Title: BLOOD PRESSURE LOWERING PROTEIN HYDROLYSATES

Abstract: The present invention describes a process to produce IPP from a protein source whereby the ratio of IPP and VPP produced from the protein is at least 5, preferably at least 10 and more preferably at least 20, which comprises the use of a proline specific endoprotease.
BLOOD PRESSURE LOWERING PROTEIN HYDROLYSATES

Field of the invention

The present invention relates to the production of IPP.

Background of the invention

Hypertension is a relatively common disease state in humans and presents a prevalent risk factor for cardiovascular diseases, kidney failure and stroke. The availability of a large array of pharmaceutical products such as calcium blockers, beta blockers, diuretics, alpha blockers, central alpha antagonists, angiotensin II antagonists and ACE inhibitors, illustrates that the underlying physiological mechanisms for hypertension are many sided.

Of the physiological mechanisms for hypertension, especially the renin-angiotensin mechanism has received a lot of scientific attention. In this mechanism, angiotensin is secreted by the liver and is cleaved by the peptidase renin to yield the biologically inactive decapetide angiotensin I. As angiotensin I passes through the lung capillaries, another peptidase called angiotensin converting enzyme (hereinafter referred to as ACE) acts on angiotensin I by removing the last two residues of angiotensin I (His-Leu) to form the octapeptide angiotensin II. The angiotensin II octapeptide exhibits strong vasoconstricting activity and therefore raises blood pressure. ACE inhibition leading to lower levels of the angiotensin II prevents vasoconstriction and thus high blood pressures.

Apart from cleaving angiotensin I, ACE can also hydrolyse bradykinin, a nonapeptide also participating in blood pressure regulation. In the latter mechanism ACE inhibition leads to increased bradykinin levels which promote vasodilatation and lower blood pressure as well. Inhibiting ACE thus leads to blood pressure lowering effects via at least two separate mechanisms.

It is also known that the octapeptide angiotensin II stimulates the release of aldosterone by the adrenal cortex. The target organ for aldosterone is the kidney where aldosterone promotes increased reabsorption of sodium from the kidney tubules. Also via this third mechanism ACE inhibition reduces blood pressure but in this case by diminishing sodium reabsorption.
Because of its multiple physiological effects, inhibiting the proteolytic activity of ACE is an effective way of depressing blood pressure. This observation has resulted in a number of effective pharmaceutical blood pressure lowering products such as captopril and enalapril (Ondetti, M.A. et al., 1977, Science, Washington DC, 196, 441-444). Because hypertension is a relatively common disease state it would be advantageous to counteract this undesirable result of modern life style with mildly active natural ingredients. Especially mildly active natural ingredients that can be incorporated into food or beverage products because such products are consumed on a regular basis. Alternatively such mildly active natural ingredients could be incorporated into dietary supplements. During the last decades it has been discovered that specific peptides present in fermented milk have an ACE inhibiting capacity and can induce blood pressure reductions in hypertensive subjects. Nowadays numerous in vitro and a few animal trials have demonstrated ACE inhibiting effects of different peptides obtained from a variety of protein sources. Although in vitro ACE inhibition assays have revealed many different peptide sequences, it has to be emphasized that ACE inhibiting peptides need to circulate in the blood to exert an in vivo effect. The implication is that efficacious ACE inhibiting peptides should resist degradation by the gastrointestinal proteolytic digestion system and should remain intact during subsequent transport over the intestinal wall.

A structure-function study of the various ACE inhibiting peptides has suggested that they often possess a Pro-Pro, Ala-Pro or Ala-Hyp at their C-terminal sequence (Maruyama, S.and Suzuki, H., 1982; Agric Biol Chem., 46(5): 1393-1394). This finding is partly explained by the fact that ACE is a peptidyl dipeptidase (EC3.4.15.1) unable to cleave peptide bonds involving proline. Thus from tripeptides having the structure Xaa-Pro-Pro the dipeptide Pro-Pro cannot be removed because the Xaa-Pro bond cannot be cleaved. It is therefore conceivable that if present in relatively high concentrations, tripeptides having the Xaa-Pro-Pro structure will inhibit ACE activity. As not only ACE but almost all proteolytic enzymes have difficulties in cleaving Xaa-Pro or Pro-Pro bonds, the notion that the presence of (multiple) proline residues at the carboxyterminal end of peptides results in relatively protease resistant molecules is almost self-evident. Similarly peptides containing hydroxyproline (Hyp) instead of prolin are relatively protease resistant. From this it can be inferred that peptides carrying one or more (hydroxy)proline residues at their carboxyterminal end are likely to escape from proteolytic degradation in the
gastro-intestinal tract. These conclusions will help us to understand the remarkable in vivo blood pressure lowering effect of specific ACE inhibiting peptides: not only do they meet the structural requirements for ACE inhibition, they also resist degradation by the gastrointestinal proteolytic digestion system and remain intact during a subsequent transport over the intestinal wall.

Strong ACE inhibiting activities have been reported for the tripeptides Leu-Pro-Pro (JP02036127), Val-Pro-Pro (EP 0 583 074) and Ile-Pro-Pro (J. Dairy Sci., 78:777-7831995)). Initially all ACE inhibiting peptides were characterized on the basis of their in vitro effect on ACE activity and the tripeptides Ile-Pro-Pro (hereinafter referred to as IPP) Val-Pro-Pro (hereinafter referred to as VPP) and Leu-Pro-Pro (hereinafter referred to as LPP) stood out because of their strong ACE inhibiting effect resulting in relatively low IC50 values. Later on the presumed antihypertensive effects of the tripeptides VPP as well as IPP could be confirmed in spontaneously hypertensive rats (Nakamura et al., J. Dairy Sci., 78:12531257 (1995)). In these experiments the inhibitory tripeptides were derived from lactic acid bacteria fermented milk. During the milk fermentation the desirable peptides are produced by proteinases produced by the growing lactic acid bacteria. A drawback of this fermentative approach is that lactic acid bacteria are living organisms for which the type and quantity of excreted enzymes are difficult to control. The production of the ACE inhibiting peptides is therefore hardly reproducible and it is also unlikely that the optimal set of enzymes is being produced to ensure the maximal yield of the required peptides. Also the required fermentation times are relatively long which in combination with the low yields implies an unfavorable cost structure for the bioactive peptides. Moreover a fermented product is less suitable for direct incorporation into a.o. solid foods and creates strict organoleptic limitations. The poor palatability of such fermented milk products and the many processing difficulties encountered during the recovery of ACE inhibiting peptides from such fermented broths have been described in US 6,428,812. Despite these disadvantages fermented milk products have been put to practical application as an orally administered vasodepressor. ACE inhibiting peptides have been concentrated from fermented milk products after electrodialysis, hollow fiber membrane dialysis or chromatographic methods to enable their marketing in the form of concentrated dietary supplements like tablets or lozenges.

The above mentioned drawbacks of the fermentative production route were recognized in a.o. patent applications WO 01/68115 and EP 1 231 279. In the latter
application a purely enzymatic process is described to recover the tripeptides Val-Pro-Pro and Ile-Pro-Pro from milk casein. The application claims a method for producing these tripeptides by digesting material containing a milk casein with a proteinase and a peptidase via an intermediate peptide. Each of these enzyme incubations may take as long as 12 hours and take place under conditions that favor outgrowth of microbial contaminants. Prior to incubation with the peptidase, the intermediate peptide is preferably purified and high end concentrations of ACE inhibiting peptides can only be obtained after an additional chromatographic purification step of the intermediate peptide. In view of these various disadvantages, there is an need for a more simple and microbiologically more reliable enzyme route that generates a bland tasting product with a high and reproducible yield of antihypertensive peptides.

Summary of the invention

The present invention relates to a process to produce a composition which comprises IPP from a protein source whereby the ratio of IPP to VPP produced from the protein is at least 5:1 preferably at least 10:1 and more preferably at least 20:1 (wt/wt), which preferably comprises the use of a proline specific endoprotease or a prolyl oligopeptidase. The present process further relates to the use of a proline specific endoprotease or a prolyl oligopeptidase which is free of amino peptidase activity. The proline specific endoprotease is preferably capable of hydrolyzing large protein molecules like polypeptides or the protein itself. The process according to the invention has in general an incubation time of less than 24 hours, preferably the incubation time is less than 10 hours and more preferably less than 4 hours. The incubation temperature is in general higher than 30°C, preferably higher than 40°C and more preferably higher than 50°C.

Preferably the protease which cleaves at the terminus of proline, such as the proline specific endoprotease, is free from any contaminating endoprotease activities. Preferably the protease which cleaves at the terminus of proline such as the proline specific endoprotease is free from contaminating carboxypeptidase activities. Preferably the protease which cleaves at the terminus of proline such as proline specific endoprotease in free form contaminating aminopeptidase activities. Proline specific endoprotease or prolyl oligopeptidase which is free from contaminating endoprotease activity is an enzyme preparation having preferably an Endo/Prol Spec act ratio of less than 1,
more preferable less than 0.01.

Prolines specific endoprotease or prolyl oligopeptidase which is free for contaminating carboxyl peptidase activity is an enzyme preparation having preferably an CPD/Pro Spec act ratio of less than 10, more preferable of less than 1.

Prolines specific endoprotease or prolyl oligopeptidase which is free for contaminating amino peptidase activity is an enzyme preparation having preferably an AP/Pro Spec act ratio of less than 1, more preferable of less than 0.1.

During the production of IPP advantageously LPP is also formed. Another aspect of the present invention is a process to purify or isolate peptides from a hydrolysed protein, preferably hydrolysed by a non-aspartic protease, more preferably by a serine protease. This hydrolysed protein is capable to precipitate under selected pH conditions. The purification or isolation process comprises altering the pH to a pH whereby the hydrolysed protein precipitates and separating the precipitated proteins from the peptides in solution.

Therefore the present invention relates to a process to prepare a composition which comprises soluble peptides, preferably IPP, which comprises altering the pH of a composition, which is produced by hydrolysis of a suitable protein source, to a pH whereby part of hydrolysed protein becomes insoluble and separating the insoluble part from the soluble peptides to result in the composition comprising soluble peptides.

The present invention also relates to a peptide composition, produced by hydrolysis of a protein having a ratio of IPP to VPP of at least 5:1, preferably at least 10:1 and more preferably at least 20:1, which preferably comprises LPP or to a composition comprising soluble peptides according to the present invention for use for as a nutraceutical, preferably as a medicament. The present invention further relates to the use of these peptide compositions, for the manufacture of a nutraceutical, preferably a medicament, for the improvement of health or the prevention and/or treatment of diseases or for the manufacture of a nutraceutical preferably a medicament, for the treatment or prevention of high blood pressure (hypertension), heart failure, pre-diabetes or diabetes, obesity, impaired glucose tolerance or stress.

Preferably the present peptide compositions are used in the form of a dietary supplement, in the form of a personal care application including a topical application in the form of a lotion, gel or an emulsion or as a food, beverage, feed or pet food ingredient.
Detailed description of the invention

According to the prior art effective ACE inhibiting peptides are likely to incorporate one or two proline residues at the carboxyterminal end of the peptide. The same structural requirement also endows peptides with increased resistancy against proteolytic degradation hereby increasing the probability that the intact peptide will end up in the blood stream. To obtain peptides with at least a single but preferably multiple proline residues at their carboxyterminal end, the use of a protease that can cleave at the carboxyterminal side of proline residues offers an interesting option. So-called prolyl oligopeptidases (EC 3.4.21.26) have the unique possibility of preferentially cleaving peptides at the carboxyl side of proline residues. In all adequately characterized proline specific proteases isolated from mammalian as well as microbial sources, a unique peptidase domain has been identified that excludes large peptides from the enzyme's active site. In fact these enzymes are unable to degrade peptides containing more than about 30 amino acid residues so that these enzymes are now referred to as "prolyl oligopeptidases" (Fulop et al : Cell, Vol. 94, 161-170, July 24,1998). As a consequence these prolyl oligopeptidases require an extensive pre-hydrolysis with other endoproteases before they can exert their hydrolytic action. However, as described in WO.02/45523, even the combination of a prolyl oligopeptidase with such another endoprotease results in hydrolysates characterized by a significantly enhanced proportion of peptides with a carboxyterminal proline residue. Because of this, such hydrolysates form an excellent starting point for the isolation of peptides with in vitro ACE inhibiting effects as well as an improved resistance to gastro-intestinal proteolytic degradation. Despite these potential benefits, we are not aware of an application specifying the use of proline specific proteases for the recovery of ACE inhibiting peptides let alone the selective production of IPP.

The present invention relates to a process to produce a composition which comprises IPP from a protein source whereby the weight ratio of IPP to VPP produced from the protein is at least 5:1, preferably at least 10:1 and more preferably at least 20:1, which comprises the use of an enzyme activity which has proline specific endoprotease or prolyl oligopeptidase activity and an enzyme activity which is capable of hydrolysing the bond at the amino terminal side of a $-\text{I-P-P-} -$ sequence. Advantageously the enzyme...
activity which has proline specific endoprotease activity or prolyl oligopeptidase activity and the activity which is capable of hydrolysing the bond at the amino terminal side of a \(-\text{I-P-P-}\) sequence are present in one enzyme, preferably this enzyme is a proline specific endoprotease or a prolyl oligopeptidase, more preferably this enzyme is a proline specific endoprotease. Moreover the invention relates to a process to prepare a composition which comprises soluble peptides, preferably IPP, which process comprises altering the pH of the hydrolysis conditions to a pH whereby part of the hydrolysed protein becomes insoluble and separating the insoluble part from the soluble peptides to result in the composition comprising soluble peptides. The temperature for the separation step is preferably between 0 and 20°C, more preferably between 1 and 10°C.

The present invention also relates to prepare a food product beverage product or dietary supplement comprising the production of the composition which comprises IPP as described before and incorporating this IPP containing composition, into a food product, beverage product or dietary health product.

Furthermore the present invention relates to a process to produce a composition comprising soluble peptides which is produced by:
- first hydrolysing a protein with a proline specific endoproteases to a DH of 5 - 30 \%,
- optionally a second enzyme treatment preferably by a protease, and
- thereafter separating the insoluble part of the hydrolysed protein from the soluble part under selected pH conditions, preferably acid pH conditions, more preferably at pH between 3.5 and 6 and most preferably at pH between 4 and 5 to result in the composition comprising soluble peptides.

The present invention provides therefore a composition which can be obtained from the latter process and which composition comprises soluble peptides, whereby at least 70 wt\%, preferably at least 80 wt\% and most preferably at least 90 wt\% of the peptides is soluble (determined at 4°C) at a pH between 3.5 and 6, preferably at pH between 4 and 5 and most preferably at pH = 4.5 and whereby no single peptide of the soluble peptides is present in an amount of more than 40 wt\% of the soluble peptides, preferably no single peptide of the soluble peptides is present in an amount of more than 30 wt\% of the soluble peptides, and most preferably no single peptide of the soluble peptides is present in an amount of more than 20 wt\% of the soluble peptides.

The latter process and the latter composition are a result of the insight that a composition can be obtained with a high amount of soluble peptides which, because of
the use of the proline specific endoprotease, also contains high amounts of peptides having a carboxy terminal proline.

