
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0052997 A1

US 20140052997A1

Bloom et al. (43) Pub. Date: Feb. 20, 2014

(54) SECURITY MODEL FOR ACTOR-BASED (52) U.S. Cl.
LANGUAGES AND APPARATUS, METHODS, USPC ... 713/189: 726/20
AND COMPUTER PROGRAMMING
PRODUCTS USING SAME (57) ABSTRACT

(75) Inventors: Bard Bloom, Dobbs Ferry, NY (US); An application includes: a programming model including a
ES) service provider, first components, second components, and
(US); Marco Pistoia s Amawalk NY sinks communicating via messages. Each of the second com
(US s s ponents is assigned a unique capability. A given one of the

first components routes a message from the given first com
(73) Assignee: International Business Machines ponent to second component(s) and then to a sink. Each of the

Corporation, Armonk, NY (US) second component(s) sends the message to the service pro
vider. The service provider creates a token corresponding at

(21) Appl. No.: 13/588,347 least to a received message and a unique capability assigned
to an associated one of the second component(s) and sends the

(22) Filed: Aug. 17, 2012 token to the associated one of the second component(s). The
selected sink receives the message and a token corresponding

Publication Classification to each of the second component(s), verifies each received
token, and either accepts the message if each of the received

(51) Int. Cl. tokens is verified or ignores the message if at least one of the
G06F2L/22 (2006.01) received tokens is not verified.

510

... set 506

sis:
570-1

capabilities.
SO. Safe

M
a + r(spell) + TSQL Sate) ->

545-4
M

*r 7& sale
570

590-2

591 592
/ /

(Private Key, Public Key)

550-3

/ 592

l/s / (Public Key)

545-5 C 530

if all token(s) verify, perform one or
more operations using (e.g., Contents

of the) message

If any token does not verify, ignore
message (e.g., delete message)

582

Patent Application Publication Feb. 20, 2014 Sheet 1 of 21 US 2014/0052997 A1

Patent Application Publication Feb. 20, 2014 Sheet 2 of 21 US 2014/0052997 A1

Patent Application Publication Feb. 20, 2014 Sheet 3 of 21 US 2014/0052997 A1

Patent Application Publication Feb. 20, 2014 Sheet 4 of 21 US 2014/0052997 A1

s

ºffes-Toš seuaeqedeo

Z99

(36esseu e?ejep “6:3) 36esseu

US 2014/0052997 A1

089

-0.19

teresºn(s)) + (nadsu.y! 909

·”

„***

| 99

Feb. 20, 2014 Sheet 5 of 21

nºpino: Arunoes

£

Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 6 of 21 Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 7 of 21 Patent Application Publication

y arooeae traedº T

OZGZ-099
8 "91-I

Feb. 20, 2014 Sheet 8 of 21 Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 9 of 21 Patent Application Publication

000 ||

US 2014/0052997 A1 Feb. 20, 2014 Sheet 10 of 21 Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 11 of 21 Patent Application Publication

:

US 2014/0052997 A1 Feb. 20, 2014 Sheet 12 of 21 Patent Application Publication

„spenon enep,

£;

Ltriot) |#

Aurpo?edeo qata asiasm 7|jo taquinti penon ?eb: caºesaur Iog næ?on aste?

US 2014/0052997 A1 Feb. 20, 2014 Sheet 13 of 21 Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 14 of 21 Patent Application Publication

L INOHA + LOGITIS»

US 2014/0052997 A1 Feb. 20, 2014 Sheet 15 of 21 Patent Application Publication

„I.

US 2014/0052997 A1 Feb. 20, 2014 Sheet 16 of 21 Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 17 of 21 Patent Application Publication

**ionien

3.

|

-

kiss e-ords is sistasia as esses se

US 2014/0052997 A1 Feb. 20, 2014 Sheet 18 of 21 Patent Application Publication

US 2014/0052997 A1 Feb. 20, 2014 Sheet 19 of 21 Patent Application Publication

OZ "SOIH

aptadas | 6? pagoud |

|----- –* – – – – – – – – – – – –!}

US 2014/0052997 A1 Feb. 20, 2014 Sheet 20 of 21 Patent Application Publication

p :en:ep qata d aaes ± &mi?aeduo

US 2014/0052997 A1 Feb. 20, 2014 Sheet 21 of 21 Patent Application Publication

(s)JosS3001)
ose008

US 2014/0052997 A1

SECURITY MODEL FOR ACTOR-BASED
LANGUAGES AND APPARATUS, METHODS,

AND COMPUTER PROGRAMMING
PRODUCTS USING SAME

BACKGROUND

0001. This invention relates generally to programming
languages and, more specifically, relates to security models
for programming languages.
0002 The purpose of language-based security is to make
applications more secure by embedding security mechanisms
inside the programming languages in which those applica
tions are written. See D. Kozen et al., “Language-based secu
rity', in Proc. Conf. Mathematical Foundations of Computer
Science (MFCS99), volume 1672 of Lecture Notes in Com
puter Science, pages 284-298, Springer-Verlag, September
1999. The advantages of this method are multiple. For
example, developers are not required to implement ad hoc
security mechanisms—an often error-prone and time-con
Suming approach. Furthermore, applications developed on
top of a language that Supports certain security mechanisms
can be designed with security in mind, and are easily portable
from one platform to the other. Finally, writing more secure
applications when Support is embedded in the underlying
language can often be as simple as calling certain libraries.
This greatly simplifies secure code development even for
people who are not security experts. However, most program
ming languages do not have enough security in them, and
requiring a developer to use libraries in order to provide
security means that mistakes will be common.
0003. One attempt to improve certain aspects of security is
through the use of actor-based languages. In Such languages,
components are completely isolated from each other and
communication is via message passage only. Nonetheless,
these types of languages have additional problems explained
in more detail below.

BRIEF SUMMARY

0004. In an exemplary embodiment, a method includes
providing an application including: a programming model
comprising a service provider, one or more first components,
one or more second components, and one or more sinks. Each
of the one or more second components is assigned a unique
capability. The first and second components and sinks com
municate using messages. The method includes a given one of
the first components routing a message comprising informa
tion from the given first component to at least one of the one
or more second components and then to a selected one of the
sinks and each of the at least one of the second components
sending the message to the service provider. The method
further includes the service provider creating a token corre
sponding at least to a received message and a unique capabil
ity assigned to an associated one of the second components
and sending the token to the associated one of the second
components. The method also includes the selected sink
receiving the message and a token corresponding to each of
the at least one second components, Verifying each received
token, and either accepting the message in response to each of
the received tokens being verified and performing one or
more actions using the message or ignoring the message in
response to at least one of the received tokens not being
verified.

Feb. 20, 2014

0005. Apparatus and computer program products are also
disclosed.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0006 FIG. 1 is an illustration of a program operating in
accordance with a Thorn programming model;
0007 FIG. 2 illustrates flow for a typical program using a
Thorn programming model;
0008 FIG. 3 illustrates flow for an atypical program using
a Thorn programming model;
0009 FIG. 4 illustrates an exemplary flow for a typical
program using information flow in a Thorn programming
model;
0010 FIG. 5 illustrates an example similar to FIG.2, using
an exemplary embodiment of the instant programming model
in conjunction with a Thorn programming model;
0011 FIG. 6 is a block diagram of a Thorn application
referred to as EyeBook:
0012 FIG. 7 is an example of EyeCore..th source code:
0013 FIG. 8 illustrates an example of messaging for token
creation for an SQL sanitizer component;
0014 FIG. 9 illustrates an example of messaging for capa
bility creation for an SQL sanitizer component;
(0015 FIG. 10 illustrates the application EyeBook of FIG.
6 implemented in an exemplary embodiment of the program
ming model provided herein;
0016 FIG. 11 illustrates simple access control in accor
dance with an exemplary embodiment of the invention:
0017 FIG. 12 is a table (Table 1) of a message sequence
for a Stats Plugin component to login to and query the data
base;
0018 FIG. 13 is a table (Table 2) of an optimized message
sequence for a Stats Plugin component to login to and query
the database;
0019 FIG. 14 illustrates an example of sending a safe
query to a database in accordance with an exemplary embodi
ment of the instant invention;
0020 FIG. 15 is a table (Table 3) of a message sequence to
send a safe query to the database;
0021 FIG. 16 is a table (Table 4) of an optimized message
sequence to send a safe query to the database;
0022 FIG. 17 is an illustration of database protection with
proxies;
(0023 FIG. 18 is an optimized version of the EyeBook
application shown in FIG. 10;
0024 FIG. 19 illustrates token chaining:
0025 FIG. 20 illustrates general interaction between a
secured EyeBook application and photograph editing Ser
V1ces;
0026 FIG. 21 is a table (Table 5) of messaging for editing
a photograph;
0027 FIG. 22 is a block diagram of a system suitable for
performing exemplary embodiments of the instant invention.

