

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

**(10) International Publication Number
WO 2017/222947 A1**

**(43) International Publication Date
28 December 2017 (28.12.2017)**

(51) International Patent Classification:

<i>A61B 1/00</i> (2006.01)	<i>A61B 1/227</i> (2006.01)
<i>A61B 1/05</i> (2006.01)	<i>A61B 1/32</i> (2006.01)
<i>A61B 1/06</i> (2006.01)	<i>A61B 5/12</i> (2006.01)
<i>A61B 1/07</i> (2006.01)	

(21) International Application Number: PCT/US2017/038052

(22) International Filing Date: 17 June 2017 (17.06.2017)

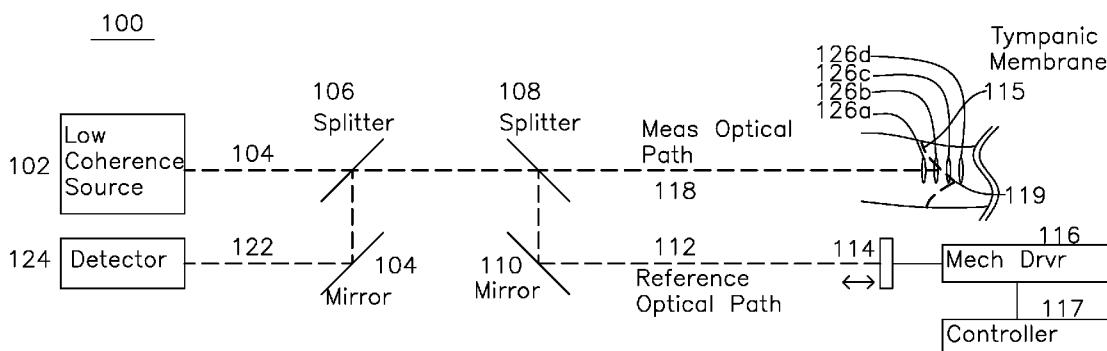
(25) Filing Language: English

(26) Publication Language: English

(71) Applicant: OTONEXUS MEDICAL TECHNOLOGIES, INC. [US/US]; 1546 NW 56TH ST., SEATTLE, Washington 98109-5209 (US)

(72) **Inventors:** CHESAUGE, Jay; 3833 Middlefield Rd, Palo Alto, California 94303 (US). MOEHRING, Mark; 1546 NW 56th St., Seattle, Washington 98109 (US).

(74) **Agent: CHESAVAGE, Jay**; 3833 Middlefield Rd, Palo Alto, California 94303 (US).


(81) Designated States (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: OPTICAL COHERENCE TOMOGRAPHY DEVICE FOR OTITIS MEDIA

Figure 1

Optical Coherence Tomography Tympanic Membrane Characterization

(57) Abstract: An OCT apparatus and method for characterization of a fluid adjacent to a tympanic membrane has a low coherence source which is coupled to a splitter which has a measurement path and a reference path. The reference path is temporally modulated for length, and the combined signals from the reference path and the measurement path are applied to a detector. The detector examines the width of the response and the time variation when an optional excitation source is applied to the tympanic membrane, the width of the response and the time variation forming a metric indicating the viscosity of a fluid adjacent to the tympanic membrane being measured.

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

1

2

3

4

5

6

7 Optical Coherence Tomography device for Otitis Media

8

9 Field of the Invention

10 The present invention relates optical coherence
11 tomography (OCT). In particular, the device relates to OCT
12 for use in the diagnosis of otitis media (OM).

13

14 Background of the Invention

15 Otitis Media is a common disease of the inner ear,
16 involving tissue inflammation and fluidic pressure which
17 impinges on the tympanic membrane. Otitis Media may be
18 caused by a viral infection, which generally resolves
19 without treatment, or a bacterial infection, which may
20 progress and cause hearing loss or other deleterious and
21 irreversible effects. Unfortunately, it is difficult to
22 distinguish between viral or bacterial infection using
23 currently available diagnostic devices, and the treatment

1 methods for the two underlying infections are quite
2 different. For bacterial infections, antibiotics are the
3 treatment of choice, whereas for viral infections, the
4 infection tends to self-resolve, and antibiotics are not
5 only ineffective, but may result in an antibiotic
6 resistance which would make them less effective in treating
7 a subsequent bacterial infection.

8 The definitive diagnostic tool for inner ear
9 infections is myringotomy, an invasive procedure which
10 involves incisions into the tympanic membrane, withdrawal
11 of fluid, and examining the effusion fluid under a
12 microscope to identify the infectious agent in the
13 effusion. Because of complications from this procedure, it
14 is only used in severe cases. This presents a dilemma for
15 medical practitioners, as the prescription of antibiotics
16 for a viral infection is believed to be responsible for the
17 evolution of antibiotic resistance in bacteria, which may
18 result in more serious consequences later in life, and with
19 no efficacious result, as treatment of viral infectious
20 agents with antibiotics is ineffective. An improved
21 diagnostic tool for the diagnosis of otitis media is
22 desired.

1 Objects of the Invention

2 A first object of the invention is a non-invasive
3 medical device for the identification of fluid type
4 adjacent to a tympanic membrane.

5 A second object of the invention is a method for
6 identification of a fluid adjacent to a tympanic membrane.

7 A third object of the invention is a method for
8 performing optical coherence tomography for identification
9 of a film characteristic adjacent to a tympanic membrane.

10 A fourth object of the invention is an apparatus for
11 performing optical coherence tomography for identification
12 of a fluid characteristic adjacent to a tympanic membrane.

13 A fifth object of the invention is an apparatus and
14 method for characterization of a tympanic membrane and
15 adjacent materials by coupling a pressure excitation source
16 to a tympanic membrane, where the tympanic membrane is
17 illuminated through a measurement path by an optical source
18 having low coherence, the low coherent optical source also
19 coupled to a reference path and to a mirror, where
20 reflections from the mirror and reflections from the
21 tympanic membrane are summed and presented to a detector,
22 the reference path length modulated over a range which
23 includes the tympanic membrane, the detector thereby

1 receiving reflected optical energy from the tympanic
2 membrane through the measurement path and also from the
3 mirror through the reference path, such that modulation of
4 the reference path length at a sufficiently high rate
5 allows for estimation of the tympanic membrane position in
6 response to the pressure excitation, thereby providing
7 characterization of the tympanic membrane and adjacent
8 fluid.

9 A sixth object of the invention is an optical
10 coherence tomography system having a measurement path and a
11 reference path, the reference path modulated in length, the
12 measurement path and reference path coupled through an
13 optical splitter to an optical source having low coherence,
14 where reflected optical energy from the reference optical
15 path and reflected optical energy from the measurement
16 optical path are summed and provided to a wavelength
17 splitter and thereafter to a plurality of detectors, one
18 detector for each sub-range of wavelengths within the
19 wavelength spectrum of the low coherence optical source,
20 the plurality of detectors coupled to a controller
21 discriminating by wavelength characteristics the detector
22 response for at least two different reflective materials.