As described above the protein will be first hydrolysed by a proline specific endoprotease. In case this hydrolysed protein is subsequently hydrolysed by an additional (second) protease, the peptides with a carboxy terminal proline will be further hydrolysed by the second enzyme. Preferably the second enzyme treatment is carried out by a pure and selective enzyme. This second enzyme is preferably an amino peptidase (for example Corolase LAP, see Examples 12 and 13) or an endoprotease, most preferably an aminopeptidase is used.

In Examples 12 and 13 it is shown that on top IPP selectively additional IPP and VPP is formed from casein.

The selection of this second enzyme is always done in relation to the protein used. In this way it is possible to make a tailor made composition comprising soluble peptides from the protein in question. This second enzyme treatment can be done preferably after the hydrolysis by the proline specific endoprotease but another option is that the second enzyme treatment is done at the same time as the hydrolysis by the proline specific endoprotease. According to a further embodiment of the invention this second enzyme treatment can take place after the acid precipitation step. In this case the soluble peptide composition is further hydrolysed by this second enzyme to result again in a soluble peptide containing composition.

Preferably at least 10 molar%, more preferably at least 20 molar% and even more preferably at least 30 molar% of the soluble peptides have a carboxy terminal proline. In patent application WO 02/45523 it is described how this molar% can be determined.

The present invention relates to the present peptide containing composition as a nutraceutical, preferably a medicament. The invention also relates to the use of present peptide containing composition as a nutraceutical preferably a medicament, to the use of present peptide containing composition for the manufacture of a nutraceutical preferably a medicament, to the use of the present peptide containing composition for the improvement of health or the prevention and/or treatment of diseases, to the use of the present peptide containing composition for the manufacture of a nutraceutical preferably a medicament, to the use of the present peptide containing composition for the treatment of cardiovascular diseases such as hypertension and heart failure, to the use of the present peptide containing composition for the treatment of pre-diabetes or diabetes, to
the use of the present peptide containing composition for the treatment or prevention of obesity, to the use of the present peptide containing composition to increase plasma insulin or to increase the sensitivity for plasma insulin of type 2 diabetes or pre-diabetes, to the use of the present peptide containing composition to lower post-prandial glucose concentrations in blood of type 2 diabetes or pre-diabetes, to the use of the present peptide containing composition to increase post-prandial insulin secretion in blood of type 2 diabetes or pre-diabetes, to the use of the present peptide containing composition wherein the present peptide containing composition is in the form of a dietary supplement, to the use of the present peptide containing composition for the manufacture of a functional food product for the therapeutic treatment of the effects of stress, to the use of the present peptide containing composition in topical application preferably in personal care application and to the use of the present peptide containing composition in feed and pet food.

Furthermore the present invention relates to a method of treatment of type 1 and 2 diabetes, and for the prevention of type 2 diabetes in those individuals with pre-diabetes, or impaired glucose tolerance (IGT) which comprises administering to a subject in need of such treatment the present peptide containing composition and to a method of treatment of people that suffer of hypertension or heart failure or the prevention thereof which comprises administering to a subject in need of such treatment the present peptide containing composition and thus, exhibit blood pressure lowering effects. Inhibition of ACE results in reduced vasoconstriction, enhanced vasodilation, improved sodium and water excretion, which in turn leads to reduced peripheral vascular resistance and blood pressure and improved local blood flow. Thus, the present hydrolysates, comprising peptide, are particularly efficacious for the prevention and treatment of diseases that can be influenced by ACE inhibition, which include but are not limited to hypertension, heart failure, angina pectoris, myocardial infarction, stroke, peripheral arterial obstructive disease, atherosclerosis, nephropathy, renal insufficiency, erectile dysfunction, endothelial dysfunction, left ventricular hypertrophy, diabetic vasculopathy, fluid retention, and hyperaldosteronism. The compositions may also be useful in the prevention and treatment of gastrointestinal disorders (diarrhea, irritable bowel syndrome), inflammation, diabetes mellitus, obesity, dementia, epilepsy, geriatric confusion, and Meniere's disease. Furthermore, the compositions may enhance cognitive
function and memory (including Alzheimer’s disease), satiety feeling, limit ischemic damage, and prevent reocclusion of an artery after by-pass surgery or angioplasty.

Diabetes mellitus is a widespread chronic disease that hitherto has no cure. The incidence and prevalence of diabetes mellitus is increasing exponentially and it is among the most common metabolic disorders in developed and developing countries. Diabetes mellitus is a complex disease derived from multiple causative factors and characterized by impaired carbohydrate, protein and fat metabolism associated with a deficiency in insulin secretion and/or insulin resistance. This results in elevated fasting and postprandial serum glucose concentrations that lead to complications if left untreated.

There are two major categories of the disease, insulin-dependent diabetes mellitus (IDDM, T1DM) and non-insulin-dependent diabetes mellitus (NIDDM, T2DM). T1DM = type 1 diabetes mellitus. T2DM = type 2 diabetes mellitus.

T1DM and T2DM diabetes are associated with hyperglycemia, hypercholesterolemia and hyperlipidemia. The absolute insulin deficiency and insensitivity to insulin in T1DM and T2DM, respectively, leads to a decrease in glucose utilization by the liver, muscle and the adipose tissue and to an increase in the blood glucose levels. Uncontrolled hyperglycemia is associated with increased and premature mortality due to an increased risk for microvascular and macrovascular diseases, including nephropathy, neuropathy, retinopathy, hypertension, stroke, and heart disease. Recent evidence showed that tight glycemic control is a major factor in the prevention of these complications in both T1DM and T2DM. Therefore, optimal glycemic control by drugs or therapeutic regimens is an important approach for the treatment of diabetes.

Therapy of T2DM initially involves dietary and lifestyle changes, when these measures fail to maintain adequate glycemic control the patients are treated with oral hypoglycemic agents and/or exogenous insulin. The current oral pharmacological agents for the treatment of T2DM include those that potentiate insulin secretion (sulphonylurea agents), those that improve the action of insulin in the liver (biguanide agents), insulin-sensitizing agents (thiazolidinediones) and agents which act to inhibit the uptake of glucose (α-glucosidase inhibitors). However, currently available agents generally fail to maintain adequate glycemic control in the long term due to progressive deterioration of hyperglycemia, resulting from progressive loss of pancreatic cell function. The proportion of patients able to maintain target glycemia levels decreases markedly over time necessitating the administration of additional/alternative pharmacological agents.
Furthermore, the drugs may have unwanted side effects and are associated with high primary and secondary failure rates. Finally, the use of hypoglycemic drugs may be effective in controlling blood glucose levels, but may not prevent all the complications of diabetes. Thus, current methods of treatment for all types of diabetes mellitus fail to achieve the ideals of normoglycemia and the prevention of diabetic complications.

Therefore, although the therapies of choice in the treatment of T1DM and T2DM are based essentially on the administration of insulin and of oral hypoglycemic drugs, there is a need for a safe and effective nutritional supplement with minimal side effects for the treatment and prevention of diabetes. Many patients are interested in alternative therapies which could minimize the side effects associated with high-dose of drugs and yield additive clinical benefits. Patients with diabetes mellitus have a special interest in treatment considered as “natural” with mild anti-diabetic effects and without major side effects, which can be used as adjuvant treatment. T2DM is a progressive and chronic disease, which usually is not recognized until significant damage has occurred to the pancreatic cells responsible for producing insulin (β-cells of islets of Langerhans).

Therefore, there is an increasing interest in the development of a dietary supplement that may be used to prevent β-cell damage and thus, the progression to overt T2DM in people at risk especially in elderly who are at high risk for developing T2DM. Protection of pancreatic β-cells may be achieved by decreasing blood glucose and lipids exert damaging effects on β-cells. The reduction of blood glucose levels can be achieved via different mechanisms, for example by enhancing insulin sensitivity and/or by reducing hepatic glucose production. The reduction of blood lipid levels can also be achieved via different mechanisms, for example by enhancing lipid oxidation and/or lipid storage. Another possible strategy to protect pancreatic β-cells would be to decrease oxidative stress. Oxidative stress also causes β-cell damage with subsequent loss of insulin secretion and progression to overt T2DM.

Therefore, T2DM is a complicated disease resulting from coexisting defects at multiple organ sites: resistance to insulin action in muscle and adipose tissues, defective pancreatic insulin secretion, unrestrained hepatic glucose production. Those defects are often associated with lipid abnormalities and endothelial dysfunction. Given the multiple pathophysiological lesions in T2DM, combination therapy is an attractive approach to its management.
The present invention relates to novel nutraceutical compositions comprising the peptide containing composition of the present invention. The nutraceutical compositions comprising the peptide containing composition of the present invention can also comprise unhydrolysed proteins and carbohydrates as the active ingredients for the treatment or prevention of diabetes mellitus, or other conditions associated with impaired glucose tolerance such as syndrome X. In another aspect the present invention relates to the use of such compositions as a nutritional supplement for the said treatment or prevention, e.g., as an additive to a multi-vitamin preparations comprising vitamins and minerals which are essential for the maintenance of normal metabolic function but are not synthesized in the body. In still another aspect, the invention relates to a method for the treatment of both type 1 and 2 diabetes mellitus and for the prevention of T2DM in those individuals with pre-diabetes, or impaired glucose tolerance (IGT) or obesity which comprises administering to a subject in need of such treatment the peptide containing composition of the present invention and protein hydrolysates or unhydrolysed proteins and/or carbohydrates.

The compositions of the present invention are particularly intended for the treatment of both T1DM and T2DM, and for the prevention of T2DM in those individuals with pre-diabetes, or impaired glucose tolerance (IGT).

It is found that the present peptide containing compositions can be used for type 2 diabetes or prediabetes, preferably to lower post-prandial glucose concentrations or to increase post-prandial insulin secretion in blood.

The compositions comprising peptide and optionally carbohydrates stimulate insulin secretion and increase glucose disposal to insulin sensitive target tissues such as adipose tissue, skeletal muscle and liver and, thus, provide synergistic effects in the treatment of diabetes mellitus.

It is generally recognised that stress-related diseases, and the negative effects of stress upon the body, have a significant impact upon many people. In recent years the effects of stress, and its contribution towards various the development of various diseases and conditions, has gained wider acceptance in the medical and scientific community.

Consumers are now becoming increasingly aware of these potential problems and are becoming increasingly interested in reducing or preventing the possible negative impact of stress on their health.
It is a further object of the invention to provide a food product, or an ingredient which can be incorporated therein, which is suitable for use in helping the body deal with the effects of stress.

It is a further object to provide a food product comprising the present peptide containing composition which provides a health benefit, such as helping the body deal with the negative effects of stress.

The term nutraceutical as used herein denotes the usefulness in both the nutritional and pharmaceutical field of application. Thus, the novel nutraceutical compositions can find use as supplement to food and beverages, and as pharmaceutical formulations or medicaments for enteral or parenteral application which may be solid formulations such as capsules or tablets, or liquid formulations, such as solutions or suspensions. As will be evident from the foregoing, the term nutraceutical composition also comprises food and beverages comprising the present peptide containing composition and optionally carbohydrate as well as supplement compositions, for example dietary supplements, comprising the aforesaid active ingredients.

The term dietary supplement as used herein denotes a product taken by mouth that contains a "dietary ingredient" intended to supplement the diet. The "dietary ingredients" in these products may include: vitamins, minerals, herbs or other botanicals, amino acids, and substances such as enzymes, organ tissues, glandulars, and metabolites. Dietary supplements can also be extracts or concentrates, and may be found in many forms such as tablets, capsules, softgels, gelcaps, liquids, or powders. They can also be in other forms, such as a bar, but if they are, information on the label of the dietary supplement will in general not represent the product as a conventional food or a sole item of a meal or diet.

A multi-vitamin and mineral supplement may be added to the nutraceutical compositions of the present invention to obtain an adequate amount of an essential nutrient missing in some diets. The multi-vitamin and mineral supplement may also be useful for disease prevention and protection against nutritional losses and deficiencies due to lifestyle patterns and common inadequate dietary patterns sometimes observed in diabetes. Moreover, oxidant stress has been implicated in the development of insulin resistance. Reactive oxygen species may impair insulin stimulated glucose uptake by disturbing the insulin receptor signaling cascade. The control of oxidant stress with antioxidants such as \(\alpha \)-tocopherol (vitamin E) ascorbic acid (vitamin C) may be of value.
in the treatment of diabetes. Therefore, the intake of a multi-vitamin supplement may be added to the above mentioned active substances to maintain a well balanced nutrition.

Furthermore, the combination of the present peptide containing composition with minerals such as magnesium (Mg^{2+}), Calcium (Ca^{2+}) and/or potassium (K^+) may be used for the improvement of health and the prevention and/or treatment of diseases including but not limited to cardiovascular diseases and diabetes.

In a preferred aspect of the invention, the nutraceutical composition of the present invention contains the present peptide containing compositions. IPP is suitably is present in the composition according to the invention in an amount to provide a daily dosage from about 0.001 g per kg body weight to about 1 g per kg body weight of the subject to which it is to be administered. A food or beverage suitably contains about 0.05 g per serving to about 50 g per serving of IPP. If the nutraceutical composition is a pharmaceutical formulation such formulation may contain IPP in an amount from about 0.001 g to about 1 g per dosage unit, e.g., per capsule or tablet, or from about 0.035 g per daily dose to about 70 g per daily dose of a liquid formulation. The present peptide containing compositions suitably are present in the composition according to the invention in an amount to provide a daily dosage from about 0.01 g per kg body weight to about 3 g per kg body weight of the subject to which it is to be administered. A food or beverage suitably contains about 0.1 g per serving to about 100 g per serving of protein hydrolysates. If the nutraceutical composition is a pharmaceutical formulation such formulation may contain peptide containing compositions in an amount from about 0.01 g to about 5 g per dosage unit, e.g., per capsule or tablet, or from about 0.7 g per daily dose to about 210 g per daily dose of a liquid formulation.

In yet another preferred aspect of the invention a composition comprises the present peptide as specified above and optionally carbohydrates. Carbohydrates suitably are present in the composition according to the invention in an amount to provide a daily dosage from about 0.01 g per kg body weight to about 7 g per kg body weight of the subject to which it is to be administered. A food or beverage suitably contains about 0.5 g per serving to about 200 g per serving of carbohydrates. If the nutraceutical composition is a pharmaceutical formulation such formulation may contain carbohydrates in an amount from about 0.05 g to about 10 g per dosage unit, e.g., per capsule or tablet, or from about 0.7 g per daily dose to about 490 g per daily dose of a liquid formulation.
Dosage ranges (for a 70 kg person)

IPP: 0.005-70 g/day

Protein hydrolysates: 0.07-210 g/day

Unhydrolysed proteins: 0.07-210 g/day

Carbohydrates: 0.1-490 g/day

It is an object of the invention to provide an edible material which can be used to provide health benefits to a subject consuming it. It is yet a further object to provide such an edible material which can conveniently be ingested either in isolated form or incorporated into a food product.

It is a further object of the invention to provide a food product, or an ingredient which can be incorporated therein, which is suitable for use in body weight control programmes.

It is a further object of the invention to provide a food product, or an ingredient which can be incorporated therein, which is suitable for helping to maintain cardiovascular health, e.g. through ACE inhibition.

