(54) 发明名称
内窥镜的送气系统

(57) 摘要
本发明提供内窥镜的送气系统。使用气泵及二氧化碳高压储气瓶等双系统的气体供给源时顺畅地自动切换气体。在光源装置(12)上设有光源板(40)和气泵(41)。通过具有转速控制部(43)的泵驱动电路(42)驱动气泵(41)而供给加压空气。通过气体供给流量调节单元(51)向内窥镜供给二氧化碳，进行使用了二氧化碳的送气和送水。检测二氧化碳高压储气瓶(50)的二氧化碳的剩余量。当二氧化碳的检测压力P1小于一定值PSI时，使气泵(41)旋转而供给加压空气。控制气泵(41)的转速，以与二氧化碳供给时相同的供给量来供给加压空气。向加压空气的切换自动进行。切换前后的供给量相同而不会给予做手术的人以不适感。
1. 一种内窥镜的送气系统，该内窥镜具有插入受检者的体内的插入部、与所述插入部连续的主体操作部、与所述主体操作部连接的通用软线，所述内窥镜的送气系统从连接所述通用软线的供气配管的管路连接部对所述内窥镜进行送气，其特征在于，包括：

加压空气供给装置，其具有产生加压空气的气泵，调节所述加压空气的供给流量的加压空气供给流量调节部，并向所述管路连接部供给所述加压空气；

气体供给装置，其具有供给气体的气体高压储气瓶，调节所述气体的供给流量的气体供给流量调节单元，并向所述管路连接部供给所述气体；

气体切换控制部，其控制所述加压空气供给装置及气体供给装置，向所述管路连接部输送所述加压空气及所述气体中的一方，并使用切换前的所述加压空气及所述气体中的一方的供给流量设定值进行切换控制，

所述气体供给流量调节单元具有：串联连接第一减压阀及第二减压阀的减压机构；设置在所述第一减压阀的入口侧的压力计；设置在所述第二减压阀的出口侧的压力流量控制阀；根据所述供给流量设定值控制所述流量控制阀的气体供给控制部。

所述气体供给控制部在所述压力计的压力成为第一值PS1时向所述气体切换控制部发送气体切换信号，所述气体切换控制部将所述流量控制阀切断而驱动所述气泵，从而作为所述气体的二氧化碳切换成加压空气。

2. 一种内窥镜的送气系统，该内窥镜具有插入受检者的体内的插入部、与所述插入部连续的主体操作部、与所述主体操作部连接的通用软线，所述内窥镜的送气系统从所述通用软线的供气配管的管路连接部对所述内窥镜进行送气，其特征在于，包括：

加压空气供给装置，其具有产生加压空气的气泵，调节所述加压空气的供给流量的加压空气供给流量调节部，并向所述管路连接部供给所述加压空气；

气体供给装置，其具有供给气体的气体高压储气瓶，调节所述气体的供给流量的气体供给流量调节单元，并向所述管路连接部供给所述气体；

气体切换控制部，其控制所述加压空气供给装置及气体供给装置，向所述管路连接部输送所述加压空气及所述气体中的一方，并使用切换前的所述加压空气及所述气体中的一方的供给流量设定值进行切换控制，

所述气体供给流量调节单元具有：串联连接第一减压阀及第二减压阀的减压机构；设置在所述第一减压阀的入口侧的压力计；设置在所述第二减压阀的出口侧的压力流量控制阀；根据所述供给流量设定值控制所述流量控制阀的气体供给控制部。

所述内窥镜的送气系统还包括检测二氧化碳浓度的浓度传感器，当所述浓度传感器成为第一值CS1时向所述气体切换控制部发送气体切换信号，所述气体切换控制部将所述流量控制阀切断而驱动所述气泵，从而作为所述气体的二氧化碳切换成加压空气。

3. 根据权利要求1或2所述的内窥镜的送气系统，其特征在于，

具有供给流量设定值存储部，其存储所述加压空气供给流量调节部中的供给流量设定值及所述气体供给流量调节单元中的供给流量设定值，

所述气体切换控制部从所述供给流量设定值存储部读出切换前的所述供给流量设定值来进行切换。

4. 根据权利要求1或2所述的内窥镜的送气系统，其特征在于，

所述加压空气供给流量调节部具有控制所述气泵的转速的泵驱动电路。
5. 根据权利要求1所述的内窥镜的送气系统，其特征在于，
所述气体供给控制部在所述压力计的压力成为第二值PS2时使所述气泵怠速旋转，其中，PS2＞PS1。

6. 根据权利要求2所述的内窥镜的送气系统，其特征在于，
所述气体供给控制部在所述浓度传感器的检测浓度成为第二值CS2时使所述气泵怠速旋转，其中，CS2＜CS1。

