03/025779 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 03/025779 Al

27 March 2003 (27.03.2003) PCT
(51) International Patent Classification”: GO6F 15/16
(21) International Application Number: PCT/US02/29351

(22) International Filing Date:

17 September 2002 (17.09.2002)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/323,592 19 September 2001 (19.09.2001) US
60/323,606 19 September 2001 (19.09.2001) US
60/323,608 19 September 2001 (19.09.2001) US
60/323,642 19 September 2001 (19.09.2001) US

(71) Applicant (for all designated States except US):
TRANSENTRIC LLC [US/US]; 7930 Clayton Road, St.

Louis, MO 63117-1368 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DOMKE, Fred,

(74)

M. [US/US]; 602 Henry Oaks Court, Ballwin, MO 63011
(US). BILBREY, Randall [US/US]; 478 4th Street,
Trenton, IL 62293 (US). BOPPANA, Nageswara, R.
[IN/US]; 1233 Arbor Bluffs Circle, Ballwin, MO 63021
(US). CAMPBELL, Thomas [US/US]; 12100 Cedar
Hills Drive, Highland, IL 62249 (US). DESHPANDE,
Rahul [IN/US]; 12434j Lighthouse Way, Creve Couer,
MO 63141 (US). HEIMANN, John [US/US]; 2273
Deer Springs Tr., Belleville, IL 62221 (US). LEE, David
[US/US]; 15141 Isleview, Chesterfield, MO 63017 (US).
LIERMANN, Richard [US/US]; 111 Keystone Drive,
Fenton, MO 63026-4894 (US). MILLER, Kyle [US/US];
507 North 13th. Street, Apt-701, St-Louis, MO 63103
(US). MORIN, Randall [US/US]; 9039 Harvest Run
Court, O’Fallon, MO 63366 (US). MUSENBROCK,
Michael [US/US]; 7509 Little Oaks Drive, O’Fallon, MO
63366-8218 (US).

Agents: BEULICK, John, S. et al.; Armstrong Teasdale
LLP, Suite 2600, One Metropolitan Square, St. Louis, MO
63102 (US).

[Continued on next page]

(54) Title: CONNECTIVITY SYSTEMS AND METHODS

Suppliers

Customers

Connector

(57) Abstract: Connectivity systems (figure 1) and methods for establishing connectivity between trading partners are described
herein. In one example embodiment of the system, the system (figure 1) comprises a connector comprising a servlet runner for
causing selected templates to be displayed to a first trading partner and a sender/receiver communicator for asynchronously commu-
nicating a message comprising information input by the first trading partner into at least one of the templates. The engine comprises
a task list processor for processing the message communicated by the connector and a relational database for storing task instruc-
tions. The task list processor retrieves task instructions from the relational database based on a sender-receiver-transaction type triple

associated with said message.

w0 03/025779 A1 NI 000000

(81) Designated States (national): AE, AG, AL, AM, AT, AU, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GW, ML, MR, NE, SN, TD, TG).

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, Published:

MX, MZ,NO,NZ, OM, PH, PL, PT,RO, RU, SD, SE, SG, — with international search report

SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, — pefore the expiration of the time limit for amending the

VN, YU, ZA, ZM, ZW. claims and to be republished in the event of receipt of
amendments

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), For two-letter codes and other abbreviations, refer to the "Guid-
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ance Notes on Codes and Abbreviations" appearing at the begin-
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ning of each regular issue of the PCT Gazette.

WO 03/025779 PCT/US02/29351

CONNECTIVITY SYSTEMS AND METHODS

[0001] A portion of the disclosure of this patent document contains
material that is subject to copyright protection. The copyright owner has no objection
to the facsimile reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.
CROSS REFERENCE TO RELATED APPLICATIONS

[0002] This application claims the benefit of U.S. Provisional
Application Nos. 60/323,592, 60/323,606, 60/323,608, 60/323,642, all of which were
filed on September 19, 2001, and are hereby incorporated by reference in their

entirety.
BACKGROUND OF THE INVENTION

[0003] This invention relates generally to communicating messages
between trading partners and, more particularly, to methods and systems which enable
multiple trading partners to communicate using various combinations of formats and

protocols.

[0004] Business-to-business electronic messaging is facilitated by
connectivity between computers at each trading partner. Information exchanged by
trading partners includes, for example, purchase orders, bills of lading, and financial
settlements. Establishing true integrated and collaborative connectivity between
trading partners, however, can be very complex. For example, mapping or
transforming a message, or set of data, from the format used by a sending business to
that used by a receiving business is highly complex and to be useful, must be

performed with high reliability and speed.

[0005] In addition to the complexities associated with establishing
messaging capability between just a few trading partners, in order to be cost effective,

such infrastructure should be used across not just a few trading partners but by
-1-

WO 03/025779 PCT/US02/29351

thousands of trading partners and be capable of handling millions of messages each
day. Although the scalability of such messaging systems is important, as such systems
are expanded to include hundreds of trading partners and to handle thousands of
messages each day, complexity increases along with a possibility of reduced

reliability.
BRIEF SUMMARY OF THE INVENTION

[0006] In one aspect, a connectivity system for communications
between trading partners is provided. The system comprises a connector and an
engine. The connector comprises a servlet runner for causing selected templates to be
displayed to a first trading partner and a sender/receiver communicator for
asynchronously communicating a message comprising information input by the first
trading partner into at least one of the templates. The engine comprises a task list
processor for processing the message communicated by the connector and a relational
database for storing task instructions. The task list processor retrieves task
instructions from the relational database based on a sender-receiver-transaction type

triple associated with said message.

[0007] In another aspect, a method for operating a system to
communicate between trading partners is provided. The system comprises a
connector and an engine. The comnnector comprises a servelet runner and a
sender/receiver communicator coupled to a database. The engine comprises a task list
processor and a relational database having a plurality of tasks stored therein. The
method comprises the steps of operating the servelet runner to cause a template to be
displayed to a first trading partner, generate a file containing information input into
the template by the first trading partner, and store the file in the connector database.
The method further comprises the steps of operating the sender/receiver
communicator to generate a message based on the information contained in the file,
and asynchronously communicate, to the engine, the message. The method also
comprises the steps of operating the engine task list processor to process the message,

the processing comprising the step of retrieving, from the relational database, tasks to

2

WO 03/025779 PCT/US02/29351

be executed based on a sender-receiver-transaction type triple associated with the

message.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Figures 1 — 5 illustrate example system architectures.
[0009] Figures 6 — 10 illustrate alternative system architectures.

[0010] Figures 11 — 13 illustrate example hardware architectures of a

messaging engine.

[0011] Figures 14 — 16 illustrate messaging processes executed by

the messaging engine.

[0012] Figures 17 — 27 illustrate workflow processes executed by the

messaging engine.

[0013] Figures 28 — 37 illustrate message parse processes executed

by the messaging engine.

[0014] Figures 38 — 40 illustrate example screen shots associated

with the messaging engine.

[0015] Figure 41 illustrates an example hardware architecture for the

connector.

[0016] Figure 42 illustrates an interactive application executed by the

conmnector.

[0017] Figure 43 illustrates an acknowledgement process executed by

the connector.
[0018] Figure 44 illustrates the envelope requirements of a message.

[0019] Figures 45 — 52 illustrate example screen shots associated

with the connector.

3.

WO 03/025779 PCT/US02/29351

[0020] Figures 53 — 54 illustrate an example hardware architecture of

the integrator.
DETAILED DESCRIPTION OF THE INVENTION

[0021] The connectivity systems and methods, as described below in
more detail, include a connector tool that allows trading partners of any size, volume
or sophistication to participate in collaborative electronic commerce. Specifically, the
connector tool facilitates creation of messages from common templates, and such
messages are located in an outbound file in a directory. Of course, any message (not
just messages created from a common template) that a trading partner desires to
communicate can also be located in the directory. The outbound messages are then
transmitted over a network (e.g., a wide area network such as the Internet) to a

messaging engine.

[0022] The engine executes message capture, message management,
and message forwarding tasks. Specifically, during message capture, an inbound
message is received, identified, acknowledged, validated, and then either accepted or
rejected. In message management, the message is translated, duplicates are
eliminated, customer business rules are applied, and an audit trail is created. During
message forwarding, messages are delivered to a recipient trading partner, routed

using appropriate protocols and formats, and archived.

[0023] Set forth below are detailed descriptions of example
embodiments of system architectures, messaging engines, connectors, and integrators.
The present invention, however, is not limited to the specific embodiments described
herein, and many variations and modifications are possible. In addition, components
of each system and steps of each method described herein can be practiced
independently and separately from other components and method steps described
herein. The systems and methods described herein can be used in combination with

other components and other steps.

