19 DANMARK (10 DK/EP 2425382 T3

(12) Oversaettelse af
europeeisk patentskrift

Patent-og
Varameerkestyrebsen

(51) Int.Cl.: GO06 N 5/02(2006.01)
(45) Oversaettelsen bekendtgjort den: 2018-01-15

(80) Dato for Den Europaeiske Patentmyndigheds
bekendtgorelse om meddelelse af patentet: 2017-10-11

(86) Europeeisk ansggning nr.: 10715860.2

(86) Europeeisk indleveringsdag: 2010-04-29

(87) Den europeeiske ansggnings publiceringsdag: 2012-03-07
(86) International ansggning nr.: EP2010055850

(87) Internationalt publikationsnr.: WO2010125157

(30) Prioritet: 2009-04-30 EP 09159179

(84) Designerede stater: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC
MK MT NL NO PL PT RO SE S| SK SM TR

(73) Patenthaver: Collibra NV/SA, Oorlogskruisenlaan 116, 1120 Brussel, Belgien
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgien

(72) Opfinder: MEERSMAN, Robert Alfons, Leeuwlantstraat 83, B-2100 Deurne, Belgien
TROG, Damien, Florimond Leirensstraat 48, B-9230 Wetteren, Belgien
CHRISTIAENS, Stijn, 1262 Broadway, Apartment 5A, Brooklyn, NY 11221, USA
DE LEENHEER, Pieter Gaston Marguerite, 165 Christopher Street, Apartment 11, New York City, NY 10014,
USA
VAN DE MAELE, Felix Urbain Yolande, 265 State street, Apartment 714, Brooklyn, NY 11201, USA

(74) Fuldmaegtig i Danmark: RWS Group, Europa House, Chiltern Park, Chiltern Hill, Chalfont St Peter, Bucks SL9
9FG, Storbritannien

(54) Benzevnelse: FREMGANGSMADE OG INDRETNING TIL FORBEDRET KONSTRUKTION AF ET
ONTOLOGISYSTEM

(56) Fremdragne publikationer:
EP-A2- 1 327 941
WO-A1-2008/134588
US-A1- 2008 021 912
Chao Wang, Jie Lu, Guangquan Zhang: "An ontology data matching method for web information
integration”[Online] 24 November 2008 (2008-11-24), - 26 November 2008 (2008-11-26) pages 208-213,
XP002623219 DOI: 10.1145/1497308.1497349 Proceedings of iiWAS2008, Linz, Austria Retrieved from the
Internet: URL :http //portal.acm.org/ft_gateway.cfm?i d=1497349&type=pdf&CFID=9194914&CFTOKEN=38
600490> [retrieved on 2011-02-17]
DAMIEN TROG ET AL: "Towards Ontological Commitments with Omega-RIDL Markup Language™ ADVANCES
IN RULE INTERCHANGE AND APPLICATIONS [LECTURE NOTES IN COMPUTER SCIENCE], vol. 4824, 25
October 2007 (2007-10-25), pages 92-106, XP019082155 SPRINGER BERLIN HEIDELBERG, BERLIN,

Fortsaettes ...

DK/EP 2425382 T3

HEIDELBERG

Qian Zhong; Juanzi Li; Jie Tang; Yi Li; Lizhu Zhou: "Path Similarity Based Directory Ontology
Matching"[Online] 20 July 2008 (2008-07-20), XP002623217 DOI: 10.1109/WAIM.2008.77 The Ninth International
Conference on Web-Age Information Management Retrieved from the Internet:
URL:http:/ieeexplore.ieee.org/stamp/stamp .jsp?tp=&arnumber=4596992> [retrieved on 2011-02-17]

Yan Tang; Gang Zhao; De Baer, P.; Meersman, R.: "Towards freely and correctly adjusted Dijkstra’s algorithm
with semantic decision tables for ontology based data matching"[Online] 26 February 2010 (2010-02-26), pages
345-348, XP002623218 DOI: 10.1109/ICCAE.2010.5451937 The 2nd International Conference on Computer and
Automation Engineering (ICCAE) 2010 Retrieved from the Internet: URL:http J/ieeexplore.ieee.org/stamp/stamp
.jsp?tp=&arnumber=5451937> [retrieved on 2011-02-17]

YAN TANG ET AL: "On Constructing, Grouping and Using Topical Ontology for Semantic Matching" 1
November 2009 (2009-11-01), ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2009 WORKSHOPS,
SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 816 - 825 , XP019133708 ISBN: 978-3-642-
05289-7 page 816 - page 824

Tang, Yan; Meersman, Robert; Ciuciu, loana-Georgiana; Leenarts, Ellen; Pudney, Kevin: "Towards Evaluating
Ontology Based Data Matching Strategies, Matching Strategies, Evaluation Methodology and Results”[Online]
19 May 2010 (2010-05-19), XP002623216 DOI: 10.1109/RCIS.2010.5507373 Fourth International Conference on
Research Challenges in Information Science (RCIS), 2010 Retrieved from the Internet:
URL:httpz//ieeexplore.ieee.org/stamp/stamp .jsp?arnumber=05507373> [retrieved on 2011-03-17]

MELNIK S ET AL: "Similarity flooding: a versatile graph matching algorithm and its application to schema
matching”, PROCEEDINGS 18TH. INTERNATIONAL CONFERENCE ON DATA ENGINEERING. (ICDE'2002). SAN
JOSE, CA, FEB. 26 - MARCH 1, 2002; [INTERNATIONAL CONFERENCE ON DATA ENGINEERING. (ICDE)], LOS
ALAMITOS, CA : IEEE COMP. SOC, US, vol. CONF. 18, 26 February 2002 (2002-02-26), pages 117-128,
XP010588204, DOI: 10.1109/ICDE.2002.994702 ISBN: 978-0-7695-1531-1

DK/EP 2425382 T3

DESCRIPTION

Field of the Invention

[0001] The present invention generally relates to the field of ontology engineering. More
particularly, the present invention relates to solutions for communicating and translating
between applications of any nature, content type or language via an ontology system.

Background of the Invention

[0002] Internet and other open connectivity environments create a strong demand for sharing
the semantics of data. Ontology systems are becoming increasingly essential for nearly all
computer applications. Organizations are looking towards them as vital machine-processable
semantic resources for many application areas. An ontology is an agreed understanding (i.e.
semantics) of a certain domain, axiomatized and represented formally as logical theory in the
form of a computer-based resource. By sharing an ontology, autonomous and distributed
applications can meaningfully communicate to exchange data and thus make transactions
interoperate independently of their internal technologies.

[0003] Ontologies capture domain knowledge of a particular part of the real-world, e.g.,
knowledge about product delivery. Ontologies can be seen as a formal representation of the
knowledge by a set of concepts and the relationships between those concepts within a domain.
Ontologies must capture this knowledge independently of application requirements (e.g.
customer product delivery application vs. deliverer product delivery application). Application-
independence is the main disparity between an ontology and a classical data schema (e.g.,
EER, ORM, UML) although each captures knowledge at a conceptual level. For example,
many researchers have confused ontologies with data schemes, knowledge bases, or even
logic programs. Unlike a conceptual data schema or a "classical" knowledge base that
captures semantics for a given enterprise application, the main and fundamental advantage of
an ontology is that it captures domain knowledge highly independent of any particular
application or task. A consensus on ontological content is the main requirement in ontology
engineering, and this is what mainly distinguishes it from conceptual data modelling.