7. 根据权利要求6所述的内窥镜的送气系统，其特征在于，
所述气体供给控制部在所述浓度传感器的检测浓度成为第三值CS3时向所述气体切换控制部发送气体切换信号，使所述气泵停止且将所述流量控制阀接通，其中，CS3＜CS2。

8. 根据权利要求1或2所述的内窥镜的送气系统，其特征在于，
具备处理器，其具有面对所述插入部前端的观察窗配置的摄像单元，并用于接收来自所述摄像单元的图像信号而对所述图像信号进行图像处理并将其显示在监控器上，
通过所述处理器的控制部构成所述气体切换控制部。

9. 根据权利要求1或2所述的内窥镜的送气系统，其特征在于，
具有溢流阀，该溢流阀在其与连接所述管路连接部的管路连接器之间形成腔室，并且与所述腔室连通，在所述腔室成为一定压力以上时释放气体。
内窥镜的送气系统

技术领域
[0001] 本发明涉及内窥镜的送气系统。

背景技术
[0002] 作为医疗用的内窥镜，在插入部的前端具有照明窗、观察窗及钳子出口。在使用时，将插入部插入到受检者的体腔内。然后，使照明光从照明窗向体腔内照射，从而从观察窗对体腔内进行观察。当发现病变时，可将高频处理工具或钳子等穿过钳子通道，从而利用从钳子出口伸出的钳子等对病变进行处理。
[0003] 因此，内窥镜系统除了内窥镜之外，还具有光源装置、处理器及监控器。而且，根据需要还可以安装高频电源装置或 VTR 装置、印相机等。所述各种设备与内窥镜自身一起设置在载物车上。载物车具有用于设置各种设备的多段搁板，且其构成为移动自如。通过该载物车能够将内窥镜系统搬入到临床现场，从而利用内窥镜进行检查和治疗。
[0004] 来自光源装置的光源的照明光经由导光器从照明窗照射到体腔内。在面对观察窗的位置，摄像单元配置在插入部前端内部。摄像单元从观察窗对体腔内进行拍摄。来自摄像单元的图像信号经由通用软线向处理器发送。由处理器对图像信号进行处理并在监控器上显示观察图像。
[0005] 在利用内窥镜进行检查或治疗时，做手术的人（操作者）控制连接有内窥镜的各种设备。例如，在光源装置中调整光源光量，从而使显示在监控器上的体腔内的影像清晰。而且，当使用高频处理工具时，适当控制高频电源的电压或电流，以进行安全且有效的处理。
[0006] 内窥镜具有加压后的液体及气体的供给通路。加压液体用于：观察窗的清洗、体腔内壁的清洗、药液的分散、以及使液体在内腔器官或组织中流动的灌流等。加压气体用于体腔内的膨胀、清洗后的观察窗的液液的除去等。作为所述液体及气体的加压源，例如使用气泵。当供给加压气体时，对气泵进行驱动。而且，在用于送液时的液体加压的情况下，从气泵向送液罐供给加压空气。气泵通常内置在光源装置中。而且，送液罐以可拆装的方式安装在光源装置上。不仅可通过对气泵进行接通/切断来使加压空气的加压空气的压力及流量变化，而且还可通过控制其转速而使加压空气的压力及流量变化。
[0007] 近年来，替代基于气泵的空气加压而以二氧化碳（CO₂）作为加压气体源的情况得到实际应用。与空气相比，二氧化碳更容易被生物体吸收，基于安全性和减轻患者的负担等观点考虑，优选使用二氧化碳。当以二氧化碳为加压气体源时，采用利用了二氧化碳高压储气瓶的二氧化碳供给装置。二氧化碳供给装置以可拆装的方式与内窥镜的送气通路连接，将来自二氧化碳高压储气瓶的二氧化碳减压而进行供给。
[0008] 作为加压气体源，除了气泵之外，例如在专利文献 1 中提出有一种还使用二氧化碳高压储气瓶的送气系统。在该送气系统中，除了供给来自二氧化碳高压储气瓶的二氧化碳之外，还能够供给来自气泵的加压空气。
[0009] 【专利文献 1】日本特开 2006-14961 号公报
发明内容
[0011] 本发明是为了解决上述课题而做出的，其目的在于提供一种如下的内窥镜的送气系统，即，该内窥镜的送气系统能够选择性地切换基于泵的加压空气和基于高压储气瓶的气体。当基于高压储气瓶的气体供给中高压储气瓶的剩余量成为一定量以下时，自动地切换成加压空气，从而能够进行连续送气。
[0012] 为了实现上述目的，本发明具有：加压空气供给装置，其具有产生加压空气的泵、调节所述加压空气的供给流量的加压空气供给流量调节部，并向连接通用软管的供气配管的管路连接部供给所述加压空气；气体供给装置，其具有供给气体的气体高压储气瓶、调节所述气体的供给流量的气体供给流量调节单元，并向所述管路连接部供给所述气体；气体切换控制部，其控制所述加压空气供给装置及气体供给装置，向所述管路连接部输送所述加压空气及所述气体中的一方，并使用切换前的所述加压空气及所述气体中的另一方的供给流量设定值进行切换控制。
[0013] 另外，本发明具有存储加压空气供给流量调节部中的供给流量设定值及气体供给流量调节单元中的供给流量设定值的供给流量设定值存储部，气体切换控制部从所述供给流量设定值存储部读出切换前的所述供给流量设定值来进行切换。此外，优选，所述气体例如是二氧化碳，在初始设定时优先使用所述气体供给装置。
[0014] 所述气体供给流量调节单元具有：串联连接第一减压阀及第二减压阀的减压机构，设置在所述第一减压阀入口侧的压力计，设置在所述第二减压阀出口侧的流量控制阀，根据所述供给流量设定值来控制所述流量控制阀的气体供给控制部。而且，所述加压空气供给流量调节部具有控制气体转速的泵驱动电路。
[0015] 所述气体供给控制部在所述压力计的压力成为第一值PS1时向所述气体切换控制部发送气体切换信号，所述气体切换控制部将所述流量控制阀切断而驱动所述泵，从二氧化碳切换成加压空气。此外，气体供给控制部在所述压力计的压力成为第二值PS2（PS2 > PS1）时，优选使气泵急速旋转，这种情况下能够在短时间内进行切换。
[0016] 优选，具有检测二氧化碳浓度的浓度传感器，当浓度传感器的检测浓度成为第一值CS1时向气体切换控制部发送气体切换信号，气体切换控制部将流量控制阀切断而驱动气泵，从二氧化碳切换成加压空气。在这种情况下，根据环境气氛或腔体内的二氧化碳浓度来对二氧化碳和加压空气进行切换。此外，气体供给控制部在浓度传感器的检测浓度成为第二值CS2（CS2 < CS1）时优选使气泵急速旋转。而且，优选气体供给控制部在浓度传感器的检测浓度成为第三值CS3（CS3 < CS2）时向气体切换控制部发送气体切换信号，使气泵停止而将流量控制阀接通。在这种情况下，当二氧化碳浓度返回到适当范围内时，自动地从加压空气切换成二氧化碳。
[0017] 优选具备处理器，其具有面对所述内窥镜的插入部前端的观察窗配置的摄像单元，并用于接收来自所述摄像单元的图像信号而进行图像处理并将其显示在监控器上，通过处理器的控制部构成气体切换控制部。在这种情况下，能够利用处理器的控制部而通过
软件来构成气体切换控制部，从而不需要增设新的控制器而使结构简单。
[0018] 另外，优选具有溢流阀，该溢流阀在其与连接管路连接部的管路连接器之间形成
腔室并与所述腔室连通，在所述腔室成为一定压力以上时释放气体。
[0019] 【发明效果】
[0020] 根据本发明，具有如气泵和气体高压储气瓶那样双系统的气体供给源，它在液体
高压储气瓶的气体的剩余量减少而无法以规定的压力进行供给之前自动切换成加压空气，从
而自动地进行连续的气体供给。而且，由于以切换前的压力自动地切换成其他气体，因此不
会为做手术的人带来不适感，从而能够顺畅地进行基于内窥镜的送气・送液操作。