WO 03/025779 PCT/US02/29351

(0024] The terms “engine”, “connector” and “integrator” are
sometimes used herein to refer to components of a connectivity system. Such terms
refer to any processor, server or system capable of performing the functionality
corresponding to such component, and such terms are not limited to any particular
implementation. For example, the connector functionality can be implemented in a
server, or in any processor capable of performing the functions described in
connection with the connector. The specific functionality associated with each of the

engine, connector, and integrator is set forth below.

[0025] Connector: comprises a servlet runner for causing selected
templates to be displayed to a first trading partner and a sender/receiver communicator
for asynchronously communicating a message comprising information input by the

first trading partner into at least one of the templates.

[0026] Engine: comprises a task list processor for processing a
message communicated thereto and a relational database for storing task instructions.
The task list processor retrieves task instructions from the relational database based on

a sender-receiver-transaction type triple associated with the message.

[0027] Integrator: comprises a processor for serving as a single
source of information for connecting to the engine. The integrator is configured to
couple to multiple connectors and other message sources. The integrator may be
combined with enterprise applications adapters from third parties to provide tight

coupling with internal applications.
I System Architecture

[0028] Figure 1 illustrates an example architecture for a trading
system. Generally, trading partners such as suppliers and customers communicate via
a network that includes connectors and an engine. Generally, the connectors facilitate
creation of messages from common templates. Messages can also have various other

formats including web forms, EDI transactions, industry exchange specific formats,

WO 03/025779 PCT/US02/29351

and other formats. The messages are supplied to the engine, which also is connected

to other application services and information services.

[0029] The engine serves as a business ecosystem preprocessor that
enables it to easily connect external trading partners and deliver immediate value. It
connects with internal workflow management tools and leverages existing
investments in electronic data interchange (EDI), extensible markup language (XML),
and other connectivity methods. Generally, the engine executes message capture,

message management, and message forwarding tasks as described above.

[0030] Transmission formats include Application-to-Application
(JDE, SAP, etc.) EDI X12 (EDI X12 Standard), EDIFACT (EDI for Administration,
Commerce, and Transport), EDIINT (EDI for Internet), Flat file, SMTP (Email),
HTML (Web), HTTP (Web), and XML (Extensible Markup Language). Message
protocols include dedicated line, SNA networking, frame relay, any VAN service
(Interconnect), dial-up (Modem), FTP (File Transfer Protocol), SMTP (Email), and

secure Internet connection

[0031] At the recipient trading partner, the received message can
result i performance of an inventory check, order acceptance, pricing
synchronization, service provisioning, settlement, and other functions. As a result of

performing such functions, data is supplied to the enterprise back office functionality.

[0032] More specifically, and as illustrated in Figure 2, each trading
partner can have various internal applications executed by servers and/or other
processors coupled into a network. The network can be composed of loosely coupled
processors, workflow servers, local area networks, wide area networks, and various
other types of networks that enable communication of data. In the example shown in
Figure 2, a connector is located in the DMZ and such server facilitates the creation of
messages to be communicated to an application (engine) server via a wide area
network (e.g., the Internet). As also shown in Figure 2, an integrator also can be

utilized to communicate messages via the Internet to the engine.

WO 03/025779 PCT/US02/29351

[0033] Figure 3 illustrates, in more detail, a connector (e.g.,
connector host system) that communicates with various applications using various
formats of a trading partner. Messages to and from the connector from the wide area
network are communicated, in the example shown in Figure 3, using an HTTPS

protocol.

[0034] Figure 4 illustrates an example connectivity between a trading
partner and the engine. Specifically, a connector embodied as a web server is
provided within a DMZ and is coupled to various applications. Communications need
not, however, be transmitted through the connector and can be provided to a
communication server via FTP. The connector facilitates creation of messages by
executing connector servlets, and performs user validation via an LDAP server. More
specifically, the connector includes a servletrunner for interactive processing and a
messaging capability to ensure secure guaranteed message delivery. Together, these

components provide distribution of applications functionality.

[0035] As shown in Figure 5, the engine can be coupled to various
applications, a security database, a message store database, and personal computers
(PCs) that perform functions such as a help desk, an administrator, and other internal

users.

[0036] Of course, various alternative architectures also are
contemplated and possible in addition to those described above in connection with
Figures 1 — 5. For example, the connector can be located in a trading partner DMZ as
illustrated in Figure 6. The connector can be located behind a trading partner firewall
as illustrated in Figure 7. As shown in Figure 8, various trading partners can have the
connector located in different security zones such as behind the firewall or in the
DMZ. A connector behind a firewall can connect to the engine or to any other
connector with a routable and accessible IP address. Either end may be accessible and
messages may flow in both directions. The “polling-pull’ communications from the
secure connector accommodates messages flowing into the secure connector. Also,
and as shown in Figure 9, communications can be transmitted directly from one
trading partner to another via the connectors, and the connectors can be located behind

7-

WO 03/025779 PCT/US02/29351

the firewall or in the DMZ. Two connectors, both behind firewalls, can communicate
with each other using a connector relay. The relay provides an accessible node and
the ‘polling-pull’ communications accommodates messages flowing into both secure
connectors. As shown in Figure 10, the engine server also can be configured as a
relay service and coupled to various trading partners with a variety of connectors. The
connector relay is a feature of the engine that allows clients to send messages to each
other through the relay, making it possible for both parties to operate from a secure
node without a routable IP address. The connector relay will accept connections from
both parties on a polling basis and when there is message traffic for the party, the
party will ‘pull’ the message from the relay. This relay can be implemented in
connection with a variety of protocols including HTTP(S) POST, FTP, and EDIINT

(including connector clients).

IL Engine

[0037] Referring to Figures 11, 12 and 13A-B, the engine has a task
list architecture in that the engine includes a task list processor to process messages.
Tasks are the processing steps that enable the collaborative processes on the
messaging community. These tasks include message storage, indexing, translation,
transformation, transmission, validation, acknowledgement, rejection, and more

complex processes based on ‘Stateful Messaging’.

[0038] An inbound message is processed by the commumications
components and sent via JMS queue to an identify process that determines the sender,
receiver and transaction type of the message, sometimes referred to herein as a sender-
receiver-transaction triple. The engine then retrieves a task list of arbitrary length
from a relational database and sends the message via JMS queue to the appropriate
component to perform the first task. This process continues until all tasks have been

accomplished.

[0039] Task lists are maintained at the sender-receiver-transaction
(“SRT”) level where any number of tasks may be defined for a unique SRT triple.

This level of granularity provides flexibility. In order to minimize the effort of

-8

WO 03/025779 PCT/US02/29351

managing task lists for large, complex messaging communities, two additional
features are provided based on object model inheritance. Specifically, “Pull
Inheritance” enables the creation of a task list based on existing task lists in a
hierarchy and “Push Inheritance” enables a task to be added to an entire hierarchy with

one interaction.

[0040] The task list architecture employs chained transaction
architecture to ensure that all steps are completed. The repository (RDBMS) provides
persistence so that transactions always re-start or re-try from a known transaction

state.

[0041] Components of the engine are multi-threaded. The use of
enterprise JavaBeans and database connection pools enables many processes to share
a pool of components. The use of JMS queues permits the engine to scale beyond
multithreading in a near-linear fashion as shown in Figure 13B. Multiple instances of
each task can process messages in parallel. These instances can be distributed across

an arbitrary number of host processors to achieve very high throughput.

[0042] In the example embodiment, the engine conforms to the J2EE
architecture and runs in mission-critical application servers with fault tolerant features
provided by the container. JMS messages and database persistence also can be
implemented using commercially available products to provide reliability and fault

tolerance.

[0043] The engine stores message in a persistent repository
(RDBMS) to provide an auditable record of message processing and transmission.
These messages may be retrieved and viewed by messaging partners through an
Internet Web interface. In addition, messages are retained for a configurable period to
enable reporting and decision support systems to be constructed on community
message content. Messages may be inspected in multiple formats (text, EDI-parsed
format, XML) and may be modified and re-queued for transmission without re-

sending from origin. This enables the correction of messages.

WO 03/025779 PCT/US02/29351

[0044] Message content is indexed using arbitrary message content
so that it can be retrieved by user-specified criteria such as Purchase Order Number,
Equipment Identifier, or other indexes. Reports can also be constructed that use these

indexes.

[0045] The engine isolates all accessible nodes in a separate DMZ
with clear layered protection zones in the system architecture. All processes that
reside on nodes that can be accessed from outside the firewall immediately pass data
through an internal firewall that only allows access from the DMZ. There is no
persistent storage of message content in the DMZ. Proxy processes accept and
process packets and forward content to the secure zone. This is an extensible
architecture and proxies have been constructed for FIP, SMTP, EDINT, and
WebSphere MQ.