[0004] The main foundational challenge in ontology engineering is the trade-off between
ontology usability and reusability. The more an ontology is independent of application
perspectives, the less usable it will be. In contrast, the closer an ontology is to application
perspectives, the less reusable it will be.

[0005] Certain prior art systems use XML schemas as so-called ontologies. However, XML
schemas are not ontologies for the following reasons. They define a single representation
syntax for a particular problem domain but not the semantics of domain elements. They define

DK/EP 2425382 T3

the sequence and hierarchical ordering of fields in a valid document instance, but do not
specify the semantics of this ordering. For example, there is no explicit semantics of nesting
elements. They do not aim at carving out re-usable, context-independent categories of things -
e.g. whether a data element "student" refers to the human being or the role of being as
student. Quite the opposite, one can often observe that XML schema definitions tangle very
different categories in their element definitions, which hampers the reuse of respective XML
data in new contexts.

[0006] Ontology systems are typically used for querying multiple information systems. The
ontology system typically comprises a union of the elements within said information systems.
Prior art systems, as described in US2006/101073 and W02008/088721, typically describe a
system and method for data integration whereby multiple XML source schemas are queried
through a common XML target schema.

[0007] However, recent developments in open connectivity applications demand
communication between two or more information systems. Any communication between two or
more information systems occurs in some format serialized in a language such as XML. In
order to align the different formats (e.g., the format of the sending party and the format
expected by the receiving party), people responsible for the systems have to align as well, until
they reach an agreement on what to send, and how exactly it will be represented. Currently,
this problem is solved ad hoc by creating some case specific solution (e.g., an XSLT script).
However, there is absolutely no extra value or means for reusability created by taking this
approach.

[0008] Current solutions mostly consist of creating custom transformations between every
format. Point to point approaches are fast but difficult to make, manage and maintain. Hub and
spoke approaches are more efficient but more difficult to develop and maintain, and have
problems with flexibility.

[0009] Typical prior art systems, such as EP 1 260 916, model entities and the binary relations
between them. This is like speaking a two-word language. However, real world natural
language consists of sentences, linking multiple words in a semantical relationship. It is
inherent that sentences comprise more meaning.

[0010] In the paper "Towards Ontological Commitments with O-RIDL Markup Language"
(D.Trog et al., Advances in Rule Interchange and Applications, Lecture Notes in Computer
Science, pp. 92-106) a markup language (XML) representation of the Q-RIDL language is
described. The different constraints are presented in both controlled natural language and
markup language. A representation of a conceptual path is shown. It is to be noted that a
conceptual path provides the basis to compose a conceptual query. However, the paper
remains silent on how such a query can be composed or executed. The paper does not
discuss performing data format translations. Only conceptual querying is discussed, which
involves reading. Updates, which involve both reading and writing operations to perform a
translation, are not discussed.

DK/EP 2425382 T3

[0011] In "Ontology Engineering - the DOGMA approach” (M.Jarrar et al, Advances in Web
Semantics I, vol.4891, 2009-01-01, pp. 7-34) the authors describe the DOGMA ontology
approach compared with other approaches. The paper is about the motivation behind splitting
the Ontology Base (also Lexon Base) and axiomatizations (also commitments), what they dub
the Double Articulation Principle. The constructs are formalized in first order logic, with
discussion about description logics. Only a search/retrieval scenario is given as an example
without actually explaining how it would work. Again this is limited to conceptual querying.

[0012] Patent application EP1327941 A2 describes a method for transforming data from one
data schema to another by mapping the schemas into an ontology model, and deriving a
transformation. The result of the method is a unidirectional transformation script, such as
XSLT, which is processed by a pre-existing transformation engine. The patent application
describes a frame-based approach (i.e. classes having properties), where data schema
elements are mapped on properties of classes.

[0013] The paper "An Ontology Data Matching Method for Web Information Integration” (Chao
Wang et al., Proc. iiWAS2008, pp.208-213, Nov.2008) is concerned with ontology data
matching. It describes a method for measuring similarity between data instances from different
data sources representing real-world entities. The method assumes that the underlying
structure of the data sources is the same, i.e. determined by one single common ontology
schema. MELNIK S ET AL describe "Similarity flooding: a versatile graph matching algorithm
and its application to schema matching", ROCEEDINGS 18TH. INTERNATIONAL
CONFERENCE ON DATA ENGINEERING. (ICDE'2002). SAN JOSE, CA, FEB. 26 - MARCH 1,
2002.

[0014] Hence, there is a need for more natural language and re-usability in ontology
engineering and more specifically in the communication between information data systems.

Aims of the invention

[0015] The present invention aims to provide a method and device for populating a data
system used in a computer application and mapped to an ontology system. The invention
further aims to provide an efficient and flexible platform for communicating between data
systems committed or mapped to the ontology system.

Summary

[0016] The solution of the present invention adheres a fact-based approach (wherein objects
play roles with each other) that allows construction of complex paths. These paths are a form
of controlled natural language that improve readability and reduce the number of concepts
needed.

DK/EP 2425382 T3

[0017] In a first aspect the invention provides a method for populating a data system for use in
a computer application, whereby the data system has a structure addressable by at least one
application path. The method comprises the steps of:

1. a. mapping the at least one application path of the data system to at least one
conceptual path of an ontology system, said at least one conceptual path addressing a
part of the structure of the ontology system, and

2. b. populating the data system at a location addressed by the application path with data
values contained in the conceptual path.

[0018] In the proposed method some given ontology system is used. The ontology system
has a certain syntactic structure. Conceptual paths can be defined that are capable of
addressing parts of the structure of the ontology system. A data system used by a computer
application is provided with a given structure that can be addressed (or parts thereof can be
addressed) by application paths. When linking the data system to the ontology system, the
present invention proposes performing a mapping between the application paths of the data
system and the conceptual paths of the ontology system. In this invention these mappings are
interpreted in real-time by a translation engine as described in detail below. In this way,
different data structures with different representations, syntax and terminology are mapped to
a shared and agreed upon ontology, resulting in increased transparency, compliance and
reuse, as well as automated translation between disparate systems.

[0019] After the mapping step the data system is populated with data values comprised in the
conceptual path and this at a location in the data system addressed by the application path.

[0020] In a preferred embodiment the method comprises the initial step of generating the data
system. This is possible by exploiting the structure of the given ontology system.

[0021] In one embodiment the method further comprises the step of linking an additional data
system acting as a source data system to the ontology system. This is achieved by mapping at
least one application path of the additional data system to the at least one conceptual path of
the ontology system. The other data system then acts as target data system.

[0022] The ontology system is then shared, so that transformations between said data
systems can be derived, ie., between the source and the target data system. Also
transformations between more than one source data system and more than one target data
system can be envisaged. The transformations provide to read data into the ontology system
from one data system. The at least one conceptual path of the ontology system is then
populated with data values contained in the at least one application path of the additional data
system. The transformation further also provides to write said data to a data system. Said data
are written from conceptual paths of the ontology system to the (target) data system. The
present invention allows for querying as well as for updating data systems.