附图说明
[0021] 图 1 是表示本发明的内窥镜的送气系统的简图。
[0022] 图 2 是表示将内窥镜关联设备收纳于载物车的内窥镜系统的主视图。
[0023] 图 3 是表示光源装置、处理器、二氧化碳供给装置的结构的简图。
[0024] 图 4 是表示光源装置的外形的立体图。
[0025] 图 5 是表示根据二氧化碳高压储气瓶的剩余量变化而切换送气的处理的流程图。
[0026] 图 6 是表示第一压力计的压力变化与阈值的关系的曲线图。
[0027] 图 7 是表示根据二氧化碳浓度的变化而切换送气的处理的流程图。
[0028] 图 8 是表示周围的二氧化碳的浓度变化与阈值的关系的曲线图。
[0029] 图 9 是表示使用两个二氧化碳高压储气瓶的另一实施方式的简图。
[0030] 【符号说明】
[0031] 10 内窥镜系统
[0032] 11 内窥镜
[0033] 12 光源装置
[0034] 12a 操作面板
[0035] 13 二氧化碳供给装置
[0036] 14 送液装置
[0037] 15 处理器
[0038] 17 载物车
[0039] 18 加压空气供给装置
[0040] 19 气体切换控制部
[0041] 19a 存储器（供给流量设定值存储部）
[0042] 20 主体操作部
[0043] 21 插入部
[0044] 22 通用软线
[0045] 38 加压空气供给流量调节部
[0046] 40 光源灯
[0047] 41 气泵
[0048] 42 泵驱动电路
[0049] 43 转速控制机构
具体实施方式

