paraffin. Seven-μm thin slides were (immuno-)stained for CD45 to evaluate inflammation and for Sirius red and Trichrome to evaluate fibrosis.

A. Collagen Deposition

[0054] Sirius Red and Trichrome staining were used to demonstrate collagen deposition. After Sirius red staining collagen is colored red; after Trichrome staining collagen is colored blue (aniline blue, 5 minutes), nuclei black (Heidet hematoxyline, 10 minutes), and cytoplasm red (Biebrich scarlet fuchsin, 2 minutes).

B. Inflammation

[0055] A CD45 staining was performed to study inflammatory cells. After a 20 minutes incubation with methanol and 45 minutes with PIR (1/5 Dakocytomation) the samples were incubated overnight with mouse anti-rabbit CD45 antibody (1/3, 10-50 μg/ml, MCA808, AbDSerotec). The next day the samples were incubated for 45 minutes with RAM-B (1/300 Dakocytomation). The staining was finished by using the Perkin Elmer kit (Renaissance TSA™ Indirect; NEL700). The DAB (Dako) is giving the tissue a brown color by adding H2O2. The counterstaining was performed by using Harris hematoxyline (Merck).

Example 3

Effect of Microplasmin on Blebs after Trabeculectomy on Rabbit Eyes

[0056] Group 1: Filtration surgery followed by injection in the anterior chamber of microplasmin on day 0: immediately after the trabeculectomy operation 10 rabbits got an anterior chamber injection of microplasmin (200 μl of a solution of 2.5 mg microplasmin/mL in 5 mM citric acid, 6 mg/mL mannitol, pH 3.1). Ten other rabbits underwent trabeculectomy followed by control injections of the same volume of 0.9% NaCl.

[0057] Group 2: Filtration surgery followed by administration of topical eye drops containing microplasmin: immediately after the trabeculectomy operation on 3 rabbits, microplasmin was administered in the form of topical eye drops (4 mg microplasmin/mL in 5 mM citric acid, 6 mg/mL mannitol, pH 3.1; 1 drop of ca. 50-55 μl was administered 4 times per day during a period of 14 days). Three other rabbits underwent trabeculectomy followed by administration of control eye drops of 0.9% NaCl.

[0058] Group 3: Filtration surgery followed by injection in the anterior chamber of microplasmin and administration of topical eye drops containing microplasmin: immediately after the trabeculectomy operation 5 rabbits got an anterior chamber injection of microplasmin (as in Group 1) combined with administration of topical eye drops (as in Group 2). Five other rabbits underwent trabeculectomy followed by control injections as in Group 1 and administration of control eye drops as in Group 2.

[0059] Group 4: similar to Group 1 except that 100 μl microplasmin is administered subconjunctivally (instead of 200 μl in the anterior chamber) in the eyes of 5 rabbits. The control group consists of 5 rabbits.

[0060] Group 5: similar to Group 4 except that an additional 100 μl microplasmin is administered subconjunctivally (repeat administration) 1 week after the initial administration. The control group consists of 5 rabbits.

[0061] In any of the above outlined experiments the acidic microplasmin solution may alternatively be neutralized prior to contacting with the eye.

[0062] Results: As illustrated in FIG. 3 (normalized data), microplasmin significantly augmented the bleb area and survival in a rabbit model of trabeculectomy. All depicted treatments had an initial more or less equal positive effect on the bleb survival (diamonds: topical administration; triangles: anterior chamber injection; squares: combined topical administration and anterior chamber injection). The anterior chamber injection of microplasmin and the combined administration of eye drops and the anterior chamber injection had a positive effect on bleb survival over a longer period of time. Collagen deposition was borderline reduced after microplasmin administration compared to control. No significant changes in inflammation were observed in the anterior chamber or in the conjunctiva. Contrary to the eye drops and/or anterior chamber injection, subconjunctival injection of microplasmin did not result in enhanced bleb survival.
<400> SEQUENCE: 1