DK/EP 2425382 T3

[0023] In a typical embodiment the additional data system has a structure different from the
other data system. However, in a specific embodiment it is possible that their structure is the
same. In one embodiment the schemas of the data system and the additional data system
acting as source data system are the same. Using this approach a data system can be
trimmed, enriched or its contents validated. Data system trimming results in a data system that
contains only a subset of the data contained within. This can occur e.g., in a scenario where
the data system contains information about customers, orders and invoices. By trimming the
data system, a new data system can be produced that only contains the customer information.
In enrichment additional data is added. E.g., when one wants to enrich the customer data with
information from accounting, one can connect to the accounting data and add the additional
data. Validation allows checking whether the data in the data system follows the rules as they
were specified in the commitment. Since the rules are richer this offers better checks than
validation of the data schema.

[0024] The present invention provides conceptual reading and writing in any format and is as
such not limited to relational database formats or XML messages. This allows true format
translations between data systems of different formats. As already mentioned, the format
translations may be provided between more than one source data system and/or more than
one target data system. In a specific embodiment said source and target data systems are the
same data system.

[0025] In one aspect the present invention provides a data storage system for storing data
instances in the ontology system. In one embodiment said storage data system is a relational
database. Alternatively, said storage data system is memory.

[0026] At least one conceptual path may contain one or more identifiers of one or more of the
source and/or target and/or storage data systems, and the commitment layer comprises
commitments for mapping said identifiers. A first identifier of a sending party may be provided
and a second identifier of a receiving party.

[0027] At least one conceptual path may contain metadata related to messaging or translation
between the source and/or target and/or storage data systems, and the commitment layer
comprises commitments for mapping the metadata. In a particular embodiment an identifier is
provided of the parties that sent or received the metadata. The metadata may be a line
number or a message sequence and may be used for security, logging, message ordering and
message duplication.

[0028] In an embodiment at least one conceptual path contains virtual concepts having no
corresponding data value in the data system (or optionally in the source data system). Virtual
concepts add to the real-world conception and may be needed for a better conceptual
understanding.

[0029] In a further embodiment mappings onto queries may be provided. Said queries may

DK/EP 2425382 T3

comprise calculations. The queries are preloaded with the values found in the data system. If
those values cannot be found the queries are executed and calculated.

[0030] In yet a further embodiment for one or more of the mappings the instances need to be
manipulated after reading by executing a function.

[0031] In another embodiment mappings onto functions may be provided. Said functions
comprise procedural logic that performs operations on the data in the input and results in data
as output for further processing in the translation. These functions can be custom, written in
specific scripting language (e.g., Groovy). Mappings onto rules may be provided. Said rules
check if the data in the input are consistent and correct. Custom rules can be written via said
functions.

[0032] In another embodiment said ontology system provides a transformation from at least a
part of the logical representation of data in said source data system to at least a part of the
logical representation of data in said target system.

[0033] In yet a further aspect a program is provided executable on a programmable device
containing instructions, which, when executed, perform the method as set out above.

[0034] In a further aspect the invention relates to a device for populating a data system for
use in a computer application, whereby the data system has a structure addressable by at
least one application path. The device comprises means for receiving mapping information for
mapping the at least one application path of the data system to at least one conceptual path of
an ontology system, said at least one conceptual path addressing a part of the structure of the
ontology system, and means for populating the data system based on the received mapping
information.

Brief Description of the Drawings

[0035]

Fig. 1 illustrates on top a semantic pattern that could be useful to annotate the logical data
schema on the bottom of the figure.

Fig. 2 represents an overview of inputs and outputs of the translation engine.
Fig. 3 illustrates a fact-type that can be traversed in two directions, denoting two paths.
Fig. 4 shows a real-world example related to a fictive delivery of products.

Fig.5 shows two XML messages generated by two different parties, supplier and consumer,
containing the same information about the delivery of products.

Fig.6 represents a pattern for a delivery based on a real-world description of the delivery of

DK/EP 2425382 T3

products.
Fig.7 shows how a supplier's XML message may be translated to the format of a consumer.

Fig.8 shows a relational database generated from the pattern of Fig.6 for storing information
contained in the XML messages of Fig.5.

Fig.9 shows two XML examples with a different technical representation for identifiers.
Fig.10 illustrates a pattern for the example of Fig. 9.

Fig.11 illustrates an XML message comprising messaging information.

Fig.12 shows a naive pattern created from XML files comprising quantity concepts.

Fig.13 shows a pattern according to the invention comprising derived concepts.

Fig.14 illustrate two XML instances where the dates are represented in different granularity.

Fig.15 illustrates a pattern according to the invention in the most granular form comprising a
Date concept that consists out of Day, Month and Year.

Detailed Description of the Invention

[0036] Ontologies in general define shared representations for two essential and dual aspects
of semantics of a domain, i.e. a formal semantics for information allowing information
processing by a computer, and a real-world semantics allowing linking machine processable
content with meaning for humans based on consensual terminologies and natural language.

[0037] The ontology representation introduced in the present invention adopts a fact-oriented
modelling approach. In this approach facts are considered the units of communication and
hence representations are built for semantics from abstracting these observed facts into fact
types. Facts represent objects (entities or values) playing a certain role (part in relationship).
This is different from attribute-based approaches such as object-oriented modelling where the
domain is represented by abstracting data types from observed objects.

[0038] A data system is defined by the combination of an intensional and extensional part. Its
intensional definition prescribes the constraints data elements in the form of data types (e.g.,
integers, strings) and relationships between them (e.g., multiplicity). An extensional definition
prescribes which data elements belong to which data types. A data system can be annotated
by an ontology and can be regarded as an application committing to the ontology. An
application commits to an ontology system if the data system it is using, maps on the ontology
system. Such a mapping is performed by mapping application paths that address a part of the
structure of the data system. An example of a data system is a relational database. In a

DK/EP 2425382 T3

relational database an example of an application path is a particular attribute in a particular
table. The intensional part is defined by its schema. The extensional part is defined by its
population. Other examples of data systems include XML and its corresponding schema, EDI
messages, etc. The ontology system can also handle data systems for which the intentional
part is not available e.g., XML having no corresponding schema. For example, in an XML file
an application path could be an XPath.

[0039] In the proposed approach the ontology system separates the representation of domain
semantics and the annotation of the application with these semantics in three separate layers:
Lexon Base, Pattern Base, Commitment Layer.

[0040] A lexon is a quintuple that defines a plausible binary fact type within a certain context.
The quintuple is defined as {Context, Head-term, Role, Co-role, Tail-term}. The role, and its
reverse co-role, defines the conceptual relation between the head and tail term. Intuitively a
lexon may be read as: within the context, the head term may have a relation with the tail term
in which it plays a role, and conversely, in which the tail term plays a corresponding co-role.

[0041] A contextin a lexon provides a reference to one or more lexical resources and/or parts
of a lexical resource (such as documents) from which the lexon was elicited. Contexts are
important to prevent lexical ambiguity of terms within lexons, as the meaning of terms may vary
according to the context.