[0058] 如图1所示，内窥镜系统10具有内窥镜11、光源装置12、二氧化碳供给装置13、送液装置14、处理器15、监控器16及载物车17（参照图2）。

[0059] 如图2所示，载物车17保持各设备12～16且构成为移动自如。在载物车17中，除了各设备12～16之外，还根据需要设有各种内窥镜关联设备。需要说明的是，二氧化碳供给装置13或送液装置14也可以与载物车17分开地外置。


[0061] 送气送水喷嘴26配置在观察窗24的附近。送气送水喷嘴26在插入部21内与流体通路27连通。流体通路27在插入部21的中途分离成送气路28和送水路29，并与主体操作部20的送气送水阀30连接。例如通过该送气送水阀30的按钮进行全按压操作而输送液体，从而从喷嘴26朝观察窗24喷射液体。由此，对观察窗24进行清洗。另外，例如通过送气送水喷嘴26的按钮进行半按压操作而输送气体，从而从喷嘴26朝观察窗24喷射气体。由此，吹掉附着在观察窗24上的液滴。

[0062] 在送气送水阀30上连接通知供气配管33及供液配管34。另外，在吸引阀31上连接吸引配管35。所述供气配管33、供液配管34、吸引配管35沿着通用软线22延伸。在通用软线22的前端设有连接器部36。连接器部36具有光源连接部36a、管路连接部36b、软线连接部36c。光源连接部36a以可拆装的方式经由金属盖12b与光源装置12连接。另外，管路连接部36b经由管路连接器45及多重管路44与送液罐14a连接。此外，软线连接部36c经由连接软线48与处理器15连接。

[0063] 送液装置14由送液罐14a和多重管路44构成。多重管路44的一端与送液罐14a连接，另一端经由管路连接器45与光源装置12的连接器部36连接。

[0064] 供气配管33在连接器部36内分支。其中一方的分支配管33a沿着光源连接部36a延伸，并与气泵41连接。另一方的分支配管33b在管路连接部36b开口。多重管路44的管路连接器45以可拆装的方式与管路连接部36b连接。并且，当管路连接器45与管路连接部36b连接时，其内部形成腔室46。分支配管33b在该腔室46开口。在管路连接器45上安装有溢流阀47。溢流阀47在因气泵41连续运转而送液罐14a及腔室46内压力
超过一定值时溢流，从而将送液罐 14a 及腔室 46 内保持成恒定压力。需要说明的是，除了
管路连接器 45 之外，溢流阀也可以安装在连接器部 36 或送液装置 14 上。
【0065】 多重管路 44 由内管 44a 和外管 44b 这两重管形成。并且，内管 44a 的另一端在送
液装置 14 的接近底部处开口。由此，内管 44a 的开口始终插入到液体中。外管 44b 的另一
端以位于送液罐 14a 的液面上方的方式与送液罐 14a 的上部连接。当管路连接器 45 与管
路连接部 36b 连接时，内管 44a 与供液分配 34 连通，外管 44b 与腔室 46 连通。当向腔室 46
内导入二氧化碳或加压空气时，所装二氧化碳或加压空气对送液罐 14a 内的液面加压，从
而能够通过送气送水阀 30 的送液操作将液体向送气送水阀 30 输出。
【0066】 在内窥镜 11 的前端内部，在面对观察窗 24 的位置设置有摄像单元 39。通过该摄
像单元 39 经由观察窗 24 对体腔中进行拍摄。该图像信号经由信号软线 39a 及连接软线 48
向处理器 15 发送。信号软线 39a 通过插入部 21、主体操作部 20、通用软线 22 内而到达连
接器部 36 的软线连接部 36c。在软线连接部 36c 上连接有连接软线 48，信号软线 39a 和连
接软线 48 电连接。该连接软线 48 与处理器 15 连接。处理器 15 对图像信号进行规定的信
号处理，从而在监控器 16 上显示内窥镜图像。
【0067】 光源装置 12 具有加压空气供给装置 18，光源灯（照明光源）40、光源控制部 60、气
泵 41、转速控制部 43、泵驱动电路 42、整体控制部 61、操作面板 12a。当光源连接部 36a 与
光源装置 12 电接时，从光源连接部 36a 突出的导光器 37 的入射端面对光源灯 40，照明光向
导光器 37 入射。导光器 37 的出射端位于插入部 21 的前端的照明窗 23 处，从而照明光从
照明窗 23 照射到体腔内。
【0068】 如图 4 所示，在光源装置 12 的前面设有操作面板 12a。在操作面板 12a 上设有
光量调整部 62、送气量调整部 63、电源开关 64 及泵开关 65。光量调整部 62 具有操作按钮
（或操作旋钮），从而能够通过压下操作或旋转操作来指示光量的增减。基于操作旋钮的光
量增减指示信号对整体控制部 61 进行控制，从而使光源灯 40 的光源光量连续变化。因此，做手术的
人可在观察监视器 16 上显示的内窥镜图像的状态下调整光源灯 40 的光量，从而能够调整
监视器 16 上显示的内窥镜图像的亮度，因此能够在最佳的照明环境下对体腔内进行观察。
【0069】 如图 3 所示，本发明的内窥镜的送气系统具有二氧化碳供给装置 13、加压空气供
给装置 18、气体切换控制部 19。
【0070】 加压空气供给装置 18 具有气泉 41、加压空气供给流量调节单元 38。气泉 41 由电
动机旋转驱动而产生加压空气。加压空气供给流量调节单元 38 由泵驱动电路 42 构成，该
泵驱动电路 42 具有电动机的转速控制部 43。转速控制部 43 控制与气泉 41 连接的电动机
（未图示）的转速，从而将气泉 41 的喷出流量切换成例如流量 H、流量 M、流量 L 这三个等
级。需要说明的是，虽然可以对气泉 41 的喷出流量进行无级调整，但进行大流量（流量 H）、
中流量（流量 M）、小流量（流量 L）这三个等级的切换在实际应用中并没有问题。因此，在
本实施方式中，切换成流量 H、流量 M、流量 L 这三个等级。
【0071】 整体控制部 61 根据来自操作面板 12a 的各种操作指令的输入信号控制加压空气
供给流量调节单元 38 及光源控制部 60。操作面板 12a 具有光量调整部 62、送气量调整部
63、电源开关 64、泵开关 65。根据来自操作面板 12a 的输入指令能够使光量连续变化或使
送气量分等级变化。
说明书