[0046] Example messaging flows are illustrated in Figures 14, 15,
and 16. Generally, the task list processor processes an inbound message by executing
message capture, message management, and message forwarding tasks. The message
capture tasks comprise receipt of an inbound message, identification of an inbound
message, validation of an inbound message, and acceptance/rejection of an inbound
message. The message management tasks comprise translation of a message,
eliminating duplicates of a message, applying customer business rules to a message,
and creating an audit trail of a message. The message forwarding tasks comprise

delivering a message to a recipient trading partner, and archiving a delivered message.

[0047] As shown in Figure 15, the engine also performs message
management tasks. Such tasks include translate, eliminate duplicates, apply customer
business rules, validate, and capture audit trail. Figure 16 illustrates the message
forwarding task performed by the engine (e.g., deliver immediately, based on time,
based on event). A message is delivered by the engine to the connector, for example,
in a predefined format, and actual delivery can occur via various media (e.g., any

VAN service, FTP, E-mail.

-10-

WO 03/025779 PCT/US02/29351

[0048] The workflow executed by the engine is illustrated in the flow
diagrams shown in Figures 17 — 27. The message parse process executed by the

engine is illustrated in the flow diagrams shown in Figures 28 — 37.

[0049] TFigures 38, 39, and 40 illustrate example screen shots of
messages as viewable at the engine. As shown in Figure 38, a user selects a viewer to
use to view a message. Figure 39 illustrates an example bill of lading as viewed using
a selected viewer. Figure 40 illustrates a message in a format different from the

message (e.g., bill of lading) illustrated in Figure 39,
I Connector

[0050] Figure 41 is a block diagram of an example connector and
Figure 42 illustrates an example interactive program. As explained above, the
connector facilitates creation of messages by executing connector servlets, and
performs user validation via an LDAP server. Connector, in the example
embodiment, is a standards-driven, cross-platform application that enables a trading
partner to create and manage messages for secure, reliable transmission and receipt
via the engihe. The connector supports an expansive variety of data formats and data
entry paradigms, including files, browser-based data entry, and connectivity with
major packaged applications. The example embodiment described below is described
in the context of TranXML, which is an example format. Of course, many other
formats can be utilized. TranXML is an extensible markup language defined by the
assignee of the present application, and details regarding TranXML are publicly
available, including from Transentric LLC, 7930 Clayton Road, St. Louis, MO 63117.

[0051] The connector provides/performs the following functions.

1. Accepts files as input. The conversion of the data is done by the engine before
delivering to the trading partner.

2. Has the ability to create templates. Provides for customization of data entry,
reduces amount of data to be input, speeds up data entry, and lowers chance
for errors.

3. Provides reliable message service with guaranteed once only delivery.

4. Converts the data to a TranXML message, which enables the trading partner to
display it using a Web browser.

-11-

WO 03/025779 PCT/US02/29351

5. Contains a scoreboarding type match-up process and life-cycle management.
This feature enables the user to verify that his messages have been received
and processed. This process matches up the original message with the
acknowledgement and keeps the unacknowledged or acknowledged with errors
message available for correction and resubmission. Successfully
acknowledged messages are deleted from the directory.

6. Utilizes Web forms to display what was sent, what has been acknowledged
and processed, and what has been marked with errors.

7. Enables non-EDI and non-XML capable users to participate in electronic
commerce without investing any money in software. Enables the small to
medium company that has never done EDI to transact with trading partners
electronically. Connector makes it easier for a company to expand it’s fleet of
trading partners.

8. Exchange documents automatically on a 24 x 7 basis without human
intervention.

9. Enables the exchange of a variety of data formats, e.g., TRANXML, EDI

10. Data mapping from any-to-any format.

11. Connect back-office systems from one company to another.

12. Accelerates deployment and time-to-market.

[0052] The comnector includes a servietrunner for interactive
processing and a messaging capability to ensure secure guaranteed message delivery.
File-based persisténce between the servletrunner and the messaging engine enables
asynchronous creation and delivery of messages. This makes it possible for users to
interact with the connector on their own system and / or their own LAN and the
connector will provide delivery when connectivity is established. Users can operate
the connector with intermittent Internet connectivity including standalone systems and
wireless systems. Connector relies on the underlying file system for persistence,
logging, and storage of local configuration information. If workflow functionality is
implemented in XMLiris (commercially available from FiveSight Technologies Inc.,
213 N. Morgan, Suite 1A, Chicago, Illinois 60607), a process cascade provides

connectivity between components (replacing JMS queues in a full implementation).

[0053] The connector functionality, in one example embodiment, is
implemented in Java code, which enables platform independence. In the interest of
supporting many users, connector should be operable to run c[;n any operating system
that supports a Java2 Virtual Machine. Commercially available and well known

operating systems and versions currently supporting a Java2 Virtual Machine include

-12-

WO 03/025779 PCT/US02/29351

Microsoft Windows 95/98/NT/2000, Linux 2.X, Sun Solaris, IBM 0S/2, IBM 0S/400
(V4RS or later), IBM AIX (4.3.3.10 or later), and HP-UX.

[0054] Connector provides import functionality for flat files as well
as browser-based data entry and import functionality for TranXML. Also, connector
enables the engine to identify and authenticate message senders and to send (“push”)
updates to business logic or transformation scripts. Connector also enables users to
configure and maintain basic aspects of the local system through a browser-based

interface.

[0055] Regarding security, and in one example embodiment,
connector conforms to security standards set by the well known Electronic Data
Interchange-Internet Integration work group (EDIINT) AS2 of the Internet Task Force.
Connector uses HTTP and S/MIME standards to provide secure and reliable
communications links. Connector uses the following tool sets to ensure secure
exchanges of data: EDIINT AS2, S/MIME encryption, X.509 type certificates to
authenticate the client (certificates are validated at both ends of the communication
link), public and private keys for encryption, MD5 integrity checking to verify that the
message has not been altered, and a user ID combined with the organization name that
must be registered in the system. Other tools appropriate to security (e.g., secure

socket layer (SSL)) and connectivity (e.g., JMS) can be utilized.

[0056] Both components of the connector are multi-threaded to
provide scalability. An enterprise can install a single connector and share its
servletrunner and its file system across a LAN, or muliiple connectors may be
installed, including configurations where each user installs their own connector.
Response time is minimized and performance is maximized because it is independent
of Internet access speed, communications throughput, and contention from users on

other connectors.

[0057] Messages can be created or sent to the connector in a variety
of ways including interactive creation using the servletrunner engine, HTTP file

upload, IMS message queues, relational databases, and file-based upload. The local

-13-

WO 03/025779 PCT/US02/29351

file system can accommodate any type of message creation and security model the
host system provides. The connector uses a directory scanner to detect that new

messages are present and ready to be processed.

[0058]) The connector uses a staging directory to preserve file
integrity. When the file is complete, it is moved to an outbox directory on the same
file system using a rename to ensure that the entire file is present before processing
begins. Use of a local servletrunner enables local access-control administration by
each trading partner. The local administrator uses the access control features of the
servletrunner (Tomcat) to allow or deny access to servlets (JSPs, Agilink Controllers,
XML Roundtrip, and Java Servlets). These servlets create content that is forwarded

by the connector to messaging partners.

[0059] Polling-push communications make it possible to deploy the
connector from behind a firewall, without a routable IP address. A secure
configuration of the connector behind the firewall enables Internet messaging without

any inbound connections.

[0060] For communications, connector forms a secure transmission
loop using the S/MIME protocol. When a message is sent, the following steps are

performed.

Connector signs and encrypts the data using S/MIME and requests
that a signed receipt be returned.

The engine decrypts the message using the public and private keys
and verifies the signature and authenticate the sender.

The engine then returns a signed receipt to connector in the form of
an MDN. This signed receipt indicates that the message was
received and decrypted correctly, that authentication of the sender
occurred, and that the integrity of the interchange was validated.

[0061] The use cases fall into two categories: data submission, and
system monitoring/management. The use-case descriptions below make some

architectural assumptions in the interest of clarity, as shown in Figure 41. The major

-14-

WO 03/025779 PCT/US02/29351

assumption is that the system provides for directory-based “buckets” from which files
are either picked up, or to which files are deposited. It is assumed that at least three

such buckets will exist:

[0062] The OUTGOING bucket will contain documents for upload to
the engine. The user will be able to initiate an upload to the engine or set the

application to automatically upload these documents.