DETAILED DESCRIPTION

0028. As stated previously, the purpose of language-based
security is to make applications more secure by embedding
security mechanisms inside the programming languages in
which those applications are written. Research in the area of
language-based security has become very active in the past
fifteen years, starting with the advent of Java (a programming
language and computing platform first released by Sun

US 2014/0052997 A1

Microsystems in 1995) in the mid 1990s. With Java, it became
possible for the first time to add dynamic content to Web
pages in the form of Java applets. This was an attractive
enhancement for the Web, since Web pages up to that point
had only been static. However, it also created the possibility
for attackers to exploit potential vulnerabilities in the under
lying Java runtime environment of remote systems for endus
ers, and compromise its integrity and confidentiality. To
address these concerns, the first version of Java was released
with a binary access-control model, allowing local Java appli
cations to enjoy full access to all the system resources. How
ever, remote Java applets embedded in remote Web pages had
to stay confined in a sandbox (an isolated area so that a
program being executed on a system in the Sandbox should
not affect other programs or the system), where the only
operations permitted to them were limited to Web page ani
mations. This binary access-control model did not allow for
significant improvements in the experience of the enduser,
and could almost never be used to delegate server-side com
putations to the client—which is one of the advantages of
embedding code in Web pages. The second release of Java
partially overcame these limitations by allowing remote
applets to be treated as local applications as long as those
applets were digitally signed by a trusted entity. Although
Java allowed remote code, if trusted, to access to system
resources, this access-control model was still binary in the
sense that code could only be either completely trusted or
completely untrusted.
0029. A major improvement came in 1998 with the release
of the Java 2 platform, which was the first language to offer a
fine-grained access-control model. See L. Gong and R.
Schemers, “Implementing Protection Domains in the Java
Development Kit 1.2”, in Proceedings of the Network and
Distributed System Security (NDSS 1997) Symposium, San
Diego, Calif., USA, December 1997. This is still the security
model used by Java, and has also been adopted by the .NET
platform. This model accounts for the fact that code providers
can be as malicious for a remote system as the users running
the code. Therefore, this model associates an identity to any
loaded class. The identity is computed as a combination of the
Uniform Resource Locator (URL) from which the class is
loaded and the identities of the entities that digitally signed
the class file itself. A statically defined security policy grants
permissions to Such entities, such as the permission to write to
a particular file or to open a socket connection with a certain
host on a given port. This permission-based architecture is a
departure from the previous binary model. At run time, when
ever access to a security-sensitive resource is attempted, a
special component called SecurityManager performs a back
wards Stack inspection, Verifying that all the methods cur
rently on the stack are defined in classes that have been
granted Sufficient permissions to execute the security-sensi
tive operation. See L. Gong, et al., "Going Beyond the Sand
box: An Overview of the New Security Architecture in the
Java Development Kit 1.2”, in USENIX Symposium on Inter
net Technologies and Systems, Monterey, Calif., USA,
December 1997.

0030 This model has also been augmented to account for
the permissions granted to the Subjects executing the code:
the permissions granted to a certain subject are added to all
the stack frames executed under the authority of that subject.
See C. Lai, et al., “User Authentication and Authorization in
the JavaTM Platform', in 15th Annual Computer Security
Applications Conference (ACSAC 1999), pages 285-290,

Feb. 20, 2014

Scottsdale, Ariz., USA, December 1999. At the point in which
a stack inspection is performed, each method on the stack
must belong to a Sufficiently authorized class or be executed
by a sufficiently authorized subject.
0031. The Java and .NET security model, though a major
enhancement with respect to previous work in the area of
language-based security, has significant limitations:
0032 1. Its enforcement of access control is highly
unsound because for every security-sensitive operation, the
only code that gets checked is the one currently on the stack.
Code that has influenced the security-sensitive operation
under attempt and that has already popped out of the stack is
not checked. See M. Pistoia, et al., “Beyond Stack Inspection:
A Unified Access Control and Information Flow Security
Model, in 28th IEEE Symposium on Security and Privacy,
pages 149-163, Oakland, Calif., USA, May 2007.
0033 2. While the security model attempts to enforce
access control, it does nothing to track information flow. See
A. Shinnar, et al., “A language for information flow: dynamic
tracking in multiple interdependent dimensions', in Proceed
ings of the ACM SIGPLAN Fourth Workshop on Program
ming Languages and Analysis for Security, PLAS '09, pages
125-131, New York, N.Y., USA, 2009. ACM.
0034 3. The security model allows for only one Security
Manager and one security policy to be in effect at any point in
time on an entire Java Virtual Machine (JVM), thereby pre
venting any entity from being trusted by different classes at
different levels.
0035. 4. A SecurityManager and the policy it enforces
cannot be shared across different systems, not even when
those systems are both Java systems.
0036 5. Security Managers and policy providers must be
of specific types, which reduce the flexibility of the security
model.
0037 6. Native code is not integrated into the Java security
model and is, therefore, implicitly granted all permissions.
0038 7. Configuring a security policy is very hard because
configuration requires precomputing all the stacks ending in
a security-sensitive operation in which any given method
could participate.
0039. The problem illustrated in Point 7 above is probably
what has prevented the Java and .NET security model from
becoming widely used, in spite of numerous tools developed
and made available for automatic computation of access
control policies. For the numerous tools developed, see the
following: L. Koved, et al., “Access Rights Analysis for Java’,
in 17th ACM SIGPLAN Conference on Object-Oriented Pro
gramming, Systems, Languages, and Applications (OOPSLA
2002), pages 359-372, Seattle, Wash., USA, November 2002.
ACM Press: M. Pistoia, et al., “Interprocedural Analysis for
Privileged Code Placement and Tainted Variable Detection'.
In ECOOP 2005; E. Geay, et al., “Modular String-Sensitive
Permission Analysis with Demand-Driven Precision', in 31st
International Conference on Software Engineering (ICSE
2009), Minneapolis, Minn., USA, 2009. As for tools made
available, see IBM (International Business Machines) Java
Security Workbench Development for Java (SWORD4J), at
alphaworks.ibm.com/tech/Sword4j.
0040 Another thing to observe is that in today's Web
application-based systems, access control is probably not the
main issue any more. This is also confirmed by the fact that
none of the top ten security vulnerability in today’s software
according to the Open Web Application Security Project
(OWASP) is related to access control. Open Web Application

US 2014/0052997 A1

Security Project (OWASP), owasp.org. In fact, the top six
security vulnerabilities are all related to information flow,
which is not addressed at all by stack inspection, as men
tioned in Point 2 above. An extension to the Java language,
called Jif, was designed to overcome Java's inability to track
information flow. See the following: A. C. Myers, “JFlow:
Practical Mostly-static Information Flow Control, in POPL,
1999; and A. Shinnaret al., “A language for information flow:
dynamic tracking in multiple interdependent dimensions', in
Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security, PLAS
09, pages 125-131, New York, N.Y., USA, 2009. Jifrequires
program variables to be statically tagged with integrity and/or
confidentiality labels. A type system then verifies that there is
no flow of untrusted data to trusted computations (an integrity
violation) or private data to program release points (a confi
dentiality violation). However, this conservative approach to
security has failed to enjoy broad adoption, also due to the
difficulty of statically embedding security policies inside pro
grams source code, which requires security administrators to
also be developers with deep knowledge of the source code
they want to secure.
0041 JavaScript, which has supplanted Java and .NET for
client-side programming, has a security feature called same
origin policy, which allows only scripts originating from the
same Web site to access each other's properties and functions.
See Same-origin Policy, mozilla.org/projects/security.
Attackers, however, have been able to bypass the same-origin
policy by injecting specially crafted malicious scripts into
otherwise legitimate Web pages. Once injected in a Web page,
the malicious Script has the same origin as the rest of the web
page and can perform any number of exploits; the attackers
have the full power of JavaScript at their disposal. The con
sequences for the Web site can be very serious, and may
include Web-site defacement, breakage of integrity and con
fidentiality, and complete identity theft.
0042. By contrast, exemplary embodiments of the instant
invention provide one or more of the following:
0043. 1) A security model (called “Mercury') for actor
based languages;
0044) 2) The security model can be embedded into the
language;
0045 3) The security model can simultaneously enforce
information-flow security and access control; and/or
0046 4) The security model can track all important prov
enance information.
0047. This security model introduces the concept of a
security provider—which corresponds to a policy provider
and a Security Manager in Java and .NET, but with several
differences:
0048. 1) A multi-trust system is implemented. Multiple
security providers can be in effect at any time, thereby grant
ing different components the flexibility to trust different secu
rity providers.
0049 2) There are no restrictions on security providers or
capabilities. Unlike the Java and .NET security model, this
model does not impose any particular type on security pro
viders; any component can be a security provider. Also, any
object can be granted a capability.
0050 3) The model is language and location agnostic.
Components, regardless of the language in which the com
ponents are written, can trust and communicate with the same
security providers whether or not those providers are located
in the same site as those components.