[0042] Lexons as such do not have a reading direction, however when constructing a path it
can be given one out of two directions by either starting with the head term or tail term.

[0043] A lexon base is defined as a set of lexons. The goal of the lexon base is to provide a
shared and evolving resource that is used to reach a common and agreed understanding
about the ontology vocabulary and is thus aimed at human understanding, associating natural
language terms. The lexon base reflects the syntactic structure of the ontology system.

[0044] A conceptual path in a lexon base is defined by a context-term pair or a finite
concatenation of lexons in that lexon base. In the latter case it also imposes a particular
reading direction. A conceptual path may be a single concept (e.g., Delivery), a lexon (e.g.,
Date of Delivery) or a grouping of different lexons (e.g., Day of Date of Date and Time of
sending Delivery). Hence, conceptual paths are capable of addressing parts of the structure of
the ontology system. Conceptual paths are used in patterns to define semantic constraints and
in commitments to define mappings.

[0045] A semantic pattern is defined by a meaningful selection of conceptual paths in a
particular lexon base plus a set of semantic constraints. Each semantic constraint has a certain
type and is expressed as a collection of sets of conceptual paths. Fig.1 illustrates a semantic
pattern in the ORM notation. It includes many different conceptual paths. E.g., from bottom
right term Last Name to the upper left term Country, we verbalise the conceptual path: Last
name part of Name identifying Person residing in Country. A pattern base is defined by a set of

DK/EP 2425382 T3

semantic patterns.

[0046] A commitment from a computer application to an ontology system is defined by a
selection of semantic patterns part of the lexon base in the ontology system, a set of semantic
constraints on these patterns and a set of mappings that map from the data system used by
the application to the ontology system. More precisely, the application paths of the data system
are mapped to conceptual paths in these patterns. The commitment layer is defined by the set
of all commitments.

[0047] Each individual commitment within the commitment layer is a representation of the
semantics of a specific data system in terms of the lexon base. Patterns can be reused across
commitments if they are selected from the same pattern base. Doing so, the ontology system
establishes semantic interoperability between data systems and applications in general (e.g.
software agents and web services).

[0048] Rules constrain and attribute specific interpretations to a selected subset of patterns
contained within the pattern base, e.g., each Person has at least one address. As such each
individual commitment rule represents the semantics of a specific application.

[0049] Application paths addressing part of the structure of the data system may be mapped
onto conceptual paths. Mappings are required to automatically create data value
transformations between a structured data system and a structured ontology system. Given a
source data system and a target data system, and their respective mappings to a shared part
of an ontology system, it is possible to automatically create data value transformations
between said source and target data systems. The transformation is automatically done by a
translation engine. The translation engine works by parsing a source and target commitment,
which contain the mappings of application paths from a data system onto conceptual paths
from an ontology system, and read data symbols from the source data system and write the
translated symbols into the target data system. Fig.2 gives an overview of inputs and outputs
of the translation engine. The engine itself is componentized into:

a parser that builds a syntax tree from a textual commitment;
a reader that takes care of querying a data system,;

« a writer that takes care of updating and creating data in a data system;
¢ a scripting engine accessible by the reader and writer.

Custom scripts can be written by users of the engine that allow modification of the runtime
behaviour without changing the engine itself. The translation engine uses a push and pull
approach depending on the kind of data system.

Push Approach

[0050] In the push approach the Reader starts reading the source data system and pushes

DK/EP 2425382 T3

the data symbols into the storage system, which are immediately taken up by the Writer and
written into the target data system. In effect the Source Data System is pushing its data into the
Target Data System. The push approach is used for tree-structured source data systems, such
as XML. In the source commitment the mappings are processed in the order that they are
listed. The first mapping is assumed to point to the root element. The mappings should be in
the following form:

map "/a" on A.

map "/a/b" on B of A.

map "/a/b/c" on C of B of A.
map "/a/d" on D of A.

The ‘map’ keyword indicates that this statement is a mapping. The left part of the mapping is
an application path expressed in a path language that can be used to address elements in the
data system (e.g., XPath). The application path is enclosed in double quotes.

[0051] The application path contains enough information to construct a query processable by
a query engine that supports the data format of the data system. The Reader sends these
queries to the appropriate query engine. For example in XML, XPaths can be processed as
queries by an xpath engine like Xalan. The same application path is also used by the Writer to
write data to the location the path addresses.

[0052] The 'on' keyword separates the left and right parts of the mapping statement. On the
right a conceptual path is written, constructed using symbols from the ontology system. Each
statement should end with a dot.

[0053] Mappings are processed in the given order. The conceptual paths are related to each
other by this order. In the above example the instance for the A concept is the same in each of
the mappings. We know this because the first element in the application path is also the same
and because it is pointing to the root element. Other non-root elements can be repeated and
the corresponding concept will be instantiated every time. For example when there are three b
elements, three corresponding B concepts are instantiated. For each of the mappings zero or
more conceptual paths can be instantiated, depending on the number of elements in the
source data system.

Following is an example XML that is valid for the above mappings. <a> <c>text</c>
 <c>text2</c> <c>text3</c> This instantiates the following paths (the
instances of concepts are between parentheses, where entities are identified by a number
prefixed with the @ symbol, and values are shown between double quotes): A(@1). B(@1) of
A(@1). B(@2) of A(@1). B(@3) of A(@1). C("text") of B(@1) of A(@1). C("text2") of B(@2) of
A(@1). C("text3") of B(@3) of A(@1). The writer uses the reverse of this process and
constructs the data for the target data system from these instantiated paths. The writer looks
up which mapping corresponds to the instantiated path and constructs the elements in the data
system.

DK/EP 2425382 T3

Pull Approach

[0054] Alternatively, a pull approach lets the Writer decide which data it needs from the
Reader. In this case, the Writer asks the Reader for each piece of data it needs. The writer is
pulling the data from the reader, which puts it in the storage, ready for the Writer to access.
The pull approach is used for graph based data systems, such as relational databases. As
opposed to the push approach, the pull approach starts with the writer requesting instantiated
paths from the reader for its mappings.

[0055] Given an ontological commitment conceptual queries are executed on any data system
that is correctly annotated by that commitment. A conceptual query is a language construction
expressed in terms of one or more conceptual paths in a commitment. Given the mappings
between conceptual paths and application paths in a commitment, the conceptual queries can
be executed as logical queries in the committing data system. This is done by translating (the
conceptual paths in) the conceptual query into a logical query in terms of the application paths
of the data system. A logical query is a query within the data system. For example, a logical
query on a relational database would be expressed in SQL.

[0056] In one embodiment ontological commitments are specified in the O-RIDL (Omega-
RIDL) controlled natural language. The language describes semantic rules in terms of
conceptual paths in which role- and co-role-labels need to be interpreted as an ontological
relationship. O-RIDL is both a conceptual query and commitment specification language.

[0057] The systems and methods of the invention may be seen as a further improvement of
the DOGMA approach for developing ontology-guided mediation of agents. DOGMA (R.
Meersman., Proc. of the International Symposium on Methodologies for Intelligent Systems
(ISMIS), p 30-45, 1999) is an ontology approach and framework that is not restricted to a
particular representation language. Embodiments of the present invention apply the DOGMA
framework for ontology based data mapping.