[0063] The ERROR bucket will contain documents that failed to
process for one reason or another, e.g., an incomplete TranXML document. The user
will be able to view, modify, and resubmit a document in the ERROR bucket. Both
the local connector processes and the engine may place documents in the ERROR
bucket. In order to simplify resubmission, each document in the ERROR bucket will

contain sufficient information to recreate the original message that caused the error.

[0064] The RECEIPTS bucket will contain any messages returned
from the engine (excluding messages destined for the ERROR bucket), including
acknowledgements of message successfully received and application

acknowledgements generated by receiving applications.

[0065] Connector accommodates two primary methods of data
submission: file-based and interactive. Both methods rely on directory-based buckets
from which files are either picked up or deposited. The interactive submission method
will provide a browser-based interface to these buckets, allowing a user to quickly

create documents for submission.

[0066] The most fundamental use case is submission of documents
by the client to the engine by placing TranXML files in a directory. The actor in this
case can be either a person, a computer process, or another connector component. The

activity in this case is summarized below:

1. TranXML documents are placed in the directory corresponding to the
“OUTGOING” bucket.

2. The user or a timed process triggers the creations of a connection to the engine
if one is not established.

-15-

WO 03/025779 PCT/US02/29351

3. Documents in the “OUTGOING” bucket are read from disk and checked
locally against some basic sanity rules. Documents that fail the sanity test get
routed to the “ERROR” bucket.

4. Documents that passed the sanity check are transmitted to the engine.

The engine applies logic to the incoming documents.

6. The engine generates replies (confirmations or rejections) for the documents

received.

The engine transmits replies to the connector.

The connector routes the message confirmations and rejections from the

engine to the “RECEIPTS” and “ERROR” buckets respectively.

Al

el

[0067] In order to facilitate data capture from unsophisticated data
collection points the system will provide for basic interactive data entry. This use case
is a mere extension of file-based submission case as described in the previous section.
Here the actor is a person interacting with an interactive browser-based application.
The application forwards user input to the appropriate bucket. The interactive
application component is illustrated in Figure 42. A typical interactive submission

would proceed as follows:

User logs into browser-based application.

User selects data entry from the menu.

User selects a template to work on.

User fills-in template.

User submits form.

Application converts form submission into TranXML document.
Application writes TranXML document to the directory corresponding to the
“OUTGOING” bucket.

NouAwb=

[0068] Both templates and data entry can be implemented as HTML
forms bound to an underlying XML document through XSLT. A template is then
implemented as the HTML form image of a partially populated document.

[0069] For file-based submission (non-tranXML), the goal is to
transmit a document of non-TranXML format to the engine for processing. The actor
in this case may be either a person or another computer process. The activity is very
similar to the file-based submission of TranXMI documents, except that no local

validity checking is performed on the submitted documents:

1. Non-TranXML documents are placed in the directory corresponding to the
“OUTGOING” bucket.

-16-

WO 03/025779 PCT/US02/29351

2. The user or a timed process triggers the creations of a connection to the engine
if one is not established.

3. Documents in the “OUTGOING” bucket are read from disk and transmitted to
the engine.

4. The engine applies logic to the incoming documents.

5. The engine generates replies (conﬁrmations or rejections) for the documents
received.
6. The engine transmits replies to the connector

7. The connector routes the message confirmations and rejections from the
engine to the “RECEIPTS” and “ERROR” buckets respectively.

{0070] Registration is the first action to be done by a new user using

the connector. Set forth below are the steps executed in connection with registration.

1. The user receives the connector software through a download or in a shrink-
wrapped form.

2. The user runs the INSTALL process, which loads the software and creates the

necessary directories (buckets).

The user then configures the system.

4. After the software is loaded and the system conﬁgured the user logs into the
system and performs the initial setup process. User provides necessary
identification information such as E-mail address, what transactions he will be
performing, what trading partners that he will be trading with, and what templates
he will be using.

5. Above setup information is then automatically sent to the engine. Profiles are then
established in the engine and a certificate is established. After proper verification
of the identity of the new user is Venﬁed the certificate is conveyed to the new
user via E~mail.

(98]

[0071] The “configure system” process is executed only once by the

new user. The process is described below.

File #1 - on connector client machine:

props.conf => located in the connector (client side) install directory, this file must be
edited to have all file directories point to their correct location. These properties
includes:

- Lsub.read_dir (directory to poll for messages)

- 1.sub.error_dir (failed reads will be posted here)

- 1.task.as2_keystore

- 1.task.as2_receipt_dir (mdn responses are writtern here)

- 1.task.as2_error_dir (failed processing send mesages here)

- L.task.as2_copy_dir (successful sent messages are copied here)

Other properties are:
- 1.task.as2_host (the server host to connect to)

-17-

WO 03/025779 PCT/US02/29351

- 1.task.as2_port (server port, by default 8443)
File #2 - on connector client machine

$TOMCAT_HOME/webapps/aglclient/ WEB-INF/web.xml.
Again, the necessary parameters to edit are all file path parameters.

File #3 - xslt file for roundtrip - on connector client machine

In this case, warehouse_payload.xslt file is used. The field to edit is the <xsl:variable
name="basepath" node, and the path should be set to the directory containing all the
codes necessary for the xslt script (usually, the same directory containing the xslt file).

File #4 - on connector server machine

$TOMCAT_ HOME/webapps/agl/WEB-INF/web.xml ‘
Parameters to set here are the url to the machine housing weblogic and the name of
the bean to receive incoming message, passing these to a queue.

[0072] For creating a TranXML document, the following use case is

performed every time the user fills in information on a template and submits the data

for processing.

1. User selects template and enters appropriate data.

2. User submits the document.

3. XiLA process reads template and builds the TranXML document.

4. TranXML envelope is placed around the document and it is placed into the

“OUTGOING” bucket.

[0073] The create TranXML template process may be executed
periodically by the user depending upon usage of new documents, business practices,

and other factors.

User indicates that he wants to create a new template.

User selects skeleton template.

User keys in appropriate data using the skeleton template as a guide. Data to be

captured should be repeatable information that would be present for each

transaction. Variable data such as item information, weights, would be keyed in
for each shipment. ‘

4. When user completes the data entry, a new customized template is created and the
user provides an appropriate name. This template will then be added to the
selection list for future data entry of the variable data.

5. Maintenance for these customized templates will be the responsibility of the user.

W N =

-18-

WO 03/025779 PCT/US02/29351

[0074] To check a transaction status, acknowledgements for
messages sent to the engine are received by the connector and placed in the
“RECEIPTS” bucket. Figure 43 illustrates an example acknowledgement process
initiated at the connector. Generally, a message is created and transmitted to the
engine. The engine communicates the acceptance status of the message to the

connector and the connector stores the message status locally.

[0075] Several types of acknowledgements, syntax and application,
could be received by the connector. Syntax acknowledgements are generated by the
engine when the message is received. These acknowledgements indicate if the format
of the transaction conforms to standards. Only accepted acknowledgements will be
received by the connector. Acknowledgements indicating errors will be handled by
the engine. The syntax errors will be corrected and the transaction submitted for
processing. The successful acknowledgement will then be sent to the connector
indicating that the transaction has been accepted for processing. Application
acknowledgements may also be sent to the connector. These acknowledgements
indicate whether the content of the document is valid and are generated by an
application system processing the data. Application acknowledgements may be for

both accepted and rejected transactions.

1. Using a Web form, the user indicates that he wants to check the status of
transactions that have been sent to the engine. Summary transaction data for
transactions that have been sent to engine is displayed along with the matching
acknowledgement information. The display will indicate if the message was
accepted and if it has been processed OK or if it had errors.

2. Ifit was processed OK, the user can then delete the transaction from the
“OUTGOING” bucket.

3. Ifit had application errors, the original outgoing transaction will be placed in the
“ERROR” bucket. The user has the option of retrieving the original transaction
from the “ERROR” bucket, correcting the errors, and resubmitting.

4. The user can work his way through all of the acknowledgements taking the
appropriate action based on the type of acknowledgement or quit and resume at a
later time. The acknowledgements and matching transactions will remain until
cleaned up by the user.

[0076] If while checking the status of transactions, the user

determines, based on the information in the acknowledgement, that one has an error,

-19-

WO 03/025779 PCT/US02/29351

the message can be resubmitted. This would be a dafa error because all transaction

formatting errors are handied by the engine.

1. User is checking the transaction status and has discovered an acknowledgement
indicating an error.

2. The user then displays the errored transaction from the “ERROR” bucket and
determines the reason why the transaction was errored.

3. The user then corrects the error in the original transaction and submits it for
reprocessing.

4. The transaction is placed on the “OUTGOING” bucket ready for the next
transmission to the host.

[0077] Figure 44 illustrates example envelope requirements for a
TranXML format.