23

1 Summary of the Invention

2 An optical coherence tomography (OCT) device has a low
3 coherence optical source generating optical energy coupled
4 through a first splitter, thereafter to a second splitter,
5 the second splitter having a measurement optical path to a
6 tympanic membrane and also a reference optical path to a
7 reflector which returns the optical energy to the first
8 splitter, where the reflected optical energy is added to
9 the optical energy reflected from the measurement optical
10 path. The combined reflected optical energy is then
11 provided to the first splitter, which directs the optical
12 energy to a detector. The reflector is spatially modulated
13 in displacement along the axis of the reference optical
14 path such that the detector is presented with an optical
15 intensity and optionally a continuum of optical spectral
16 density from a particular measurement path depth, when the
17 measurement optical path and reference optical path are
18 equal in path length. When the device is positioned with
19 the measurement path directed into an ear canal and
20 directing optical energy to a tympanic membrane, by varying
21 the reference optical path length through translation of
22 the location of the reflector along the axis of the
23 reference optical path, a measurement of optical and

1 spectral characteristics of the tympanic membrane may be
2 performed. Additionally, an external pressure excitation
3 may be applied to provide an impulsive or steady state
4 periodic excitation of the tympanic membrane during the OCT
5 measurement, and a peak response and associated time of the
6 peak response identified. The temporal characteristics and
7 positional displacement of the tympanic membrane can be
8 thereafter examined to determine the tympanic membrane
9 response to the external pressure excitation. The
10 evaluation of the tympanic membrane response from the OCT
11 detector data may subsequently be correlated to a
12 particular viscosity or biofilm characteristic. By
13 examination of the temporal characteristic, an estimate of
14 the viscosity of a fluid adjacent to a tympanic membrane
15 may be determined, and the viscosity subsequently
16 correlated to the likelihood of a treatable bacterial
17 infection.

18

19 Brief Description of the Drawings

20 Figure 1 shows a block diagram of an optical coherence
21 tomography characterization system.

22 Figure 2A shows a plot of mechanical actuator
23 displacement vs actuator voltage.

1 Figure 2B shows a plot of reference path length over
2 time, as controlled by actuator voltage or current.

3 Figure 3 shows a block diagram for an optical
4 coherence tomography characterization system for use
5 examining a tympanic membrane.

6 Figure 4 shows a polychromatic detector.

7 Figure 5A shows a plot of an example excitation
8 waveform for modulation of a reference length

9 Figure 5B shows a detector signal for a tympanic
10 membrane adjacent to fluid such as from OME and a detector
11 signal for a normal tympanic membrane.

12 Figure 6 shows an optical waveguide system for
13 measurement of a tympanic membrane.

14 Figure 7 shows an optical waveguide system for
15 measurement of a tympanic membrane with an excitation
16 source.

17 Figure 8A shows a plot for a sinusoidal excitation
18 applied to deformable surface or membrane with a reflected
19 response signal.

20 Figure 8B shows a plot for a step excitation applied
21 to a deformable surface or membrane, and a response to the
22 step excitation.

1

2

3 Detailed Description of the Invention

4 Figure 1 shows a block diagram for an optical
5 coherence tomography (OCT) device according to one example
6 of the invention. Each reference number which appears in
7 one drawing figure is understood to have the same function
8 when presented in a different drawing figure. A low
9 coherence source 102 such as a broadband light emitting
10 diode (LED) with a collimated output generates optical
11 energy along path 104 to first optical splitter 106, and
12 optical energy continues to second optical splitter 108,
13 where the optical energy divides into a measurement optical
14 path 118 and a reference optical path 112, which include
15 the segment from second splitter 108 to mirror 110 to path
16 length modulator 114. The optical energy in the
17 measurement optical path 118 interacts with the tympanic
18 membrane 120, and reflected optical energy counter-
19 propagates to the detector via path 118, where it is joined
20 by optical energy from reference optical path 112 reflected
21 from mirror 110 and splitter 108, and the combined
22 reflected optical energy propagates to first splitter 106,
23 thereafter to mirror 105, and to detector 124 via path 122.

1 Detector 124 generates an electrical signal corresponding
2 to the intensity of detected optical energy on path 122,
3 which is a steady state maximum when the path length for
4 reflected optical energy from the tympanic membrane is
5 exactly the same length as the reference optical path, and
6 a temporal maximum if the reference optical path length is
7 swept over a range, such as by actuating path length
8 modulator 114 over time. Each type of reflective membrane
9 will produce a characteristic detector signal. For
10 example, as the reference path length traverses through a
11 thin membrane boundary such as a healthy tympanic membrane,
12 a single peak will result corresponding to the single
13 reflective region of the tympanic membrane. If the
14 reference path length is through a fluidic ear such as one
15 containing low-viscosity infectious effusion, an initial
16 peak of the tympanic membrane reflection will subsequently
17 generate a region of extended reflection with an amplitude
18 that drops from optical attenuation of the reflected
19 signal. If the reference path length traverses through the
20 tympanic membrane with a bacterial infection, a bacterial
21 film may be present on the opposite surface of the tympanic
22 membrane, which may produce a greater axial extent of
23 reflection, followed by a pedestal indicating a high

1 scattering coefficient and corresponding increased
2 attenuation. Additionally, the three types of fluid
3 viscosities behind the tympanic membrane (air vs thin fluid
4 vs thick fluid) will respond differently to pressure
5 excitations generated on the tympanic membrane.

6 Accordingly, is possible to modulate the reference optical
7 path length and optionally the pressure adjacent to the
8 tympanic membrane, and examine the nature of the detector
9 output signal and response to excitation pressure to
10 determine the presence or absence of fluid adjacent to the
11 tympanic membrane, the presence or absence of a biofilm
12 such as bacteria adjacent to the tympanic membrane, and the
13 viscosity of fluid adjacent to the tympanic membrane, all
14 from movement of the tympanic membrane on the measurement
15 optical path as presented at the detector output.

16 In one example of the present invention, the path
17 length modulator 114 varies the reference path length by a
18 distance corresponding to the measurement path length from
19 126a to 126d of figure 1, corresponding to a region of
20 movement of a tympanic membrane 115 to be characterized.
21 As modulator 114 increases the reference path length, the
22 signal delivered to the detector is closer to region 126d
23 and when modulator 114 decreases the distance of the

1 reference path length, the region signal delivered to the
2 detector is in region 126a.

3 Figure 2A shows an example relationship between
4 actuator voltage or current and axial displacement of path
5 length modulator 114, which is driven by a mechanical
6 driver circuit 116, which may be a voice coil driver for a
7 voice coil actuator coupled to mirror 114, modulating the
8 mirror about the optical axis of 112. The type of driver
9 and path length modulator 114 is dependent on the highest
10 frequency of displacement modulation, since the energy to
11 displace path length modulator 114 is related to the mass
12 of the path length modulator 114, such as the case of a
13 moving mirror. The mirror and actuator may be micro
14 electrical machined system (MEMS) for lower reflector mass
15 and correspondingly faster mirror response. It may be
16 possible to utilize a variety of other path length
17 modulators without limitation to the use of mirrors.

18 Figure 2B shows the controller 117 generating an
19 actuator voltage in a step-wise manner, with the actuator
20 stopping momentarily at each depth. For example, if
21 increased actuator drive results in a longer reference path
22 length, then from T1 to T2, the actuator voltage may be
23 202a, corresponding to the displacement position 126a of

1 figure 1, and the other voltages 202b, 202c, and 202d may
2 correspond to positions adjacent to the tympanic membrane
3 of 126b, 126c, and 126d, respectively.

4 Figure 3 shows an example OCT tympanic membrane
5 characterization system 302 with the elements arranged to
6 provide a single measurement output. For the case of free-
7 space optics (optical energy which is not confined within a
8 waveguide such as an optical fiber), the system splitters
9 and combiners of figures 1 and 3 are partially reflective
10 mirrors. The principal elements shown in figure 3 correspond
11 to the same functional elements of figure 1. By
12 rearrangement of the reference optical path, the elements
13 of the system may be enclosed, as shown.