[0058] Fig.3 illustrates a relationship between two concepts Product and Order. Each lexon
can be traversed in two directions, denoting two paths: an Order for a Product, and a Product
having an Order.

[0059] Conceptual paths can be concatenated to form composite paths. These
concatenations can be further formalised with rules and constraints, restricting the possible use

of the concepts and relationship in the ontology.

[0060] The annotation may be expressed in Q-RIDL. Fig.1 illustrates on top a semantic
pattern that could be used to annotate the logical data schema on the bottom of the figure.

[0061] Each relevant symbolin the logical data schema instance is annotated by a meaningful

DK/EP 2425382 T3

conceptual path in the pattern. If a relevant symbol cannot be annotated by the current pattern
version, the pattern is changed in such a way that the new pattern version allows annotating
the pending symbols.

[0062] In the example above, all attributes in table People (the application paths) can be
mapped on conceptual paths in the pattern. Hence, one can read out:

» map "People.firstname" on "First Name part of Name identifying Person"
* map "People.lastname” on "Last Name part of Name identifying Person"
» map "People.city" on "City is birth place of Person"
* map "People.country” on "Country resides Person"

[0063] The example above is trivial, as the terms for the attribute symbols are intuitively
interpretable. However in real-world scenarios the meaning of the symbols in the logical
schema is usually implicit. Even in this example: although the independent meanings of the
symbols city, country and person are intuitively obvious, their inter-relation is not. Country and
City appear to be not related at all, as can also be inferred from the attribute values. On the
other hand, first name and last name appear to be related to each other indirectly via the
meronymical (part-of) relationship with name.

[0064] The above annotation system works for different types of data management
technology, including relational tables and columns, object-oriented classes, or XML tags.
Given a shared ontology, queries in one annotated logical data schema can be automatically
translated to queries in any other logical data schema that is annotated with this ontology.
Hence, this provides a universal approach to data integration. Furthermore, as the annotations
are close to natural language, the meaning of symbols in the schemas can be described and
interpreted by the layman end user.

Structural independence

[0065] The information systems of different involved parties can represent data of a real-world
situation in countless technical or logical representations. When said parties want to
communicate about this information, this leads to various forms of information mismatches.
The mismatch is caused by a structural difference. Therefore structural independence within
the ontology system is required.

[0066] Consider the following real-world example related to a fictive delivery of products, as
illustrated in Fig.4. The boxes (of product type A or B) are stacked on a number of pallets.
When the involved parties see this real-world situation they can easily form an agreement on
the meaning of this situation. For example: the pallet with ID "SSCC1" contains 1200 boxes of
type "Box A"; there are 1300 boxes of type "Box B" on pallet with ID "SSCC3"; the pallet with ID

DK/EP 2425382 T3

"SSCC1" contains a total quantity of 2700 boxes.

[0067] XML is the quasi standard for messaging between information systems. XML
(Extensible Markup Language) is a general-purpose markup language. It is classified as an
extensible language because it allows its users to define their own elements. Its primary
purpose is to facilitate the sharing of structured data across different information systems,
particularly via the Internet. Because of its tree based nature, an order is imposed. The
systems and methods of the present invention are not limited to XML for messaging between
information systems, but include any representation format, e.g., EDI, JSON, CSV.

[0068] Fig.5 shows two XML messages generated by two different parties that actually contain
the same information about the delivery of products. The XML documents, however, are in
effect two different perspectives or different technical representations of the same information.
The supplier chose the structure

delivery->product->pallet_line.

He introduced the concept "pallet_line", which does not exist in the real-world. This translates
to looking at the delivery from a product perspective. A delivery contains products and these
products are stored on pallets. The consumer chose the structure

delivery->pallet->product.

This is a pallet perspective. A delivery contains pallets and these pallets contain products.

[0069] In order to model a real-world situation independent of technical representation, the
present invention provides conceptual modelling of different structural representations of the
same information.

[0070] XML and many other data structuring formats adhere a tree-based structure which
imposes a certain order and limits its applicability. In contrast, semantic patterns in an ontology
system as in the present invention are structured as a more versatile graph, in order to be free
from an imposed order. The pattern of Fig.6 represents a delivery based on the real-world
description. Patterns may introduce (virtual) concepts missing in both structural
representations, like the Good concept that was missing in both delivery and consumer
representations. A Product is an abstract concept that is the type of the Good. The product
cannot be placed on a Pallet, but the tangible Good can. By introducing this Good no choice
needs to be made whether a delivery contains products or pallets. A Delivery contains Goods
which are stored on Pallets and are of a type of Product.

[0071] In a next step the technical XML representations need to be mapped to the above
conceptualization of the real-world.

The commitment of the consumer's XML message could be the following: map "/Delivery" on
Delivery. map "/Delivery/Pallet” on Pallet stores Good on Delivery. map
"/Delivery/Pallet/Product" on Product classifies Good on Delivery. map "/Delivery/@date" on
Date and Time of sending Delivery. map "/Delivery/Pallet/@ID" on ID identifies Pallet stores
Good on Delivery. map "/Delivery/@TotalQuantity" on count(Good on Delivery). map
"/Delivery/Pallet/@TotalQuantity" on count(Good (stored on Pallet and on Delivery)). map

DK/EP 2425382 T3

"/Delivery/Pallet/Product/@Quantity” on count(Good (of type Product and stored on Pallet and
on Delivery)). map "/Delivery/Pallet/Product/@ID" on ID identifies Product classifies Good on
Delivery. The commitment of the supplier's XML message could be the following: map
"/delivery" on Delivery. map "/delivery/product” on Product classifies Good on Delivery. map
"/delivery/product/pallet_line" on Pallet stores Good on Delivery. map
"/delivery/@delivery_date" on Date and Time of sending Delivery. map "/delivery/@total" on
count(Good on Delivery). map "/delivery/product/@product_id" on ID identifies Product
classifies Good on Delivery. map "/delivery/product/@total” on count(Good (of type Product
and on Delivery)). map "/delivery/product/pallet_line/@quantity” on count(Good (of type
Product and stored on Pallet and on Delivery)). map "/delivery/product/pallet_line/@pallet_id"
on ID identifies Pallet stores Good on Delivery.

[0072] In the commitments application paths are mapped onto conceptual paths. In this
example the application paths are XPaths for XML. The conceptual paths are expressed in the
O-RIDL language. XPath (XML Path Language) is an expression language for addressing
portions of an XML document, or for computing values (strings, numbers or boolean values)
based on the content of an XML document.

[0073] As an example and illustrated in Fig.7, consider that the supplier's XML message
needs to be translated to the format of the consumer.
The following steps are taken:

o From the pattern a relational database is generated, as shown in Fig.8, able to store all
the information contained in the XML messages. At the same time a commitment for this
database to the pattern is generated.

« The information is read from the supplier's XML message by executing the XPaths found
in the mappings of the Supplier Commitment. The instances are written to the generated
database.

* A new output XML is created and populated by the instances stored in the generated
database.