[0072] 二氧化碳供给装置 13 具有二氧化碳高压储气瓶 50、二氧化碳供给质量调节单元 51、止回阀 75。二氧化碳高压储气瓶 50 及二氧化碳供给质量调节单元 51 通过气体供给管 52a 连接。止回阀 75 经由气体供给管 52b 与管路连接器 45（参照图 1）连接。

[0073] 气体切换控制部 19 形成在处理器 15 的控制部 71 内，其控制二氧化碳供给装置 13。加压空气供给装置 18，从而向管路连接器 36b（参照图 1）输送加压空气及二氧化碳中的一方。当利用该气体切换控制部 19 进行气体的切换时，使用在切换前向管路连接器 36b 供给的加压空气及二氧化碳中的一方的供给流量设定值。因此，气体切换控制部 19 具有存储器（供给流量设定值存储器）19a。存储器 19a 存储加压空气供给流量调节单元 38 及气体供给流量调节单元 51 的当前的供给流量设定值。并且，在切换二氧化碳和加压空气而进行供给时，从存储器 19a 读取切换前的供给流量设定值而进行使用。因此，通过使用处理器 15 的控制部 71 并利用软件构成气体切换控制部 19，从而无需增设控制器而使结构变得简单。

[0074] 如图 3 所示，气体供给流量调节单元 51 具有减压机构 53、流量控制阀 54、压力计 55a、55b、气体供给控制部 56 及操作面板 13a。从气体高压储气瓶 50 侧依次串联连接减压机构 53、流量控制阀 54、止回阀 75，来自气体高压储气瓶 50 的二氧化碳经由气体供给管 52b 向管路连接器 45 输送。

[0075] 减压机构 53 由串联配置的两个调压阀（减压阀）53a、53b 构成。调压阀 53a、53b 将来自气体高压储气瓶 50 的二氧化碳的压力减压到二级，从而形成对人体安全的压力。例如，利用第一调压阀 53a 将二氧化碳高压储气瓶 50 内的二氧化碳的压力到 10MPa 减压至 0.3MPa。另外，利用第二调压阀 53a 将二氧化碳的压力到 0.3MPa 减压至 0.05MPa。

[0076] 在各调压阀 53a、53b 的入口侧设有压力计 55a、55b。所述压力计 55a、55b 计测第一级的调压阀 53a 的前后的压力。来自各压力计 55a、55b 的压力信号向气体供给控制部 56 发送。

[0077] 气体供给控制部 56 根据来自两个压力计 55a、55b 的压力信号检测来自二氧化碳高压储气瓶 50 的输出压的变化，从而进行流量控制阀 54 的控制。剩余量显示及警告显示。首先，根据来自压力计 55a、55b 的检测压力对供给流量和气体高压储气瓶 50 的二氧化碳剩余量进行检测。然后，将检测到的二氧化碳剩余量显示在剩余量显示部 57 上。另外，当气体剩余量成为规定的水平以下时，通过警告显示部 58 来显示警告并且发出警报。此外，当二氧化碳的输出压力成为规定的水平以下时，控制流量控制阀 54，从而停止二氧化碳的供给而从气泉 41 供给加压空气。