, [0078] For AS2 MIME Templates, the structure of an AS2 MIME
message - PGP/MIME, is set forth below.

No encryption, no signature
-RFC2068/2045

-RFC1767/RFC2376 (application/EDIXXXX Or
application/xml)

No encryption, signature
-RFC2068/2045
-RFC1847 (multipart/signed)
-RFC1767/RFC2376 (application/EDIXxxX or
application/xml)
-RFC2015 (application/pgp-signature)

Encryption, no signature
-RFC2068/2045
-RFC1847 (multipart/encrypted)
-RFC2015 (application/pgp-encrypted)
-"Wersion: 17
-RFC2015 (application/octet-stream)
-RFC1767/RFC2376 (application/EDIXXxx or
application/xml) (encrypted) - *

Encryption, signature:
-RFC2068/2045
-RFC1847 (multipart/encrypted)
-RFC2015 (application/pgp-encrypted)
-"Version: 17
-RFC2015 (application/octet-stream)

-20-

WO 03/025779 PCT/US02/29351

-RFC1847 (multipart/signed) (encrypted)
-RFC1767/RFC2376 (application/EDIXXXX Or
application/xml) (encrypted)
-RFC2015 (application/pgp-
signature) (encrypted)

No encryption, no signature
-RFC2068/2045
-RFC1767/RFC2376 (application/EDIXxXx or
application/xml)

No encryption, signature
-RFC2068/2045
-RFC1847 (multipart/signed)
-RFC1767/RFC2376 (application/EDIXxXxX Or
application/xml)
-RFC2633 (application/pkcs7-signature)

Encryption, no signature
~-RFC2068/2045
-RFC2633 (application/pkcs7-mime)
-RFC1767/RFC2376 (application/EDIXXxXX OT
application/xml) (encrypted)

Encryption, signature
-RF(C2068/2045
-RFC2633 (application/pkcg7-mime)
-RFC1847 (multipart/signed) (encrypted)

~-RFC1767/RFC2376 (application/EDIXxXxx or
application/xml) (encrypted)

~-RFC2633 (application/pkcs7-signature)
(encrypted)

[0079] Skeletal Requirements for an EDIINT (sample format) are set
forth below.

To: <<recipient organization >>

Subject:
From: <<sending organization >>
Date:

Mime-Version: 1.0
Content-Type: Application/XML
Content-Transfer-Encoding: QUOTED-PRINTABLE

<<standard TRANXML Interchange goes here>>

21-

WO 03/025779 PCT/US02/29351

[0080] Figures 45 — 51 illustrate example screen shots displayed by
one example embodiment of connector. Generally, and as shown in Figure 45, a user
can select administration, viewing, and create/update functions within connector.
Figures 46 — 47 illustrate viewing transaction status. Figures 48, 49, and 50 illustrate
creating/updating a transaction. Figure 51 illustrates creating/updating templates that
are displayed by connector and utilized in generating messages. Figure 52 illustrates a

shipment status message.
IV. Integrator

[0081] Figures 53 and 54 illustrate an example embodiment of the
integrator. The integrator provides functionality for trading partners to connect
reliably and securely a single source of information to the engine. The integrator
facilitates implementation of electronic connectivity of business partners, and extends
the scope of responsibility from LAN to LAN at trading partners. The integrator may
combine with enterprise applications adapters from third parties to provide tight

coupling with internal applications.

[0082] In one example, integrator is implemented as a Java2
executable suitable for use on many different platforms with minimal modification.
Typically, integrator supports a single-digit number of users per client installation.
Integrator can be configured to directly support JMS-compatible message-oriented
middleware such as IBM MQ Series.

[0083] Integrator can be implemented using open source third-party
tools such as the Apache Jakarta tools for servlets/JSP, regular expressions, and other
functions. Apache Xerces and Xalan can be used for for XSLT-based other to XML
conversion. FiveSight RoundTrip can be used to populate and edit TranXML
documents, and FiveSight XiLLA can be used to validate TranXML documents. These

tools are commercially available and well know.

[0084] Integrator transmits messages to the engine (e.g., by HTTPS
POST), receives acknowledgements (e.g, MDS5 in the response), verifies the

20

WO 03/025779 PCT/US02/29351

acknowledgement, and receives an acknowledgement of receipt of the verification.
Integrator can also send messages on a JMS queue connected to a hub outside of the
firewall at the integrator server. A validation agent within the bridge will ensure that

the message meets all requirements (completeness, destination, etc.)

[0085] While the invention has been described in terms of various
specific embodiments, those skilled in the art will recognize that the invention can be

practiced with modification within the spirit and scope of the claims.

23-

WO 03/025779 PCT/US02/29351

WHAT IS CLAIMED IS:

1. A connectivity system for communications between trading

partners, said system comprising:

a connector comprising a servlet runner for causing selected templates
to be displayed to a first trading partner and a sender/receiver communicator for
asynchronously communicating a message comprising information input by the first

trading partner into at least one of said templates; and

an engine comprising a task list processor for processing said message
communicated by said connector and a relational database for storing task
instructions, said task list processor retrieving task instructions from said relational
database based on a sender-receiver-transaction type triple associated with said

message.

2. A system in accordance with Claim 1 further comprising a
database, messages to be sent by said sender/receiver communicator being at least

temporarily stored in said database.

3. A system in accordance with Claim 1 wherein said connector is

electronically positioned within a DMZ of the first trading partner.

4. A system in accordance with Claim 1 wherein said connector is

electronically positioned behind a firewall of the first trading partner.

5. A system in accordance with Claim 1 wherein said connector
operates asynchronously with respect to creation and delivery of messages to said

engine.

6. A system in accordance with Claim 1 wherein said connector is

implemented in Java code.

-24.-

WO 03/025779 PCT/US02/29351

7. A system in accordance with Claim 1 wherein the first trading
partner has a plurality of connectors, each of said connectors configured to

communicate with said engine.

8. A system in accordance with Claim 1 wherein messages are

communicated to said engine via sources in addition to said connector.

9. A system in accordance with Claim 1 wherein access to said

servlet runner is controlled by a local administrator.

10. A system in accordance with Claim 1 wherein said connector

communicates with said engine in polling-push and in polling-pull operations.

11. A system in accordance with Claim 1 wherein said engine task
list processor executes at least one of message storage, indexing, translation,

transformation, transmission, validation, acknowledgement, and rejection tasks.

12. A system in accordance with Claim 1 wherein for an inbound
message received by said engine, said processor determines the sender, receiver and
transaction type of the message, retrieves a task list of arbitrary length from a
relational database and sends the message via a queue to an appropriate component to

perform the first task.

13. A system in accordance with Claim 12 wherein said task list is

created based on at least one of a “Pull Inheritance” and a “Push Inheritance”.

14. A system in accordance with Claim 1 further comprising a
persistent repository, said engine coupled to said repository for storing messages

therein to provide an auditable record of message processing and transmission.

15. A method for operating a system to communicate between
trading partners, said system comprising a connector and an engine, said connector
comprising a servelet runner and a sender/receiver communicator coupled to a
database, said engine comprising a task list processor and a relational database having
a plurality of tasks stored therein, said method comprising the steps of:

-25-

WO 03/025779 PCT/US02/29351

operating the servelet runner to:
cause a template to be displayed to a first trading partner,

generate a file containing information input into the template by

the first trading partner, and
store the file in the connector database;
operating the sender/receiver communicator to:

generate a message based on the information contained in the
file, and

asynchronously communicate, to the engine, the message; and

operating the engine task list processor to process the message, the
processing comprising the step of retrieving, from the relational database, tasks to be
executed based on a sender-receiver-transaction type triple associated with the

message.

16. A method in accordance with Claim 15 wherein the connector
operates asynchronously with respect to creation and delivery of messages to the

engine.

17. A method in accordance with Claim 15 wherein access to the

servlet runner is controlled by a local administrator.

18. A method in accordance with Claim 15 wherein the connector

communicates with the engine in polling-push and in polling-pull operations.

19. A method in accordance with Claim 15 wherein the engine task
list processor executes at least one of message storage, indexing, translation,

transformation, transmission, validation, acknowledgement, and rejection tasks.

-26-

WO 03/025779 PCT/US02/29351

20. A method in accordance with Claim 15 wherein for an inbound
message received by the engine, the processor determines the sender, receiver and
transaction type of the message, retrieves a task list of arbitrary length from a
relational database and sends the message via a queue to an appropriate component to

perform the first task.

21. A method in accordance with Claim 20 wherein said task list is

created based on at least one of a “Pull Inheritance” and a “Push Inheritance”.