It is a further object of the invention to provide a food product, or an ingredient which can be incorporated therein, which have acceptable stability and/or organoleptic properties, in particular good taste, such as an absence of or an acceptable level of bitterness.

It is a further object to provide a food product having a high concentration of an ingredient which provides a health benefit, such as aiding the prevention of obesity/body weight control and/or helping maintain cardiovascular health.

Surprisingly, one or more of these objects is attained according to the invention by the use of the present peptide containing composition for the preparation of a food product which provides a health benefit upon consumption.

According to a first aspect the present invention provides the use of the present peptide containing composition for the manufacture of a functional food product for the prevention of obesity or body weight control.

According to a second aspect the present invention provides the use of the present peptide containing composition for the manufacture of a functional food product for cardiovascular health maintenance.
It is especially preferred according to the present invention that cardiovascular health maintenance comprises the inhibition of angiotensin-converting (ACE) enzyme and/or the control of blood glucose levels.

According to a third aspect the present invention provides a functional food product capable of providing a health benefit to the consumer thereof, said health benefit selected from the prevention of obesity, body weight control and cardiovascular health maintenance and comprising the present peptide containing composition.

A further advantage of the peptide containing composition according to the present invention is that this peptide containing composition can be conveniently incorporated into food products, to produce, functional food products, without unacceptably affecting the stability and/or organoleptic properties thereof.

"Health benefit agent(s)" according to the present invention are materials which provide a health benefit, that is which have a positive effect on an aspect of health or which help to maintain an aspect of good health, when ingested, these aspects of good health being prevention of obesity, body weight control and cardiovascular health maintenance. "Health benefit" means having a positive effect on an aspect of health or helping to maintain an aspect of good health.

"Functional food products" according to the present invention are defined as food products (including for the avoidance of doubt, beverages), suitable for human consumption, in which the peptide containing composition of the present invention is used as an ingredient in an effective amount, such that a noticeable health benefit for the consumer of the food product is obtained.

The term "comprising" where used herein is meant not to be limiting to any subsequently stated elements but rather to encompass non-specified elements of major or minor functional importance. In other words the listed steps, elements or options need not be exhaustive. Whenever the words "including" or "having" are used, these terms are meant to be equivalent to "comprising" as defined above.

A "peptide" or "oligopeptide" is defined herein as a chain of at least two amino acids that are linked through peptide bonds. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires. A "polypeptide" is defined herein as a chain containing more than 30 amino acid residues. All (oligo)peptide and polypeptide formulas or sequences herein are written from left to right in the direction from amino-terminus to

The internationally recognized schemes for the classification and nomenclature of all enzymes from IUBM include proteases. The updated IUBM text for protease EC numbers can be found at the internet site: http://www.chem.qmw.ac.uk/iubmb/enzyme/EC3/4/11/. In this system enzymes are defined by the fact that they catalyzes a single reaction. This has the important implication that several different proteins are all described as the same enzyme, and a protein that catalyses more than one reaction is treated as more than one enzyme. The system categorises the proteases into endo- and exoproteases. Endoproteases are those enzymes that hydrolyze internal peptide bonds, exoproteases hydrolyze peptide bonds adjacent to a terminal a-amino group ("aminopeptidases"), or a peptide bond between the terminal carboxyl group and the penultimate amino acid ("carboxypeptidases"). The endoproteases are divided into sub-subclasses on the basis of catalytic mechanism. There are sub-subclasses of serine endoproteases (EC 3.4.21), cysteine endoproteases (EC 3.4.22), aspartic endoproteases (EC 3.4.23), metalloendoproteases (EC 3.4.24) and threonine endoproteases (EC 3.4.25).

The aminopeptidases are in class 3.4.11. Sub-classification is on the basis of the relative efficiency with which the 20 different amino acids are removed. Aminopeptidases with a narrow and a broad specificity can be distinguished. Aminopeptidases can sequentially remove a single amino-terminal amino acids from protein and peptide substrates. Aminopeptidases with a narrow specificity exhibit a strong preference for the type of amino acid residue at the P1 position that is liberated from the substrate peptide. Aminopeptidases of broad specificity are capable of releasing a range of different amino acids at the N-terminal or P1 positions (according to Schechter's nomenclature: Schechter, I. And Berger, A. 1987. Biochem Biophys Res Commun 27:157-162). Carboxypeptidases can sequentially remove single carboxy-terminal amino acids from protein and peptide substrates. Comparable with the situation for the endoproteases, carboxypeptidases are divided into sub-subclasses on the basis of catalytic mechanism. The serine-type carboxypeptidases are in class EC 3.4.16, the metallocarboxypeptidases in class EC 3.4.17 and the cysteine-type carboxypeptidases in class EC 3.4.18. The value
of the EC list for proteases resides in providing standard terminology for the various types of protease activity and especially in the assignment of a unique identification number and a recommended name to each protease.

In EP 1 231 279 a purely enzymatic process is described to recover the tripeptides VPP and IPP from milk casein. The latter application claims a method for producing tripeptides by digesting a material containing a milk casein with a proteinase and a peptidase via a so-called “intermediate peptide” selected from the group consisting of a peptide containing a sequence -V-P-P- but containing no Pro other than those in this sequence as well as a peptide containing a sequence -I-P-P- but containing no Pro other than those in this sequence. As described in the Examples of EP 1 231 279 the method involves a two-step process. First the intermediate peptides encompassing either VPP or IPP are produced. This is done by incubating casein with a suitable proteinase. According to one of the Examples at 37 degrees C for a 12 hours period. Then the proteinase used is inactivated by heating this first hydrolysate to 100 degrees C for 3 minutes and, after cooling down again, another enzyme preparation (in fact a preparation with exoproteolytic activity) is added. After another 12 hours incubation at 37 degrees C with this other enzyme preparation the presence of the tripeptides VPP and IPP can be demonstrated. To obtain higher yields of these ACE inhibiting peptides, EP 1 231 279 further suggests to purify and concentrate the intermediate peptide prior to exposure to the exoproteolytic activity. EP 1 231 279 also suggests that after obtaining the intermediate peptide and before the intermediate peptide is contacted with the peptidase in the procedure various operations may optionally be performed such as the removal of the unreacted protein by e.g. centrifugation at 5000 to 20000rpm for 3 to 10 minutes. So the desired tripeptides are obtained in an industrially rather unwieldy two-step enzymatic process. As each of the enzyme incubations may take as long as 12 hours at pH 4.5 to 7.0 and at the temperature of 25 to 50 degrees C, it is evident that this procedure is also unacceptable from a microbiological point of view. These long incubation times combined with low incubation temperature of 25 to 50°C may easily result in infections of the protein containing solution.

WO 02/45524 describes a proline specific protease obtainable from Aspergillus niger. The A. niger derived enzyme cleaves preferentially at the carboxyterminus of proline, but can also cleave at the carboxyterminus of hydroxyproline and, be it with a lower efficiency, at the carboxyterminus of alanine. WO 02/45524 also teaches that there
exists no clear homology between this *A. niger* derived enzyme and the known prolyl oligopeptidases from other microbial or mammalian sources. In contrast with known prolyl oligopeptidases, the *A. niger* enzyme has an acid pH optimum. Although the known prolyl oligopeptidases as well as the *A. niger* derived enzyme are so-called serine proteases, we show here (Example 1) that the *A. niger* enzyme belongs to a completely different subfamily. The secreted *A.* enzyme appears to be a member of family S28 of serine peptidases rather than the S9 family into which most cytosolic prolyl oligopeptidases have been grouped (Rawling, N.D. and Barrett, A.J.; Biochim. Biophys. Acta 1298 (1996) 1-3). In Example 2 we show the pH and temperature optima of the *A. niger* derived proline specific protease. In Example 3 we demonstrate that the *A. niger* derived enzyme preparation as used in the process of the present invention is essentially pure meaning that no significant endoproteolytic activity other than the endoproteolytic activity inherent to the pure proline specific endoprotease is present. We also demonstrate that our *A. niger* derived enzyme preparation used according to the present invention does not contain any exoproteolytic, more specifically aminopeptidolytic side activities. All positively identified proteinase samples mentioned in EP 1 231 279 are complex mixtures of different enzymes exhibiting different proteolytic activities. A person skilled in the art will understand that the process described in EP 1 231 279 hinges on the combination of an endoproteolytic activity with one or more exoproteolytic enzyme activity. Such exoproteolytic activity is absent in the *A. niger* derived enzyme preparation used in the process of the invention. Vice versa the enzyme used in the process according to the present invention is not present in the complex proteinase samples described in EP 1 231 279. Experimental proof for the notion that this enzyme is essentially absent in non-recombinant *Aspergillus* strains can be found in WO 02/45524. Because the process of the present invention is possible with only the proline specific endoprotease, the optimal incubation conditions like temperature, pH etc. can be easily selected and does not have to be fixed at sub optimal conditions as would be the case if two or more enzymes are applied. Having more degrees of freedom in selecting the reaction conditions makes an easier selection for other criteria possible. For example it is much easier to select now conditions which are less sensitive to microbial infections and to optimise pH conditions relative to subsequent protein precipitation steps. In Example 4 we show that the *Aspergillus* enzyme is not an oligopeptidase but a true endopeptidase able to hydrolyse intact proteins, large peptides as well as smaller peptide molecules.
without the need of an accessory endoprotease. This new and surprising finding opens up the possibility of using the _A. niger_ enzyme for preparing hydrolysates with unprecedented high contents of peptides with a carboxyterminal proline residue because no accessory endoprotease is required. Such new hydrolysates can be prepared from different proteinaceous starting materials be it from vegetable or from animal origin.

Examples of such starting materials are whey proteins, whey beta-lactoglobulin, whey alpha lactalbumin, caseins, gelatin, fish or egg proteins, potato protein, wheat and maize gluten, soy and pea protein, rice protein as well as lupin protein. Of course the starting protein should at least have an \(-\text{I-P-P-}\) sequence sequence. Preferably the protein comprises also an \(-\text{L-P-P-}\) sequence in its protein sequence. As explained above the protein may have a \(-\text{V-P-P-}\) sequence in its protein. From a substrate like gelatin with a high content of proline as well as hydroxyproline, hydrolysates with unprecedented high contents of peptides with either a carboxyterminal proline or hydroxyproline residue can be generated. As the _A. niger_ enzyme (like the known prolyl oligopeptidases) enzyme is unable to cleave Pro-Pro or Pro-Hyp, Hyp-Pro or Hyp-Hyp bonds, the approach will also yield hydrolysates containing unprecedented high contents of peptides having two, three or even more carboxyterminal proline or hydroxyproline residues. Obviously the nature and the proline content of the proteinaceous starting material dictates the probability of generating such peptides. Preferred substrates are substrates containing more than 6% proline (i.e. more than 6 grams of this amino acid per 100 gram of protein) such as casein, gelatin, wheat and maize glutens. In view of the fact that peptides carrying such carboxyterminal amino acid sequences can be expected to have a fair chance of surviving the proteolytic activity in the gastrointestinal tract, hydrolysates created by incubation with the _A. niger_ derived prolyl endoprotease provide an excellent starting material for the isolation of known biologically active peptides as well as for the identification of new biologically active peptides. As sodium is known to play an important role in hypertension, preferred substrates for the production of ACE inhibiting peptides are calcium and potassium rather than sodium salts of these proteins.

The pH optimum of the _A. niger_ derived prolyl endoprotease is around 4.3. (see figure 1). Because of this low pH optimum incubating bovine milk caseinate with the _A. niger_ derived prolyl endoprotease is not self-evident. Bovine milk caseinate will precipitate if the pH drops below 6.0 and at this pH value the _A. niger_ enzyme has a limited activity only. However, we show in Example 5 that even under this rather unfavorable condition
an incubation with the *A. niger* derived prolyl endoprotease can yield several ACE inhibiting peptides. According to the present invention the ACE inhibiting tripeptides IPP and LPP are produced in yields that correspond with 10% and almost 60%, respectively, of the amount theoretically present in casein. According to the explanation provided in Example 5, the yield of IPP results from the fact that IPP can be liberated from kappa casein only. If this is taken into account a yield of approximately 40% is obtained. Preferably acid precipitated casein is used as substrate in the process of the present invention. Quite surprisingly no VPP is produced despite the fact that the VPP precursor VVVPP is produced in a yield similar to LPP i.e. almost 60% of what is theoretically present.

Preferably at least 20%, more preferably at least 30%, or still more preferably at least 40% and most preferably at least 60% of -I-P-P- sequences present in the protein sequence is converted into the peptide LPP.

Preferably at least 20%, more preferably at least 30%, or still more preferably at least 40% and most preferably at least 60% of -I-P-P- sequences present in the protein sequence is converted into the peptide IPP. The proline specific protease is preferably capable of hydrolyzing large protein molecules like the substrate protein itself.

These results are obtained upon incubating the caseinate with the *A. niger* derived endoprotease in a simple one-step enzyme process. Aqueous solutions containing protein are highly susceptible for microbial infections, especially if kept for many hours at pH values above 5.0 and at temperatures of 50 degrees C or below. Especially microbial toxins that can be produced during such prolonged incubation steps and are likely to survive subsequent heating steps and form a potential threat to food grade processes. Unlike the conditions described in EP 1 231 279 the process according to the present invention preferably uses an incubation temperature above 50 degrees C. In combination with the one-step enzyme process in which the enzyme incubation is carried out for a period less than 24 hours, preferably less than 8 hours, more preferably less than 4 hours, the process according to the invention offers the advantage of an improved microbiological stability.