Feb. 20, 2014

0051. Furthermore, the following illustrates differences
with JavaScript: Individual messages passed between com
ponents can be endorsed by trusted entities in a cryptographi
cally-secure manner, thereby overcoming the coarse-grained
limitations of the same-origin-policy security model of Java
Script.
0.052 For ease of description, the instant disclosure is
separated into a number of parts. First, a simplified descrip
tion of exemplary embodiments is provided, and then a much
more detailed description of the exemplary embodiments is
provided.
0053 Certain exemplary embodiments are described in
relation to an actor-based language called Thorn, which is
described in more detail below. Briefly, however, the current
Thorn model provides the following:
0054 Components are completely isolated from each
other;
0055 Communication is via message passing only;
0056 Components cannot access the underlying system
without going through other “special components; and
0057 Messages can cause components possibly to cause
security breaches, so the messages need to be secured.
0.058 FIG. 1 is an illustration of a program operating in
accordance with a Thorn programming model, where com
ponents cannot access the underlying system without going
through other “special components. This example shows the
components A, B, C, SQL, and X. The SQL component
interfaces with the Thorn RT (runtime), which interfaces with
the OS (operating system). In accordance with the Thorn
programming model, the X component is not allowed to
access the Thorn RT. Instead, the SQL component is a special
component that can read from or write to a disk (not shown).
Although the use of special components increases security,
there are still faults with the Thorn programming model.
0059 FIG. 2 illustrates flow for a typical program using a
Thorn programming model. This figure is used to illustrate
potential security faults with the Thorn programming model.
A user writes components A, B, and C. In this example, the
untrusted source provides information M via a message to
component A. Component Athen passes M via a message to
component B, which performs operation(s) on M to create M'.
The component B passes M' via a message back to the com
ponent A. Component Athen passes M' via a message to
component C, which performs operation(s) on M' to create
M". Component C then passes M" via a message to the Sink
component, which interfaces with the Thorn RT.
0060. The user has no control over the untrusted source,
the sink, and the Thorn RT. A critical issue is, why should the
sink component trust M" and execute on M"? This can be
answered with information flow.
0061 Before proceeding to a description of information
flow, reference is now made to FIG. 3, which illustrates flow
for an atypical program using a Thorn programming model.
In this case, component A creates and sends M via a message
to the sink component, which accesses the Thorn RT. Why
should the sink component trust M and execute on M2
0062 Both FIGS. 2 and 3 can improve access control (i.e.,
that only the sink component can interface with the Thorn RT)
by also providing information flow. For instance, FIG. 4
illustrates an exemplary flow for a typical program using
information flow in a Thorn programming model. The infor
mation flow techniques of FIG. 4 may also be applied to the
flow in FIG. 3. The general idea of information flow is that a
message must travel through a sanitizer/validator (in this

US 2014/0052997 A1

example, component C) before reaching a sink. That is, the
sink component trusts component C as a sanitizer/validator.
However, in the current Thorn programming model, there is
no requirement that the sink only accept information from a
sanitizer/validator, and there may be multiple sanitizers/vali
dators.
0063. The exemplary embodiments herein provide more
flexibility than this. The model proposed herein, in an exem
plary embodiment, does not allow multiple sanitizers/valida
tors. The model requires the sanitizer to forward messages to
the sink. The model places the sanitization requirement on the
last component before a sink. A sink is a security critical
operation, or in the case of Thorn, a security critical compo
nent. One operation or component that can adversely affect
the system if used improperly. Furthermore, Sanitized mes
sages cannot be saved and reused, and no one but the sink can
make use of this sanitized message.
0064 More specifically, in exemplary embodiments of the
proposed model herein, sanitizers are granted capabilities
Such as XSS safe (cross-site Scripting safe), sql safe (struc
tured query language safe), spelling correct (the spelling is
correct), and the like. Using a capability, a sanitizer creates a
token for a message that is safe. The sinks check to see if there
is a token they trust with the message.
0065. The instant programming model uses a security pro
vider. The security provider performs the following in an
exemplary embodiment: 1) Keeps track of what capabilities
each component has; 2) Grants components capabilities; and/
or 3) Is used to create the signed, unforgeable, tokens attached
to messages.
0066 Turning to FIG. 5, this figure illustrates an example
similar to FIG. 2, using an exemplary embodiment of the
instant programming model in conjunction with a Thorn pro
gramming model. It is noted that the Thorn programming
model is used herein to illustrate the exemplary embodi
ments, but the Thorn programming model is merely exem
plary and other models may be used. This example mainly
concentrates on the security aspects of the instant program
ming model and as such modification of M to M' and then to
M" is not shown. In this example, the untrusted source 505
provides information M506 to component A510. The com
ponent A510 sends information M506 via message 545-1 to
the component B 515-1, which has the capability 590-1 of
“spell' previously claimed by the component B 515-1 using
the security provider 520 and a negotiation process using the
messaging 550-1. A capability 590 can be granted to any
Thorn object. The security provider 520 ensures components
do not claim capabilities 590 already in use.
0067. The component B 515-1 communicates via messag
ing 550-1 with the security provider 520 in order to receive a
token 570-1 (created by security provider 520) shown in FIG.
4 as T(spell) and part of message 545-2 from component B
515 to component A510. Component B 515 performs, e.g., a
spelling check as its capability and the token 570-1 indicates
the spelling check completed and is safe. Component A510
passes the information M and the token 570-1 to the compo
nent C515-2 via the message 545-3. The component C515-2
has the capability 590-2 of “SQL safe', which was previ
ously claimed by the component 515-2 through a previous
negotiation process with the security provider 520 via mes
saging 550-2. In this instance, the component 515-2 performs
SQL security operations on M and T(spell). The component
515-2 communicates via messaging 550-2 with the security
provider 520 to receive a token 570-2 (created by security

Feb. 20, 2014

provider 520) shown in FIG.5 as T(SQL Safe). The compo
nent C515-2 returns message 545-2 to the component A510,
where the message 545-4 includes the information M506, the
token 570-1, and the token 570-2, where the token 570-2
indicates the component 515-2 performed SQL security
operations on M and T(spell).
0068. The component A510 then forwards message 545
5, comprising the information M506, the token 570-1, and
the token 570-2, to the sink 530. In an example, the SP
component 520 has a private key 591 and public key 592 (a
private/public key pair). The sink 530 is provided at some
time with the public key 592, which the sink 530 uses to verify
token(s) (block 580) in an exemplary embodiment. The sink
530 can communicate via messaging 550-3 with the security
provider 520 to determine the information (e.g., the public
key 592 in this example and any other verification informa
tion) used to check the tokens 570-1, and 570-2. In one
example, this communication can occur in response to initia
tion of the sink 530, as this minimizes further communication
(e.g., over a network) of the sort where the sink 530 would
communicate with the security provider 520 for each recep
tion of a token 570 and corresponding information 506.
0069. The sink 530, in block 581, in response to all token
(s) verifying, performs one or more operations using (e.g.,
contents of the) message 545-5. The sink 530 then performs
access 535 to the Thorn RT540. Otherwise in block 582, that
is in response to one of the tokens not verifying, the sink 530
ignores the message 545-5. The message 545-5 may be
ignored, e.g., by deleting the message. Access 535 is not
performed.
0070. One example of a token is provided in detail below.
In general, a token is created Such that when a token is
received by a component, the receiving component can verify
that nothing has been tampered with during transit.
0071. It can be seen that the exemplary programming
model shown in FIG. 5 is a vast improvement over the model
shown in FIG. 2, 3, or 4. For instance, each component, and
particularly the sink component 530, is supplied with tokens
and a system enabling the sink component 530 to trust the
information received from other components.
0072 Now that a simplified description of the exemplary
embodiments has been provided, a much more detailed
description concerning the exemplary embodiments is pro
vided. For ease of reference, the rest of this disclosure is
divided into sections.

0073
0074 The rest of this disclosure presents Mercury, a new
run-time security model for actor-based languages that does
not suffer from any the limitations listed in Points 1 through
7 above. The exemplary implementations described below
implement Mercury inside Thorn 2, a new actor-based lan
guage 6 developed by IBM Research and Purdue Univer
sity. The architecture of Thorn is centered around the con
cepts of components, which are isolated sequential programs
communicating with each other by messages, in the style of
Actors and Erlang 1. Thorn is modified to make Mercury
tightly integrated with normal Thorn behavior to minimize
programmer burden required to write secure programs. Mer
cury has the following exemplary, non-limiting characteris
tics:

0075 1. It can soundly and simultaneously enforce both
access control and information flow.

1. Introduction to Mercury

US 2014/0052997 A1

0076 2. It introduces the concept of a security provider—
which correspond to apolicy provider and a SecurityManager
in Java and .NET, but with several differences:
0077 (a) In Mercury, multiple security providers can be in
effect at any time, thereby granting different components the
flexibility to trust different security providers.
0078 (b) Unlike the Java and .NET security model, Mer
cury does not impose any particular type on security provid
ers; any component can be a security provider.
0079 (c) Components, regardless of the language in
which they are written, can trust and communicate with the
same security providers whether or not those providers are
located in the same site as those components.
0080 3. Individual messages passed between components
can be endorsed by trusted entities in a cryptographically
secure manner, thereby overcoming the coarse-grained limi
tations of the same-origin-policy security model.
0081. In this disclosure, examples are shown of how Mer
cury makes Web applications written in Thorn secure against
information-flow and access-control attacks. It is also shown
how the same levels of security could not have been achieved
with the security mechanisms embedded in other languages,
such as Java and .NET's stack inspection or JavaScripts
same-origin policy. It is also explained how the Mercury
security paradigm can be applied to other popular languages
that support the Actor model, such as JavaScript with the
postMessage functionality in HTML57.
0082 2. Motivation and Running Example
0.083 For the purposes of this paper, a sample Thorn appli
cation called EyeBook is described. It is a basic social net
working site. Initially EyeBook was created without the pro
posed security model and Suffers from several common
security vulnerabilities and limitations.
I0084. 2.1 EyeBook
0085 EyeBook comprises three Thorn components 615
1, 615-2, and 615-3, and is outlined in FIG. 6. Thorn is an
actor based language with strong isolation between compo
nents 615, and so the only communication between these
three components is through message passing. Arrows repre
sent the flow of messages from one component 615 to another.
In addition to the three Thorn components, the Thorn Runt
ime 610 provides special interfaces 605 to send data or com
mands outside of the Thorn Runtime, such as the network
605-1, hard disk 605-2, or statistics (via the Stats Plugin
605-3). It should be noted that the Thorn Runtime 610 does
not include all the components, but the components are all
running “on top of the Thorn Runtime 610. This is similar to
how Java programs are run inside the Java runtime. An arrow
leaving the dotted box that represents the Thorn Runtime 610
is a message or command that is sent to one of these special
interfaces. The three Thorn components in EyeBook are
Database (DB) 615-1, EyeBook Core 615-2 (referred to
herein as EyeCore), and Web Page Builder 615-3.
I0086 Database 615-1 is a Thorn implementation of a
basic database, or, if one prefers, a Thorn wrapper around a
standard database. In this example, there may be one table of
user data, indexed by user name, containing the text of each
user's profile—and, as EyeBook expands, the database 615-1
will Surely grow to encompass such information as the user's
email address, birthday, photos, and so forth. There may be
another table, kept separate for convenience, of private user
data, also indexed by user name, containing the user's pass
word, and eventually security questions and other informa
tion that should not be disseminated. It is noted that the DB