Glu Pro Leu Asp Asp Tyr Val Asn Thr Gln Gly Ala Ser Leu Phe Ser
1 5 10 15

Val Thr Lys Lys Glu Leu Gly Ala Gly Ser Ile Glu Glu Cys Ala Ala
20 25 30

Lys Cys Glu Glu Asp Glu Glu Phe Thr Cys Arg Ala Phe Gln Tyr His
35 40 45

Ser Lys Glu Gin Gin Cys Val Ile Met Ala Glu Asn Arg Lys Ser Ser
50 55 60

Ile Ile Ile Arg Met Arg Asp Val Val Leu Phe Glu Lys Val Tyr
65 70 75 80

Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg Gly Thr Met
85 90 95

Ser Lys Thr Lys Asn Gly Ile Thr Cys Gin Lys Trp Ser Ser Thr Ser
100 105 110

Pro His Arg Pro Arg Phe Ser Pro Ala Thr His Pro Ser Glu Gly Leu
115 120 125

Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asp Pro Gin Gly Pro Trp
130 135 140

Cys Tyr Thr Thr Asp Pro Glu Arg Tyr Asp Tyr Cys Asp Ile Leu
145 150 155 160

Glu Cys Glu Glu Glu Cys Met His Cys Ser Gly Glu Asn Tyr Asp Gly
165 170 175

Lys Ile Ser Lys Thr Met Ser Gly Leu Glu Cys Gin Ala Trp Asp Ser
180 185 190

Gln Ser Pro His Ala His Gly Tyr Ile Pro Ser Lys Phe Pro Asn Lys
195 200 205

Asn Leu Lys Asn Tyr Cys Arg Asn Pro Asp Arg Glu Leu Arg Pro
210 215 220

Trp Cys Phe Thr Thr Asp Pro Asn Lys Arg Trp Glu Leu Cys Asp Ile
225 230 235 240

Pro Arg Cys Thr Thr Pro Pro Pro Ser Ser Gly Pro Thr Tyr Gin Cys
245 250 255

Leu Lys Gly Thr Gly Glu Asn Tyr Arg Gly Asn Val Ala Val Thr Val
260 265 270

Ser Gly His Thr Cys Gin His Trp Ser Ala Gin Thr Pro His Thr His
275 280 285

Asn Arg Thr Pro Glu Asn Phe Pro Cys Gin Asn Leu Asp Glu Gin Tyr
290 295 300

Cys Arg Asn Pro Asp Gin Lys Arg Ala Pro Trp Cys His Thr Thr Asn
305 310 315 320

Ser Gin Val Arg Trp Gin Tyr Cys Lys Ile Pro Ser Cys Asp Ser Ser
325 330 335

Pro Val Ser Thr Glu Gin Leu Ala Pro Thr Ala Pro Pro Gin Thr Thr
340 345 350

Pro Val Gin Asp Cys Tyr His Gly Asp Gin Ser Tyr Arg Gin
355 360 365

Thr Ser Ser Thr Thr Thr Lys Lys Gin Gin Ser Trp Ser Ser
370 375 380

Met Thr Pro His Arg His Gin Lys Thr Pro Glu Asn Tyr Pro Asn Ala
385 390 395 400
Gly Leu Thr Met Asn Tyr Cys Arg Asn Pro Asp Ala Asp Lys Gly Pro 405 410 415
Trp Cys Phe Thr Thr Asp Pro Ser Val Arg Trp Glu Tyr Cys Asn Leu 420 425 430
Lys Lys Cys Ser Gly Thr Glu Ala Ser Val Val Ala Pro Pro Pro Val 435 440 445
Val Leu Leu Pro Asp Val Glu Thr Pro Ser Glu Gly Asp Cys Met Phe 450 455 460
Gly Asn Gly Lys Gly Tyr Arg Gly Lys Arg Ala Thr Val Thr Gly 465 470 475 480
Thr Pro Cys Gln Asp Trp Ala Gln Glu Pro His Arg His Ser Ile 485 490 495
Phe Thr Pro Glu Thr Asn Pro Arg Ala Gly Leu Glu Lys Asn Tyr Cys 500 505 510
Arg Asn Pro Asp Gly Asp Val Gly Gly Pro Trp Cys Tyr Thr Thr Asn 515 520 525
Pro Arg Lys Leu Tyr Asp Tyr Cys Asp Val Pro Gln Cys Ala Ala Pro 530 535 540
Ser Phe Asp Cys Gly Pro Glu Pro Gln Val Glu Pro Lys Cys Pro Gly 545 550 555 560
Arg Val Val Gly Gly Cys Val Ala His Pro His Ser Trp Pro Trp Gln 565 570 575
Val Ser Leu Arg Thr Arg Phe Gly Met His Phe Cys Gly Gly Thr Leu 580 585 590
Ile Ser Pro Glu Trp Val Leu Thr Ala Ala His Cys Leu Glu Lys Ser 595 600 605
Pro Arg Pro Ser Ser Tyr Lys Val Ile Leu Gly Ala His Gin Glu Val 610 615 620
Asn Leu Glu Pro His Val Gin Glu Ile Glu Val Ser Arg Leu Phe Leu 625 630 635 640
Glu Pro Thr Arg Lys Asp Ile Ala Leu Leu Lys Leu Ser Ser Pro Ala 645 650 655