Bovine milk casein incorporates a number of different proteins including beta-casein and kappa-casein. According to the known amino sequences beta-casein encompasses the ACE inhibitory tripeptides IPP(Ile-Pro-Pro), VPP(Val-Pro-Pro) and LPP(Leu-Pro-Pro). Kappa-casein encompasses IPP only. In Example 5 we show that
incubating potassium caseinates with the \textit{A. niger} derived prolyl endopeptidase generates the known ACE inhibiting peptides IPP as well as LPP in high yields. Using the present enzyme-substrate ratio in combination with the high temperature conditions, the excision of IPP and LPP is completed within a 3 hours incubation period. Quite surprisingly a concomitant production of significant quantities of the tripeptide VPP cannot be demonstrated. The fact that the \textit{A. niger} derived enzyme does not contain any measurable aminopeptidase activity strongly suggests that the IPP formed is released from the \textit{--A107-I108-P109-P110-} sequence present in kappa-caseine. Presumably the peptide bond carboxyterminal of IPP is cleaved by the main activity of the \textit{A. niger} derived prolyl endopeptidase whereas cleavage of the preceding Ala-Ile bond is accomplished by its Ala-specific side activity. Therefore the present invention provides a process to produce IPP from a protein source whereby the ratio of IPP to VPP produced is at least 5, preferably at least 10 and more preferably at least 20, which comprises the use of an enzyme which has proline specific endopeptidase activity and an enzyme which is capable of hydrolysing the bond at the amino terminal side of IPP. Preferably the enzyme that is capable of hydrolysing the amino terminal bond of \textit{--I-P-P-} is at the same time not capable or has a low activity to hydrolyse the amino terminal bond of \textit{--V-P-P-}. Although two enzyme activities have been mentioned for the process of the invention, also an enzyme that has both activities at the same time, proline specific endopeptidase activity and hydrolysing activity of the amino terminal bond of \textit{--I-P-P-}, respectively, can be used in the present invention, an example thereof is the proline-specific endopeptidase as described herein which is preferably originating from \textit{A. niger}. Because of the selected hydrolysis process according to the present invention a smaller number of water soluble peptides than in the prior art processes will be formed. Among these water soluble peptides IPP and optionally LPP are present in major amounts. This is especially important in case a high concentration of IPP and optionally LPP compounds are needed without many other, often less active compounds. According to the present process preferably at least 20%, more preferably at least 30%, most preferably at least 40% of an \textit{--A-I-P-P-} or an \textit{--A-L-P-P-} sequence present in a protein is converted into IPP or LPP, respectively. Furthermore according to the present process preferably at least 20%, more preferably at least 30%, still more preferably at least 40% and most preferably at least 50% of a \textit{--P-L-P-P-} or a \textit{--P-I-P-P-} sequence present in the protein is converted into LPP or IPP, respectively.
In Example 6 we illustrate the 5-fold purification effect of IPP by a new and surprising purification step. In this process the hydrolysate is formed during the brief enzyme incubation period at 55 degrees C, pH 6.0 and is then heated to a temperature above 80 degrees C to kill all contaminating microorganisms and to inactivate the *A. niger* derived prolyl endopeptidase. Subsequently the hydrolysate is acidified to realise a pH drop to 4.5 or at least below 5.0. At this pH value, which cannot be used to inactivate the *A. niger* derived prolyl endopeptidase because it represents the optimum condition for the enzyme, all large peptides from the caseinate precipitate so that only the smaller peptides remain in solution. As the precipitated caseinates can be easily removed by decantation or a filtration step or a low speed (i.e. below 5000 rpm) centrifugation, the aqueous phase contains a high proportion of bioactive peptides relative to the amount of protein present. According to Kjeldahl data 80 to 70 % of the caseinate protein is removed by the low speed centrifugation step which implies a four- to five-fold purification of the ACE inhibiting peptides. We have found that this purification principle can be advantageously applied to obtain biologically active peptides obtained from proteinaceous material other than casein as well. Also not only enzymatically produced hydrolysates but also proteins that are fermented by suitable microorganisms can be separated and purified according to the present process. Incubating enzyme and substrate at a pH value close to where the substrate will precipitate and where the enzyme is still active, will permit this purification step. Due to the low pH optimum of the *A. niger* derived prolyl endopeptidase, substrate precipitations in the range between pH 1.5 to 6.5 can be considered. In view of their specific precipitation behaviour, gluten precipitations above pH 3.5, whey protein precipitations above pH 3.5 and below pH 6.0, egg white precipitations above pH 3.5 and below pH 5.0 form examples of conditions whereby the hydrolysed protein precipitates and the precipitated proteins can be separated from the hydrolysed protein or peptides. This soluble fraction of the hydrolysate is also comprised by the wording hydrolysate. This acid-soluble hydrolysate is formed by the hydrolysis of the protein according to the present followed by amending the acidic conditions so that in soluble hydrolysed parts can be separated from the soluble peptides. This separation can be done for example by sedimentation or centrifugation of the insoluble parts. For a gluten hydrolysate the acidic separation conditions are preferably pH=4, for whey hydrolysate the acidic conditions are preferably pH=4.5, for caseine hydrolysate the acidic conditions
are preferably pH=4.5 and for egg white the acidic conditions are preferably pH=5.0. In general the preferred acidic conditions for the separation are pH=4.5.

By hydrolysate is meant the product that is formed by the hydrolysis of the protein (or briefly protein hydrolysate or hydrolysed protein), the acid-soluble hydrolysate being the soluble fraction of the protein hydrolysate which is also described herein as soluble peptide containing composition or composition comprising soluble peptides), or a mixture of a protein hydrolysate and an acid soluble hydrolysate.

In nutraceutical applications and food and beverage applications, hydrolysates of the inventions are advantageously used. A protein hydrolysate, an acid–soluble hydrolysate as well as an mixture thereof can be used in a nutraceutical application, a food application or a beverage. Preferably the acid-soluble hydrolysate is used in a nutraceutical application, a food application or a beverage because of the high content of active peptides present. Although a similar principle is used in the cheese making process for separating casein curd from whey proteins, in the cheese making process use made of aspartic endopeptidases (EC 3.4.23) only. This enzyme class (EC 3.4.23) incorporates well known cheese making enzymes like chymosin and various pepsins like the mammalian pepsins as well as various microbial pepsins like aspergilliopepsins and mucorpepsins. In the present application, curd or whey in the cheese making process is defined not to be a hydrolysate. Moreover in the hydrolysis process of the present invention advantageously no aspartic endopeptidases (EC 3.4.23) are used. Furthermore as discussed above the purification process according to the present invention is not known for hydrolysates produced by a non-aspartic endopeptidase.

The cheese making process or the curd/whey separation process is excluded from the purification process of the present invention, so the present purification process is directed to obtain soluble peptides with the proviso that this process is not part of a cheese making process or a curd/whey separation process.

Despite of the superficial resemblance of this purification step with the process of cheese making, it is completely different. In cheese making curd formation is initiated by either an enzyme step ("renneting") or by an acidification step. However, the renneting process proceeds independent of acidification whereas cheese curd coagulation by acidification proceeds independent of an enzyme.

In an alternative purification method the peptides are conveniently and efficiently recovered from the hydrolysed protein according to the process of the invention using a
water miscible solvent such as ethanol, acetone, propanol-1, propanol-2, methanol or a mixture thereof. In this approach the protein hydrolysate is preferably carefully mixed with 30-60% (v/v) of a water miscible solvent under selected pH conditions so that the larger proteins precipitate and the small peptides, such as IPP, remain in solution.

After separation, for example decantation, filtration or low speed centrifugation, the supernatants containing the biologically active peptides can be recovered in a purified state. This resulting peptide containing composition (or soluble peptide containing composition) is optionally treated with an additional enzyme, for example to increase the level of active ACE inhibiting peptides (cf Examples 12 and 13), or the peptide composition may be contacted with selective binders such as active carbon, chromatographic resins from the Amberlite XAD range (Rohm) or butyl-sepharose resins as supplied by Pharmacia. A subsequent evaporation and an optional spray drying step will yield an economical route for obtaining a food grade paste or powder with a high bioactivity. Upon the digestion of caseinates, a white and odourless powder with a high concentration of ACE inhibiting peptides, which is rich in IPP and LPP, is obtained. If appropriately diluted to the right tripeptide concentration, a versatile starting material with an excellent palatability is obtained suitable for endowing all kinds of foods and beverages with ACE inhibiting properties. If required, the concentration of the bioactive ingredients can be further increased by subsequent purification in which use is made of the hydrophobic character of the peptides IPP and LPP. Preferred purification methods include nanofiltration, extraction for example with hexane or butanol followed by evaporation/precipitation or contacting the acidified hydrolysate as obtained with binders like active carbon or chromatographic resins from the Amberlite XAD range (Roehm). Also butyl-sepharose resins as supplied by Pharmacia can be used. Desorption of the ACE inhibiting peptides from such materials can be done with organic solvents like methanol/ethanol mixtures or with propanol.

The peptides as obtained either before or after an additional (for example chromatography) purification step may be used for the incorporation into food or beverage products that are widely consumed on a regular basis. Examples of such products are margarines, spreads, various dairy products such as butter or yoghurts or milk or whey containing beverages, preferably yoghurt or milk based products such as yoghurt and milk. Also in other beverages such as fruit drinks or soy drinks, the hydrolysate of the present invention can be used. Another option is the use of the
hydrolysate in health products such as fruit bars, protein bars, energy bars, cereal based products for example breakfast cereals.

Another aspect of the invention relates to food products, beverage products or dietary supplements which are obtainable by the method as described or the process as described herein before, said method to prepare a food or beverage product comprising the steps of (a) production of an IPP containing composition from a protein source whereby the weight ratio of IPP to VPP produced from the protein is at least 5 : 1, preferably at least 10 : 1 and more preferably at least 20 : 1, which comprises the use of a proline specific endoprotease; and (b) incorporation of said IPP containing composition into a food product, beverage product or dietary supplement. Preferably said food product, beverage product or dietary supplement according to the invention comprises from 0.05 to 10 wt%, more preferred from 0.1 to 5 wt%, most preferred from 0.2 to 4 wt% of said IPP containing composition or protein hydrolysate. Also preferably the food or beverage product or dietary supplement according to the invention comprises per 100 grams of product 0.05 to 50 mg of IPP, more preferred from 0.1 to 40 mg, most preferred from 0.2 to 30 mg. Also preferably in the food or beverage product or dietary supplement of the invention the weight ratio of IPP to VPP is from 5 : 1 to 100 : 1 more preferred from 5 : 1 to 48 : 1. Also preferably the food product, beverage product or dietary supplement according to the invention comprises both IPP and LPP, wherein the weight ratio of IPP to LPP is from 1 : 10 to 1 : 1, more preferably from 1.5 : 7.1 to 4.8 to 7.1.

Preferably the food or beverage product or dietary supplement is selected from the group of margarines, spreads, butter, dairy products or whey containing beverages, preferably yoghurt or milk based products such as yoghurt or milk, wherein said food or beverage product or dietary supplement comprises the amounts of protein hydrolysate or the amount of IPP as indicated above.

Especially preferred are food or beverage product or dietary supplements as described here above for use to relief hypertension of human beings. Preferred serving sizes for the food or beverage or dietary supplements are for example 5-350 grams per serving, for example from 5 to 150 grams. Preferably the number of servings per day is 1-10, for example 2 to 5.

Although such compositions are typically administered to human beings, they may also be administered to animals, preferably mammals, to relief hypertension. Furthermore the high concentration of ACE inhibitors or other biological active peptides in
the products as obtained makes these products very useful for the incorporation into dietary supplements in the form of pills, tablets or highly concentrated solutions or pastes or powders. Slow release dietary supplements that will ensure a continuous release of the ACE inhibiting peptides or other biological active peptides are of particular interest. The ACE inhibiting peptides or other biological active peptides according to the invention may be formulated as a dry powder in, for example, a pill, a tablet, a granule, a sachet or a capsule. Alternatively the enzymes according to the invention may be formulated as a liquid in, for example, a syrup or a capsule. The compositions used in the various formulations and containing the enzymes according to the invention may also incorporate at least one compound of the group consisting of a physiologically acceptable carrier, adjuvant, excipient, stabiliser, buffer and diluant which terms are used in their ordinary sense to indicate substances that assist in the packaging, delivery, absorption, stabilisation, or, in the case of an adjuvant, enhancing the physiological effect of the enzymes. The relevant background on the various compounds that can be used in combination with the enzymes according to the invention in a powdered form can be found in “Pharmaceutical Dosage Forms”, second edition, Volumes 1,2 and 3, ISBN 0-8247-8044-2 Marcel Dekker, Inc. Although the ACE Inhibiting peptides according to the invention formulated as a dry powder can be stored for rather long periods, contact with moisture or humid air should be avoided by choosing suitable packaging such as for example an aluminium blister. A relatively new oral application form is the use of various types of gelatin capsules or gelatin based tablets.

In view of the relevance of natural ACE inhibiting peptides to fight hypertension the present new and cost effective route offers an attractive starting point for mildly hypotensive alimentary or even veterinary products. Because the present route also includes a surprisingly simple purification step, the possibilities for blood pressure lowering concentrated dietary supplements are also enlarged.

The process according to the invention can be accomplished using any proline specific oligo- or endoprotease. By proline specific oligopeptidases according to the invention or used according to the invention are meant the enzymes belonging to EC 3.4.21.26.

By the proline specific endo protease according to the invention or used according to the invention is preferably meant the polypeptide as mentioned in claims 1-5, 11 and 13
of WO 02/45524. Therefore this proline specific endo protease is a polypeptide which has proline specific endoproteolytic activity, selected from the group consisting of:

(a) a polypeptide which has an amino acid sequence which has at least 40% amino acid sequence identity with amino acids 1 to 526 of SEQ ID NO:2 or a fragment thereof;

(b) a polypeptide which is encoded by a polynucleotide which hybridizes under low stringency conditions with (i) the nucleic acid sequence of SEQ ID NO:1 or a fragment thereof which is at least 80% or 90% identical over 60, preferably over 100 nucleotides, more preferably at least 90% identical over 200 nucleotides, or (ii) a nucleic acid sequence complementary to the nucleic acid sequence of SEQ ID NO:1. The SEQ ID NO:1 and SEQ ID NO:2 as shown in WO 02/45524. Preferably the polypeptide is in isolated form.

The preferred polypeptide used according to the present invention has an amino acid sequence which has at least 50%, preferably at least 60%, preferably at least 65%, preferably at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95%, and even most preferably at least about 97% identity with amino acids 1 to 526 of SEQ ID NO:2 or comprising the amino acid sequence of SEQ ID NO:2.

Preferably the polypeptide is encoded by a polynucleotide that hybridizes under low stringency conditions, more preferably medium stringency conditions, and most preferably high stringency conditions, with (i) the nucleic acid sequence of SEQ ID NO:1 or a fragment thereof, or (ii) a nucleic acid sequence complementary to the nucleic acid sequence of SEQ ID NO:1.

The term "capable of hybridizing" means that the target polynucleotide of the invention can hybridize to the nucleic acid used as a probe (for example, the nucleotide sequence set forth in SEQ. ID NO: 1, or a fragment thereof, or the complement of SEQ ID NO: 1) at a level significantly above background. The invention also includes the polynucleotides that encode the proline specific endoprotease of the invention, as well as nucleotide sequences which are complementary thereto. The nucleotide sequence may be RNA or DNA, including genomic DNA, synthetic DNA or cDNA. Preferably, the nucleotide sequence is DNA and most preferably, a genomic DNA sequence. Typically, a polynucleotide of the invention comprises a contiguous sequence of nucleotides which is capable of hybridizing under selective conditions to the coding sequence or the
complement of the coding sequence of SEQ ID NO: 1. Such nucleotides can be synthesized according to methods well known in the art.

A polynucleotide of the invention can hybridize to the coding sequence or the complement of the coding sequence of SEQ ID NO:1 at a level significantly above background. Background hybridization may occur, for example, because of other cDNAs present in a cDNA library. The signal level generated by the interaction between a polynucleotide of the invention and the coding sequence or complement of the coding sequence of SEQ ID NO: 1 is typically at least 10 fold, preferably at least 20 fold, more preferably at least 50 fold, and even more preferably at least 100 fold, as intense as interactions between other polynucleotides and the coding sequence of SEQ ID NO: 1.

The intensity of interaction may be measured, for example, by radiolabelling the probe, for example with 32P. Selective hybridization may typically be achieved using conditions of low stringency (0.3M sodium chloride and 0.03M sodium citrate at about 40 °C), medium stringency (for example, 0.3M sodium chloride and 0.03M sodium citrate at about 50 °C) or high stringency (for example, 0.3M sodium chloride and 0.03M sodium citrate at about 60 °C).

The UWGCN Package provides the BESTFIT program which may be used to calculate identity (for example used on its default settings).

The PILEUP and BLAST N algorithms can also be used to calculate sequence identity or to line up sequences (such as identifying equivalent or corresponding sequences, for example on their default settings).

Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold. These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is
reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm performs a statistical analysis of the similarity between two sequences. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

The strains of the genus Aspergillus have a food grade status and enzymes derived from these micro-organisms are known to be from an unsuspect food grade source. According to another preferred embodiment, the enzyme is secreted by its producing cell rather than a non-secreted, so-called cytosolic enzyme. In this way enzymes can be recovered from the cell broth in an essentially pure state without expensive purification steps. Preferably the enzyme has a high affinity towards its substrate under the prevailing pH and temperature conditions.

Description of the Figures

Figure 1: A graphic representation of the pH optimum of the A. niger derived prolyl endoprotease

Figure 2: Specificity profile of the A. niger derived prolyl endoprotease

Figure 3: SDS-PAGE of intact ovalbumine and a synthetic 27-mer peptide after incubation with chromatographically purified A. niger derived proline specific endoprotease.

Figure 4: Relative activity of three commercially available aminopeptidase containing enzyme preparations tested at pH 6.0 on the synthetic substrates F-pNA, Q-pNA and V-pNA.

Materials and Methods

Materials.
Edible potassium caseinate spray (88%) was obtained from DMV International, The Netherlands. Synthetic chromogenic peptides were obtained from either Pepscan Systems B.V. The Netherlands or from Bachem, Switzerland.

Flavourzyme 1000L Batch HPN00218 was obtained from Novozymes (Denmark), Sumizyme FP from Shin Nihon (Japan) and Corolase LAP Ch.: 4123 from AB Enzymes (UK).

Proline- specific endoprotease from A. niger.

Overproduction of the proline specific endoprotease from Aspergillus niger was accomplished as described in WO 02/45524. The activity of the enzyme was tested on the synthetic peptide Z-Gly-Pro-pNA at 37 degrees C in a citrate/disodium phosphate buffer pH 4.6. The reaction product was monitored spectrophotometrically at 405 nM. A unit is defined as the quantity of enzyme that liberates 1 μmol of p-nitroanilide per minute under these test conditions.

Chromatographic purification of the A. niger derived endoprotease

The culture broth obtained from an overproducing A. niger strain was used for chromatographic purification of the protease to remove any contaminating endo- and exoproteolytic activities. To that end the fermentation broth was first centrifuged to remove the bulk of the fungal mass and the supernatant was then passed through a number of filters with decreasing pore sizes to remove all cell fragments. Finally, the ultrafiltrate obtained was diluted ten times in 20 millimol/liter sodium acetate pH 5.1 and applied on a Q-Sepharose FF column. Proteins were eluted in a gradient from 0 to 0.4 moles/liter NaCl in 20 millimol/liter sodium acetate pH 5.1. Peak fractions displaying activity towards the cleavage of Z-Gly-Pro-pNA were collected and pooled, according to the protocol described in World Journal of Microbiology & Biotechnology 11, 209 - 212 (1995), but under slightly modified assay conditions. Taking the acid pH optimum of the A. niger derived proline-specific endoprotease into account, the enzyme assay was carried out at pH 4.6 in a citrate/diphosphate buffer at 37°C. Pooling of the active fractions followed by concentration finally yielded a preparation which showed only a single band on SDS-PAGE and one peak on HP-SEC. Further analysis by hydrophobic interaction chromatography confirmed the purity of the enzyme preparation obtained.

LC/MS/MS analysis
HPLC using an ion trap mass spectrometer (Thermo Electron, Breda, the Netherlands) coupled to a P4000 pump (Thermo Electron, Breda, the Netherlands) was used to quantitate the peptides of interest, among these the peptides IPP (M=325.2), LPP (M=325.2), VPP (M=311.2), VVPP (M=509.3) and VVVPFP (M= 656.4) in the enzymatic protein hydrolysates produced by the process according to the invention. The peptides formed were separated using an Inertsil 3 ODS 3, 3 μm, 150*2.1 mm column (Varian Belgium, Belgium) in combination with a gradient of 0.1% formic acid in Milli Q water (Millipore, Bedford, MA, USA; Solution A) and 0.1% formic acid in acetonitrile (Solution B) for elution. The gradient started at 100% of Solution A, kept here for 5 minutes, increasing linear to 5 % B in 10 minutes, followed by linear increasing to 45% of solution B in 30 minutes and immediately going to the starting conditions, and kept here 15 minutes for stabilization. The injection volume used was 50 microliters, the flow rate was 200 microliter per minute and the column temperature was maintained at 55°C. The protein concentration of the injected sample was approx. 50 micrograms/milliliter.

Detailed information on the individual peptides was obtained by using dedicated MS/MS for the peptides of interest, using optimal collision energy of about 30 %. Quantification of the individual peptides was performed using internal calibration, using totally isoleucine N15, C13 labeled IPP (M=332.2), by using the most abundant fragment ions observed in MS/MS mode for all relevant peptides analyzed. All peptides used were synthesized by Pepscan (Lelystad, The Netherlands).

The tripeptide LPP (M=325.2) was used to tune for optimal sensitivity in MS mode and for optimal fragmentation in MS/MS mode, performing constant infusion of 5 μg/ml, resulting in a protonated molecule in MS mode, and an optimal collision energy of about 30 % in MS/MS mode, generating a B- and Y-ion series.

Prior to LC/MS/MS the enzymatic protein hydrolysates were centrifuged at ambient temperature and 13000 rpm for 10 minutes, filtered through a 0.22 μm filter and the supernatant was diluted 1:100 with demineralised water filtered through Millipore water filtration equipment (MilliQ water).

Degree of Hydrolysis

The Degree of Hydrolysis (DH) as obtained during incubation with the various protolytic mixtures was monitored using a rapid OPA test (Nielsen, P.M.; Petersen, D.;
Dambmann, C. Improved method for determining food protein degree of hydrolysis.

Kjeldahl Nitrogen

Total Kjeldahl Nitrogen was measured by Flow Injection Analysis. Using a Tecator
FIASTAR 5000 Flow Injection System equipped with a TKN Method Cassette 5000-040, a
Pentium 4 computer with SOFIA software and a Tecator 5027 Autosampler the ammonia
released from protein containing solutions was quantitated at 590 nm. A sample amount
corresponding with the dynamic range of the method (0.5-20 mg N/l) was placed in the
digestion tube together with 95-97% sulphuric acid and a Kjeltab subjected to a digestion
program of 30 minutes at 200 degrees C followed by 90 minutes at 360 degrees C. After
injection in the FIASTAR 5000 system the nitrogen peak is measured from which the
amount of protein measured can be inferred.

Nutraceutical products

The nutraceutical products according to the invention may be of any food type.
They may comprise common food ingredients in addition to the food product, such as
flavour, sugar, fruits, minerals, vitamins, stabilisers, thickeners, etc. in appropriate
amounts.

Preferably, the nutraceutical product comprises 50-200 mmol/kg K⁺ and/or 15-60
mmol/kg Ca²⁺ and/or 6-25 mmol/kg Mg²⁺ more preferably, 100-150 mmol/kg K⁺ and/or
30-50 mmol/kg Ca²⁺ and/or 10-25 mmol/kg Mg²⁺ and most preferably 110-135 mmol/kg
K⁺ and/or 35-45 mmol/kg Ca²⁺ and/or 13-20 mmol/kg Mg²⁺. These cations have a
beneficial effect of further lowering blood pressure when incorporated in the nutraceutical
products according to the invention.

Advantageously the nutraceutical product comprises one or more B-vitamins.

The B-vitamin folic acid is known to participate in the metabolism of
homecysteine, an amino acid in the human diet. For a number of years, high
homecysteine levels have been correlated to high incidence of cardiovascular disease. It
is thought that lowering homecysteine may reduce the risk of cardiovascular disease.

Vitamins B6 and B12 are known to interfere with the biosynthesis of purine and
thiamine, to participate in the synthesis of the methyl group in the process of
homocysteine methylation for producing methionine and in several growth processes. Vitamin B6 (pyridoxine hydrochloride) is a known vitamin supplement. Vitamin B12 (cyanobalamin) contributes to the health of the nervous system and is involved in the production of red blood cells. It is also known as a vitamin in food supplements.

Because of their combined positive effect on cardiovascular disease risk reduction, it is preferred that products according to the invention comprises vitamin B6 and vitamin B12 and folic acid.

The amount of the B-vitamins in the nutraceutical product may be calculated by the skilled person based daily amounts of these B-vitamins given herein: Folic acid: 200-800 µg/day, preferably 200-400 µg/day; Vitamin B6: 0.2 - 2 mg/day, preferably 0.5-1 mg/day and Vitamin B12: 0.5 – 4 µg/day, preferably 1 – 2 µg/day.

Preferably, the nutraceutical product comprises from 3 to 25 wt% sterol, more preferred from 7 to 15 wt% sterol. The advantage of the incorporation of sterol is that it will cause reduction of the level of LDL-cholesterol in human blood, which will result in reduction of cardiovascular risk.

Where reference is made to sterol this includes the saturated stanols and esterified derivatives of sterol/stanol or mixtures of any of these.

In this application where reference is made to sterolesester, this also includes their saturated derivatives, the stanol esters, and combinations of sterol- and stanol esters.

Sterols or phytosterols, also known as plant sterols or vegetable sterols can be classified in three groups, 4-desmethylsterols, 4-monomethylsterols and 4,4'-dimethylsterols. In oils they mainly exist as free sterols and sterol esters of fatty acids although sterol glucosides and acetylated sterol glucosides are also present. There are three major phytosterols namely beta-sitosterol, stigmastanol and campesterol.

Schematic drawings of the components meant are as given in "Influence of Processing on Sterols of Edible Vegetable Oils", S.P. Kochhar; Prog. Lipid Res. 22: pp. 161-188.

The respective 5 alpha- saturated derivatives such as sitostanol, campestanol and ergostanol and their derivatives are in this specification referred to as stanols.

Preferably the (optionally esterified) sterol or stanol is selected from the group comprising fatty acid ester of ß-sitosterol, ß-sitostanol, campesterol, campestanol, stigmastanol, brassicasterol, brassicacastanol or a mixture thereof.
The sterols or stanols are optionally at least partly esterified with a fatty acid. Preferably the sterols or stanols are esterified with one or more C_{2-22} fatty acids. For the purpose of the invention the term C_{2-22} fatty acid refers to any molecule comprising a C_{2-22} main chain and at least one acid group. Although not preferred within the present context the C_{2-22} main chain may be partially substituted or side chains may be present. Preferably, however the C_{2-22} fatty acids are linear molecules comprising one or two acid group(s) as end group(s). Most preferred are linear C_{6-22} fatty acids as these occur in natural oils.

Suitable examples of any such fatty acids are acetic acid, propionic acid, butyric acid, caproic acid, caprylic acid, capric acid. Other suitable acids are for example citric acid, lactic acid, oxalic acid and maleic acid. Most preferred are myristic acid, lauric acid, palmitic acid, stearic acid, arachidic acid, behenic acid, oleic acid, cetoleic acid, erucic acid, elaidic acid, linoleic acid and linolenic acid.

When desired a mixture of fatty acids may be used for esterification of the sterols or stanols. For example, it is possible to use a naturally occurring fat or oil as a source of the fatty acid and to carry out the esterification via an interesterification reaction.

The above described nutraceutical ingredients, contributing to increasing cardiovascular health, K+, Ca2+ and Mg2+, B-vitamins (folic acid, B6, B12) and sterols are herein collectively referred to as heart health ingredients.

Example 1
The enzyme as obtained from *A. niger* represents a new class of proline specific enzymes.

From the entire coding sequence of the *A. niger* derived proline specific endoprotease as provided in WO 02/45524 a protein sequence of 526 amino acids can be determined. The novelty of the enzyme was confirmed by BLAST searches of databases such as SwissProt, PIR and trEMBL. To our surprise, no clear homology could be detected between the *A. niger* enzyme and the known prolyl oligopeptidases. Closer inspection of the amino acid sequence, however, revealed low but significant homology to Pro-X carboxypeptidases (EC3.4.16.2), dipeptidyl aminopeptidases I (EC3.4.14.2), and thymus specific serine protease. All of these enzymes have been
assigned to family S28 of clan SC of serine peptidases (Handbook of Proteolytic Enzymes; Barrett A. J.; Rawlings N.D.; Woessner J.F., Eds.; Academic Press, London, UK, 1998, 369-415). Also the GxSYxG configuration around the active site serine is conserved between these enzymes and the A. niger derived endopeptidase. Additionally, members of family S28 have an acidic pH optimum, have specificity for cleaving at the carboxy-terminal side of proline residues and are synthesized with a signal sequence and propeptide just like the A. niger derived proline specific endopeptidase. Also the size of the A. niger enzyme is similar to those the members of family S28. Therefore, the A. niger proline specific endopeptidase appears to be a member of family S28 of serine proteases rather than the S9 family into which most cytosolic prolyl oligopeptidases including the enzyme obtained from Flavobacterium meningosepticum have been grouped. On the basis of these structural and physiological features we have concluded that the A. niger enzyme belongs to the S28 rather than the S9 family of clan SC of serine proteases. An additional feature that discriminates the A. niger derived enzyme from the prolyl oligopeptidases belonging to the S9 family is the fact that, unlike the cytosolic prolyl endopeptidases belonging to the latter family, the newly identified A. niger enzyme is secreted into the growth medium.

Example 2

The pH and temperature optima of the proline specific endopeptidase as obtained from A. niger.

To establish the pH optimum of the A. niger derived proline specific endopeptidase, buffers with different pH values were prepared. Buffers of pH 4.0 – 4.5 – 4.8 – 5.0 – 5.5 and 6.0 were made using 0.05 mol/l Na-acetate and 0.02 M CaCl2; buffers of pH 7.0 and 8.0 were made using 0.05 M Tris/HCl buffers containing 0.02 M CaCl2. The pH values were adjusted using acetic acid and HCl respectively. The chromogenic synthetic peptide Z-Gly-Pro-pNA was used as the substrate. The “pNA” (p-Nitroanilide) substrates cause color changes if the X-pNA peptide bond is cleaved. The buffer solution, the substrate solution and the prolyl endopeptidase pre-dilution (in an activity of 0.1 U/mL), were heated to exactly 37.0°C in a waterbath. After mixing the reaction was followed spectrophotometrically at 405 nm at 37.0°C for 3.5 min, measuring every 0.5 min. From
the results shown in Figure 1 it is clear that the *A. niger* derived proline specific endoprotease has a pH optimum around 4.

Also the temperature optimum of the prolyl endoprotease was established. To that end the purified enzyme preparation was incubated in 0.1 mol/l Na-acetate containing 0.02 mol/l CaCl2 at pH 5.0 for 2 hours at different temperatures using Caseine Resorufine (Roche Diagnostics, Almere, The Netherlands) as the substrate and enzyme activity was quantified by measuring at 574 nm. According to the results obtained the proline specific endoprotease from *A. niger* has a temperature optimum around 50 degrees C.

Example 3

The specificity of the *A. niger* derived proline specific endoprotease.

Crude as well as chromatographically purified enzyme samples as obtained from an *A. niger* strain containing multiple copies of the expression cassette (cf WO 02/45524) were tested against a collection of chromogenic peptide substrates to establish the specificity of the encoded endoprotease. The endoproteolytic activity of the enzyme was tested on an AAXpNA substrates in which "X" represents different natural amino acid residues.