Feb. 20, 2014

component 615-1 is analogous to sink 530 of FIG. 5, in the
sense that the DB component 615-1 is also a sink.
I0087 EyeCore 615-2 is the ultimate point of responsibil
ity for the EyeBook application. EyeCore 615-2 is in charge
of password checking, providing the visible parts of user
records, handling profile updates, managing cookies, and so
forth. EyeCore communicates extensively with the database,
where the necessary information is stored. EyeCore under
stands a number of kinds of messages from WebPageBuilder
615-3, such as “translate this cookie into a username' and “set
this user's profile'.
I0088 WebPageBuilder 615-3 builds the web pages and
sends the built web pages to users. It communicates with the
external world via HTTP (hypertext transfer protocol), and
with EyeCore via Thorn messaging. WebPageBuilder 615-3
is responsible for formatting data from EyeCore 615-2, and
parsing user data (e.g., login requests) for execution by Eye
Core.
I0089 2.2 Problems with EyeBook
0090 EyeBook has the problems that many prototype web
applications have. EyeBook contains all the functionality
needed to work but lacks security Some very important places.
For example, EyeBook correctly verifies login credentials,
but EyeBook does not ensure that queries sent to the database
are free from injection attacks. Additionally, EyeBook does
not ensure that data read out of the database is free of Cross
Site Scripting (XSS) attacks before the data are written to an
output page nor does EyeBook ensure that GET or POST
parameters are sanitized before writing them to an output
page. Finally, EyeBook makes it quite difficult to allow third
party applications or components to interact with its data. A
user must either give their username and password to the third
party application to give EyeBook full access to their infor
mation or the third party application cannot access any user
data at all.
0091 Database injection attacks, commonly referred to as
SQL injection, occur when user provided data is interpreted
by the database engine as a command. There are many ways
to prevent this type of attack, prepared Statements, input vali
dation, or taintanalysis. The commonality among these tech
niques is that something needs to endorse a database query
before it is sent to the actual database.
0092 Cross-Site Scripting (XSS) attacks can occur when
user provided data appears on a web page without first going
through a sanitization routine. Here again, there are many
techniques that can be used to sanitizer user provided data and
the important commonality is that something is done to Vet
the user provided data as safe.
0093. Finally there is the problem of introducing third
party applications and their access to confidential data. Mash
ups, or using components from many different, potentially
non-trusting, sources have been a popular feature of the post
Web 2.0 world. One of the major problems with mash-ups has
been restricting access to specific data and not allowing unre
stricted access to data. By default, EyeBook offers no mecha
nisms to integrate third-party components. If a user wanted to
use a third-party component or application, they could give
the component or application their username and password,
but with this information, the component could do everything
that the user is allowed to do. If a user wanted to use a
third-party component to edit a single photo, the user would
have to give the component full access to their entire account,
which is not desirable because their account may contain
other private information.

US 2014/0052997 A1

0094 3 All the Thorn One Needs to Know
0095 Thorn is a new programming language developed
by IBM Research and Purdue University, intended for dis
tributed computing in particular, for Web services and other
coordination between computers in distinct and mutually
distrustful organizations. Thorn is a scripting language: it is
dynamically typed, has a collection of useful types built in
(e.g., files, dictionaries, XML-extensible markup language),
and allows for concise expression of many common idioms
and patterns. In this section, enough of Thorn is illustrated for
the purposes of this disclosure. For more details on the Thorn
language, the reader is invited to consult the first Thorn paper
2.
0.096 Scripting languages generally favor expressiveness
over safety and robustness. For example, many scripting lan
guages have a notion of object. In most cases, though cer
tainly not all, the fields of an object are all public, and can be
modified from anywhere in the program. Conversely, the
design in Thorn emphasizes safety and robustness concerns
more than most scripting languages. For example, in Thorn,
instance variables are all private; by default, accessor meth
ods are generated for each instance variable, giving it the
appearance of being a public field. A programmer can over
ride this decision and restrict access to any instance variable.
0097. A Thorn program is divided into one or more “com
ponents', loosely analogous to processes. Components are
isolated sequential programs communicating by messages,
generally in the style of Actors 6 and Erlang 1. As they are
isolated, components do not share data references; each com
ponent's memory space is invisible to other components.
Components can only share information by sending messages
to each other. This feature has useful implications for secu
rity: a component can only be influenced by the outside world
through messages, which appear in quite visible places, and
can be vetted or analyzed as desired.
0098. The command to create a new component is
“spawn'. EyeCore..th, the heart of the EyeBook application,
consists of a single "spawn' command, as shown in FIG. 7.
0099. A component 615 can define local variables, such as
cookies. Definitions introduced with = are immutable; they
cannot be changed. (Unlike Erlang, mutable state is allowed:
“var n:=0; . . . ; n:=2*n--1:”.) Thorn tables are a built-in
datatype, mapping one or more keys (here just one, username)
to any number of data fields (here just one, cookie).
0100. The “sync' keyword introduces a synchronous
communication. This keyword is used rather like a function or
method, but set up for other components to call. When the
keyword is evaluated (under control of the serve command
described below), genCookie accepts a user name as a formal
parameter. genCookie constructs a cookie, by appending a
random digit to the username. genCookie stores the cookie in
the cookies table: <cookie-c is a one-element record asso
ciating the cookie's value, c, to the field name cookie. Finally,
genCookie returns the cookie c to the sender.
0101 The “sync' message handlers are invoked by the <->
operator, as seen in the body of “passwordIslright?'. The
statement “db <-> passwordIslright?(uname, pword) causes
a message to be sent to db (which, elsewhere, is set to a
component reference to the database component). Through
such message, db (e.g., DB 615-1) is asked to invoke its own
“passwordIsRight?' 'sync’ message handler on arguments
uname and pword, and to return the answer. Inter-component
communication is expensive compared to intra-component
method invocation. Thorn uses a larger operation symbol,

Feb. 20, 2014

<->, to make this more obvious. The <-> operator has optional
clauses, allowing a timeout and giving code to execute if it
times out. Thorn also offers the "async' keyword for asyn
chronous communication.
0102 The body clause of “spawn' gives the code that the
newly-spawned component will execute. EyeCore 615-2, like
many Thorn components, simply has an infinite loop execut
ing a “serve' command. When executed, “serve' accepts a
single "sync' or "async’ message, executes the correspond
ing message handler's body, and, for a “sync', returns the
result to the sender. A number of optional clauses provide for
several common cases: "before is used to log the incoming
messages, and “timeout' is used to note that EyeCore is still
running.
0103) The message cookie2user illustrates two other
Thorn features: queries and patterns. Pattern matching allows
inspection and destructuring of data structures. For example,
the pattern “Kusername u, cookie=S(c)> matches any
record which has a username field with any value, and a
cookie field whose value is the same as that of the variable c;
other fields are ignored. If the match Succeeds, the pattern
matching binds the variable u to the value of the records
username field. Thorn’s pattern language is quite extensive;
the pattern language incorporates extraction for all built-in
types and user-defined classes, side conditions, and many
conveniences.
0104 Queries encapsulate a number of common patterns
of iteration. The “96 first query performs an iteration, and
returns the value of the expression u for the first iteration (or
returns a special null value if there are no iterations because
there was no match). This pattern occurs quite often when
searching. In this case, the iteration is for "{username u,
cookie=S(c)><-cookies'. This loops over the table cookies,
looking for a row which matches that pattern—that is, a row
whose cookies field is equal to c. Whenever such a row is
found, the username is bound to u. Rows with a different
value of cookie are simply ignored.
0105. Other possible clauses in the iteration allow filtering
on Some condition, early termination if some condition is
satisfied, accumulation of results, and so on. When this for is
used inside of “96 first, the username is returned correspond
ing to the cookie c-assuming, of course, that cookies are not
duplicated.
0106 4. The Mercury Security Model
0107 Mercury is a security model specifically designed
for actor-based languages, where programs are partitioned
into isolated components
0.108 Mercury is a capability-based security model that
can enforce both information-flow and access-control poli
cies. A capability is an unforgeable and communicable proof
of authority that refers to an object along with an associated
set of access rights specific to that object 11. A user or
program on a capability-based system must prove possession
of an appropriate capability to access an object. The advan
tage of a capability-based security model is that users of the
system or program components candirectly share capabilities
with each other as long as the components do not violate the
principle of least privilege, which dictates that no principal in
a computer system be granted more rights than those needed
to complete the task the principal was assigned 16.
0109. A fundamental concept in Mercury is that of a
“security provider'. A security provider is a standard Thorn
component that initializes itself by calling a special “initSP
Thorn-provided function. Calling “initSP sets up certain