14 In one example of the invention, detector 124 may be a
15 single omni-wavelength optical detector responsive to the
16 total applied optical intensity, and having a
17 characteristic response. In another example of the
18 invention detector 124 may include a single wavelength
19 filter, or a chromatic splitter and a plurality of detector
20 elements, such that each reflected optical wavelength may
21 be separately detected. Figure 4 shows collimated optical
22 energy 122 entering chromatic detector 124A, where it is
23 split into different wavelengths by refractive prism 124B,

1 which separates the wavelengths λ_1 , λ_2 , λ_3 , λ_4 onto a linear
2 or 2D detector 124C, which is then able to provide an
3 intensity map for the reflected optical energy by
4 wavelength. Individual detection of wavelengths may be
5 useful where the signature of wavelength absorption is
6 specific to a particular type of bacteria or tympanic
7 membrane pathology. The spectrum of detector response is
8 typically tailored to the reflected optical energy
9 response, which may be in the IR range for an OCT system
10 with more than a few mm of depth measurement capability.

11 In one example of the invention, the detector spectral
12 response for various biological materials is maintained in
13 a memory and compared to the superposition of responses
14 from the plurality of optical detectors. For example, the
15 optical reflective characteristics of cerumen (earwax), a
16 healthy tympanic membrane, an inflamed tympanic membrane (a
17 tympanic membrane which is infused with blood), a bacterial
18 fluid, an effusion fluid, and an adhesive fluid may be
19 maintained in a template memory and compared to the
20 spectral distribution of a measured tympanic membrane
21 response over the axial depth of data acquisition. The
22 detector response at each axial depth over the range of
23 reference optical path length can then be compared to the

1 spectral characteristics of each of the template memory
2 spectral patterns by a controller, with the controller
3 examining the detector responses for each wavelength and
4 the contents of the template memory and estimating the type
5 of material providing the measurement path reflection based
6 on this determination. The detection of a spectral pattern
7 for cerumen may result in the subtraction of a cerumen
8 spectral response from the detector response, and/or it may
9 result in an indication to the user that earwax has been
10 detected in the response, which the user may eliminate by
11 pointing the measurement optical path in a different region
12 of the tympanic membrane.

13 Because the axial resolution of the optical coherence
14 tomography is fractions of an optical wavelength, it is
15 possible to characterize each of the structures separately
16 on the basis of optical spectrum, even though each of the
17 structures being imaged is only on the order of a hundred
18 microns in axial thickness. The axial resolution of the
19 system may be improved by providing a very narrow optical
20 beam with high spatial energy along the measurement axis
21 and over the axial extent of the tympanic membrane.

22 Figures 5A and 5B show an example of the invention for
23 use in detecting position of a tympanic membrane over time.

1 The controller 117 generates a triangle waveform 502 for
2 use by the path length modulator, which directs the optical
3 energy to the tympanic membrane, which may have fluid
4 adjacent to it, and the fluid may have a particular
5 viscosity, which may be known to increase during the
6 progression of a bacterial infection. Bacterial infections
7 are known to provide a biological film on the surface of a
8 membrane, such as the tympanic membrane, with specific
9 optical reflection characteristics. The optical signal is
10 directed through the outer ear canal towards the tympanic
11 membrane to be characterized, and the detector responses of
12 figure 5B are examined by controller 117 of figure 3. A
13 first set of waveforms 509 shows a time domain response
14 which includes an initial peak 507 associated with the
15 strong reflection of the sharp reflective optical interface
16 provided by the tympanic membrane at a first reflective
17 interface, and the fluid behind the tympanic membrane also
18 generates a signal which attenuates with depth, shown as a
19 sloped pedestal 508. The presence of pedestal 508
20 indicates the presence of fluid behind the tympanic
21 membrane. This may be contrasted with the second set of
22 responses 511 for a normal tympanic membrane, such as the
23 peak of waveform 522, which is comparatively narrow and of

1 shortened duration 520, as reflective fluid is not present
2 behind the tympanic membrane.

3 In an additional embodiment of the invention, the
4 tympanic membrane itself may be modulated by an external
5 excitation source, such as an air puff, or a source of air
6 pressure which is modulated over time. Where an external
7 pressure excitation source is provided, and the pressure
8 excitation is selected to provide less than 1% displacement
9 of the tympanic membrane, for example, the relative
10 temporal position of the peak optical signal will indicate
11 the position of the tympanic membrane. Because the refresh
12 rate of the system is optical, rather than acoustic of
13 prior art ultrasound devices, the speed of interrogation of
14 the tympanic membrane is only limited by the rate of
15 modulation of the path length modulator 114, which may be
16 several orders of magnitude faster than an ultrasound
17 system. Additionally, the axial resolution of an optical
18 system relying on optical interferometry is much greater
19 than the axial resolution of an ultrasound system which is
20 governed by transducer ringdown. Additionally, because the
21 acoustic impedance boundary between air and the tympanic
22 membrane is extremely large, the ultrasound penetration
23 depth of ultrasound to structures beyond the tympanic

1 membrane is very limited. By contrast, the optical index
2 of refraction ratio from air to tympanic membrane is many
3 orders of magnitude lower than the ultrasound index of
4 refraction ratio across this boundary, so the optical
5 energy loss at the interface is lower. The optical
6 penetration is primarily bounded by the scattering losses
7 associated with the tympanic membrane and structures beyond
8 the tympanic membrane interface, and these losses may be
9 mediated in part by using a very high optical energy which
10 is pulsed with a duty cycle modulation to maintain the
11 average power applied to the tympanic membrane in a
12 reasonable average power range.

13 Figure 6 shows a fiber-optic example of an optical
14 coherence tomography system 600. Controller 618
15 coordinates the various subsystems, including enabling low
16 coherence source 602, which couples optical energy to an
17 optical fiber 604, which delivers this optical energy
18 thereafter to a first splitter 606, thereafter to optical
19 fiber 608 and to second splitter 610. Optical energy from
20 second splitter 610 is directed down two paths, one a
21 measurement path 612 with length Lmeas 615 to a tympanic
22 membrane, and the other to reference optical path 617 with
23 length Lref and terminating into an open reflective fiber

1 end 619, which may alternatively be a mirrored polished end
2 or optical reflective termination, with the optical path
3 617 including an optical fiber wrapped around a PZT
4 modulator 614, which changes dimensional shape and diameter
5 when an excitation voltage is applied to the PZT. When the
6 PZT modulator 614 is fed with a sine wave or square wave
7 excitation, the PZT modulator 614 increases and decreases
8 in diameter, thereby providing a variable length Lref. The
9 PZT modulator 614 is also capable of high speed fiber
10 length modulation in excess of 100Khz in frequency. Other
11 fiber length modulators known in the art may be used for
12 rapidly changing the length of optical fiber on the Lref
13 path, with the PZT modulator 614 shown for reference only.
14 The combined optical energy from the Lmeas path and Lref
15 path reach the second splitter 610 and return on fiber 608,
16 comprising the sum of optical energy reflected from PZT
17 modulator 614 and reflected from the tympanic membrane 650.
18 The combined optical energy travels down path 608 to first
19 splitter 606, through fiber 620, and to detector 622, where
20 the coherent optical energy superimposes and subtracts,
21 forming a detector 622 output accordingly, which is fed to
22 the controller 618 for analysis. The controller 618 also
23 generates the PZT modulator excitation voltage 616, such as

1 the voltage or current waveform 502 of figure 5A, and may
2 also generate a signal to enable the low coherence source
3 602, and perform analysis of the detector 622 response,
4 which may be a single intensity value over the wavelength
5 response of the detector 622, or the individual wavelength
6 output provided by the sensor of figure 4. The controller
7 acts on the detector responses in combination with the Lref
8 modulation function to determine an effusion metric which
9 may be correlated to the likelihood of fluid being present
10 adjacent to a tympanic membrane, and also provide an
11 indication of the viscosity of the fluid adjacent to the
12 tympanic membrane.