[0074] The commitment to the generated database may look as follows: map
"Delivery.IDofDelivery" on ID of Delivery. map "Delivery.DatesendingDelivery" on Date sending
Delivery. map "Product.IDofProduct” on ID of Product. map "Good.IDofGood" on ID of Good.
map "Pallet.IDofPallet” on ID of Pallet. map "
(GoodstoredonstoresPallet.IDofGoodstoredonPallet = Good.IDofGood)" on Good stored on
Pallet. map "(GoodstoredonstoresPallet.IDofPalletstoresGood = Pallet.IDofPallet)" on Pallet
stores Good. map "(Good.|IDofProductclassifiesGood = Product.IDofProduct)" on Good of type
Product. map "Good.|IDofDeliverycontainsGood = Delivery.IDofDelivery)" on Good on Delivery.
By using a relational database in between, where no order is imposed, the problem of differing
structures in the XML files is automatically solved. Optionally the instances may be stored in
any other storage means instead of in a database, e.g., in memory, or another XML file.

DK/EP 2425382 T3

[0075] Because of the undirectedness of the graph approach in the middle of the solution,
there is also no direction needed in the commitment. Whereas in a traditional approach, two
translation scripts (XSLT from source to target and another from target to source) have to be
written to obtain a two-way translation, here either translation direction can be generated.

[0076] In the example the information of both parties is represented in XML. In one
embodiment a method for translating different technical representations of the same
information is provided. In another embodiment a method is provided for translating different
formats that inherently comprise different technical representations of the same information.

[0077] In one embodiment a solution is provided for communicating between a first and a
second information system having different technical representations for the same information,
wherein said information systems are linked to an ontology system by means of commitments.
The following steps are performed :

« generating a relational database from said pattern,

¢ generating a commitment to said pattern from said database,

« reading the input message by executing the mappings (reading) in the first commitment.
The instances are written to the generated database,

» writing the output message by executing the mappings (writing) in the second
commitment using the data that was read.

[0078] It must be noted that communicating parties may be multiple, i.e. possibly more than
two. As such the methods of the present invention are not limited to two information systems,
but apply to two or more information systems. In one embodiment the information systems
may be one and the same.

[0079] In what follows specific embodiments providing structural independence are explained
by means of examples.

Example 1: Assigned identifiers

[0080] An identifier is a language-independent label, sign or token that uniquely identifies an
object within an identification scheme.

Identification is always relative, except when global identifiers are used. A product can be
identified by the combination of its assigned identifier and the identifier of the party that
assigned it. The relationship between the identifier and the party should be reflected in the
pattern and the commitments.

[0081] Consider the example where a Product has an Identifier and an Identifier is assigned
by a Party. The constraint that there can only be one ID for a product assigned by a specific

DK/EP 2425382 T3

party cannot be graphically represented, but may be specified by the following textual
constraint: Product is identified by (ID of Product) and (Party assigns 1D of Product).

[0082] Fig.9 shows two XML examples with a different technical representation for identifiers.
In Delivery_in.xml the local and external id are stored. Local means the ID that was assigned
by the receiver (i.e. Company2) and external means the ID that was assigned by the sender
(i.e. Company1). In Delivery_out.xml only the id as assigned by the sender is stored.

[0083] Fig.10 illustrates a conceptual model for this example. When mapping the identifiers in
the commitments, it is specified where the identifier came from. In the example, the
commitments for the respective XML files contain the following: Delivery_in commitment: map
["Delivery" on Delivery. map "/Delivery/Product” on Product on Delivery. map
"/Delivery/@receiver" on ID of Party receives Delivery. map "/Delivery/@sender” on ID of Party
sends Delivery. map "/Delivery/Product/@externallD" on (ID of Product on Delivery) and (ID
assigned by Party receives Delivery). map "/Delivery/Product/@locallD" on (ID of Product on
Delivery) and (ID assigned by Party sends Delivery). Delivery_out commitment: map "/Delivery"
on Delivery. map "/Delivery/Product” on Product on Delivery. map "/Delivery/@receiver" on ID
of Party receives Delivery. map /"Delivery/@sender" on ID of Party sends Delivery. map
"/Delivery/Product/@id" on (ID of Product on Delivery) and (ID assigned by Party receives
Delivery). The mappings for the product ids are extended by a path that indicates the source of
the identifier. In the case of the Delivery_in commitment we have an ID assigned by the Party
that receives the Delivery and an ID of the party that sends the Delivery for the same Product.
In Delivery_out there is only the ID assigned by the Party that receives the Delivery.

[0084] It must be noted that the technique also works if different types would be used instead
of parties playing roles. For instance, Party could be subtyped to Sender and Receiver. Then
the mappings would contain Sender instead of Party receives Delivery and Receiver instead of
Party receives Delivery.

[0085] When translating, only the direction 'in to out' can be successful. The out format does
not contain enough information because it misses the ID assigned by the Sender.

Example 2: Reality/message

[0086] Another example of structural independence is the distinction between the "real" world
and the "messaging" world. Often, a (XML) message contains additional information (such as
line numbers, message sequence, ...) next to the "real" world information. There is a variety of
reasons for this, e.g. security, logging, message ordering or avoiding duplication of messages.
Because of the entrenched work practice of also incorporating this information, the
"messaging” world mixes with the "real" world and this needs to be incorporated into the
pattern and engine.

An example of such an XML is shown in Fig.11.

DK/EP 2425382 T3

[0087] The solution is to explicitly incorporate these items into the pattern, as they have
become a necessity in the real world as well (e.g., the receiving party notifies the message has
been sent twice based on a message containing the same "MessageNo"). This can be
incorporated using a "described by/describes" role.

Example 3: "Virtual” concepts

[0088] Take the example where there are no instances of goods available, only a total count
of goods of a certain product type and on a certain pallet (e.g., 1200 as the count of goods of
Product "Box A" on Pallet "SSCC1 "). Fig.5 illustrates a supplier and consumer delivery XML.

[0089] As already described, it is essential for proper real-world semantics to model this real-
world concept, even though it is not shown in the XML instances. Also, having the concept in
there prepares the pattern for future XML instances that do have goods listed (e.g., because
very specific information on each good is also needed such as a serial number).

[0090] Referring back to the example where a virtual concept "Good" is incorporated in the
semantic pattern, and how it is used in the database, because there is no information on the
good in the XML instances, the combination of its typing Product and storing Pallet is used to
identify it.

Example 4: Preloading Queries

[0091] In one embodiment the present invention provides mappings onto queries instead of
ordinary paths.

[0092] Messages usually contain some form of derived concepts such as calculations of
quantities. Quantity can be a property of any concept and can easily lead to ambiguity and
proliferation of concepts. In again the same example XML files, as shown in Fig.5, one can see
that every concept is related with a quantity.

[0093] A naive pattern created from these XML files could look like the example presented in
Fig.12. Besides the fact that there is a proliferation of quantity, it is still quite ambiguous as well.
Does Quantity of Pallet mean the number of Pallets on the Delivery or the number of Products?
And the Quantity of Products, are they the number of types of products, or the instances of
products?