US 2014/0052997 A1

data structures inside the Thorn runtime. In particular,
“initSP equips the security provider with a public and private
key pair. The public key is wrapped in a digital certificate that
is signed by the Thorn runtime, which, therefore, acts as a
certificate authority. By doing this, the Thorn runtime does
not endorse the security provider in any way, but just certifies
the identity of the security provider. Once that is done, a
security provider is allowed to grant capabilities to compo
nents. In Mercury, a capability is represented as nearly-arbi
trary data generally something meaningful to the security
provider.
0110 Messages exchanged between components are
tagged with security tokens, which are data structures repre
senting unforgeable integrity and/or confidentiality endorse
ments. A security token for a particular message is forged by
a security provider upon receiving request from a component
with the capability necessary to issue that token.
0111 For example, a component may be capable of sani
tizing input strings against cross-site Scripting (XSS) attacks,
which consist of embedding malicious code inside what
would otherwise be plain HTML text. When displayed on a
victim's computer, that code will be executed bypassing any
same-origin policy restriction. Any message from a poten
tially untrusted client can be sanitized by removing any code
that may have been embedded in it. The sanitizing component
can receive from a security provider the capability to certify
that messages are XSS-attack free. Then, for every message
the sanitizing component sanitizes, that component can ask
the security provider to forge a message-specific security
token, which asserts that the given message is safe with
respect to XSS.
0112 The creation of a security token takes place through
Thorn runtime function calls. FIG. 8 illustrates an example of
messaging 550-2 for token 870 creation for an SQL sanitizer
component 515-2. The service provider (SP) 520 creates
token 870 (which is similar to token 570-2 previously
described) based on capability k and message msg. The mes
sage msg, may be considered to be the information M506
previously described. Upon receipt of a message, Thorn cryp
tographically verifies that the message itself and the tokens
attached to the message have not been tampered with during
transit (possibly through third-party components). At that
point, the receiving component can pattern-match on the
tokens in the message.
0113. Since any component 515 can become a security
provider 520, components must, in an exemplary embodi
ment, state which security providers they trust. This is usually
done once when the component 515 is spawned, but the list of
security providers 520 that a component trusts may be
changed dynamically as the component is running. Tokens
received from security providers 520 that a component does
not trust are ignored by the Thorn runtime.
0114 More formally, a security token 870 in an exemplary
embodiment for a message m is a tuple <k, c, spID, sign>,
where:

0115 1 k is the capability that the message is endorsed
with:
0116 2 c is the ID of the component endorsing the mes
Sage—such component must have been granted capability k:
0117 3 spID is the component ID of the security provider
which made the token and granted k to c;
0118 4 sign is the digital signature of the tuple <k, c, spID,
m, where m is the message msg.

Feb. 20, 2014

0119. In this embodiment, the security provider hashes the
concatenation of k, c, spID and the message (m) being
endorsed and signs the hash with its private key. There is no
need to include the message in the token because the token is
attached to the message. This signature is performed so that
when a token is received, the receiving component can verify
that nothing has been tampered with during transit. It should
be noted that this token is merely an example. In another
example, for instance, the spID might not be used, and there
fore the sign could be the digital signature of the tuple <k, c,
n>

0.120. A security provider is responsible for ensuring a
component owns a capability 590 before making a token. This
ensures that when a component 515 receives a token 570, 870
containing a capability, a component 515 owning that capa
bility 590 has previously endorsed the message. Components
are allowed to request any capability the components desire;
security providers can decide whether or not to grant Such
requests. For programming convenience, capabilities can be
any valid Thorn object; the capability may be something
meaningful to the security provider. FIG. 9 illustrates an
example of messaging 550-2 for capability creation for the
SQL sanitizer component 515-2. In this example, the capa
bility k is the “SQL Safe” capability 590-2 shown in FIG. 5.
Once a capability has been constructed in a given security
provider 520, the security provider must, in an exemplary
embodiment, ensure (block 910) that no other component 515
has that capability 590 unless the capability 590 is delegated
to them by a component in possession of that capability. The
SP 520 either responds with an indication (“You do have
Capability k) in a message that the capability 590 is granted,
or responds with an indication (“You do not have Capability
k) in a message that the capability 590 is not granted. The SP
component 520 may therefore (e.g., in order to perform block
910) also keep track (block 915) of granted capabilities, e.g.,
and also may keep track (block 915) of corresponding com
ponents having those granted capabilities.
I0121 The flexibility of allowing components to use any
Thorn object as a capability is nice, but this flexibility does
have a drawback. Since the first component to create a capa
bility owns the capability, a component is not guaranteed to
own a specific capability. For example, one component might
want to use the string “read as a capability. However, a
second component might also want to use “read” as a capa
bility. Only one component will be allowed to create this
capability in a given security provider and any other compo
nents that hardcoded a pattern match for the capability “read
might behave incorrectly since the “read capability might
not have been generated by the component that they trusted.
To help mitigate this problem, security providers 520 should
let components know if their request to create a capability was
a Success (e.g., by a “You do not have Capability k” message).
Furthermore, there are library functions to create a random
object as a capability. This would remove the notion that
capabilities are predictable. If the functions are random, then
one can only pattern match against the functions once one is
notified that a component has created the capability. This
means that instead of two components asking for read, they
would both just ask for random capabilities. They might both
still mean “read, but they would not name-collide. Compo
nents may also be allowed to delegate capabilities to other
components.
0.122 Since there may be many independent parts of a
program, and there may even been third party components

US 2014/0052997 A1

running in a site among first party components, it would be
cumbersome to require everyone to use the same security
provider. Multiple security providers allow individual com
ponents to trust different security providers. First, this means
that each user created application can customize their security
provider trivially since the user is in complete control of the
security provider. This is harder in Java because there is only
one security manager that must be in charge of everything,
including security of all the built in libraries. Second, this
facilitates mixing of different code bases. One can take two
code bases and mix them together and the code bases can each
trust their own security provider, and the code bases do not
need to agree on one central security provider (e.g., thereby
promoting mash-ups and similar concepts).
(0123 5. Securing EyeBook
0.124 EyeBook can be secured using Mercury. The corre
sponding EyeBook application 1000 is outlined in FIG. 10.
This application 1000 is similar to the unsecured EyeBook in
FIG. 6; however, there are new components 515 that endorse
messages before the messages are sent to critical components
or interfaces. Additionally, there is now a Security Provider
(SP) 520 that will create tokens for these endorsed messages
and keep track of what capabilities each component 515
possesses. This and subsequent figures with the SP520 do not
show connections to the SP component to maintain clarity.
0.125. The new components 515 in the secure version of
EyeBook are: SQL Sanitizer 515-2, XSS Sanitizer 515-3,
SpellChecker 515-1, Profanity Checker 515-4, and Authen
ticator 515-5. Each of these components 515 asks for and is
granted a specific capability by the SP 520. During program
execution, each of these components performs the sanitiza
tion or checking that the component 515 is supposed to and
asks the SP 520 to create a token for the component 515 to
attach to the message, as previously described.
0126 Each of the following sections depict specific secu

rity features that have been added to EyeBook. Before any of
these features are enabled, the core system must be initial
ized. In addition to each component declaring that the com
ponent 515 trusts the SP 520 as the Security Provider, the
components 515 from FIG. 10 need to initialize themselves.
This is because they will own specific capabilities. Each
component 515 must send a message asking the SP compo
nent to grant the component 515 the capability 590 the com
ponent 515 wants. Then components 615 may query other
components to identify capabilities the other components
have so they know what to look for. For example, the DB
component 615 would query the SQL Sanitizer 515-2 and
find out what capability the SQL Sanitizer 515-2 is using to
endorse messages. It is noted one feature of the Thorn RT is
that the runtime must know all components because the runt
ime must be able to route messages. So a component could
query the runtime for a list of all messageable components.
0127 5.1 Access Control
0128. The simplest form of security enforced by informa
tion flow is access control. EyeBook uses this access control
to limit access to trusted resources, like the database, to fully
trusted third party plugins. There are four components
involved in this simple access control policy and their inter
action is outlined in FIG. 11. The first component is the
component attempting to get access to a restricted resource.
In the example, it is the Stats Plugin component 605-2. The
Stats Plugin component 605-2 computes statistics about the
number and variety of users using EyeBook. The Stats Plugin
component 605-2 can be thought of as a component that was

Feb. 20, 2014

created to monitor EyeBook. The Stats Plugin component
605-2 needs access to specific database queries but should not
have full access because the component does not need the
access and the Stats Plugin component 605-2 might be con
trolled by employees of EyeBook who should not have full
access to the database 1110. The second component is the SP
520 and this component performs its normal functions of
granting capabilities and making tokens. The third compo
nent is the Authenticator 515-5. The Authenticator 515-5
listens for a login message comprising login credentials; in
EyeBook the login credentials are ID and password. The
Authenticator verifies the credentials and if the credentials
are valid, grants a unique capability to the component (Stats
Plugin component 605-2) which sent the login message. The
fourth and final component is the one containing the restricted
resource. In this example, this is the DB component 515-1.
0129. Table 1, shown in FIG. 12, outlines the communi
cation that takes place to authenticate a third party plugin and
send a message to the database. Steps 1-3 must only happen
once, during the initial login phase. In these steps, the third
party component (Stats Plugin 605-2) sends its credentials to
the Authenticator component 515-5. The Authenticator com
ponent 515-5 performs the actions needed to verify the cre
dentials. This could be querying the database, querying a file
on disk, accessing an in-memory structure, or any other way
of validating credentials. If the credentials are not valid, the
Authenticator component 515-5 sends an invalid login
response back to the third-party component and communica
tion ends. If the credentials are valid, the Authenticator com
ponent 515-2 sends a message to the SP component 520
asking the SP component 520 to grant the “data totals' capa
bility to Stats Plugin 605-2. In EyeBook, the Authenticator
component 515-5 has the “data totals' capability, so the
Authenticator can delegate this capability at will. But it
doesn’t have the “format hard drive' capability, and thus
cannot delegate this capability to anyone.
0.130. At this point, the initial login is completed and the
Stats Plugin component 605-2 has the capability to issue
“data totals' requests to the DB component 615-1. However,
the security model requires the SP component 520 to create an
unforgeable token, T, to attach to a message before the DB
component 615-1 will accept the message. This is because the
DB component 615-1 does not trust any third-party compo
nents and in particular the DB component 615-1 only trusts
the SP component 520 when dealing with tokens and capa
bilities.