13 Figure 7 shows an extension of figure 6 with an
14 external tympanic membrane excitation generator 704 which
15 delivers minuscule pressure changes such is actuated by a
16 voice coil actuator or other pressure source, preferably
17 with peak pressures below 50 deka-pascals (daPa) for
18 application to a tympanic membrane. The modulation of the
19 reference path length by the PZT modulator 614 is at a rate
20 which exceeds the highest frequency content of the
21 excitation generator 704 by at least a factor of 2 to
22 satisfy the Nyquist sampling requirement.

1 In one example of the invention, the reference path
2 length is modulated by a first modulator and second
3 modulator operative sequentially, where the first modulator
4 provides a large but comparatively slow reference path
5 length change, and the second modulator provides a small
6 but comparatively fast reference path length change. In
7 this manner, the first modulator is capable of placing the
8 region of OCT examination within a region of interest such
9 as centered about a tympanic membrane, and the second
10 modulator is capable of quickly varying the path length to
11 provide a high rate of change of path length (and
12 accordingly, a high sampling rate) for estimation of
13 tympanic membrane movement in response to the pressure
14 excitation.

15 It can be seen in the tympanic membrane shown as 115
16 in figure 1 and 3, and 650 in figures 6 and 7, that the
17 tympanic membrane has a conical shape with a distant vertex
18 (119 of figures 1 and 3, 651 of figures 6 and 7), which is
19 known in otolaryngology as the "cone of light", as it is
20 the only region of the tympanic membrane during a clinical
21 examination which provides a normal surface to the incident
22 optical energy. Similarly, when using an ultrasonic source
23 of prior art systems, the cone of light region is the only

1 part of the tympanic membrane which provides significant
2 reflected signal energy. The optical system of the present
3 invention is operative on the reflected optical energy from
4 the surface, which need not be normal to the incident beam
5 for scattered optical energy, thereby providing another
6 advantage over an ultrasound system.

7 Figure 8A shows an example sinusoidal pressure
8 excitation from excitation generator 704 applied to a
9 tympanic membrane, such as a sinusoidal waveform 821
10 applied using a voice coil diaphragm actuator displacing a
11 volume sufficient to modulate a localized region of the
12 tympanic membrane or surface pressure by 100daPa
13 (dekapascals) p-p. Sub-sonic (below 20Hz) frequencies may
14 require sealing the localized region around the excitation
15 surface, whereas audio frequencies (in the range 20Hz to
16 20kHz) and super-audio frequencies (above 20kHz) may be
17 sufficiently propagated as audio waves from generator 704
18 without sealing the ear canal leading to the tympanic
19 membrane to be characterized. The sinusoidal pressure
20 excitation 821 results in a modulation of the surface,
21 which is shown as plot 832, as the modulation in surface
22 position corresponds to a change in the associated Lref
23 path length by the same amount. Each discrete circle of

1 waveform 832 represents a sample point from the OCT
2 measurement system 700, corresponding to the Lref path
3 length and change in tympanic membrane position, with each
4 point 332 representing one such sample. In one example
5 embodiment of the invention, a series of sinusoidal
6 modulation excitation 821 frequencies are applied, each
7 with a different period 822, and the delay in response 830
8 and peak change in Lref are used in combination to estimate
9 the ductility or elasticity of the tympanic membrane, fluid
10 viscosity, or other tympanic membrane or fluid property.

11 In the present examples, there is a 1:1 relationship
12 between the displacement of the tympanic membrane and
13 associated change in path length of the reference path
14 which results in the peak response. For example, if the
15 scale of figure 5B is a sequence of 0, -0.5mm, -1mm,
16 -0.5mm, 0mm, 0.5mm, etc, then this represents a
17 corresponding displacement in the tympanic membrane by
18 these same distances. By applying a series of audio and
19 sub-audio tones with various cycle times 822 and measuring
20 the change in Lref as shown in plot 832, it is possible to
21 estimate the displacement of the tympanic membrane and
22 extract frequency dependent characteristics such as
23 viscosity or elasticity of the fluid behind the tympanic

1 membrane. For example, an exemplar elasticity metric
2 measurement associated with the changed density or
3 viscosity of the fluid could be an associated change in
4 surface or membrane response time 874 for a step change, or
5 phase delay 830 for a sinusoidal frequency. In this
6 manner, a frequency domain response of the surface may be
7 made using a series of excitations 821 and measuring a
8 series of surface responses 832. The reference path
9 modulator 614 of figures 6 and 7, or mirror 114 of figure
10 3, may include a first path length modulator which centers
11 the reference path length to include the tympanic membrane,
12 and a second path length modulator which rapidly varies the
13 reference path length to provide adequate sampling of the
14 axial movement of the tympanic membrane.

15 Whereas figure 8A shows a sinusoidal excitation which
16 may be provided in a series of such excitations to generate
17 a phase vs. frequency response plot of the surface
18 displacement from the series of measurements, Figure 8B
19 shows a time domain step response equivalent of figure 8A,
20 where a surface step pressure excitation 862 of 50 daPa
21 peak is applied to the tympanic membrane, which generates
22 the measured tympanic membrane displacement sequence 872.
23 It is similarly possible to characterize the surface

1 response based on a time delay 874 and amplitude response
2 (shown as 0.5mm) for displacement response plot 872.

3 In one example of the invention, a separate low-
4 coherence optical source 102 or 602 such as an infrared
5 range source is used for increased penetration depth, and a
6 separate visible source (not shown) is used co-axially to
7 indicate the region of the tympanic membrane being
8 characterized while pointing the measurement optical path
9 onto the tympanic membrane. The optical source 102 or 602
10 may be an infrared sources to reduce scattering, thereby
11 providing additional depth of penetration. In another
12 example of the invention, the low-coherence optical source
13 102 or 602 is a visible optical source, thereby providing
14 both illumination of the tympanic membrane region of
15 interest, and also measurement of displacement of the
16 tympanic membrane, as previously described.

17 The present examples are provided for understanding
18 the invention, it is understood that the invention may be
19 practiced in a variety of different ways and using
20 different types of waveguides for propagating optical
21 energy, as well as different optical sources, optical
22 detectors, and methods of modulating the reference path

1 length Lref. The scope of the invention is described by
2 the claims which follow.