22. A connector for communicating messages, said connector

comprising:

a servelet runner for causing selected templates to be displayed to a

first trading partner and for generating an outbound file containing a message; and

a sender/receiver communicator for asynchronously communicating the

message to a recipient.

23. A connector in accordance with Claim 22 further comprising a

database, messages to be sent by said sender/receiver communicator being at least

temporarily stored in said database. ’

24, A connector in accordance with Claim 22 wherein said

connector operates asynchronously with respect to creation and delivery of messages.

25. A connector in accordance with Claim 22 wherein said

connector is implemented in Java code.

26. A connector in accordance with Claim 22 wherein access fo

said servlet runner is controlled by a local administrator.

217. A connector in accordance with Claim 22 wherein said

connector communicates messages in polling-push and in polling-pull operations.

28. A messaging engine comprising:

-27-

WO 03/025779 PCT/US02/29351

a task list processor for processing an inbound message, said processor
operable to execute at least one of message capture, message management, and

message forwarding tasks; and

a relational database for storing task instructions, said task list
processor retrieving task instructions from said relational database based on a sender-

receiver-transaction type triple associated with the inbound message.

29. A messaging engine according to Claim 28 wherein said
message capture tasks comprise receipt of an inbound message, identification of an
inbound message, validation of an inbound message, and acceptance/rejection of an

inbound message.

30. A messaging engine according to Claim 28 wherein said
message management tasks comprise translation of a message, eliminating duplicates
of a message, applying customer business rules to a message, and creating an audit

trail of a message.

31. A messaging engine according to Claim 28 wherein said
message forwarding tasks comprise delivering a message to a recipient trading

partner, and archiving a delivered message.

32. A messaging engine in accordance with Claim 28 wherein said
engine task list processor executes at least one of message storage, indexing,
translation, transformation, transmission, validation, acknowledgement, and rejection

tasks.

33. A messaging engine in accordance with Claim 28 wherein for
an inbound message received by said engine, said processor determines the sender,
receiver and transaction type of the message, retrieves a task list of arbitrary length
from a relational database and sends the message via a queue to an appropriate

component to perform the first task.

28-

WO 03/025779 PCT/US02/29351

34. A messaging engine in accordance with Claim 33 wherein said
task list is created based on at least one of a “Pull Inheritance” and a ‘“Push

Inheritance”.

35. A messaging engine in accordance with Claim 28 comprising
IMS queues wherein multiple instances of each task can process messages in parallel,

said instances distributed across a plurality of host processors.

36. A connectivity system for communications between trading

partners, said system comprising:

a first connector comprising a servlet runner for causing selected
templates to be displayed to a first trading partner and a sender/receiver communicator
for asynchronously communicating a message comprising information input by the

first trading partner into at least one of said templates; and

a second connector comprising a servlet runner for causing selected
templates to be displayed to a second trading partner and a sender/receiver
communicator for asynchronously communicating a message comprising information

input by the second trading partner into at least one of said templates.

37. A connectivity system in accordance with Claim 36 further
comprsing an engine for receiving communications from said first and second
connectors, said engine comprising a task list processor for processing a message
communicated by one of said connectors and a relational database for storing task
instructions, said task list processor retrieving task instructions from said relational
database based on a sender-receiver-transaction type triple associated with said

message.

38. A system in accordance with Claim 37 wherein at least one of
said connectors is electronically positioned within a DMZ of the respective trading

partner.

-29-

WO 03/025779 PCT/US02/29351

39. A system in accordance with Claim 37 wherein at least one of
said connectors is electronically positioned behind a firewall of the respective trading

partner.

40. An integrator comprising a processor and configured to couple
to at least one connector, said integrator further configured to function as a single

source of information for communicating messages to an engine.

41. An integrator in accordance with Claim 40 wherein said

integrator is implemented in Java code.

42. An integrator in accordance with Claim 40 wherein said
integrator is configured to transmit messages to an engine, receive acknowledgements
from the engine, verify the acknowledgement, and receive an acknowledgement of

receipt of the verification.

-30-

WO 03/025779 PCT/US02/29351

Cixsgpmers

Connactor

Engine

< XMLirls!

(Ewmal)) [Vida J) {Toow [{Sawion) |

B e om0 e 0 0 0 2

g@f{ge §

Trading Partner | | Trading Partner

Z2. Firewall

Web /
Comnunications

Application
R ~ Server

WO 03/025779

PCT/US02/29351

Trading Partner

Interactive Processes

Applicatior o
Setvek Database

DMZ
Connector
M ¢ itted Host System
essages transmitte Applicat
over HTTPS = FTR(S) Pecreer | Database
n H] -
- -0
/ =T
Flat Files
Patabase

De-encrypt ; N
Validate certificate o

Generate MDN ; k]

PRy E

uthentication §

Connector

rewall Firewall

Frg. 3

e

RSt s

EDINT

“ﬁy’* .e:@

Bt {(HTTP)

S|

=

43
i

T (HTTPS)

L
£
2

TR

(HTTP)

Encryption 1 G
ol Certificates : Qgg}l Setor:

lets

WO 03/025779 PCT/US02/29351

Cunnector

Oracle
Message store
Database

L

IO e
i

Encryption

Certificates User
Security Validate MD5 LDAP validation
Database User/Services De-encrypt security
Validate certificate authentication
Generate MD5
.. &
Fi
Trading
Partner
Flat Files
Web Forms <
JMS Queues®
Other Adapters
Connector
Server
in DMZ

Epgirme| b

firewall

WO 03/025779

Trading

PCT/US02/29351
Partner

a

C&nnector
~behind
firewall

Connector
Server
in DMZ

‘ é;“ inrl Engine
‘s behind
firewal!

Trading
Partner

Trading
Partner

Connector
~behind
firewall

a L]
éﬂd e Engine
G‘M‘S ‘ behind
firewall

WO 03/025779 PCT/US02/29351

Trading Trading
Partner B | Partner

Connector w
-behind
firewall

Trading B Trading

Siie s ad

5

fli Sy

Partner Partner

ol

10

Conngctor C-‘:::l‘l?nddor
~behind firewall
firewall

ﬁ:s. 10

WO 03/025779 PCT/US02/29351

=

=

=

@ E ; Extemal EMALL Clignls
[2N TransSMTPO1
_. Extemal FTP Clients
= TonfEat e
Mainfra HUXTRO7 et
HUXTR08 -
External .Firewall Extema. Connector Clients
Intemnal Firewall
==l |
==
=3
f——]
f s |
G2G MQSeries
Server Weblogic
HUXUPO3 . Engine/. Comm
HUXTROS
Intemnet
(o] Xe] Connector Seiver
BEA Bridge on HUXUPD7/B | ¢ [alay Conneclor
on HUXUPO3 and
) HUXTROS U on E’ggRNAL
(28)
Nl
h &
rwoud! & Customer
y BC\E“\a“ g FTP Emall
piect 0\@0\ on EX‘(I’;RNAL
. Comm
N, Direct Connect A/‘
- Comm Programs " tnput oo
w Inbound Msg Queue on HUXTRO5 on HUXUPO3
on HUXUPO3 “) 8)
©
Somm /
Database &
on HUXUP04 00&(,,@
)
o>
€ngine
Programs
Datavase on HUXTRO5
P gr::rsnm Message un'\\/’ﬁ on HUXUPD4 o)
0 9]
on HUXTROS @
U]
Zomm Engine

u}

000000000

WO 03/025779

o I LT

s emvs o || Monitor

Message
Seurce Format

Application-to-
Application (JDE,
SAP, etc.)
EDIx12
EDIFACT
EDIINT

Flat file

EDI Mail
HTML

HTTP

XML

Sonnector

ju]
Q
‘o:FrameRelay . -
a
Q

"Message i
Delivery 1
|
i
i
|

Dedicated Line
SNA Networking

Any VAN Service
Dial-up
a FIP
a E-mail
a Secure Infernet
Connection

erts
Exceptions

. I13A

Message
Capture
Capture

Identify
. Acknowledge

P(;;F‘!vyasl|02/29351

5 De-encrypt
i Validate certificate
Generate MD5

View Messages
Use Biz Objects

Errors?

L(EIean? §

Message
Processing

WO 03/025779

PCT/US02/29351

Lines represent queues

CPU A CPUB
Task 1 \ nl Task 3 \ Task 6
Task 2 » Task 4 >< / Task 7
| Task 2 A ,-{ Task 5 | \‘l Task 8
Task 3 //\ + Task 6 \‘} Task 8 |
Task 3 Y Task 6 4 Task 9
CPU C

P

CPU D...

F;j,)33

WO 03/025779 PCT/US02/29351

Management

o Translate
a Eliminate duplicates
a Apply custolmer

0 .Manage éxceptions
o Assemble outbound

a Capture audit trail

Message | Ry
Source Format | -

Engme Jy”

; Clean?