[0094] To model this right, what is being counted is modelled in the Quantity. In this example it
is always Goods that are being counted. A Product indicates the type of Good, but the Good is
what is physically on the Pallet and on the Delivery. Thus we add the Good in the way as
presented in Fig.13.

DK/EP 2425382 T3

[0095] The commitment thus contains mappings onto queries instead of ordinary paths. The
reader is referred back to the section on "Structural Independence” to see the mappings onto
count(...) and sum(...) queries. The engine preloads this query with the values found in the
source message. When performing format translation the engine looks up the values for the
mappings on the queries in the source message. If the values are not found, the query is
executed and calculated.

[0096] For example, when looking for count(Good (of type Product and stored on Pallet and
on Delivery)) the engine finds this in both commitments and it can preload the query in both
directions of the translation.

[0097] When translating from the supplier to the consumer's XML the following query is
mapped, but not preloaded: count((Good stored on Pallet) and (Good on Delivery)). This is
because it is only mapped in the consumer's commitment and there is no exact value for this
quantity in the supplier's XML. Thus the calculation will be performed by the engine as a
regular query.

Example 5: Function Overloading

[0098] Sometimes complex operations need to be performed on instances that cannot be
intuitively handled by a declarative language like Q-RIDL or XPath. Consider the two XML
instances of Fig.14 where the dates are represented in different granularity. The date in the
first message is in the most granular form, the other date is a string that needs to be parsed.
The translation should work in both ways.

[0099] The method of the present invention provides that the pattern is in the most granular
form and thus has a Date concept that consists of Day, Month and Year, as shown in Fig.15.

[0100] The following describes how to augment the Q-RIDL declarative language with
procedural, functional or object oriented scripting. In the samples javascript is used, but this is
not al limitation, other languages such as groovy, java or ruby are possible as well.

Input interception:

[0101] When reading the XML file with date as a string the value for Day, Month and Year is
intercepted by writing a function with the same name as a concept or path. When giving it the
same name as the concept it is called for mappings on any path containing this concept. When
giving the same name as the path, only paths or paths containing this path trigger the
interception. As programming languages such as javascript do not support spaces in the
function names, the spaces are substituted by underscores. The commitment for the second
XML additionally contains function declarations and mappings like the following: function

DK/EP 2425382 T3

day _of date(data) {return data.substr(0,4);} function month_of date(data) {return
data.substr(5,2);} function year_of date(data) {return data.substr(8,2);} map
"/Document/Header/@ActualDespatchDate" on Day of Date. map
"/Document/Header/@ActualDespatchDate" on Month of Date. map
"/Document/Header/@ActualDespatchDate" on Year of Date. The same XML element is
mapped three times onto the different parts of the Date. By writing the functions that intercept
the mapping, three times a different value is returned. The functions have one or more
parameters, which are bound to the values returned by the paths that are given as arguments
to the function. The Day returns the first 4 characters of the date string. The Month returns
characters 5 to 6, and Year returns 8 to 9. The binding of the method to the path or concept is
implicit by using the naming convention. When reading this XML file as input it flawlessly
translates to the output XML.

Output interception:

[0102] When writing an XML file to the format of the previous example is still problematic as it
isn't specified yet how the more granular parts should be joined to form the string. To do this
one needs to write a function that does this and map using this function. function format_date
(year, month, day, format) { var date = new Date(year, month, day); return
date.toLocaleFormat(format); } map "/Document/Header/@ActualDespatchDate" on
format_date(Day of Date, Month of Date, Year of Date, "%Y-%m-%d"). The day, month and
year of the date are listed as arguments in the format_date() method. For the translation to be
successful both ways one still requires the input interception functions as well.

[0103] It must be noted that the data structure within the examples is specified in XML, but
this may also be a database or any other data format, such as EDI, CSV or an SQL database.
The methods of the present invention may be extended to any information system and any
data format.

[0104] The systems and methods of the present invention may also apply for distributed
ontology systems.

[0105] Although the present invention has been illustrated by reference to specific
embodiments, it will be apparent to those skilled in the art that the invention is not limited to the
details of the foregoing illustrative embodiments, and that the present invention may be
embodied with various changes and modifications without departing from the scope thereof.
The present embodiments are therefore to be considered in all respects as illustrative and not
restrictive, the scope of the invention being indicated by the appended claims rather than by
the foregoing description, and all changes which come within the meaning and range of
equivalency of the claims are therefore intended to be embraced therein. In other words, it is
contemplated to cover any and all modifications, variations or equivalents that fall within the
scope of the basic underlying principles and whose essential attributes are claimed in this
patent application.

DK/EP 2425382 T3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not
form part of the European patent document. Even though great care has been taken in
compiling the references, errors or omissions cannot be excluded and the EPO disclaims all
liability in this regard.

Patent documents cited in the description

LUS20006101073A [0008]
WOLOO30887 21 A (0088}
EP1260910A [08808]

o ERP132794142 108121

Non-patent literature cited in the description

« DTROG et alTowards Ontological Commitments with Q-RIDL Markup
LanguageAdvances in Rule Interchange and Applications, Lecture Notes in Computer
Science, 92-106 (881841

* M.JARRAR et al.Ontology Engineering - the DOGMA approachAdvances in Web
Semantics |, 2009, vol. 4891, 7-34 [48113

« CHAO WANG et al.An Ontology Data Matching Method for Web Information
IntegrationProc. iiWAS2008, 2008, 208-213 [8413]

* MELNIK S et al.Similarity flooding: a versatile graph matching algorithm and its
application to schema matchingROCEEDINGS 18TH. INTERNATIONAL CONFERENCE
ON DATA ENGINEERING. (ICDE'2002), 2002, 8813}

10

15

20

25

30

35

DK/EP 2425382 T3

Patentkrav

1. Computer-implementeret fremgangsmade til at befolke et
andet datasystem, der anvendes 1 en computerapplikation,
hvilket andet datasystem har en struktur, der kan adresseres
ad mindst en anden applikationsvej, hvilken fremgangsmade
omfatter fglgende trin:

a. at kortlagge mindst en fgrste applikationsvej af et faorste
datasystem, der har en struktur, som kan adresseres ad den
nevnte mindst ene fgrste applikationsvej og som fungerer som
kildedatasystem, til mindst en konceptuel ve] af et
ontologisystem, der anvender et antal semantiske mgnstre, som
er struktureret som en alsidig graf, hvilken mindst en navnte
konceptuelle ve] adresserer en del af strukturen af
ontologisystemet,

b. at befolke den navnte mindst ene konceptuelle vej af det
nevnte ontologisystem med dataverdier, der er indeholdt i den
nevnte mindst ene fgrste applikationsvej af det navnte fagrste
datasystem,

c. at kortlegge den navnte mindst ene anden applikationsvej af
det navnte andet datasystem til mindst en konceptuel vej af
ontologisystemet under anvendelse af de navnte semantiske
mgnstre, og

d. at befolke det navnte andet datasystem pa et sted, der
adresseres af den navnte anden applikationsvej med de navnte
datavaerdier, der er indeholdt i den konceptuelle vej,

hvorved den nevnte mindst ene fgrste applikationsvej, hvilken
nevnte mindst ene konceptuelle ve] er kortlagt til den navnte
mindst ene applikationsve] og den nevnte mindst ene navnte
anden applikationsvej danner forskellige strukturelle
repraesentationer af de navnte dataverdier, kendetegnet wved, at
de kortlegninger, der er etableret i trin (a) og (c) ved hjelp
af de nevnte semantiske mgnstre, tillader at befolke det
nevnte fegrste datasystem med de navnte dataverdier, nar det

nevnte andet datasystem fungerer som kildedatasystem.