3

4

5

6

1

2 I claim:

3 1) A method for characterization of a fluid adjacent
4 to a reflective membrane, the method comprising:

5 providing a low coherent optical source to a first
6 splitter, part of the optical energy directed to a
7 measurement path and part of the optical energy directed to
8 a reference path;

9 the reference path having a temporally modulated
10 length, thereby changing a reference path length over
11 periodic intervals;

12 the measurement path including a reflective membrane
13 to be characterized, the reference path having a length
14 substantially equal to the measurement path, the reference
15 path also having a reflector for reflecting optical energy;

16 summing the reflected optical energy from the
17 measurement path and the reflected optical energy from the
18 reference path and applying the summed optical energy to a
19 detector;

20 the detector providing a detector peak response with
21 respect to the reference path modulator to a controller;

1 the controller examining the pedestal width of a
2 detector response and also the arrival time of the detector
3 peak response;

4 comparing a current peak detector response to previous
5 peak detector responses;

6 forming a tympanic membrane metric from current peak
7 detector responses and previous peak detector responses,
8 the tympanic membrane metric increasing when said pedestal
9 width is increased, said tympanic membrane metric
10 increasing when the variation in arrival time of said
11 detector peaks decreases.

12

13 2) The method of claim 1 where said reference path and
14 said measurement path is a free space optic path formed by
15 fully reflective and partially reflective mirrors.

16

17 3) The method of claim 1 where said reference path and
18 said measurement path is formed by a waveguide.

19

20 4) The method of claim 1 where said reference path and
21 said measurement path is formed by an optical fiber.

1

2 5) The method of claim 1 where said low coherence
3 source is a light emitting diode.

4

5 6) The method of claim 1 where said detector is an
6 optical to electrical converter.

7

8 7) The method of claim 1 where said detector has a
9 plurality of wavelength-specific outputs.

10

11 8) The method of claim 1 where said temporally
12 modulated length includes a voice coil actuator coupled to
13 a mirror.

14

15 9) The method of claim 1 where said temporally
16 modulated length is a PZT activated modulator.

17

18 10) The method of claim 7 where said plurality of
19 wavelength-specific outputs is coupled to a template memory
20 for comparison of a detector response to wavelength

1 responses of various material types saved in said template
2 memory.

3

4 11) The method of claim 10 where at least one of said
5 template memory material type is a reflection response for
6 cerumen.

7

8 12) The method of claim 11 where the detection of
9 cerumen generates an indication to a user of cerumen
10 detection.

11

12 13) A device for the measurement of a tympanic
13 membrane, the device having:

14 an optical source generating a low coherence optical
15 output;

16 a first splitter and a second splitter, each splitter
17 having a combiner port, a first port, and a second port,
18 each splitter coupling power from the first port to the
19 combiner port, and from the combiner port to the second
20 port;

1 The optical source coupled to the first splitter first
2 port;

3 the first splitter combiner port coupled to the second
4 splitter combiner port;

5 the second splitter first port coupling optical energy
6 to an external optical port to a membrane to be
7 characterized, the optical distance from the membrane to be
8 characterized to the second splitter first port being a
9 measurement length;

10 the second splitter second port coupled to an optical
11 reference path having an optical length modulated about the
12 measurement optical length;

13 whereby reflected optical energy returning from the
14 external optical port is directed through the second
15 splitter combiner port, to the first splitter combiner
16 port, to the first splitter second port, and to a detector;

17 a controller receiving a signal from the detector and
18 comparing a current detector response to previous detector
19 responses to form a reflection metric.

20

21 14) The device of claim 13 where the low coherence
22 source is a light emitting diode.

1

2 15) The device of claim 13 where the detector is a
3 broadband detector.

4

5 16) The device of claim 13 where the detector has a
6 plurality of outputs, each output responsive to a unique
7 range of wavelengths.

8

9 17) The device of claim 13 where the first splitter
10 and second splitter are partially reflective mirrors.

11

12 18) The device of claim 13 where the first splitter
13 and second splitter are optical fibers.

14

15 19) The device of claim 13 where the controller forms
16 an effusion metric based on at least one of: a detector
17 response width, a pedestal width, or a reflected wavelength
18 profile.

19

1 20) The device of claim 13 where the optical length of
2 the reference path is modulated using a voltage or current
3 controlled actuator coupled to a mirror.

4

5 21) The device of claim 13 where the optical length of
6 the reference path is modulated using a PZT actuator
7 coupled to an optical fiber.

8

9 22) The device of claim 15 where the broadband
10 detector plurality of detectors includes a template memory
11 for comparison of the plurality of detector responses to
12 known biological materials.

13

14 23) The device of claim 22 where at least one of said
15 template memory detector responses is: cerumen, healthy
16 tympanic membrane, inflamed tympanic membrane, bacterial
17 fluid, effusive fluid, or adhesive fluid.

18

19

20

Figure 1 1/5

Optical Coherence Tomography Tympanic Membrane Characterization

Figure 1 1/5

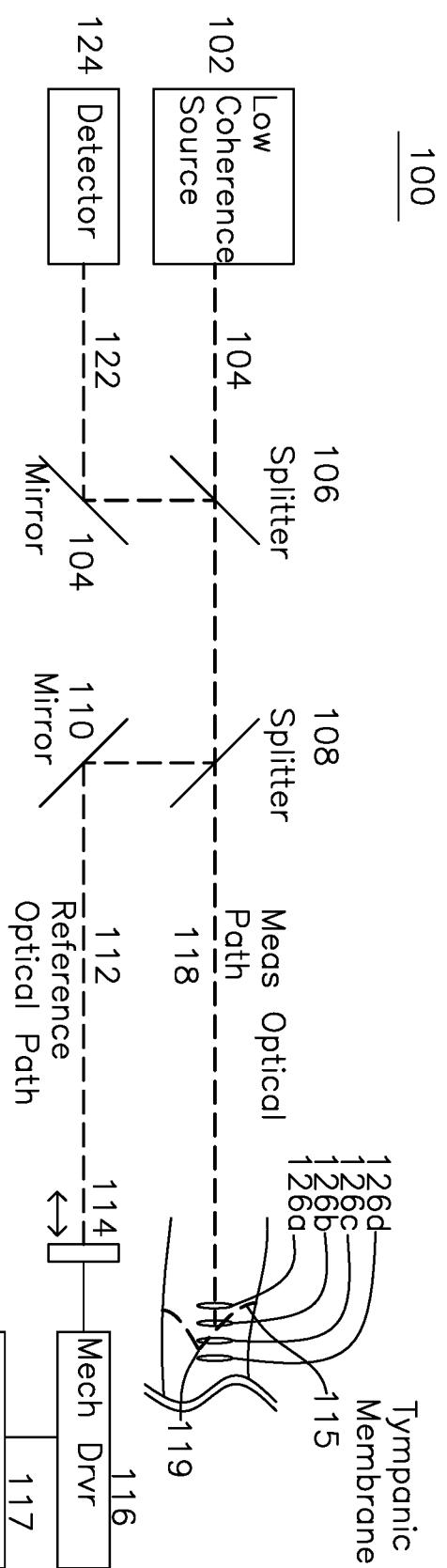
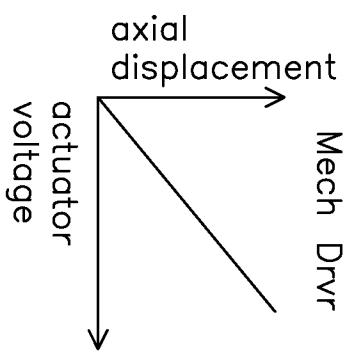