Stock solutions of AAX-pNA-substrates (150 mmol/l) were diluted 100X in 0.1M acetate buffer pH 4.0 containing 20 CaCl2. The 10 minutes kinetic measurements at 40 degrees C in a TECAN Genios MTP Reader (Salzburg, Vienna) at 405nm recorded the increases in optical density. The data generated were further processed in Excel to yield the picture shown in Figure 2. From the result it is clear that the *A. niger* derived endoprotease is highly specific for prolyl peptide bonds with a side activity towards alanyl bonds. Crude and chromatographically purified preparations showed similar activity profiles.

Example 4

The *A. niger* derived proline specific endoprotease can hydrolyse large proteins as well as small peptides and is thus a true endoprotease.

Owing to a specific structural feature, prolyl oligopeptidases belonging to the S9 family of clan SC of serine proteases cannot digest peptides larger than 30 amino acids.
This limitation is an obvious disadvantage for an enzyme that should hydrolyse as quickly and as efficiently as possible different proteins. To see if the *A. niger* derived proline specific endoprotease exhibits the same limitations with respect to the size of the substrate molecule, we have incubated the chromatographically purified prolyl endopeptidase from *A. niger* with a small synthetic peptide and with the large ovalbumine molecule to study the degradation kinetics of these substrate molecules.

The synthetic peptide used was a 27-mer of the sequence NH2-FRASDNRVIDPGKVEYLTIRRLHIPR-COOH and was a gift of the Pepscan company (Lelystad, The Netherlands). As shown by its amino acid sequence, this peptide contains 2 proline residues, one in the middle and one at the very end of the peptide.

The intact ovalbumine molecule used (Pierce Imject, vials containing 20mg freeze dried material), consists of 385 amino acids with a molecular weight of 42 750 Da. This molecule contains 14 proline residues, one of which is located at the ultimate C-terminal end of the molecule and cannot be cleaved by a proline specific endopeptidase.

Ovalbumin and the oligopeptide were separately incubated at 50°C with the purified *A. niger* derived proline specific endopeptidase. At several time intervals samples were taken which were the analysed using SDS-PAGE.

A chromatographically purified *A. niger* derived proline specific endopeptidase with an activity of 4.5 units/ml was diluted 100-fold with 0.1 M acetate buffer pH 4 containing 20mM CaCl2. The ovalbumine was dissolved in acetate buffer pH 4 to a concentration of 1 mg/ml (22μM). The 27-mer was dissolved in the same buffer to reach a concentration of 0.48 mg/ml (152μM). The molarity of the ovalbumine and the 27-mer solution was chosen in such a way that both solutions contained the same molarity in cleavable proline residues. Ovalbumine contains 13 potential proline cleavage sites, whereas the 27-mer peptide has only two. Of both substrate solutions 0.5 ml was incubated with 10μl (0.45milliU) of the enzyme solution in an Eppendorf thermomixer at 50°C. At several time intervals 10μl samples were withdrawn from the incubation mixture and kept at 20°C until SDS-PAGE. All materials used for SDS-PAGE and staining were purchased from Invitrogen (Breda, The Netherlands). Samples were prepared using LDS buffer according to manufacturers instructions and separated on 12% Bis-Tris gels using MES-SDS buffer system according to manufacturers instructions. Staining was performed using Simply Blue Safe Stain (Colloidal Coomassie G250).
As can be seen in Figure 3 ovalbumine is cleaved by the *Aspergillus* derived enzyme into a discrete band of about 35 to 36kD in the first 4.75 hours of incubation (lane 3). Prolonged incubation periods result in further breakdown to smaller products of various molecular weights (lane 7).

Also the incubation with the 27-mer peptide and the enzyme results in a rapid degradation as can be judged from the somewhat fainter and more fuzzy bands in lanes 4, 6 and 8. As the 27-mer peptide is broken down with the same pace as the much larger ovalbumine molecule, it can be concluded that, unlike the known prolyl oligopeptidases belonging to the S9 family, the *A. niger* derived proline specific endoprotease has no specific preference for cleaving small sized peptides over much larger proteins. This observation demonstrates that the *A. niger* derived enzyme represents a true endoprotease and a preferred enzyme to hydrolyse different types of proteins. This finding led to the surprising use of the enzyme as illustrated in the following Example.

Example 5

Incubating potassium caseinate with the proline specific endoprotease from *A. niger* quickly yields IPP and LPP but no VPP.

In this experiment the overproduced and essentially pure proline specific endoprotease from *A. niger* was incubated with potassium caseinate to test the liberation of the ACE inhibiting peptides IPP, VPP as well as LPP. The endoprotease used was essentially pure meaning that no significant proteolytic activity other than the endoproteolytic activity inherent to the pure proline specific endoprotease (i.e. carboxyterminal cleavage of proline and alanine residues) is present (cf Example 7). To limit sodium intake as the result of the ingestion of ACE inhibiting peptides as much as possible, potassium caseinate was used as the substrate in this incubation.

The caseinate was suspended in water of 65 degrees C in a concentration of 10% (w/w) protein after which the pH was adjusted to 6.0 using phosphoric acid. Then the suspension was cooled to 55 degrees C and the *A. niger* derived proline specific endoprotease was added in a concentration of 4 units/gram of protein (see Materials & Methods section for unit definition). Under continuous stirring this mixture was incubated for 24 hours. No further pH adjustments were carried out during this period. Samples were taken after 1, 2, 3, 4, 8 and 24 hours of incubation. Of each sample enzyme activity
was terminated by immediate heating of the sample to 90 degrees C for 5 minutes. After cooling down the pH of each sample was quickly lowered to 4.5 using phosphoric acid after which the suspension was centrifuged for 5 minutes at 3000 rpm in a Hereaus table top centrifuge. The completely clear supernatant was used for LC/MS/MS analysis to quantify the peptides VPP, IPP, LPP, VVPPP and VVVPPP in the supernatant (see Materials & Methods section).

Bovine milk casein incorporates a number of different proteins including beta-casein and kappa-casein. According to the known amino sequences beta-casein encompasses the ACE inhibitory tripeptides IPP, VPP and LPP. In beta-casein IPP is contained in the sequence −P\textsubscript{71}−Q\textsubscript{72}−N\textsubscript{73}−Y\textsubscript{74}−P\textsubscript{75}−P\textsubscript{76}−, VPP is contained in the sequence −P\textsubscript{81}−V\textsubscript{82}−V\textsubscript{83}−V\textsubscript{84}−P\textsubscript{85}−P\textsubscript{86}− and LPP is contained in the sequence −P\textsubscript{150}−L\textsubscript{151}−P\textsubscript{152}−P\textsubscript{153}−. Kappa-casein, which is present in acid precipitated caseinate preparations in a molar concentration of almost 50% of the beta-casein concentration, encompasses IPP only. In kappa-casein IPP is contained in the sequence −A\textsubscript{107}−l\textsubscript{108}−P\textsubscript{109}−P\textsubscript{110}−. The other protein constituents of casein do not contain either IPP, VPP or LPP.

Tables 1 and 2 show the concentrations of the peptides present in the acidified and centrifuged supernatants and quantitated by LC/MS/MS. In these Tables the concentrations of the various peptides are presented calculated per gram of potassium caseinate added to the incubation mixture. As shown in Table 1, IPP reaches its maximal concentration after 1 hour of incubation. Beyond that the IPP concentration does not increase any further. The formation of the pentapeptide VVVPP shows the same kinetics as the generation of IPP. As theoretically expected, the molar yield of VVVPP is similar to the molar yield of the LPP peptide. The yield of both LPP and VVVPP reach almost 60% of what would be theoretically feasible. The fact that the maximum concentration of LPP is reached only after 3 hours of incubation suggests that cleavage of that particular part of the beta-caseine molecule is perhaps somewhat more difficult. In contrast with VVVPP, the hexapeptide VVVPPF is not formed at all. This observation suggests that the proline specific endoprotease efficiently cleaves the −P−F− bond hereby generating VVVPP. The tripeptide IPP is formed immediately but its molar yield is not more than about a third of the maximal molar yield of either VVVPP or LPP. As the IPP tripeptide is contained in both beta-caseine as in kappa-caseine, this outcome is unexpected. A likely explanation for this observation is that the proline specific protease can generate IPP but from the kappa-caseine moiety of the caseinates only. In view of the relevant amino acid sequence of
kappa-casein this suggests that the A_{107}^{109} peptide bond is cleaved by the alaninespecific activity of the enzyme. If true, the amount of IPP liberated reaches approximately 40% of the quantity that is present in kappa-casein, but not more than about 10% of the IPP that is theoretically present in beta plus kappa casein. This cleavage mechanism for the release of IPP also explains why VPP cannot be formed from its precursor molecule VVVPP; the required endoproteolytic (or aminopeptidase) activity is simply not present in the A. niger derived enzyme preparation used.

Table 1
Molar peptide contents of acidified supernatants calculated per gram of protein added.

<table>
<thead>
<tr>
<th>micromole/gram protein</th>
<th>IPP</th>
<th>LPP</th>
<th>VPP</th>
<th>VVVPP</th>
<th>VVVPPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-cas 1 hr</td>
<td>2.8</td>
<td>4.2</td>
<td>< 0.2</td>
<td>8.4</td>
<td>< 0.2</td>
</tr>
<tr>
<td>K-cas 2 hrs</td>
<td>2.6</td>
<td>6.1</td>
<td>< 0.2</td>
<td>9.1</td>
<td>< 0.2</td>
</tr>
<tr>
<td>K-cas 3 hrs</td>
<td>2.6</td>
<td>8.4</td>
<td>< 0.2</td>
<td>9.1</td>
<td>< 0.2</td>
</tr>
<tr>
<td>K-cas 4 hrs</td>
<td>2.3</td>
<td>8.0</td>
<td>< 0.2</td>
<td>8.3</td>
<td>< 0.2</td>
</tr>
<tr>
<td>K-cas 8 hrs</td>
<td>2.1</td>
<td>9.4</td>
<td>< 0.2</td>
<td>7.2</td>
<td>< 0.2</td>
</tr>
<tr>
<td>K-cas 24 hrs</td>
<td>2.0</td>
<td>9.5</td>
<td>0.4</td>
<td>5.5</td>
<td>< 0.2</td>
</tr>
</tbody>
</table>

Table 2
Peptide concentrations in acidified supernatants calculated in mg/g protein added.

<table>
<thead>
<tr>
<th>milligram/gram protein</th>
<th>IPP</th>
<th>LPP</th>
<th>VPP</th>
<th>VVVPP</th>
<th>VVVPPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-cas 1 hr</td>
<td>0.9</td>
<td>1.4</td>
<td>< 0.05</td>
<td>4.3</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 2 hrs</td>
<td>0.8</td>
<td>2.0</td>
<td>< 0.05</td>
<td>4.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 3 hrs</td>
<td>0.8</td>
<td>2.7</td>
<td>< 0.05</td>
<td>4.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 4 hrs</td>
<td>0.8</td>
<td>2.6</td>
<td>< 0.05</td>
<td>4.2</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 8 hrs</td>
<td>0.7</td>
<td>3.0</td>
<td>< 0.05</td>
<td>3.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 24 hrs</td>
<td>0.7</td>
<td>3.1</td>
<td>0.1</td>
<td>2.8</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>
Example 6
Incorporation of an acid casein precipitation step results in a 5-fold concentration of ACE inhibiting peptides

As described in Example 5, potassium caseinate in a concentration of 10% (w/w) protein was subjected to an incubation with the \textit{A. niger} derived proline specific endoprotease at pH 6.0. After various incubation periods samples were heated to stop further enzyme activity after which the pH was lowered to 4.5 to minimise casein solubility. Non soluble casein molecules were removed by a low speed centrifugation. In Tables 1 and 2 we have provided concentrations of ACE inhibiting peptides calculated on the basis of the starting concentration of 10% protein. However, as the result of the acidification and the subsequent centrifugation step, a large proportion of the protein added has been removed. To take these reduced protein contents of the acidified supernatants into account, nitrogen (Kjeldahl) analyses were carried out. According to the latter data the various supernatants were found to contain the following protein levels.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protein content (grams/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-cas 1 hr</td>
<td>21</td>
</tr>
<tr>
<td>K-cas 2 hrs</td>
<td>27</td>
</tr>
<tr>
<td>K-cas 3 hrs</td>
<td>30</td>
</tr>
<tr>
<td>K-cas 4 hrs</td>
<td>34</td>
</tr>
<tr>
<td>K-cas 8 hrs</td>
<td>40</td>
</tr>
<tr>
<td>K-cas 24 hrs</td>
<td>48</td>
</tr>
</tbody>
</table>
Taking these data into account, we have recalculated the concentration of the ACE inhibiting peptides present in each supernatant but this time using their actual protein contents. These recalculated data are shown in Table 4.

Table 4
Peptide concentrations in acidified supernatants calculated per gram of protein present.

<table>
<thead>
<tr>
<th>milligram/gram protein</th>
<th>VPP</th>
<th>IPP</th>
<th>LPP</th>
<th>VVVPP</th>
<th>VVVPPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-cas 1 hr</td>
<td>0.1</td>
<td>4.8</td>
<td>7.1</td>
<td>22.5</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 2 hr</td>
<td>0.1</td>
<td>3.4</td>
<td>8.0</td>
<td>18.9</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 3 hr</td>
<td>0.1</td>
<td>3.1</td>
<td>10.0</td>
<td>17.0</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 4 hr</td>
<td>0.1</td>
<td>2.4</td>
<td>8.5</td>
<td>13.7</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 8 hr</td>
<td>0.1</td>
<td>1.9</td>
<td>8.4</td>
<td>10.0</td>
<td>< 0.05</td>
</tr>
<tr>
<td>K-cas 24 hr</td>
<td>0.3</td>
<td>1.5</td>
<td>7.1</td>
<td>6.4</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Comparison of the data presented in Tables 2 and 4 clearly shows that the simple acidification step followed by an industrially feasible decantation, filtration or low speed centrifugation step results in a 5-fold increase in the concentration of the specific ACE inhibiting peptides. In later experiments it could be shown that the efficacy of the acid precipitation step was further improved by overnight storage of the acidified suspension prior to decantation, filtration or low speed centrifugation.

Example 7

The quantitation of contaminating enzyme activities in the production of ACE inhibiting peptides.

According to the present invention ACE inhibitory peptides can be obtained in a simple one-step process by incubation of a suitable protein substrate with a proline specific endoprotease. Subsequent enrichment of the water soluble ACE inhibitory peptides is accomplished by precipitating larger molecular weight protein fragments via acidification. The efficacy of the latter acid enrichment process hinges on a very selective cleavage of the substrate molecule. The more proteolytic activity is present, the more water soluble peptides are formed hereby reducing the enrichment factor of the ACE
inhibiting peptides. For example, the presence of additional, non-proline or non-alanine specific endoproteases during the incubation with the substrate leads to the solubilisation of more, non-bioactive peptides hereby diluting the relative concentrations of IPP and LPP in the final concentrate. Furthermore the presence of contaminating exoproteases such as for example carboxypeptidases or aminopeptidases results in the release of free amino acids. These extra free amino acids also dilute the relative concentrations of ACE inhibitory peptides and, moreover, impart brothy off tastes as the result of increased Maillard reactions. To minimise all these undesirable side reactions, the use of an essentially pure proline specific protease is preferred. Essentially pure meaning that the activity of contaminating endoproteases as well as contaminating exoproteases under the incubation conditions used are minimal or preferably absent. The following testing procedure was devised to quantitate such contaminating activities.