2. Computer-implementeret fremgangsméade ifglge krav 1,

hvilken fremgangsmade omfatter det fgrste trin til at generere

10

15

20

25

30

35

DK/EP 2425382 T3

det nevnte andet datasystem, hvorved den na&vnte struktur af

det navnte ontologisystem udnyttes.

3. Computer-implementeret fremgangsmade ifglge et hvilket
som helst af kravene 1 eller 2, hvor det navnte fgrste
datasystem har en struktur, der er forskellig fra det navnte

andet datasystem.

4, Computer-implementeret fremgangsmade 1ifglge et hvilket
som helst af kravene 1 til 3, hvor det navnte andet datasystem

og det navnte fgrste datasystem er de samme.

5. Computer-implementeret fremgangsmade ifglge et hvilket
som helst af kravene 1 til 4, hvilken fremgangsmade omfatter

et antal fgrste datasystemer.

6. Computer-implementeret fremgangsmade ifglge et hvilket
som helst af de foregaende krav, hvor mindst en konceptuel vej
af det naevnte ontologisystem indeholder et wvirtuelt koncept,
der ikke har nogen tilsvarende dataverdi i hverken det navnte

forste eller det andet datasystem.

7. Program, der kan eksekveres pa en programmerbar
indretning, der indeholder instruktioner, som, nar de
eksekveres, udfgrer fremgangsmadden ifelge i et hvilket som

helst af de foregaende krav.

8. Indretning til at Dbefolke et andet datasystem, der
anvendes 1 en computerapplikation, hvilket andet datasystem
har en struktur, der kan adresseres ad mindst en anden
applikationsvej, hvilken indretning omfatter

- midler til at modtage kortlaegningsinformation til at
kortlegge mindst en fegrste applikationsve] af et forste
datasystem, der har en struktur, som kan adresseres ad den
nevnte mindst ene fgrste applikationsvej og som fungerer som
kildedatasystem, til mindst en konceptuel ve] i et
ontologisystem, der anvender et antal semantiske mgnstre, som

er struktureret som en alsidig graf, hvilken nevnte mindst ene

DK/EP 2425382 T3

konceptuelle ve] adresserer en del af strukturen af
ontologisystemet, og til at kortlagge den navnte mindst ene
anden applikationsvej af det andet datasystem til den navnte
mindst ene konceptuelle vej af det navnte ontologisystem ved
at anvende de navnte semantiske megnstre, og

- midler til at befolke, Dbaseret pad den navnte modtagne
kortlegningsinformation, den navnte mindst ene konceptuelle
vej 1daf det navnte ontologisystem med dataverdier, der er
indeholdt i1 den navnte mindst ene fgrste applikationsvej af
det navnte fegrste datasystem, og at befolke det nevnte andet
datasystem, der er baseret pa den naevnte modtagne
kortlegningsinformation pa et sted, der er adresseret af den
nevnte anden applikationsvej, med de dataverdier, der er
indeholdt i den n&vnte konceptuelle vej, hvorved den navnte
mindst ene fgrste applikationsvej, den navnte mindst ene
konceptuelle ve] og den naevnte mindst ene anden
applikationsves danner forskellige strukturelle
repraesentationer af de navnte dataverdier,

hvorved den navnte kortlaegningsinformation ogsd tillader at
befolke det naevnte forste datasystem med de naevnte
datavaerdier, nar det navnte andet datasystem fungerer som

kildedatasystem.

DK/EP 2425382 T3

DRAWINGS

&

res

ngin / resides

AR,
¥ i

consisting of / partof

country

3
3§

consisting of / part of

LOLNtrY

dez ieenhesr | brussels

R

france
S

Format Translation Engine

Parser

Source Target
Compmitment Commitment

Reader Writer

\ Storage /

[Seripting Engine l

DK/EP 2425382 T3

order for product

Product

for / having

%: g o i i o e W e R R R o p de UCt h avin g Q rder R

Fig. 3

DK/EP 2425382 T3

_ { EODEE 3

G 1 WO g

ialiag i o 2B

Asmniag |

;,," g3 ”.Mww..&mj

R

Fig. 4

DK/EP 2425382 T3

i g

g«\w%\\\\\: § : i 3
S Y Pt D i
 Eadaed E\ P g
N N

with ot

OISR s
i Drate {opoeey § el

& . 3 ‘\

- 2 i AR AR AR

oftype

classifies

T Frniis nna s
w gem«wz g ;Sggd o}
WRannint g @

T R

v

5 SR
o r*““‘““% N
] N

X o i
Ry

stored or f

stores

cotitaing / on

RN

B R

S
b

s

Generated Datebase

Generated Commitment

s,
Dielivery
Pattain

Carsumer Conumitment

Oipit. XL

wthyfof

DK/EP 2425382 T3

e sapimai

L

st

DK/EP 2425382 T3

?w&wma

&
w

1
%

Wi

RN L wmy %K

POy

Fig. 8

DK/EP 2425382 T3

TR IRt TS

conains f on with fof

ho R

m ’v i m\“‘“ ’ |
sent hig f sends assigns | assignad by

|

weith £ of

recej

DK/EP 2425382 T3

<Delivery date="20080901063127" TotalQuantity="14100">
<MessageHeader>

<Sender Name="Manufacturer” Address="XXX" .../>
<Receiver Name="Customer” Address="XXX" .../>
<MessageNo>10003 </MessageNo>
</MessageHeader>

<Messageline No="1">

<Pallet ID="55CC1" TotalQuantity="2700">
<Product ID="Box A" Quantity="1200" />

<Product ID="Box B" Quantity="1500" />

</Pallet>

</Messageline>

<Messageline No="2">

<Pallet ID="SSCC2" TotalQuantity="2400">
<Product ID="Box A" Quantity="1000" />

<Product ID="Box B" Quantity="1400" />

</Pallet>

</Messageline>

Fig. 11

s

o4 .]
Pt Quantity i

S s

with fof { R
i T Pallet] =3 1 Quentiy 3
""""" rpinscimniassnsianibinan - L NTPVVAR V.

I
T § 1 i N £
; s‘"‘ b § § storedonf with fof
LS fredicr Y stores
...... § ——

with fof b Yo S . 3
i W Quantiry ;

with Fof

Fig. 12

containg fon storedion | waith fof
stores

DK/EP 2425382 T3

<Delivery> <Document>

<DeliveryMessageDate > <Header MessageType="STD"

<Date> ActualDespatchDate="2008-07-28" />
<Year>2008</Year> </Header>

<Month>07</Month> </Document>

<Day>28</Day>

</Date>

</DeliveryMessageDate>

< /Delivery>

By §
&
with faf
3 i Blonth E
with b
Year §
&

writh f o

Fig. 15

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