[0078] 操作面板 13a 具有剩余量显示部 57、警告显示部 58 及阀控制开关 73，其与气体供给控制部 56 连接。通过做手术的人操作阀控制开关 73 而输入用于接通 / 切断流量控制阀 54 的指示信号。该指示信号向气体供给控制部 56 发送，根据该信号来接通 / 切断流量控制阀 54。

[0079] 流量控制阀 54 由电磁比例阀构成，其调整流经减压机构 53 的二氧化碳的流量。流量控制阀 54 由气体供给控制部 56 控制，并与气泉 41 的喷出流量同样地切换成大流量（流量 L）、中流量（流量 M）、小流量（流量 L）这三个等级。流量控制阀 54 的出口流量被气体供给控制部 56 形成为与气泉 41 的喷出流量相同。

[0080] 气体供给流量调节单元 51 和加压空气供给装置 18 被处理器 15 的气体切换控制
部19选择性地驱动。因此，并不是同时供给加压空气和二氧化碳，而是有选择性地进行供给。而且，对加压空气、二氧化碳都能分别调整其供给流量。

[0081] 如上所述，具有气泵41的驱动所产生的加压空气和从二氧化碳高压储气槽50供给的二氧化碳构成双系统的气体供给系统。并且，通过气体切换控制部19选择气体供给控制部56或光源装置12的整体控制部61的任一个而使用加压空气或二氧化碳中的一方。在本实施方式中，从减轻受检者的负担的观点出发，优选供给二氧化碳，而加压空气只是辅助性使用。

[0082] 因此，在初始设定中，为了供给二氧化碳，气体切换控制部19对气体供给控制部56进行驱动，从而优先供给二氧化碳。此外，例如当二氧化碳高压储气槽50内的二氧化碳的剩余量成为无法供给的状态时，或因故障等无法供给二氧化碳时，或根据做手术的人的选择而选择供给加压空气时，停止从二氧化碳高压储气槽50向气体供给管52b供给二氧化碳。另外，在停止二氧化碳的供给的同时对气泵41进行驱动，从而供给加压空气。需要说明的是，在做手术的人进行操作的情况下，通过二氧化碳供给装置13的阀开关控制73的切断操作及光源装置12的泵开关65的接通操作而从二氧化碳切换成加压空气。

[0083] 送气量调整部63具有操作按钮（或操作旋钮），通过按压操作或旋转操作而将送气量切换成三个等级。从送气量调整部63输入的送气量指示信号经由整体控制部61向泵驱动电路42发送，然后经由处理器15的气体切换控制部19向气体供给控制部56发送。因此，气体切换控制部19具有存储器19a。在存储器19a中存储有送气量指示值（H、M、L中的任一种）。当设定新值时，则更新成该新值。并且，对转速控制部43或流量控制阀54进行控制，以成为该更新后的值。

[0084] 气体供给控制部56经由处理器15的气体切换控制部19与光源装置12连接。处理器15具有信号处理电路70及控制部71。控制部71为了进行例如可变光圈（iris）控制而与光源装置12的整体控制部61电连接。另外，二氧化碳供给装置13的气体供给控制部56经由该处理器15的控制部71与整体控制部61电连接。需要说明的是，气体供给控制部56也可以不经由处理器15而与整体控制部61直接连接。

[0085] 在使用时，如图1所示，通用软线22的连接器部36的光源连接部36a与光源装置12的金属盖12b连接。而且，在管路连接部36b上经由管路连接器45连接多重管路44。在该状态下，当将设置在光源装置12的操作面板12a上的电源开关64接通时，各设备成为开动状态。在此，气体切换控制部19对气体供给控制部56进行控制而将来自二氧化碳高压储气槽50的二氧化碳优选向送液装置14及供气配管33供给。

[0086] 当将插入部21插入到体腔内使体腔的内部膨胀时或在观察窗24进行清洗时等，若做手术的人对主体操作部20的送气送水阀30进行操作，则向体腔内供给的是二氧化碳。并且，做手术的人通过对操作面板12a的送气量调整部63进行操作，能够将送气流量切换成流量H、流量M或流量L中的任一种。需要说明的是，当内窥镜系统10启动时，对送气流量进行初始设定而使其成为流量H。因此，对送气量调整部63的操作是在使送气流量下降时或在下降后使其上升时进行的。

[0087] 如图5、图6所示，当因供给二氧化碳而使二氧化碳高压储气槽50内的二氧化碳被消耗时，内部的压力下降而成为无法供给二氧化碳的状态。为了在事前检测出该无法供给的情况，每隔一定时间例如3秒对第一压力计55a的压力P1进行检测（ST1）。并且，当检测
压力 P1 为第二阈值 PS2（例如 0.4～0.5 Pa 的范围内的一次值，例如 0.45 Pa）以上时返回 ST1，每隔 3 秒对压力 P1 进行检测。而且，当检测压力 P1 小于第二阈值 PS2 时（ST2），使气泵 41 进行怠速旋转（ST3）。气泵 41 在怠速旋转状态下进行微量的送气，并不会将加压空气向供气配管 33 或送液罐 14a 送出。