Val Ile Thr Asp Lys Val Ile Pro Ala Cys Leu Pro Ser Pro Asn Tyr 660 665 670
Val Val Ala Asp Arg Thr Glu Cys Phe Ile Thr Gly Trp Gly Glu Thr 675 680 685
Gln Gly Thr Phe Gly Ala Gly Leu Leu Lys Glu Ala Gin Leu Pro Val 690 695 700
Ile Glu Asn Lys Val Cys Asn Arg Tyr Glu Phe Leu Asn Gly Arg Val 705 710 715 720
Gln Ser Thr Glu Leu Cys Ala Gly His Leu Ala Gly Thr Asp Ser 725 730 735
Cys Gin Gly Asp Ser Gly Pro Leu Val Cys Phe Glu Lys Asp Lys 740 745 750
Tyr Ile Leu Gin Gly Val Thr Ser Trp Gly Leu Gly Cys Ala Arg Pro 755 760 765
Asn Lys Pro Gly Val Tyr Val Arg Val Ser Arg Phe Val Thr Trp Ile 770 775 780
Glu Gly Val Met Arg Asn Asn 785 790
1. A plasmin or an active truncated variant thereof for treating filtration failure after trabeculectomy surgery of an eye, or for preventing, reducing or retarding the occurrence of filtration failure after trabeculectomy surgery of an eye.

2. The plasmin or variant thereof according to claim 1 which is in a pharmaceutically acceptable formulation capable of being administered to an eye as topical eye drops.

3. The plasmin or variant thereof according to claim 1 which is in a pharmaceutically acceptable formulation capable of being administered by injection into the anterior chamber of an eye.

4. The plasmin or variant thereof according to claim 1 wherein said active truncated variant of plasmin is lacking one or more kringle domains and/or lacking parts of one or more kringle domains.

5. The plasmin or variant thereof according to claim 1 wherein said active truncated variant of plasmin is selected from the group consisting of midiplasmin, miniplasmin, microplasmin or deltaplasm.

6. The plasmin or variant thereof according to claim 1 wherein said active truncated variant of plasmin is selected from the group consisting of midiplasmin, miniplasmin, microplasmin or deltaplasm.

7. The plasmin or variant thereof according to claim 1 wherein said active truncated variant of plasmin is lacking one or more kringle domains and/or lacking parts of one or more kringle domains.

8. The plasmin or variant thereof according to claim 1 wherein said active truncated variant of plasmin is selected from the group consisting of midiplasmin, miniplasmin, microplasmin or deltaplasm.

9. The plasmin or variant thereof according to claim 1 which is in a pharmaceutically acceptable formulation further comprising one or more of an agent for controlling the intraocular pressure, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antiviral agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine, an anesthetic, an agent to induce mydriasis and an agent to induce cycloplegia.

10. The plasmin or variant thereof according to claim 4 wherein said eye is contacted further with one or more agents chosen from an agent for controlling the intracocular pressure, an anti-inflammatory agent, an antiviral agent, an antibacterial agent, an antiviral agent, an anti-angiogenic agent, an anti-mitotic agent, an antihistamine, an anesthetic, an agent to induce mydriasis and an agent to induce cycloplegia.

* * * * *