The basis for the testing procedure is formed by a collection of various selective chromogenic peptides. In all these chromogenic peptides "Z" represents benzoylcarbonyl and "pNA" the chromophore para-nitroanilide. Because only proline specific oligo- and endoproteases can release the coloured pNA from a peptide blocked at its N-terminus with a "Z" group, peptide Z-AAAP-pNA, was used to quantitate the desired proline specific endoproteolytic activity. Because many endoproteases can release pNA from peptides Z-AAAF-pNA and Z-AAAR-pNA, these two peptides were used to quantitate contaminating, non-proline specific endoproteolytic activity. Because the conversion of peptides QNIIP and VVVPP into IPP and VPP respectively require aminopeptidases that can efficiently remove Gin(Q) and Val(V) residues, peptides Q-pNA and V-pNA were used to quantitate such contaminating aminopeptidase activities. Because many carboxypeptidases can release Phe(F) and Arg(R) residues from peptides, peptides containing these residues were selected to quantitate contaminating carboxypeptidase activities. However, no suitable chromogenic groups are available for measuring carboxypeptidase activities so that an alternative method using the synthetic peptides Z-AF and Z-AR had to be developed. This alternative method is provided underneath.

All chromogenic peptides were obtained from Pepscan (Lelystad, The Netherlands). Peptides Z-AF and Z-AR were purchased from Bachem (Switzerland). All incubations were carried out at 40°C. To illustrate the method, the commercially available enzyme preparations Flavourzyme 1000L. (Batch HPN00218 as obtained from
Novozymes (Denmark), Sumizyme FP from Shin Nihon (Japan) and Corolase LAP (Ch.: 4123) from AB Enzymes (UK) were tested and compared with the proline specific endoprotease from A. niger. The commercial enzyme preparations tested were diluted to create optimal incubation conditions but were recalculated to the concentration of the commercial product in the presentation of the final data (cf Table 5).

Measuring Contaminating Aminopeptidase activities
Stock solutions of 150mmol/l of V-pNA and Q-pNA in 100% DMSO were diluted 80 times in 0.1 M BisTris buffer pH 6 to make a 3.75 mmol/l V-pNA+ Q-pNA-substrate solution containing V-pNA and Q-pNA in a 1:1 ratio. A 200 µl aliquot of this aminopeptidase substrate solution was pipetted into separate wells of a microtiterplate (MTP) The MTP is pre-incubated at 40°C in a Tecan Genios MTP (Salzburg, Vienna) running under Magellan4 software. The reaction was started by adding 50 µl of the appropriate enzyme solution so that the incubations took place at a substrate concentration of 3mM. Typically a 1:50 dilution of the liquid enzyme samples Flavourzyme, Corolase LAP and proline-specific endo-protease was used. Of the dry Sumizyme FP product a 1% solution was used.
The yellow color as measured at 405nm by the Tecan Genios MTP developing as the result of cleavage of the amino acid-pNA bond was followed for at least 20 kinetic cycles (about 10 minutes). The software generated the data obtained as OD_{405} /min.

Measuring Proline Specific Endoprotease activity.
This measurement was carried out essentially the same as the aminopeptidase assay but in this case Z-AAAP-pNA was used as the only substrate in a final concentration of 3mmol/l. This substrate was solubilized by heating a suspension in pH 6 buffer to 50-55°C resulting in a clear solution at room temperature. Measurements were carried out at 40°C.
Typically a 1:50 dilution of the liquid enzyme samples Flavourzyme and Corolase LAP were used. Sumizyme FP was used in a 1% solution. The proline specific endo-protease was typically used in a 1:5000 dilution.
The software generated the data as OD_{405}/min.

Measuring Contaminating Non-Proline Specific Endoprotease activities.
Also this measurement was carried out essentially the same as described for the aminopeptidase assay but in this test Z-AAAF-pNA and Z-AAAR-pNA in a 1:1 ratio and in a final concentration of 3mmol/l were used as the substrate. The substrate Z-AAAF-pNA turned out to be poorly soluble under the pH 6.0 test conditions used but a test incubation with subtilisin resulted in a rapid solubilisation of the substrate concomitantly with the pNA release. Measurements were carried out at 40°C. However, to compensate for this poor solubility the MTP reader was programmed to shake in between the kinetic cycles. Again the software generated the data as OD₄₁₀/min.

Measuring Contaminating Carboxypeptidase activities
Because no sensitive chromogenic peptides are available to measure carboxypeptidase activities, a method was used based on a Boehringer protocol for quantitating Carboxypeptidase C.

Two 150mmol/l stock solutions in ethanol of Z-A-F and Z-A-R were diluted 80 times in 0.1 mol/l BisTris buffer pH 6 to make a 3.75 mmol/l Z-A-F + Z-A-R substrate solution containing Z-A-F and Z-A-R in a 1:1 ratio. Then 200 µl of the substrate solution was pipetted into an eppendorf vial and pre-incubated at 40°C. The reaction was started by adding 50 µl of an appropriate enzyme dilution. Typically a 1:50 dilution is used of Flavourzyme and Corolase LAP and the proline specific endoprotease. A 1% solution was used for Sumizym FP. After 5 minutes the reaction was stopped by adding 250 µl of ninhydrine reagent. Ninhydrine reagent was made of 400mg ninhydrine (Merck) and 60 mg hydridantin dissolved 15 ml DMSO, to which 5 ml of 4.0 mol/l lithium acetate buffer pH 5.2 was added. The 4.0 mol/l lithium acetate buffer was made by dissolving LiOH (Sigma) after which the pH of the solution was adjusted to pH 5.2 using glacial acetic acid (Merck).

After stopping the reaction, each sample was heated for 15 minutes at 95°C to facilitate the color formation and subsequently diluted 10 times with pure ethanol. The color formed was measured at 578nm in an Uvikon spectrophotometer. Blanks were made in the same manner as the activity samples, but ninhydrin reagent and enzyme addition were reversed. To quantitate the amount of free amino acids generated by the carboxypeptidase activity, the amino acid L-phenylalanine was used to create a calibration curve. Solutions in buffer pH 6 containing 0.1875, 0.375, 0.75, 1.5 and 3.0 mmol/l of L-phenylalanine (Sigma) were treated in the same manner as the samples, i.e.
250µl in a vial. From the OD578 values obtained, a curve was constructed in Excel. The concentrations of the free amino acids present in the samples containing the Z-A-F and Z-A-R substrates were calculated using this curve. From the values obtained the carboxy-peptidase activity was calculated in micromoles per minute per the amount of enzyme tested.

Calculation of activity ratios

To establish the suitability of various enzyme preparations for the process according to the invention, quotients of the relevant enzyme activities were calculated. In the MTP reader based assays, enzyme activities were characterised by pNA release over time i.e. as ∆OD 405/min. Quotients of enzyme activities obtained by the MTP reader were calculated by simply dividing the ∆OD/min values obtained for identical quantities of enzyme.

However in case of the carboxy-peptidase assay, an OD is generated that cannot be compared directly to the ∆OD/min generated by the MTP-pNA based assays. Here the OD measured was first converted to µmol amino acid released per min (µmol/min). Then the ∆OD/min of pNA released was converted into µmol/min. To that end a calibration curve was generated in the MTP reader in which dilutions of pure pNA (Sigma) 0.25, 0.125, 0.0625, 0.0312 and 0.015 mmol/l and 250µl per well were measured. From the data obtained a calibration curve was constructed in Excel. From this calibration curve the ∆OD/min was converted into µmol/min so that the pNA based measurements could be compared with the ninhydrin based measurements.

On the basis of the data generated in the above-mentioned tests, the various enzyme preparations used were characterised in terms of desirable proline specific and contaminating endoprotease, aminopeptidase and carboxypeptidase activities. The desirable proline specific activities present in each enzyme preparation are shown in Table 5 in the column "Prol Spec Activity". The data on the contaminating aminopeptidase activities (AP/Prol Spec Act) and the contaminating carboxypeptidase (CPD/Prol Spec Act) and endoproteolytic activities (Endo/Prol Spec Act) are shown relative to the proline specific activities present. The contaminating aminopeptidase activity relative to the contaminating carboxypeptidase activity as present in each preparation is shown as (AP/CPD).
Evident is that none of the commercial enzyme preparations tested contains any significant proline specific oligo- or endoproteolytic activity. Furthermore all commercial enzyme preparations tested contain contaminating endo- and exoproteolytic activities.

Table 5: Quantification of contaminating proteolytic activities in various enzyme preparations.

<table>
<thead>
<tr>
<th></th>
<th>Prol Spec Activity*</th>
<th>CPD/ Prol spec act</th>
<th>AP/ Prol spec act</th>
<th>Endo/ Prol spec act</th>
<th>AP/ CPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumizyme FP</td>
<td>0.004</td>
<td>21.7</td>
<td>1.2</td>
<td>1.7</td>
<td>0.06</td>
</tr>
<tr>
<td>Flavourzyme</td>
<td>0.0007</td>
<td>253.5</td>
<td>25.6</td>
<td>35.5</td>
<td>0.10</td>
</tr>
<tr>
<td>Corolase LAP</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td>Prol spec A. niger</td>
<td>100</td>
<td>0.005</td>
<td>0.00001</td>
<td>0.000004</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* Sumizyme was measured in a 1% solution, Flavourzyme and Corolase as a 1:50 dilution. Prol specific activity as obtained from A. niger was measured as 1:5000 dilution. Data were then calculated to the activity present in the product as provided.

A. Pharmaceutical compositions may be prepared by conventional formulation procedures using the ingredients specified below:

Example 8

Soft gelatin capsule

Soft gelatin capsules are prepared by conventional procedures using ingredients specified below:

- Active ingredients: protein hydrolysates 0.3 g
- Other ingredients: glycerol, water, gelatin, vegetable oil

Example 9

Hard gelatin capsule

Hard gelatin capsules are prepared by conventional procedures using ingredients specified below:

- Active ingredients: protein hydrolysates 0.7 g
Other ingredients:

Fillers: lactose or cellulose or cellulose derivatives q.s

Lubricant: magnesium stearate if necessary (0.5%)

Example 10

Tablet

Tablets are prepared by conventional procedures using ingredients specified below:

Active ingredients: protein hydrolysates 0.3g, unhydrolysed protein 0.4 g

Other ingredients: microcrystalline cellulose, silicone dioxide (SiO2), magnesium stearate, crosscarmellose sodium.

B. Food items may be prepared by conventional procedures using ingredients specified below:

Example 11

Soft Drink with 30% juice

Typical serving: 240 ml

Active ingredients:

Protein hydrolysates and maltodextrin as a carbohydrate source are incorporated in this food item:

Protein hydrolysates: 1.5-15 g/ per serving

Maltodextrin: 3-30 g/ per serving

I. A Soft Drink Compound is prepared from the following ingredients:

Juice concentrates and water soluble flavors

1.1 Orange concentrate

60.3 °Brix, 5.15% acidity

657.99
Lemon concentrate
43.5 °Brix, 32.7% acidity 95.96
Orange flavor, water soluble 13.43
Apricot flavor, water soluble 6.71
Water 26.46

1.2 Color
β-Carotene 10% CWS 0.89
Water 67.65

1.3 Acid and Antioxidant
Ascorbic acid 4.11
Citric acid anhydrous 0.69
Water 43.18

1.4 Stabilizers
Pectin 0.20
Sodium benzoate 2.74
Water 65.60

1.5 Oil soluble flavors
Orange flavor, oil soluble 0.34
Orange oil distilled 0.34

1.6 Active ingredients
Active ingredients (this means the active ingredient mentioned above: protein hydrolysates and maltodextrin in the concentrations mentioned above.

Fruit juice concentrates and water soluble flavors are mixed without incorporation of air. The color is dissolved in deionized water. Ascorbic acid and citric acid is dissolved in water. Sodium benzoate is dissolved in water. The pectin is added under stirring and dissolved while boiling. The solution is cooled down. Orange oil and oil soluble flavors are premixed. The active ingredients as mentioned under 1.6 are dry mixed and then stirred preferably into the fruit juice concentrate mixture (1:1).

In order to prepare the soft drink compound all parts 3.1.1 to 3.1.6 are mixed together before homogenizing using a Turrax and then a high-pressure homogenizer (p1 = 200 bar, p2 = 50 bar).

II. A Bottling Syrup is prepared from the following ingredients:

<table>
<thead>
<tr>
<th>[g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softdrink compound</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Sugar syrup 60° Brix</td>
</tr>
</tbody>
</table>

The ingredients of the bottling syrup are mixed together. The bottling syrup is diluted with water to 1 l of ready to drink beverage.

Variations:

Instead of using sodium benzoate, the beverage may be pasteurized. The beverage may also be carbonized.

Example 12

The aminopeptidolytic activity of different commercial enzyme preparations.

In beta-casein IPP is contained in the sequence \(\text{P}_{71}\text{Q}_{72}\text{N}_{73}\text{H}_{74}\text{P}_{75}\text{P}_{76} \), VPP is contained in the sequence \(\text{P}_{81}\text{V}_{82}\text{V}_{83}\text{V}_{84}\text{P}_{85}\text{P}_{86} \) and LPP is contained in the sequence \(\text{P}_{150}\text{L}_{151}\text{P}_{152}\text{P}_{153} \). Of the other protein constituents of casein only kappa-casein incorporates an IPP containing sequence. From the specificity of the proline specific endoprotease it can be inferred that upon incubating beta-casein with the *A. niger* derived enzyme the peptides \(\text{Q}_{72}\text{N}_{73}\text{H}_{74}\text{P}_{75}\text{P}_{76} \), \(\text{V}_{82}\text{V}_{83}\text{V}_{84}\text{P}_{85}\text{P}_{86} \) and \(\text{L}_{151}\text{P}_{152}\text{P}_{153} \) will be formed. In contrast with LPP, the two pentapeptides formed exhibit low ACE inhibiting activities only. For example EP 0 583 074 reports an IC\(_{50}\) value for VVWPP of 873 micromol/l whereas the truncated VPP molecule has an IC\(_{50}\) value of 9 micromol/l.
So it is obvious that for generating the full ACE inhibiting potential of a casein hydrolysate, the pentapeptides VVPP and QNIIP that are formed upon incubation with the proline specific endoprotease have to be transformed into the tripeptides VPP and IPP respectively. As aminopeptidases can sequentially remove amino acids from the N-terminal side of peptides, an aminopeptidolytic enzyme activity is required that can efficiently liberate the two valine ("V") residues preceding the VPP sequence and the glutamine ("Q") and asparagine ("N") residues that precede the IPP sequence. Because the X-P and P-P peptide bonds present in XPP tripeptides are known to resist enzymatic cleavage, it is likely that such an aminopeptidolytic activity will transform the two pentapeptides into the desired VPP and IPP tripeptides.