Figure 2A

Figure 2B

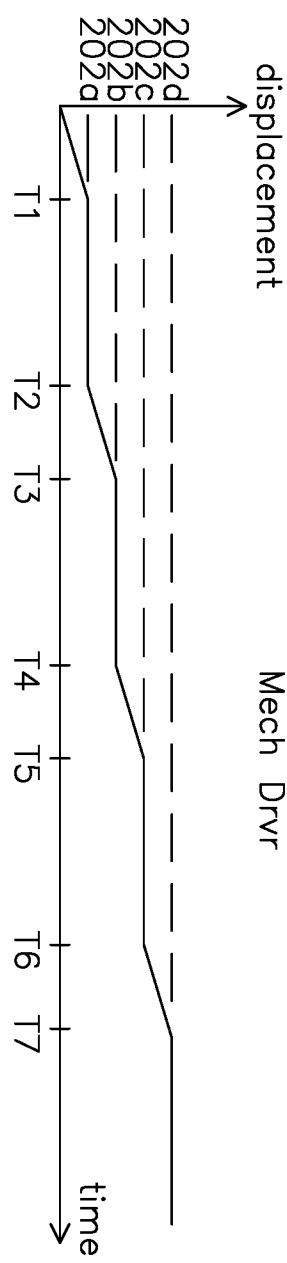


Figure 3 2/5

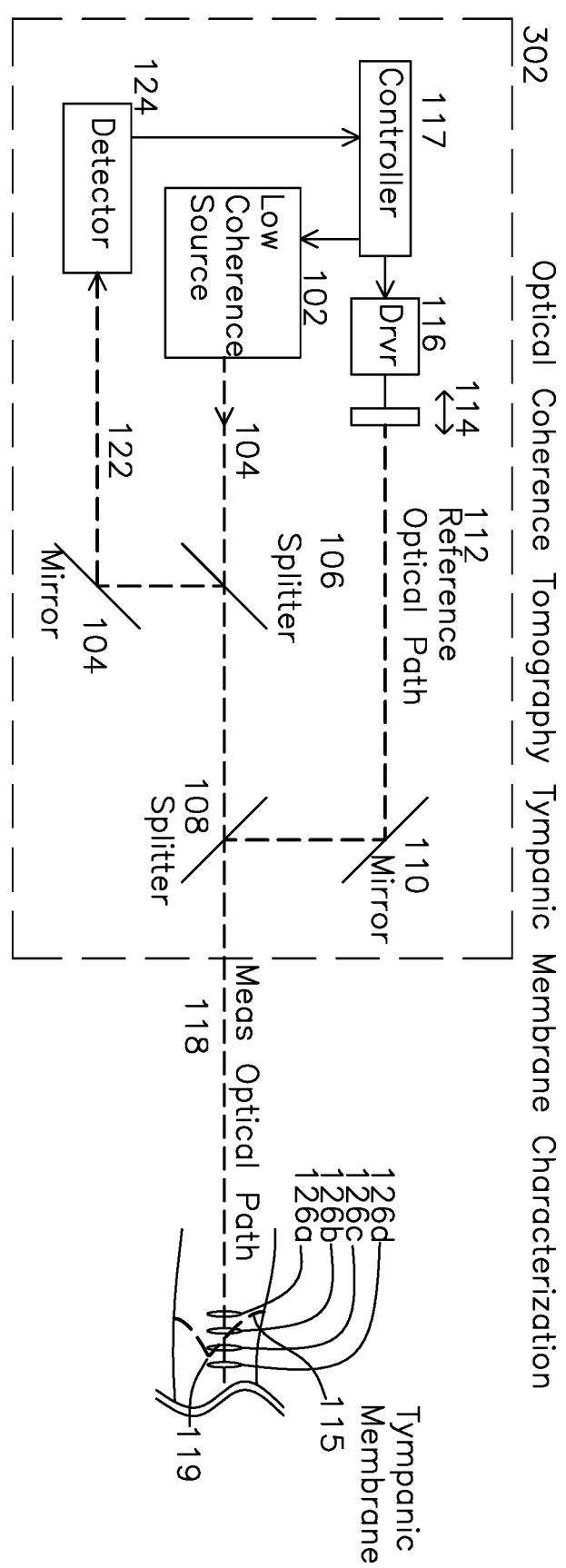
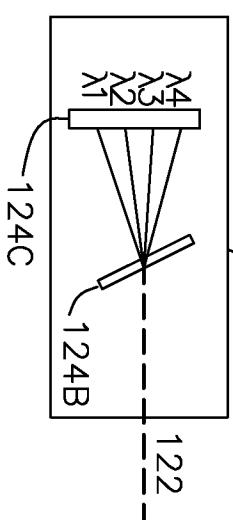
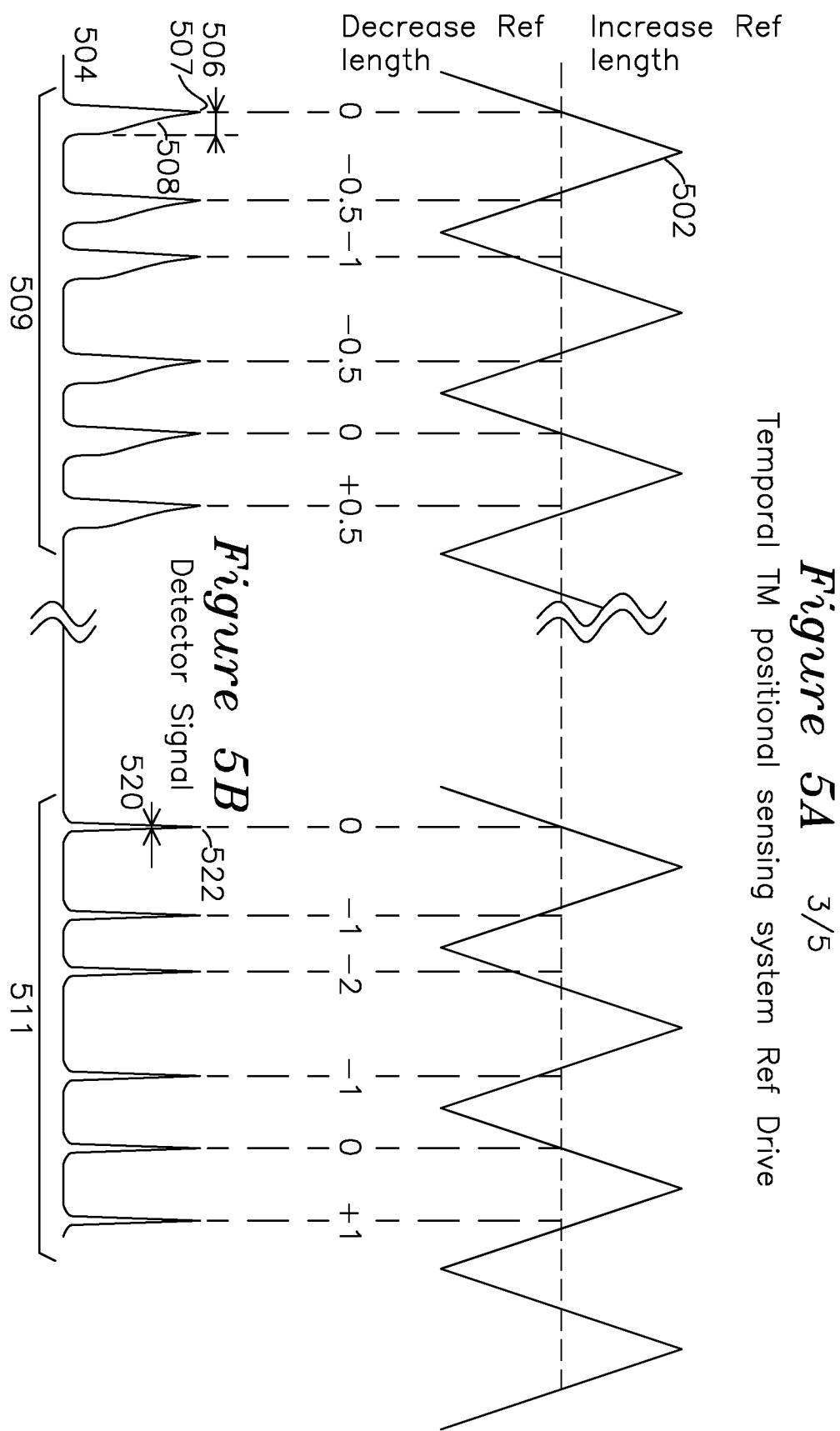