Errors?

Outbound
Messaging

,t-’,l. I’y

Exceptlons

Message
Delivery
l£l Appl'eatton-fo- o Dedicated ine
Application (JDE, o SNA Networking
ShP, ot AO l\:lr;“l\}esr::?l)i/ce
£ VI =} EDI)_(12 g F‘:']g
a Store: fqr retrieva = EDIFACT TP
a Archive o EDINT a g _—
Flat file : @ Secureinte
. EDI Mail R connections
- HTML a Messages sent based ’
2 HTTP » on events or schedule |
o XML ,:/-
m} ' }

Connector

Exceptions

WO 03/025779 PCT/US02/29351

Inbound Msg

Get route document
from message router
queue

Format SQL
using Router
doc

Inbound

Message
D/IB

Get message
from Oracle
D/B

v

[N]@ Update
Message »| routing
found? doc -
eITorsS
Combine route doc with Put to Parse Put to
message / Queue Workflow
Queue

"’.’r /7

WO 03/025779

PCT/US02/29351

Get Message
from parse
queue

v

Parse message — parse
thru x nbr of

characters

v

Locate
sender,
receiver, tran
type, etc

l

Count # of
bytes for
billing

M@ Update
M;:_sds";lge P routing
Yvahd! doc -
eITors
Ves
Update
routing
document Put to
Workflow
Queue
Put to
XiLA Alias
process

Fg. 18

WO 03/025779

PCT/US02/29351

Get Message
from queue

XiLA Alias Process

Y

Access
Route
document

v

Determine
which
workflow to
execute

l

Y

Search
XiLA
workflow
rules #1

Rule
found?

' !

Search
XiLA
workflow
rules #2

Rule
found?

Search
XiLA
workflow
rules #3

Rule
found?

Update

!

Update
route
document

v

Put to Client
profile queue

route
document

y

Put to
Workflow
Queue

Fig. 14

WO 03/025779 PCT/US02/29351

Get Message v
from queue Validate
receiver

Format
selection
parms Receiver
l valid?
Access Trading ¥
Partner D/B Validate
sender
Icvr trans
A 4 combo
Select rows
from
Trading
Pariner D/B

Determine
data to be

collected
Validate

sender l

Update
route
document

A 4

Format error
P
code

Put to
Workflow
Queue

A 20

WO 03/025779

Workflow
Dispatcher

v

Get message from
workflow queue

Y

Use route document
to determine
processing

PCT/US02/29351

Put to
Create

Index queue

Put to update
billing D/B
queue

Put to
scoreboard
queue

Put to XML
Solutions
queue

6 7

©

@

8;

Put to Update
message store
queue

Putto
O/BDestination
queue

(0

/—’-,3. 2l

(1

D

WO 03/025779

Get Message
from queue

v

Determ;ne Indexes to

be created

!

Create Time
Index

!

lv

Create
Error
index

]

Create
Client Index

Y

If errors,
pass on?

Put to HOLD
queue

PCT/US02/29351
Create
business —P
kev?
NEeS
Parse
msg for
business
key
Create
business
key index
Create
equipment P
index?
Parse msg
for
equipment
D
>
Y
Create Update
. route
equipment document
index
Put to
Workflow
Queue

ﬁf;go zz

WO 03/025779 PCT/US02/29351

Get message
from
workflow
queue

Billing
D/B

Y
Update billing
D/B

Update
routing
document

Put to

Workflow
Queue

©

Fis. 23

WO 03/025779 PCT/US02/29351

Get message
from
workflow
queue

Y

Scoreboard
process

Update
routing
document

l

Put to
Workflow
Queue

©

WO 03/025779 PCT/US02/29351

Get message
from
workflow
queue

h 4

Translate message
using XML Solutions

A 4

Update
routing
document

l

Put to
Workflow
Queue

©

Fiy. 28

WO 03/025779 PCT/US02/29351

Get message
from
workflow
queue

Message

¥ ///"P Storage D/B
Update message

storeage D/B

~_

Update
routing
document

l

Put to
Workflow

Queue

)

F,_". 26

WO 03/025779 PCT/US02/29351

Get message
from
workflow
queue

y

Route
message to
destination

queue

End of
process

WO 03/025779 PCT/US02/29351

Reference first
byte of inbound
message

Check for character
strings

Yes

X-12 or
flatfile ?

| UNB,UNG | v
: EDIFACT &S
9)
Yes
]
: d AAR Ne > Format
header? error code
Yes
Put to
y Workflow
100 Queue

F,_". 28

WO 03/025779 PCT/US02/29351

{ ISA is 106 bytes in length |

Flind ‘ § 4%byte inmsg |
elemen !
separator
pnioi | [
separator
Find
segment i 106" byte
terminator
Find
sndr/revr/c
ntrl # From - To
l, ISA06 Sndr_id
ISA08 Revr id
Update I Inb_outb_ind
route doc ISA09, 10 | Ic_date time
ISA16 Sub_elem sep
Byte 4 Elem sep
{ 1SAG2="ZZ or 03" | Byte 106 | Seg term
- latfil ISA13 Msg_cntrl nbr
atfile
4 Yes mput?
Format Put to
error code »! Workflow
Queue

PCT/US02/29351

Need conversion
table for element 479

WO 03/025779
f GS segment found
Get sender, receiver,
transaction type, control nbr,
version
From To
A GS02 Sndr id
Update route GS03 Revr id
document —~ overlay 1 Inb outb ind
with GS information GS06 Funct grp nbr
GS07 Std idfr
GS08 Visn nbr
Y
Look for
ST
segment
Use GS01 to
derive tran type ST found
and update route ?
Yes
Upt;ilattre rotute doc From To
Wi an type STO T
from ST 101 ren bpe
>
Y
Putto
XiLA
Alias

Fig. 30

WO 03/025779

From To

1CS06 Sndr id
ICS08 Revr_id

I Inb_outb_ind
ICS09, 10 | Ic date time
Byte 5 Sub_elem_sep
Byte 4 Elem sep
Byte 68 Seg term
ICS11 Msg_cnir] nbr

Find
element
separator

i 4" byte in msg

v

Find sub-
element
separator

~ 5™ byte

v

Find
segment
terminator

; 68" byte

Y

Find
sndr/revi/c
nil #

A 4

Update
route doc

GS
segment?

PCT/US02/29351

Put to XiLA

P alias queue

Fiy 31

WO 03/025779

0]

\

Format exror
code

Put to
workflow
queue

GS
segment?

Yes

A 4

Move sndr, rcvr,
I/C date/time, cnfrl
to route doc

PCT/US02/29351

GS
segment?

{BG |
From To
BGO03 Sndr _id
BG04 Revr id
I Inb outb ind
BGO5, 06 Ic_date time
? Sub elem sep
Byte 3 Elem sep
Byte 62 Seg term
BGO7 Msg cotrl_nbr

"'S' 32

P alias quene

Put to XiLA

WO 03/025779

@

A 4

Get map to execute
from ISA02

Update route doc

A 4

PCT/US02/29351
g Input is flatfile with ISA header :
From To
ISA02 XiLA_map

Put to XiLA Alias
queue

FI:S' 33

WO 03/025779 PCT/US02/29351
{ Inputis EDIFACT |
Get sndr
from
UNBO3 From To
UNBO3 Sndr id
¢ UNBO06 Revr id
Getrevr . 1 Inb outb ind
from UNB09, 10 Ic date time
UNB06 : colon Sub elem sep
¢ Byte 4 Elem sep
‘ single quote | Seg term
Get date/time UNB11 Msg cntrl nbr
from UNB09
UNB10
Update
route doc
From To
UNGO02 Sndr id
UNG04 Revr id
I Inb outb ind
UNGO06, 07 Ic date time
: colon Sub elem sep
Get tran , sndr, rovr, ?gitlfg?e quote ISEtlaegmtefIl:
date/time and overlay
. UNGOS Funct grp_nbr
UNB val 1§
values in route doc ONGOO S o6
UNGO1 Tran type
UNGI10, 11 Vrsn nbr
Format) ‘ Put io
error code " ——» Workflow
Queue

M~y 34

WO 03/025779

@

Get tran
type from
UNH02

Get msg
control nbr
from UNHO1

Update
route doc

PCT/US02/29351
From To
UNHO02 Tran_type
UNHO01 Set cntrl nbr

Put to XiLA
alias queue

Fig. 38

WO 03/025779 PCT/US02/29351

@ { Inputis XML

\ 4
Parse out
message to get
sndr, revr, tran,
From To
Sndr id
\ 4 Revr id
Update 1 Inb_outb _ind
route doc Ic date_time
Sub_elem sep
Elem sep
Seg term
Funct_gip nbr
Std idfr
Tran_type
Vrsn_nbr
h 4
Putto XiLA

alias queue

WO 03/025779

Input is # header §

H
H
L

Last 4 chars if not blank, otherwise first 4

Move origin
roadmark to
sndr_id

v

PCT/US02/29351

Use starting characters to determine header,
sub-header, details, summary, and end of
message. Header starts with #, subheader
starts with *, details with +, summary starts
with =, and trailer record starts with $ and

ends with EOM.
Move msg seq
#1to
msg_cntrl_nbr
Move msg From To
identifier to Orig roadmark | Sndr id
tran type Destroadmark | Revr id
¢ 1 Inb_outb ind
Prep time Ic_date_time
Move prep None Sub_elem sep
date/time to IC None Elem sep
date/time None Seg_term
Mesg seq nbr Funct_grp nbr
i None Std_idfr
Vowodes | | (2| o
roadmark to
revr ID
Next red
aGS?