每隔一定时间例如 3 秒对第一压力计 55a 的压力 P1 进行检测（ST4），当检测压力 P1 为第一阈值 PS1（PS1 < PS2）以上时，返回 ST4。并且，当第一压力计的检测压力 P1 小于第一阈值 PS1 时（ST5），将流量控制阀 54 切断（ST6）。接下来，从处理器 15 的存储器 19a 读出当前的供给量（ST7），将其作为气泵 41 的新流量而设定到转速控制部 43，并且使气泵 41 以该转速旋转，从而开始送气（ST8）。因此，供气配管 33 或送液罐 14a 输送与二氧化碳供给装置 13 相同的供给量的加压空气。这样，由于以与切换前的二氧化碳的供给流量相同的流量来供给加压空气，因此能确保操作的连续性，并且不会产生送气或送水的流量变化引起的不适感。例如当二氧化碳的供给流量为流量 L 且然后切换到气泵 41 时，供给量的减少量成为流量 L，因此，不会发生以流量 H 供给加压空气的情况，从而能进行安全且顺畅的气体切换处理。

第一阈值 PS1 用于事前检测二氧化碳高压储气罐 50 的剩余量减少而其他无法作为送气用的气体来供给的状态，该第一阈值 PS1 是以使用的送气用的气体压力为基准来决定的。

通过第一压力计 55a 继续每隔 3 秒对压力 P1 进行检测（ST9）。当第一压力计 55a 的检测压力 P1 小于第三阈值 PS3（PS3 > PS2）时返回 ST9，从而继续对压力 P1 进行检测（ST9）。并且，当取下空的二氧化碳高压储气罐 50 而安装新的二氧化碳高压储气罐 50 时，第一压力计 55a 的检测压力 P1 成为第三阈值 PS3 以上（ST10）的压力，气泵 41 被切断（ST11）。接下来，从存储器 19a 读出当前的供给流量设定值（ST12），流量控制阀 54 被接通（ST13）。然后，利用气体供给控制部 56 对流量控制阀 54 进行控制而成为供给流量设定值。从而，供给新的二氧化碳，并且其供给流量也与供给加压空气时相同而没有变化。

另外，能够根据做手术的人的姿势而有意识地从供给二氧化碳的状态切换至气泵 41 供给加压空气的状态。在这种情况下，对二氧化碳供给装置 13 的阀控制开关 73 进行按压而将其切断。接下来，使光源装置 12 的泵开关 65 从切断变为接通。

如上所述，当做手术的人进行内窥镜 11 的操作时，可以不用在意二氧化碳的剩余量而进行操作，因此能提高操作性。而且，除了自动切换之外，通过对光源装置 12 的操作面板 12a 进行操作能够进行送气量的调整或切换。而且，虽然施行二氧化碳和加压空气这两种气体的送气，但仍以二氧化碳的送气为优先而辅助性或选择性地切换加压空气的供给。此外，二氧化碳与加压空气之间的基于手的切换操作可以由光源装置 12 的操作面板 12a 与调整光源灯 40 的光强的光量调整部 62 一起进行，从而能够容易地进行操作。

接下来，对替代剩余量减少引起的自动切换或做手术的人的有意识的切换而使二氧化碳的供给停止并自动切换成供给加压空气的状态的情况进行说明。例如在利用内窥镜 11 进行检查及治疗的周围的二氧化碳浓度成为规定值以上的高浓度时进行自动切换。在这种情况下，如图 3 所示，设置对气泵的二氧化碳浓度进行测量的二氧化碳浓度传感器 76，并与处理器 15 的气体切换控制部 19 连接。并且，如图 7、图 8 所示，当浓度传感器 76 二氧化碳超过一定浓度时，从二氧化碳切换成加压空气。该切换以如下方式进行，即，为了使切换
前的二氧化碳的供给量与切换后的加压空气的供给量相同，从存储器 19a 读出切换前的供给量，并据此进行新的加压空气的切换。此外，也可以取代这种自动切换，或者在自动切换之前向做手术的医生发出警告，使做手术的医生判断是否切换成加压空气的供给状态。