Figure 4

Multi-wavelength Detector

Figure 6 4/5
Optical Waveguide system for OCT measurement of TM

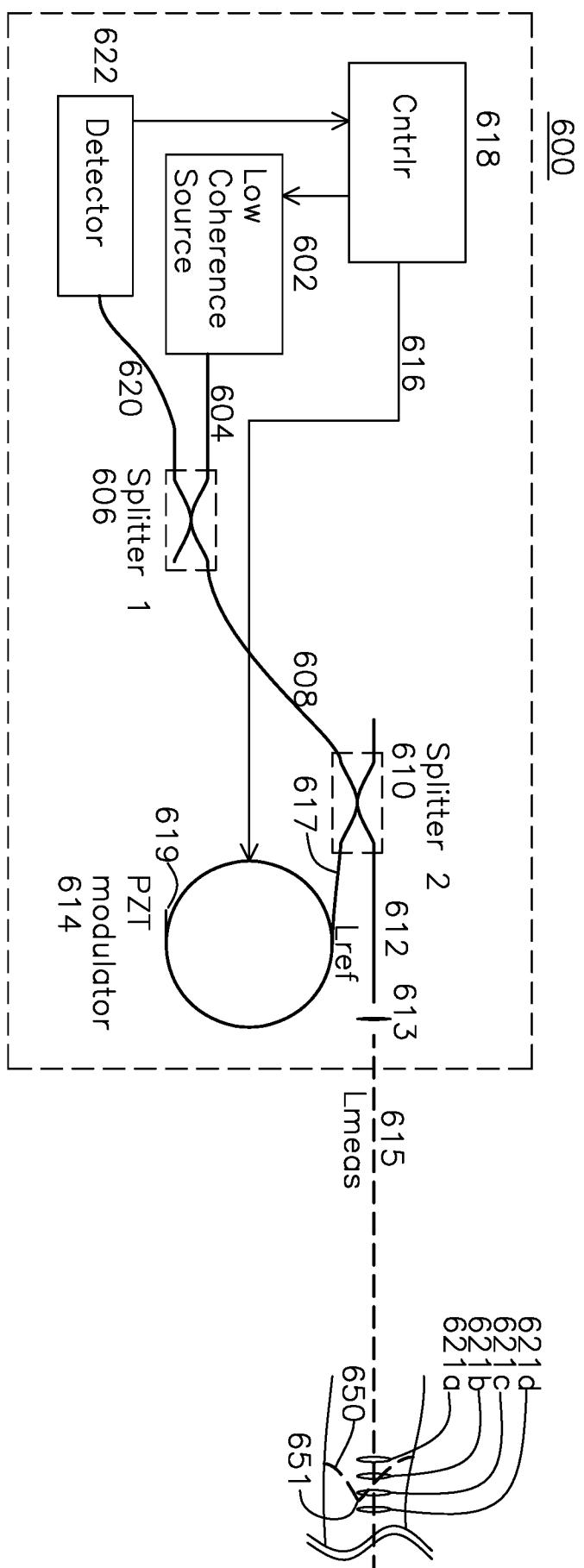


Figure 7

5/5

Optical Waveguide system for OCT measurement of TM

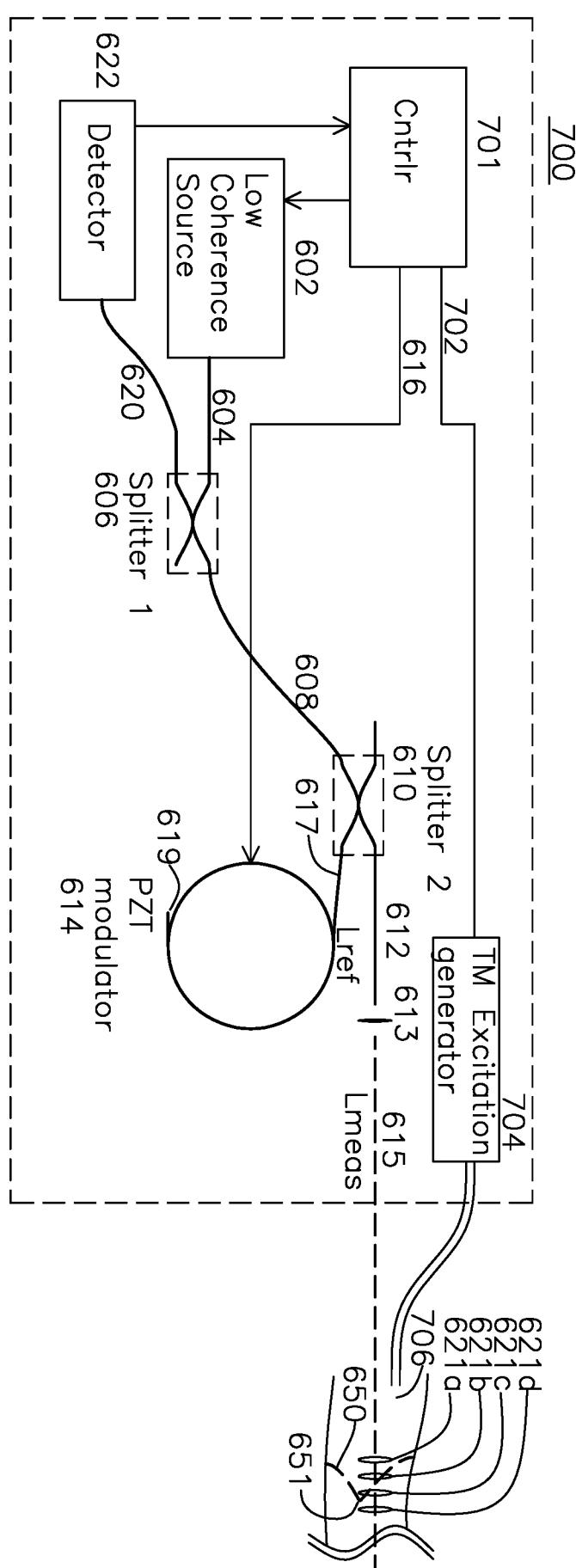


Figure 8A

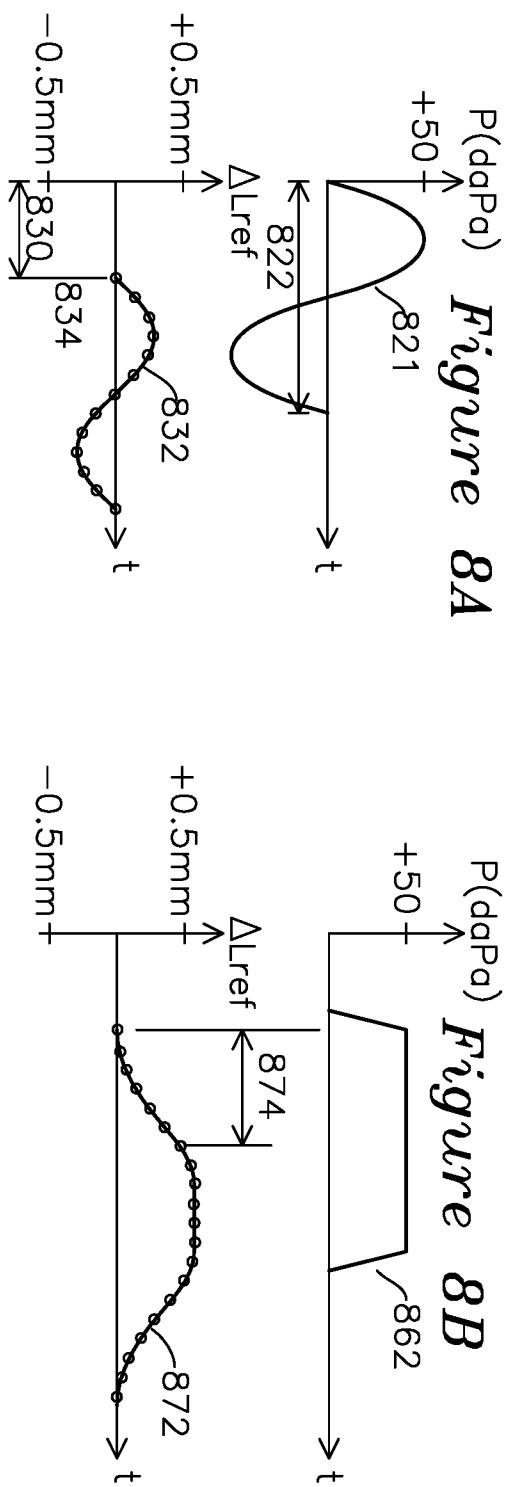
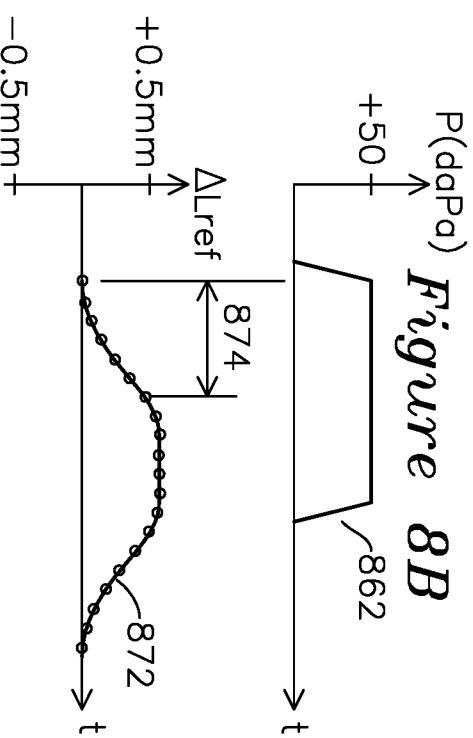



Figure 8B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2017/038052

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61B 1/00; A61B 1/05; A61B 1/06; A61B 1/07; A61B 1/227; A61B 1/32; A61B 5/12 (2017.01)
 CPC - A61B 1/00105; A61B 1/05; A61B 1/063; A61B 1/0684; A61B 1/07; A61B 1/227; A61B 1/32; A61B 5/12; A61B 8/08; A61B 8/12; A61B 8/4416; A61B 8/4494; A61B 8/463; A61B 8/5223; G01B 9/02; H04B 17/00 (2017.02)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 356/479; 375/224 (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2009/0185191 A1 (BOPPART et al) 23 July 2009 (23.07.2009) entire document	1-12
Y	US 2011/0286505 A1 (HEDLEY et al) 24 November 2011 (24.11.2011) entire document	1-12
Y	US 2009/0037922 A1 (HERINGTON) 05 February 2009 (05.02.2009) entire document	1-12
Y	WO 2015/169435 A1 (HELEN OF TROY LIMITED et al) 12 November 2015 (12.11.2015) entire document	11, 12
A	US 2014/0249426 A1 (INDUSTRY-ACADEMIC COOPERATION FOUNDATION YONSEI UNIVERSITY) 04 September 2014 (04.09.2014) entire document	1-12
A	US 2014/0316278 A1 (COVIDIEN LP) 23 October 2014 (23.10.2014) entire document	1-12
A	US 2013/0342826 A1 (WELCH ALLYN INC) 26 December 2013 (26.12.2013) entire document	11, 12
P,X	US 2017/0014053 A1 (OTONEXUS MEDICAL TECHNOLOGIES, INC) 19 January 2017 (19.01.2017) entire document	1-12
A	US 2005/0059868 A1 (SCHURMAN) 17 March 2005 (17.03.2005) entire document	1-12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- “A” document defining the general state of the art which is not considered to be of particular relevance
- “E” earlier application or patent but published on or after the international filing date
- “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- “O” document referring to an oral disclosure, use, exhibition or other means
- “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

08 October 2017

Date of mailing of the international search report

24 OCT 2017

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
 P.O. Box 1450, Alexandria, VA 22313-1450
 Facsimile No. 571-273-8300

Authorized officer

Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2017/038052

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See extra sheet(s).

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-12

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2017/038052

Continued from Box No. III Observations where unity of invention is lacking