I0131 When the Stats Plugin 605-2 wants to query the DB
component 615-1, the Stats Plugin component sends a mes
sage to the SP component 520 asking the SP component 520
to make a token for a specific message (e.g., "Get total num
ber of users') with its “data totals' capability. This is per
formed in line 4 of Table 1. Since the Stats Plugin component
605-2 as the aforementioned capability, the SP component
520 creates a token for the message and sends the token back
to the Stats Plugin component (line 5). Now in line 6, the Stats
Plugin component 605-2 can issue a request to the DB com
ponent 615-1. When the DB component 615-1 receives this
message, the DB component 615-1 verifies that the token
contains the capability the DB desires, performs a query, and
sends the answer back to the Stats Plugin component 605-1.
This interaction does not need database sanitization because
no data from the message being sent is present in the database
query.

US 2014/0052997 A1

0132 Table 2, shown in FIG. 13, is an optimized message
sequence for Stats Plugin component 605-2 to login to and
query the database. This optimization may be performed
because the message has not changed, so the previous token is
still valid. This leaves EyeBook open to an attack where the
capability could be revoked from Stats Plugin component
605-2 but since Stats Plugin component 605-2 already has the
token, the Stats Plugin component 605-2 can continue to send
the message. If EyeBook wanted to prevent this attack, Eye
Book could force the Stats Plugin component 605-2 to
include a nonce on every message, which would ensure that
each message was unique and token-message pairs could not
be reused. This is a tradeoff between efficiency and security
and Mercury is flexible enough to allow both scenarios. Mer
cury defaults to not include nonces on all messages because it
is believed this is the more common case.

0133)
0134 Code injection detection and prevention is one of the
natural uses of information flow. Code injection, which
includes both cross-site scripting (XSS) attacks and SQL
injection attacks, occurs when untrusted data is interpreted as
part of a command rather than as data. There are many ways
to detect and prevent code injection attacks, but they all have
one thing in common: before a command with untrusted data
in it is executed, the command is first inspected. This inspec
tion can range from static parse tree analysis to dynamic
execution in a sandbox. Once the command that contains
untrusted data passes the inspection, the command is pro
vided to the underlying system to execute. When the inspector
also changes the command to make the command safe to
execute, the inspector is commonly referred to as a sanitizer
and the term sanitizer is used herein to refer to both inspectors
and sanitizers. The information flow property that must be
enforced is a command must first flow through a sanitizer
before the command flows to the underlying system.
0135 Turning to FIGS. 14 and 15, FIG. 14 illustrates an
example of sending a safe query to a database in accordance
with an exemplary embodiment of the instant invention, and
FIG. 15 is a table (Table 3) of a message sequence to send a
safe query to the database. Using the security model in this
disclosure, it is trivial to protect critical system resources. For
example, to protect a database, the database (e.g., the data
base 1110) can be modified to require all messages to the
database 1110 have been endorsed by a database query
inspector. FIG. 14 shows the portion of EyeBook that is
responsible for ensuring only safe messages are sent to the
DB component. Table 3, in FIG. 15, shows the communica
tion required to send messages to the DB component and
showcases the differences between this scenario and the
access control scenario. It assumes that the SQL Sanitizer
component 515-2 and the SP component 520 have already
been initialized and gone through their handshake to grant
SQL Sanitizer component 515-2 the “SQL safe' capability
590-2.

0136. In the access control scenario, a component con
tacted the Authenticator component once and the component
was granted a capability. In the code injection scenario, the
only component in EyeBook that is trusted as a database
query inspector is the SQL Sanitizer component 515-2. This
means that every message sent to the DB component must
first go through the SQL Sanitizer component 515-2. There is
no other way for the message to contain the token that the DB
component 615-1 requires.

5.2 Code Injection Prevention

Feb. 20, 2014

0.137 The communication from Table 3 shows one full use
of the SQL Sanitizer component 515-2 to endorse a message
before sending the message to the DB component 615-1. The
EyeBook Core component 615-2 must first send the database
query to be analyzed to the SQL Sanitizer component 515-2.
Then the SQL Sanitizer component performs its sanitization,
which ensures the resulting safe DB query is free from SQL
injection attacks. At this point, the SQL Sanitizer endorses
this message by asking for the SP component 520 to make a
token for the message and then the SQL Sanitizer component
515-2 sends the safe DB query and token back to the EyeBook
core component 615-2 so the core component can send the
safe DB query to the DB component 615-1. It is important to
note that the token that is sent back to the EyeBook Core
component is only valid for the safe DB query that was also
sent. If EyeBook Core component 615-2 changes the query
sent to the DB component 615-1, the token will not pass the
integrity checks (i.e., will not be verified) when the DB com
ponent receives the query and the entire message will be
ignored.
0.138. There are quite a few messages being sent in this
example, but just like with access control, there is a way to
reduce the number of messages that must be sent. FIG. 16 is
a table (Table 4) of an optimized message sequence to send a
safe query to the database. Table 3 (FIG. 15) showed the most
generic use of the SQL Sanitizer component 515-2, but the SP
component 520 can also act as a message forwarder and Table
4 (FIG. 16) shows what the resulting communication is.
Instead of sending five messages, only three messages will be
sent for every interaction with the DB component 615-1.
0.139. The security model also allows for proxies and other
intermediaries between token generation and token consump
tion. In the scenarios presented thus far, once a token has been
attached to a message, the token is sent directly to the com
ponent that wants to interrogate that token. For example, if the
database in EyeBook tried to implement a simple form of
caching like in FIG. 17, the message with the token attached
might have to go through several different components before
a message can be sent back to the originating component.
With a simple identity based scheme, it would be impossible
to tell if the message being sent to the DB component 615-1
has been declared safe or not. Since the token declaring that
the message is safe for database consumption is attached to
the message, every component in the message chain (e.g.,
components 615-4, 615-5, 615-6, and 615-7) can verify that
the database command is safe to execute. Furtheimore, since
the token includes a signed hash of important data, including
the message and capability, it is impossible for one of the
intermediary components 615-4 through 615-7 to be mali
cious and change the message into an attack. If they did, the
integrity check on the token would not be valid when the next
component receives the message and the message would be
ignored.
0140 5.3 Chaining Tokens
0.141. There are situations where many tokens must be
appended to a message before a component will accept that
message. One Such case occurs in the secure version of Eye
Book. A message must be free of cross-site Scripting attacks,
spelled correctly, and (unlike competing Social networks) free
of profanity before the message can be output to a web page.
FIG. 18 is an optimized version of the EyeBook application
shown in FIG. 10 where messages are forwarded by endorsers
and the SP component 520, and FIG. 18 shows that a message
must pass through all three endorsing components before it

US 2014/0052997 A1

proceeds to WebPageBuilder 615-3. WebPageBuilder checks
to seeifall required tokens are present and, if any are missing,
rejects the message. This is an example of what is referred to
herein as chaining tokens, a process where additional tokens
are attached to an already endorsed message.
0142. Each of the three endorsing components (cross-site
scripting free 515-3, spell checked 515-1, and profanity
checked 515-4) will act exactly like a proxy with the excep
tion that the specific component will add an additional token
to the message, assuming the message passes the checks.
These three components should not modify the message,
because, if any one of them did, it would mean previous
tokens would no longer pass the integrity check. This is an
intended, albeit conservative feature. This design feature
comes from the fact that endorsements are only valid for a
specific message, if that message changes at all, the endorse
ment might not be valid anymore. An example of this situa
tion would be if a spell checker changed the text <scirpts to
<scriptd. Before spell checking and correction, the XSS Sani
tizer 515-3 might have allowed a benign tag to be present.
After spell checking and correction, the tag is no longer
benign and could lead to an attack.
0143 FIG. 19 shows the section of EyeBook that is
responsible for this logic. FIG. 18 is using the optimized form
of communication that forwards a message as soon as a token
is generated. When the WebPage Builder component 615-3
receives a message, this component simply has to check for
the three required tokens and if they are all there, the compo
nent knows it is safe to output to the web page.
0144. It is noted that, in an exemplary embodiment, a sink
can determine whether a message has passed or not passed a
capability endorsement by determining whether or not a
token corresponding to the capability is attached. In the
example of FIG. 19, for instance, the WebPageBuilder com
ponent 615-3 can determine the message did not pass the
endorsement of the XSS sanitizer component 515-3 in
response to receiving a message without a token from the
XSS Sanitizer 515-3 but with the original message and tokens
from the Spell Checker 515-1 and the Profanity Checker
515-4. The WebPageBuilder component 615-3 could then
make a determination as to what to do in response, e.g., ignore
the message. In other examples, perhaps the token from the
XSS Sanitizer 515-3 is expanded to include an indication as to
whether the message is endorsed or not.
0145. It would be unfortunate if each sanitizer and checker
in the pipeline needed to know about the next. However, as
Thorn's component IDS (identifications) are first-class data,
these components can be written generically. Each message
merely needs to contain a list of the component IDs of the
endorsers that it must pass, and each endorser can send the
message to the next one in the list.
0146 5.4 Photo Editor
0147 One of the most powerful features of this security
model is the ability to work across programs and across
languages. JavaScript provides the Same Origin Policy (SOP)
as a mechanism to safely combine programs. The problem
with SOP is that it is far too coarse. If the developer wants two
programs to interact, he must give the two programs full
access to each other.
0148. An exemplary embodiment of the instant security
model attaches tokens to messages. Messages can be sent
from one Thorn site to another, from one Thorn program to
another, or even between a Thorn site and any program that
reads and writes the Thorn message format. Since Thorn only