NG

Put to XiLA
alias Queue

F.'j. 37

WO 03/025779 PCT/US02/29351

: el s

2] htps:fwens.shpmestvison. comfscommercs/messageviemer|SsplayIndces.sesviabx

o
Rl

R AR O

. Message Exchange

Pick List Viewer

e A R ; S
SeEaa R e A N o

o xe

£ Liases

tng BSOS s £

: e i i

e s e, ‘u‘%ﬁ‘%’? g f%:‘t% b5 ‘if“?":—gs‘t;?
Sdgbest St

&
i S
AT praer 4&3 HDents -.ﬁ» 3
= Ao ar s
3

£l ST ST T I e

Fiy- 38

%#m*x%%a%m% i e

GG METAE AT

Ry
it ‘ﬁsﬁzgézﬁ’iqfe’?g :

I LG R OB SIS Hio et it

35

e
feRs

R Ed
oBach - -

e

sl R S el
A [2] Mtps: lwreet.chiomaikvlsid . 41 e ot

¥

it L0 0
ey

Back to Stast pape

Message Exchange

Message Viewer

952!

tocal Workilc

Reliable Connectivity

e (shown a5 EDINT) ™ ey, o ErOnt POrCh™ ey

p—
PN B
b raman—s] 20T Ly >
Bucket
{filesystem)
Wiite 10
) RO 4 oo, [4] EDINT
“ERROR" Bucket
{filesystem)
- Wiite to
TranXML—— "RECEIPTS®
o oy nl
“RECEIPTS" Bucket
{fesystem)
4
Application Log

{flesystem)

4«——QUEUE——

EDINT

2
Validate
document.
(XiLA)
ay
Retrieve
€4 parked
documents.

JMS

Document
Store

Fig. 4l

WO 03/025779

PCT/US02/29351

Submit
(file write)
——eep
"OUTGOING" Bucket
Browse {flesystem)
(file read)
User Interface
(Apache Tomcat)
"ERROR" Bucket
Browse (filesystem)
(file read)
e
"RECEIPTS" Bucket
(filesystem)
-~ z
Fig. 9
Creates message ith
TranXML. Envelope Stores Message Stores Message Stores Message Stores Message
with R locally for match locally for match locally for match Tocally for match
+Control Number
«Sender/Receiver Sent Received Accepted Rejected
*Message Type
A
Yes
y
Transforms to X12 Etror Queue
Retains TranXML 'l:mfonm 997 e Corrects Message .l:m'sr s 824
N . into TranXML Acoepl? into TranXML
Envelope information ACK and ACK
inGS Retransmits
A 4
v
Retums 997 Retums 824
Processes X2 > on onmessage
message Accept/Reject | Accept/Reject
ou Syntax only ont Application only

WO 03/025779 PCT/US02/29351

T
Trardbll Envelope -
Receiver

MessageType H
vl

bw.mw:.c_ =

TrardL Eny ope .
fecsage Tups

Messagestructure 1

S i
Trarodit Enwelape -
PMersage Structare

Mezsage Pay Ea.a
- - Message\fersmn
SRR
TranXML Envelope -
Hlessage Yarsion
bt aiatiing - e
- CoMrolNumber g
"a.ua.&’ab&m" ERET G TGRS
Tran¥ML Envelope - Conunt
MNurnber

-4 Processmglnstructmn -2‘

»
.
.
.
.
]
*
'
'
.
]
.
"
'
.
v
e
®
s
)
»
»
:
.
]
v

0.5

o

s 7 S
e vy

o ot
g e

Feoyr®

WO 03/025779 PCT/US02/29351

WO 03/025779

PCT/US02/29351

i

o |{Links)

CONNEC

Create/Update Transactions

TOR

I

Tran¥ML Temiplates

Custom Templates !

ShipmentWeightsxml

FiolindustialSwichLisanl
ShipmentStatusMessagexm!

ShippersCarOrderxml :
|SimpleRaiBilOLadinasnl__ o H

CarHandlinglnformation_customcustomeapysm! |
|CarHendlinglnformation_customkethyxml

CarHandlinglmormaﬁon_cuaomml)
CarHandli formation_custc lenkform.xml
CarHandlinginformation, ¢ cgslomgew!e_mplata_mlﬁﬁ!i |

4‘_»J Do ik ™

RIS

- CONNECTOR

RailBillOfLading.xml

i[TransactionSetPurposeCode:

‘| TransportationMethodTypeCode:

ShipmentMethodOfPayment:

ShipmentQualifiers

dentificationNumb

Shipme

Al

StandardCanieralphaCode:

Ilsro45a545

WeightUnitCode:
SectionSevenCods:
v
RelzaseCode: LR
e O DS DI e
I . N N rrrrvET y— - 1

WO 03/025779 PCT/US02/29351

CONNECTOR |

ShipmentWeights.xml

Std. Carrier Alpha Code: llgf.__.__b_‘ ~ J -
Shipment Id #: I|1 23456789 'l‘ 2

Weight Unit Code:

pate: Romoes

Time: I!_Js:m) .

ScaleTypeCode:

il [EEr——

EquipmentNumber: [259687 .
|lwaybiliNumber: 211200

B

S

wonnector

Create/Update Templates

i CarHandlinginformation_custom xm!
CarHandlinglnformation_custom2.xmi
MotorCarrierLoadTender_custom1xml
MotorCarrierLoad Tender_custom2s.xml

MotorCarrierLoadTenderxml
jRailBillOfLadingxml
RillndustrialS\aritchListxml

mfses s

P S AN NCT

WO 03/025779 PCT/US02/29351

Connector

ShipmentStatusMessage_customtomc.xml

s .')'. R IS ORI & 1t e ,‘ T_B " '
Name: JAUTOMAKER 1 Name: JAUTOMAKER DE MEXIC]
City: ICOLUMBUS | City: IMEXICOCITY
State: !OH _______ J State: iDF :

Equipment Id (Initial):

Shipment Status : JAG | Equipment Id (Number): {48497
Date: [2001-02-04 | Citys JLAREDO
Time (CT): F_EE%I N ri@ State: ITX“ L
Country: lUS
Business Instructions 4lnt<erlin§2
And Reference Nuimbers: _Information
Standard Carrier Alpha Codes DRGW

Power Unit:

losasst

Transportation Method:

B

Carriers Reference Number: 770301
" . " I Routing Sequence Codes IB_.....“-._...._F.H..-.... -
Fiy. S
JMSs
Integrator o
Messages transmitted
over HTTPS Application —
Connectors
PR e

WO 03/025779

PCT/US02/29351

Trading Partner

Interactive Processes

~ Applicati
DMZ P rror Database
)
Integrator w
Host System

Messages transmitted
over HTTPS

Application
. Adapter Server

Database

Server Database

Firewall Firewall

Fis .54

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US02/29351
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 15/16
US CL : 709/201

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 709/201

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 6,144,988 A (KAPPEL) 07 November 2000 (07.11.2000), see column 2, line 64 to 1-42
column 10, line 55.
Y US 6,125,391 A (MELTZER et al.) 26 September 2000 (26.09.2000), see column 9, line 8 1-42
to column 32, line 20.
A US 5,982,983 A (HUGHES) 09 November 1999, see the whole reference. 1-42

I:' Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Y” document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
19 December 2002 (19.12.2002) 1 4)}A N 2003
Name and mailing address of the ISA/US Authorized officer .
Commissioner of Patents and Trademarks L —
Box PCT Meng Ai An
Washington, D.C. 20231 | 2
Facsimile No. (703)305-3230 Telephone Mo<” 703-305-3900

Form PCT/ISA/210 (second sheet) (July 1998) /

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