[0094] 如图 7 所示，首先，利用二氧化碳浓度传感器 76 例如每隔 3 秒时对周围的二氧

c 素浓度进行检测 (ST21)。当浓度传感器 76 的检测浓度 C1 为第一阈值 CS2 (CS2 ≤ C1) 以

下时返回 ST21 (ST22)。当检测浓度 C1 超过第二阈值 CS2 时 (ST22)，使气泵 41 进行急速旋转

(ST23)。

[0095] 利用浓度传感器 76 每隔一定时间例如 3 秒对检测浓度 C1 进行检测 (ST24)，并对

检测浓度 C1 与第一阈值 CS1 进行比较 (ST25)。在 ST25 中，当检测浓度 C1 为第一阈值 CS1

以下时返回 ST24。并且，在 ST25 中，当检测浓度 C1 超过第一阈值 CS1 时 (ST25)，气体切换

控制部 19 切断流量控制阀 54 (ST26)。接下来，从处理器 15 的存储器 19a 读入当前的供给量

(ST27)，将其作为气泵 41 的新流量向转速控制部 43 设定，使气泵 41 以该转速旋转而开始

给气 (ST28)。因此，向供气配管 33 或送液罐 14a 供应与二氧化碳供给装置 13 相同的供

给量的加压空气。因此，由于与切换前的二氧化碳的供给流量相同的流量来供给加压空气,

因此能确保操作的连续性，并且不会产生送气或送水的流量变化引起的不适感。

[0096] 继续利用二氧化碳浓度传感器 76 检测二氧化碳浓度 C1 (ST29)，并对检测浓度 C1

与第三阈值 CS3 进行比较 (ST30)。当检测浓度 C1 超过第三阈值 CS3 时返回 ST29。而且，当

检测浓度 C1 超过第三阈值 CS3 以下时 (ST30)，使气泵 41 停止 (ST31)，使流量控制阀 54

接通 (ST32)。流量控制阀 54 根据来自存储器 19a 的设定值被控制而成供给流量 (ST32)，

因此能以切换前的供给流量来供给二氧化碳。第三阈值 CS3 (CS3 ≤ CS2) 是判定是否可以

使用二氧化碳的状态的值，例如使用第二阈值 CS2 的一半的值，但并不局限于该值，也

可以适当进行变更。需要说明的是，图 8 的 CS0 是内窥镜系统的使用环境的气氛的使用二

氧化碳前的稳定的二氧化碳浓度。

[0097] 也可以替代做手术的人的周边的二氧化碳浓度传感器所检测的二氧化碳浓度或

在此基础上根据体腔内的二氧化碳浓度来对二氧化碳和加压空气进行切换。在这种情况

下，在钳子出口附近以面向钳子穿过通道内的方式设置二氧化碳浓度传感器。此外，也可以

从监控受检者的状态的装置在线取得受检者的血中二氧化碳浓度，并据此与上述同样地当

二氧化碳浓度超过一定值时从二氧化碳切换成加压空气。需要说明的是，二氧化碳浓度传

感器也可以安装在钳子穿过通道以外的其它部位。

[0098] 在上述实施方式中，举例如说明了二氧化碳高压储气瓶 50 为一瓶的情况，但也可以

如图 9 所示将两瓶二氧化碳高压储气瓶 50A、50B 与切换阀 80 连接。由此，当一方的二氧化碳

高压储气瓶的剩余量减少时，通过切换成另一方的二氧化碳高压储气瓶能够连续地供给

二氧化碳。需要说明的是，二氧化碳高压储气瓶的切换除了通过手动进行切换之外，还可以

在二氧化碳剩余量检测部检测到剩余量为一定值以下时自动地对切换阀进行切换。

[0099] 在上述实施方式中，与根据二氧化碳高压储气瓶的剩余量的切换操作并行地进行

根据浓度传感器的二氧化碳浓度信号的二氧化碳与加压空气的切换操作，但上述切换也可

以在内窥镜的送气系统中分别单独使用。

[0100] 二氧化碳供给装置 13 及加压空气供给装置 18 中的流量的调整除了三个等级的切

换之外，也是三个等级以外的多个等级，而且还可以无级地连续进行切换。在这种情况
下，也通过预先在存储器 19a 中存储切换前的供给流量设定值并根据该供给流量设定值使二氧化碳供给装置和加压空气供给装置的供给流量设定值相同，从而能够无不适感地对二氧化碳和加压空气进行切换。

【0101】在上述实施方式中，以加压空气与二氧化碳的切换为例进行了说明，但通过气体制备储气瓶所供给的气体并不局限于二氧化碳，也可以是例如氦气等其他气体。
图 1
说明 书 附 图

图 5

开始

检测压力 P1（第一压力计）

是

ST1

P1 ≥ PS2？

否

ST2

使气泵旋转（怠速）

ST3

检测压力 P1（第一压力计）

是

ST4

ST5

P1 ≥ PS1？

否

否

将流量控制阀切断

ST6

读入供给流量设定值

ST7

使气泵旋转（供给流量设定值）

ST8

检测压力 P1（第一压力计）

是

ST9

否

P1 ≥ PS3？

否

将气泵切断

ST10

ST11

读入供给流量设定值

ST12

将流量控制阀接通（供给流量设定值）

ST13

结束
图6

图8