Feb. 20, 2014

guarantees sender identity for each component inside a Thorn
runtime, other techniques must be used to Verify and enforce
identity for non-Thorn components such as public-private
key encryption, certificate authorities, and SSL (security
socket layer). The ways in which identify is ensured and
enforced outside of Thorn is outside the scope of this disclo
SUC.

0149 EyeBook does not currently have a photograph shar
ing service, but many other social networking sites do have
one. One of the major differences between traditional appli
cations and Web 2.0 applications is data are owned by web
services instead of users. A user is no longerable to easily take
a photo from one application and edit the photo in a separate
application. Currently there are three options to edit a photo
graph on a social networking site:
0150 1 Use the photo editing tools present on the social
networking site;
0151. 2 Use an online service and give them your user
name and password so they can access your photograph
stored on the Social networking site;
0152 3 Download the photograph, edit it using a local
photograph editing application, and re-upload the edited pho
tograph.
0153. None of these options are optimal. The first option
restricts the user to whatever is implemented in the social
networking site, the second option gives a third party full
access to their account, and the third option is cumbersome,
especially for users who do not wish to purchase or pirate
photo-editing software. Our security model can be used to
give an online service access to a particular photograph to
edit.
0154 FIG. 20 shows the general interaction for these pho
tograph editing services. The services 1010-1 through 1010-4
must be integrated with EyeBook so that the services 1010 are
listening for and respond to Thorn messages from EyeBook.
When a user decides to edit a photograph, the user can select
which service her or she wants to use and EyeBook can
provide a popup window that loads that services website
with the photo loaded in the services website. When the user
is done editing, the user simply uses the normal save func
tionality of the photograph editing service and the modified
picture is uploaded back to his or her account on EyeBook.
EyeBook does not need to trust these photograph editing
services and the user only needs to trust them not to misuse
their one picture the user is editing and not maliciously
change the photograph before uploading the photograph back
to their account. Specifically, the user does not need to trust
the photograph editing service with their password, username
or all of their photographs and other information.
0.155 Once the user selects the service he or she wants to
use, an exemplary embodiment of the instant security model
may be used to provide that service with access to the photo
graph the user wants to edit. Table 5 (see FIG. 21) outlines the
messages involved in delegating a photograph editing Ser
vice, editing the photograph, and saving the photograph back
to the user's account. The first action that is taken is the DB
component 615-1 asks the SP component 520 to generate a
unique capability. This can be done by creating a randomly
generated capability or some other more complex method.
This new capability k is sent to the DB component 615-1 and
the DB component adds the new capability to a map from
capabilities to photograph unique IDs. Now when the DB
component receives a message to save or load a photograph,
the DB component checks to see if the component has the

US 2014/0052997 A1

appropriate token is attached to the message to access that
photograph. Now that the DB component is set up to allow
access to the photograph, the capability must be granted and
sent to the photograph editing service. The DB component
needs to send a grant capability message to the SP compo
nent, who will grant this capability to the photograph editing
service and send it the capability in a Thorn message. At this
point, the EyeBook Core component 615-2 needs to send a
message to the photograph editing service to provide the
service with the unique ID for the photo to be edited and the
photo editing service should respond with a link to open in a
popup window on the client's computer.
0156 The capability has now been distributed, the photo
graph editing service has been notified what the service will
edit, and the user has been sent a link to use the photograph
editing service. The photograph editing service must actually
load the photograph now. The service does this by sending a
load request message with capability k to the SP component
so a token t can be made. The SP component 520 attaches
Tokent to that message and forwards the token on to the DB
component 615-1, which verifies the token and responds with
the image to edit. The photograph editing service 1010 cannot
access any other photographs because the service 1010 does
not have the capabilities necessary to access them. Once the
user is done editing the photograph, the photograph editing
service sends a message with the save command and the
finished photograph to the SP component 520 so the SP
component 520 can make a token and forward the message
with the token along to the DB component. The photograph is
now edited and saved back into the user's account on Eye
Book.
0157. Over time, the photograph editing service may have
capabilities to access all of the photographs on EyeBook.
There is nothing that can be done to prevent the service 1010
from saving local copies of the photographs when the photos
are edited. However, the instant security model allows capa
bilities to be ignored or revoked. After a set time, the DB
component can remove the capability from its map so it will
no longer be valid to access photographs in the database. If the
DB component wanted to actually delete the capability from
every component which has the capability and from the SP
component, the DB component can send a message to the SP
component to remove that capability from every component
which has the right to use the capability.
0158 Turning to FIG. 22, an exemplary system is shown
that suitable for performing exemplary embodiments of the
invention. This system comprises a computer system 300
comprising one or more processors 305, one or more memo
ries 310, one or more user input interfaces 320 (e.g., touch
screen interfaces, mouse interfaces, keyboard interfaces, and
the like) and one or more wired or wireless network interfaces
325. The computer system 300 comprises (as shown in FIG.
3) or is coupled to a display 330 having a user interface 335
through which a user can interact with the system, and also
provide input for the computer system 300. The one or more
memories 310 include computer readable code 315 that com
prises an application interface 317, which may be a Web
browser.

0159. This example is a networked example, where the
computer system 300 communicates with another computer
system 350 comprising one or more processors 355, one or
more memories 360, and one or more wired or wireless net
work interfaces 385. The one or more memories 360 comprise
computer readable code 365 comprising an application 370,

Feb. 20, 2014

of which the EyeBook application 1000 previously described
is an example. The one or more memories 360 also comprise
in this example data storage 395, which could be database
1110 or any other storage useful for the application 370. The
application 370 further includes a version of programming
model 380 (e.g., including a runtime such as a Thorn Runt
ime) as described in detail above. The application 370 may
also comprise multiple service providers 383-1 to 383-N.
where each service provider is a version of the service pro
vider 520 previously described above. The computer systems
300,355 communicate via a network340, e.g., the Internet. In
this example, the computer system 300 is a client and the
computer system 350 is a server. The application interface
317 may be as simple as a Web interface, or could be more
complex, Such as an applet or client program. In this example,
the computer system 300, acting through the application
interface 317, could be the untrusted source 505 of FIG.5, and
the application 370 ensures that the information provided by
the untrusted Source is secure, as previously described.
0160. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0.161 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

0162. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

US 2014/0052997 A1

0163 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0164 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0.165 Aspects of the present invention are described above
with reference to flowchart illustrations and/or block dia
grams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0166 These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0167. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0168 The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

Feb. 20, 2014

0169. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
0170
0171 1.J. Armstrong. Programming Erlang: Software for
a Concurrent World. Pragmatic Bookshelf, 2007.

(0172. 2. B. Bloom, J. Field, N. Nystrom, J. Ostlund, G.
Richards, R. Strnisa, J. Vitek, and T. Wrigstad. Thorn:
Robust, Concurrent, Extensible Scripting on the JVM. In
Proceeding of the 24th ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and
Applications, OOPSLA '09, pages 117-136, New York,
N.Y., USA, 2009. ACM.

(0173 3. E. Geay, M. Pistoia, T. Tateishi, B. Ryder, and J.
Dolby. Modular String-Sensitive Permission Analysis with
Demand-Driven Precision. In 31st International Confer
ence on Software Engineering (ICSE 2009), Minneapolis,
Minn., USA, 2009.

0.174 4. L. Gong, M. Mueller, H. Prafullchandra, and R.
Schemers. Going Beyond the Sandbox: An Overview of
the New Security Architecture in the Java Development Kit
1.2. In USENIX Symposium on Internet Technologies and
Systems, Monterey, Calif., USA, December 1997.

0.175 5. L. Gong and R. Schemers. Implementing Protec
tion Domains in the Java Development Kit 1.2. In Proceed
ings of the Network and Distributed System Security
(NDSS 1997) Symposium, San Diego, Calif., USA,
December 1997.

(0176 6. C. Hewitt, P. Bishop, and R. Steiger. A Universal
Modular Actor Formalism for Artificial Intelligence. In
Proceedings of the Third International Joint Conference on
Artificial Intelligence (IJCAI 1973), August 1973.