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-12, drawn to a method for characterization of a fluid adjacent to a reflective membrane.

Group II, claims 13-23, drawn to a device for the measurement of a tympanic membrane.

The inventions listed as Groups I-II do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the special technical feature of the Group I invention: summing the reflected optical energy from the measurement path and the reflected optical energy from the reference path and applying the summed optical energy to a detector; the detector providing a detector peak response with respect to the reference path modulator to a controller; the controller examining the pedestal width of a detector response and also the arrival time of the detector peak response; comparing a current peak detector response to previous peak detector responses; forming a tympanic membrane metric from current peak detector responses and previous peak detector responses, the tympanic membrane metric increasing when said pedestal width is increased, said tympanic membrane metric increasing when the variation in arrival time of said detector peaks decreases as claimed therein is not present in the invention of Group II. The special technical feature of the Group II invention: the first splitter combiner port coupled to the second splitter combiner port; the second splitter first port coupling optical energy to an external optical port to a membrane to be characterized, the optical distance from the membrane to be characterized to the second splitter first port being a measurement length; the second splitter second port coupled to an optical reference path having an optical length modulated about the measurement optical length; whereby reflected optical energy returning from the external optical port is directed through the second splitter combiner port, to the first splitter combiner port, to the first splitter second port as claimed therein is not present in the invention of Group I.

Groups I and II lack unity of invention because even though the inventions of these groups require the technical feature of tympanic membrane; first splitter; part of the optical energy directed to a measurement path and part of the optical energy directed to a reference path, this technical feature is not a special technical feature as it does not make a contribution over the prior art.

Specifically, US 2005/0059868 A1 (SCHURMAN) 17 March 2005 (17.03.2005) teaches tympanic membrane (Para. 7); first splitter (Para. 22); part of the optical energy directed to a measurement path and part of the optical energy directed to a reference path (Paras. 22-24 and Fig. 3).

Since none of the special technical features of the Group I or II inventions are found in more than one of the inventions, unity of invention is lacking.