Three commercial enzyme preparations were tested for their aminopeptidolytic activities i.e.: Flavourzyme 1000L. Batch HPN00218 (Novozymes, Denmark), Sumizyme FP (Shin Nihon, Japan) and Corolase LAP Ch.: 4123 (AB Enzymes, UK). Both Flavourzyme and Sumizyme FP are known to be complex enzyme preparations that contain several aminopeptidolytic enzyme activities besides non-specified endoproteolytic and carboxypeptidase activities. Corolase LAP represents a relatively pure, cloned and overexpressed leucine aminopeptidase activity from Aspergillus.

The aminopeptidolytic activities present in these three commercial preparations were tested using the chromogenic substrates F-pNA (reference), Q-pNA and V-pNA. To that end a stock solution of 150mM X-pNA in DMSO was diluted 100x in Bis-Tris buffer pH 6. A microtiterplate was filled with 200 μl buffered substrate solution per well and pre-incubated at 40°C in a Tecan Genios MTP reader, controlled by Magellan 4 software. The reaction was started by adding 50μl of the appropriate enzyme solution (the Sumizyme FP powder was dissolved in Bis-Tris buffer pH 6 in a concentration of 100 mg/ml prior to use). Liberation of the yellow pNA is followed at 405 nm for 10 minutes. The software calculates the OD/min. The activity of each enzyme preparation towards the various substrates was standardised relative to their activity towards F-pNA. The data obtained are shown in Figure 4. Evidently all three enzyme preparations display the highest activity towards FpNA but QpNA and VpNA form substrates for these enzymes as well. These results indicate that if combined with a proline specific protease each one of the commercial preparations should be capable of forming the desired ACE inhibiting tripeptides IPP, VPP as well as LPP because the activity of the aminopeptidase will convert the peptides QNIIP and VVPP formed by the proline specific protease into IPP.
and VPP respectively. This hypothesis was tested in an experiment described in Example 13.

Example 13

*Incubating caseinate with the proline specific endoprotease from *A. niger* together with different aminopeptidolytic enzyme preparations generates high yields of IPP, LPP and VPP.*

In the present Example we investigate the effect of combining the proline specific protease from *A. niger* with an aminopeptidolytic activity in a single incubation step on the formation of various ACE inhibiting peptides. To that end a caseinate solution was prepared by dissolving 50 gram sodium caseinate into 506 grams of water of 70 degrees C to yield a solution containing 81 grams of protein /l. This solution was cooled down to 50 degrees C after which the pH was lowered to 6.0 (measured at 20°C) using phosphoric acid after which various enzyme combinations were added. To all samples (10 ml each) the proline specific protease was added to reach a concentration of 4 units per gram of protein (see the Materials & Methods section for unit definition). Sample A1 contained only this proline specific protease. Sample B1 contained the proline specific protease plus 38 microliter of a solution containing 1140 mg of the concentrated Flavourzyme liquid diluted in 5 grams of water. In sample B2 the proline specific protease was combined with 8 microliter of this Flavourzyme solution. In sample C1 the proline specific protease was combined with 100 microliter of the Corolase LAP liquid. In sample C2 the proline specific protease was combined with 10 microliter of a 10 times diluted sample of the Corolase LAP liquid. In all 5 samples incubation was allowed to proceed for 6 hours at 50 degrees C. The enzyme reactions were terminated by heating the mixture for 5 minutes to 90 degrees C. Clear supernatants obtained after centrifugation for 10 minutes in an Eppendorf centrifuge were collected and kept frozen until LC/MS/MS analysis. The data as obtained after LC/MS/MS analysis are shown in Table 5.

As demonstrated before the incubation condition of sample A1 (with just the proline specific protease present) efficiently generates LPP as well as VVVPF, but no significant quantities of VPP. The absence of peptide VVVPF illustrates that the the proline specific protease efficiently cleaves carboxyterminal of proline residues under the conditions as applied. In sample A1 the yield of IPP is roughly a third of the yield of VVVPF. However, combining the proline specific protease with either Flavourzyme
(samples B1 and B2) or with Corolase LAP (sample C1) has a clear stimulatory effect on IPP yields. In sample C2 (with a low concentration of Corolase LAP) the yield of IPP was not increased, presumably because the concentration of the aminopeptidase activity was inadequate to convert all QNIPP formed by the proline specific protease. As 1 gram of casein can theoretically yield 6.9 mg (21.1 micromol) of IPP (from the beta-casein plus the kappa-casein), the IPP levels present in samples B1 and C1 represent 70% and 55% respectively of the maximal obtainable yields. In line with our expectations the increasing aminopeptidolytic activity results in a lowering of the VVPP concentration and an increase in the VPP concentration. The fact that small quantities of the intermediate peptide VVPP are detectable in samples B2 and C2 indicates that in these samples the aminopeptidolytic activity is inadequate to fully convert the VVPP formed by the proline specific protease into VPP. As 1 gram of casein can theoretically yield 4.58 mg (14.7 micromole) of VPP, in samples B1, B2 and C1 the maximal VPP yield is reached.

In conclusion the present experiment clearly demonstrates that the combination of a proline specific protease with an suitable aminopeptidolytic activity can efficiently generate high concentrations of the ACE inhibiting peptides. This combination of a proline specific endoprotease with an aminopeptidase is best carried out after the incubation with the proline specific enzyme. Depending on the specific process requirements, the incubation with the extra enzyme can take place prior to or after the purification step using low pH conditions or a water miscible solvent. Moreover the incubation can be carried out with an aminopeptidase activity able to remove the undesired amino acid residues preceding the amino acid sequence having the ACE inhibiting effect, or it can be carried out using a suitable endoproteolytic activity. A suitable example of such an endoproteolytic activity is presented by papain (obtainable as Collupulin from DSM Food Specialties, Delft, The Netherlands) that can effectively cleave carboxyterminal of Asn (N) and Val (V) residues. If the incubation with the extra enzyme is carried out prior to the acidic or the ethanolic precipitation step, then the incubation is best carried out with a relatively pure aminopeptidase such as Corolase LAP (cf Example 7).

<p>| Table 6 |
| Peptide concentrations in supernatants calculated in mg/g protein added |</p>
<table>
<thead>
<tr>
<th>sample</th>
<th>IPP</th>
<th>LPP</th>
<th>VPP</th>
<th>VVPP</th>
<th>VVVP</th>
<th>VVVPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.0</td>
<td>3.4</td>
<td>0.1</td>
<td>< 0.05</td>
<td>4.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>B1</td>
<td>4.8</td>
<td>1.3</td>
<td>4.6</td>
<td>< 0.05</td>
<td>0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>B2</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
<td>0.7</td>
<td>0.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>C1</td>
<td>3.8</td>
<td>3.8</td>
<td>4.8</td>
<td>nd</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>C2</td>
<td>1.4</td>
<td>3.5</td>
<td>1.8</td>
<td>0.9</td>
<td>1.3</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>
CLAIMS

1. A process to produce a composition which comprises IPP from a protein whereby the weight ratio of IPP to VPP produced from the protein is at least 5:1, preferably at least 10:1 and more preferably at least 20:1, which comprises the use of an enzyme activity which has proline specific endoprotease activity or prolyl oligopeptidase activity and an enzyme activity which is capable of hydrolysing the bond at the amino terminal side of a --P-P-- sequence.

2. A process according to claim 1 wherein the enzyme activity which has proline specific endoprotease activity or prolyl oligopeptidase activity and the activity which is capable of hydrolysing the bond at the amino terminal side of a --P-P-- sequence are present in one enzyme, preferably this enzyme is a proline specific endoprotease or a prolyl oligopeptidase, more preferably this enzyme is proline specific endoprotease.

3. A process according to any one of claims 1 to 3, whereby the proline specific endoprotease is free of aminopeptidase activity and/or carboxypeptidase activity.

4. A process according to claim 1 and 2 wherein the incubation time is less than 24 hrs, preferably less than 10 and more preferably less than 4 hrs.

5. A process according to any one of the preceding claims whereby the incubation temperature is higher than 30°C, preferably higher than 40°C and more preferably higher than 50°C.

6. A process according to any one of the preceding claims wherein LPP is also produced.

7. A process according to any one of the preceding claims wherein milk protein, preferably casein is used.
8. A process according to claim 7 wherein \(-A-I-P-P-\) and/or \(-P-I-P-P-\) sequence present in the protein sequence is converted for at least 30% into the peptide IPP.

9. A process according to claim 6 wherein \(-P-L-P-P-\) and/or \(-A-L-P-P-\) sequence present in the protein sequence is converted for at least 40% into the peptide LPP.

10. A process to prepare a composition which comprises soluble peptides, preferably IPP, which process comprises altering the pH of a composition, which is produced by hydrolysis of a suitable protein source, preferably produced by the process of any one of the claims 1 to 9, to a pH whereby part of hydrolysed protein becomes insoluble and separating the insoluble part from the soluble peptides to result in the composition comprising soluble peptides.

11. A process to produce a composition comprising soluble peptides which is produced by
 - first hydrolysing a protein with a proline specific endoproteases to a DH of 5 to 30%,
 - optionally a second enzyme treatment, and
 - thereafter separating the insoluble part of the hydrolysed protein from the soluble part under selected pH conditions, preferably acid pH conditions, more preferably at pH between 3.5 and 6 and most preferably at pH between 4 and 5 to result in the composition comprising soluble peptides.

12. A composition comprising soluble peptides, whereby at least 70 wt%, preferably at least 80 wt% and most preferably at least 90 wt% of the peptides is soluble at a pH between 3.5 and 6, preferably at pH between 4 and 5 and whereby no single peptide of the soluble peptides is present in an amount of more than 40 wt% of the soluble peptides, preferably no single peptide of the soluble peptides is present in an amount of more than 30 wt% of the soluble peptides, and most preferably no single peptide of the soluble peptides is present in an amount of more than 20 wt% of the soluble peptides, and which composition is obtainable by
the process of claim 11.

13. Use of a proline specific endoprotease to produce IPP form a protein whereby at least 5 times (wt) more IPP is produced than VPP.

14. A composition, produced by hydrolysis of a protein, said composition comprises IPP whereby the weight ratio of IPP to VPP in the composition is at least 5:1, preferably at least 10:1 and more preferably at least 20:1.

15. A composition according to claim 14 which further comprises LPP.

16. A composition according to claim 14 or 15 as a nutraceutical, preferably as a medicament.

17. A composition of any one of claims 12 to 16 which is produced by a process according to any one of the claims 1 to 10.

18. The use a composition according to any one of claims 12 and 14 to 17 or a composition produced according to any one of the claims 1 to 11 as a nutraceutical, preferably a medicament, for the manufacture of a nutraceutical, preferably a medicament, for the improvement of health or the prevention and/or treatment of diseases or for the manufacture of a nutraceutical preferably a medicament for the treatment or prevention of diseases such as high blood pressure (hypertension), heart failure, pre-diabetes or diabetes, obesity, impaired glucose tolerance or stress.

19. Use of claim 18 wherein the composition is in the form of a dietary supplement, in the form of a personal care application including a topical application in the form of a lotion, gel or an emulsion or as a food, feed or pet food ingredient.

20. Use of the composition according to any one of claims 12 and 14 to 17 for the manufacture of a functional food product for prevention of obesity or for body
weight control.

21. Use of the composition according to any one of claims 12 to and 14 to 17 for the manufacture of a functional food product for the cardiovascular health maintenance.

22. Use according to claim 21 wherein the cardiovascular health maintenance comprises the inhibition of angiotensin-converting enzyme.

23. Use according to claim 21 wherein the cardiovascular health maintenance comprises the control of blood cholesterol levels.

24. Functional food product capable of providing a health benefit to the consumer thereof, said health benefit selected from the prevention of obesity, body weight control and cardiovascular health maintenance and comprising a composition according to any one of claims 12 and 14 to 17.

25. Functional food product according to claim 24 wherein the cardiovascular health maintenance benefit comprises inhibition of angiotensin-converting enzyme and/or the control of blood cholesterol levels.

26. Functional food product according to any of claims 24 or 25, comprising 50-200 mmol/kg K⁺ and/or 15-60 mmol/kg Ca²⁺ and/or 6-25 mmol/kg Mg²⁺.

27. Functional food product according to claim 26, 110-135 mmol/kg K⁺ and/or 35-45 mmol/kg Ca²⁺ and/or 13-20 mmol/kg Mg²⁺.

28. Functional food product according to any of claims 24 to 27, comprising one or more B-vitamins.

29. Functional food product according to claim 28, comprising folic acid, vitamin B6 and vitamin B12.
30. Functional food product according to any of claims 24 to 29, comprising 3 to 25 wt% sterol, more preferably from 7 to 15 wt% sterol.

31. A process to prepare a food product, beverage product or dietary supplement comprising
 (a) production of a composition which comprises IPP according to any one of claims 1-9, and
 (b) incorporation of said IPP containing composition into a food product, beverage product or dietary supplement.

32. A process according to claim 31 wherein in step a, a milk protein, preferably casein is used.

33. A process according to claim 32 wherein in step a -A-I-P-P- or -P-I-P-P-
 sequence present in the protein sequence is converted for at least 10%, more preferably at least 30% into the peptide IPP.

34. A process according to claim 32 wherein in step a -P-L-P-P- or -A-L-P-P-
 sequence present in the protein sequence is converted for at least 10%, more preferably at least 40% into the peptide LPP.

35. A process according to claim 31 also comprising step c) to purify peptides from a hydrolysed protein, preferably hydrolysed by a non-aspartic protease, more preferably by a serine protease, which hydrolysed protein is capable to precipitate under selected pH conditions, which comprises altering the pH to the pH whereby the hydrolysed protein precipitates and separating the precipitated proteins from the hydrolysed protein.

36. A process according to claim 35, wherein step c takes place after step a) and before step b).

37. A process according to claim 31, wherein the food product, beverage product or dietary supplement is selected from the group of margarines, spreads, butter,
dairy products or whey containing beverages, preferably yoghurt or milk based products such as yoghurt or milk.

38. Food product, beverage product or dietary supplement obtainable by a process according to one or more of claims 31-37.

39. Food product, beverage product or dietary supplement according to claim 38, comprising from 0.05 to 10 wt%, more preferred from 0.1 to 5 wt%, most preferred from 0.2 to 4 wt% of said IPP containing composition.

40. Food product, beverage product or dietary supplement according to claim 38 or 39, comprising per 100 grams of product 0.05 to 50 mg of IPP, more preferred from 0.1 to 40 mg, most preferred from 0.2 to 30 mg.

41. Food product, beverage product or dietary supplement according to one or more of claims 38 to 40, wherein the weight ratio of IPP to VPP is from 5 : 1 to 100 : 1, more preferred from 5 : 1 to 48 : 1.

42. Food product, beverage product or dietary supplement according to one or more of claims 38 to 41, comprising IPP and LPP, wherein the weight ratio of IPP to LPP is from 1 : 10 to 1 : 1, more preferably from 1.5 : 7.1 to 4.8 to 7.1.

43. Food product, beverage product or dietary supplement according to one or more of claims 38 to 42 for use to relief hypertension of human beings.
pH optimum proline specific endoprotease
of Aniger at 37 °C
Z-Gly-Pro-pNA

Figure 1
Specificity profile of EndoPro tested at pH 4, on AAX-pNA substrates, where X is all natural amino acids (1:300 dilution) also including AP-pNA and Z-G-P-pNA

Figure 2
Figure 4

Relative activity of three aminopeptidase containing enzyme preparations tested at pH 6 on X-pNA