(0177 7. HTML5, w3.org/TR/htm15.
0.178 8. L. Koved, M. Pistoia, and A. Kershenbaum.
Access Rights Analysis for Java. In 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2002), pages 359
372, Seattle, Wash., USA, November 2002. ACM Press.

0179 9. D. Kozen. Language-based security. In M. Kuty
lowski, L. Pacholski, and T. Wierzbicki, editors, Proc.
Conf. Mathematical Foundations of Computer Science
(MFCS99), volume 1672 of Lecture Notes in Computer
Science, pages 284-298. Springer-Verlag, September
1999.

0180 10. C. Lai, L. Gong, L. Koved, A.J. Nadalin, and R.
Schemers. User Authentication and Authorization in the
JavaTM Platform. In 15th Annual Computer Security Appli
cations Conference (ACSAC 1999), pages 285-290, Scotts
dale, Ariz., USA, December 1999. IEEE Computer Security.

The following references are referred to above:

US 2014/0052997 A1

0181 11. H. M. Levy. Capability-based Computer Sys
tems. Butterworth-Heinemann, Newton, Mass., USA,
1984.

0182 12. A. C. Myers. JFlow: Practical Mostly-static
Information Flow Control. In POPL, 1999.

0183 13. Open Web Application Security Project
(OWASP), www.owasp.org.

0184 14. M. Pistoia, A. Banerjee, and D. A. Naumann.
Beyond Stack Inspection: A Unified Access Control and
Information Flow Security Model. In 28th IEEE Sympo
sium on Security and Privacy, pages 149-163, Oakland,
Calif., USA, May 2007.

0185. 15. M. Pistoia, R. J. Flynn, L. Koved, and V. C.
Sreedhar. Interprocedural Analysis for Privileged Code
Placement and Tainted Variable Detection. In ECOOP,
2005.

0186 16. J. H. Saltzer and M. D. Schroeder. The Protec
tion of Information in Computer Systems. In Proceedings
of the IEEE, volume 63, pages 1278-1308, September
1975.

0187. 17. Same-origin Policy, mozilla.org/projects/secu
rity.

0188 18. A. Shinnar, M. Pistoia, and A. Banerjee. A lan
guage for information flow: dynamic tracking in multiple
interdependent dimensions. In Proceedings of the ACM
SIG-PLAN Fourth Workshop on Programming Languages
and Analysis for Security, PLAS '09, pages 125-131, New
York, N.Y., USA, 2009. ACM.

(0189 19. N. Swamy, B.J. Corcoran, and M. Hicks. Fable:
A language for enforcing user-defined security policies. In
Proceedings of the 2008 IEEE Symposium on Security and
Privacy, pages 369-383, Washington, D.C., USA, 2008.
IEEE Computer Society.

(0190. 20. IBMJava Security Workbench Development for
Java (SWORD4J), www. alphaworks.ibm.com/tech/
Sword4j.

(0191 21. W. Wulf, E. Cohen, W. Corwin, A. Jones, R.
Levin, C. Pierson, and F. Pollack. Hydra: the kernel of a
multiprocessor operating system. Commun. ACM,
17:337-345, June 1974.
1. A method, comprising:
providing an application comprising: a programming

model comprising a service provider, one or more first
components, one or more second components, and one
or more sinks, where each of the one or more second
components is assigned a unique capability, and wherein
the first and second components and sinks communicate
using messages:

a given one of the first components routing a message
comprising information from the given first component
to at least one of the one or more second components and
then to a selected one of the sinks;

each of the at least one of the second components sending
the message to the service provider,

the service provider creating a token corresponding at least
to a received message and a unique capability assigned
to an associated one of the second components and send
ing the token to the associated one of the second com
ponents; and

the selected sink receiving the message and a token corre
sponding to each of the at least one second components,
Verifying each received token, and either accepting the
message in response to each of the received tokens being
Verified and performing one or more actions using the

Feb. 20, 2014

message or ignoring the message in response to at least
one of the received tokens not being verified.

2. The method of claim 1, further comprising the service
provider receiving a message from a given component in the
application requesting creation of a capability, and the service
provider responding to the given component with a message
comprising an indication the given component has the
requested capability, and wherein the given component
becomes a second component in response to receiving the
indication the given component has the requested capability.

3. The method of claim 2, wherein prior to the service
provider responding to the given component with a message
comprising an indication the given component has the
requested capability, the service provider ensuring no other
component has the requested capability prior to granting the
capability to the given component and to responding to the
given component with the message comprising the indication
the given component has the requested capability.

4. The method of claim 3, wherein the service provider
keeps track of capabilities granted to second components in
order to perform the ensuring no other component has the
requested capability prior to granting the capability to the
given component.

5. The method of claim 1, wherein the sink performs veri
fying each received token at least using a public key, the
message, a capability of the second component that corre
sponds to the token, and a digital signature corresponding at
least to the message and the capability of the second compo
nent that corresponds to the token.

6. The method of claim 5, wherein the method further
comprises the sink receiving the public key from the service
provider.

7. The method of claim 5, wherein the method further
comprises the service provider using a private key corre
sponding to the public key as part of a key pair to create the
digital signature using at least the message and the capability
of the second component that corresponds to the token.

8. The method of claim 5, wherein the token comprises a
tuple <k, c, sign>, where k is a capability with which the
message is endorsed, c is an identification of the second
component endorsing the message, and sign is the digital
signature.

9. The method of claim 8, wherein verifying each received
token further comprises the sink using the public key to
determine a digital signature from a tuple <k, c, m, where m
is the message, comparing the determined digital signature
with the digital signature received in the token, and determin
ing the token passes verification in response to the determined
digital signature matching the digital signature received in the
token.

10. The method of claim 8, wherein the token comprises a
tuple <k, c, spID, sign>, where spID is a component identi
fication of the security provider which made the token and
granted the capability k to the second component having the
identification c.

11. The method of claim 10, wherein verifying each
received token further comprises the sink using the public key
to determine a digital signature from a tuple <k, c, spID. m.
where m is the message, comparing the determined digital
signature with the digital signature received in the token, and
determining the token passes verification in response to the
determined digital signature matching the digital signature
received in the token.

US 2014/0052997 A1

12. The method of claim 1, wherein the one or more second
components comprise a plurality of second components, and
wherein the routing the message comprising information
from the given first component to at least one of the one or
more second components and then to a selected one of the
sinks further comprises:

1) routing the message comprising the information from
the given first component to one of the plurality of sec
ond components;

2) receiving at the given first component a response mes
Sage comprising the information and a token from the
one second component;

3) routing the message comprising the information and any
previously received token from the given first compo
nent to another of the plurality of second components;

4) receiving at the given first component a response mes
Sage comprising the information, the any previously
received token and another token from the another sec
ond component; and

5) performing (3) and (4) until the message comprising the
information has been routed to all of the plurality of
second components.

13. The method of claim 12, wherein each of the plurality
of second components performs a capability endorsement
corresponding to an associated capability on at least the infor
mation and any received tokens.

14. The method of claim 13, wherein the performing of the
capability endorsement determines whether the information
and any received tokens is either endorsed or not endorsed
according to the associated capability.

15. The method of claim 1, wherein the one or more second
components comprise a plurality of second components, and
wherein the routing the message comprising information
from the given first component to at least one of the one or
more second components and then to a selected one of the
sinks further comprises:

1) routing the message comprising the information from
the given first component to one of the second compo
nents in a chain of the plurality of second components;

2) the one second component routing a message compris
ing the information and a token from the one second
component another second component in the chain; and

3) performing (1) and (2) until the message comprising the
information has been routed to all of the plurality of
second components in the chain.

16. The method of claim 15, wherein each of the plurality
of second components performs a capability endorsement
corresponding to an associated capability on at least the infor
mation and any received tokens.

Feb. 20, 2014

17. The method of claim 16, wherein the performing of the
capability endorsement determines the information and any
received tokens is either endorsed or not endorsed according
to the associated capability.

18. The method of claim 15, wherein a final one of the
second components in the chain routes the message and all
tokens from the second components in the chain to the
selected sink.

19. The method of claim 1, wherein the sink performs
Verifying of each received token and either accepting or
ignoring the message only in response to receiving a token
from each of the at least one second components, and wherein
the method further comprises ignoring the message in
response to not receiving a token from each of the at least one
second components.

20. The method of claim 1, wherein there are a plurality of
service providers, and wherein each second component has a
unique assigned capability granted by one of the plurality of
service providers.

21. A computer program product, comprising:
a non-transitory computer readable storage medium hav

ing computer readable program code embodied there
with, the computer readable code comprising:

code for providing an application comprising: a program
ming model comprising a service provider, one or more
first components, one or more second components, and
one or more sinks, where each of the one or more second
components is assigned a unique capability, and wherein
the first and second components and sinks communicate
using messages:

code for a given one of the first components routing a
message comprising information from the given first
component to at least one of the one or more second
components and then to a selected one of the sinks;

code for each of the at least one of the second components
sending the message to the service provider;

code for the service provider creating a token correspond
ing at least to a received message and a unique capability
assigned to an associated one of the second components
and sending the token to the associated one of the second
components; and

code for the selected sink receiving the message and a
token corresponding to each of the at least one second
components, Verifying each received token, and either
accepting the message in response to each of the
received tokens being verified and performing one or
more actions using the message or ignoring the message
in response to at least one of the received tokens not
being verified.

