US 20230084025A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0084025 A1

MARGALIT et al.

(43) Pub. Date:

Mar. 16, 2023

(54)

(71)
(72)

@
(22)

(63)

(1)

TRACKING CHANGES THAT AFFECT
PERFORMANCE OF DEPLOYED
APPLICATIONS

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Adar MARGALIT, Modiin (IL); Eran

DVIR, Tel Aviv (IL)
Appl. No.: 18/055,308

Filed: Nov. 14, 2022

Related U.S. Application Data

Continuation of application No. 16/155,154, filed on
Oct. 9, 2018, now Pat. No. 11,500,696, which is a
continuation of application No. 15/230,758, filed on
Aug. 8, 2016, now Pat. No. 10,095,560, which is a
continuation of application No. 14/612,986, filed on
Feb. 3, 2015, now Pat. No. 9,411,847, which is a
continuation of application No. 13/491,305, filed on
Jun. 7, 2012, now Pat. No. 8,954,387.

Publication Classification

(52)

&7

GO6F 11/34 (2006.01)

GO6F 11/30 (2006.01)

U.S. CL

CPC ... GO6F 9/542 (2013.01); GO6F 16/2358

(2019.01); GOG6F 16/2365 (2019.01); GO6F
11/3476 (2013.01); GO6F 11/3051 (2013.01);
GO6F 11/302 (2013.01); GOGF 11/3409
(2013.01); GOGF 11/3003 (2013.01); GO6F
2201/835 (2013.01); GOGF 2201/86 (2013.01);
GO6F 2201/865 (2013.01)

ABSTRACT

An application monitoring infrastructure that enables appli-
cation configuration changes on multiple machines across
multiple OS types to be tracked by identifying data contain-
ers that are to be monitored for changes, detecting a change
to a monitored data container, and storing data representa-
tive of a changed version of the monitored data container
responsive to detecting that the monitored container was

Int. CL changed. The data containers that are to be monitored for
GO6F 9/54 (2006.01) changes are identified from templates, and a unique template
GOG6F 16/23 (2006.01) is provisioned for each of the applications.
Applications 110 L
Parformancs Change Monitoring Agent
Monitoring &Q
Agent
.;5“(};
Change Change
Tracker ¥ Reposilory
g1 ga
3
Application Monitoring
Maonitor » Event Processor 62 Templates
-51 & 3 E-3 Z—Q
F& 0B Registry
Monitor | | Monitor | | Monitor
g3 &4 8%

Monitored Machine 100

Patent Application Publication = Mar. 16,2023 Sheet 1 of 6 US 2023/0084025 A1

Health
Manitoring
Server
18
. Health
Display Monitor
13 11
7Y
i
i
Monitored
Central Machine
Monitoring Server 180
20 .
AP 9 Applications
23 118
z Performance
Central Monitoring
Monitor g Agent
21 50
Change
Monitoring
Agent
‘;6;(-);' —

FIGURE 1

Patent Application Publication = Mar. 16, 2023 Sheet 2 of 6 US 2023/0084025 A1

Applications 110 L
Parformance Change Monitoring Agent
Monitoring 60
Agent
a0
o Change Change
Tracker # Reposilory
XA 80
f Y
Application Monitoring
Maonitor 3 Event Processor 82 € Templates
81 & A X 8
FS 08 Registry
Monitor Monitor { | Monitor
g3 84 8%
Monitored Machine 100

FIGURE 2

Patent Application Publication

Mar. 16, 2023 Sheet 3 of 6

US 2023/0084025 A1l

FS monitor detects one or more
change evenis on same file/dir
during a time period < Tmin

~ 310

J

~"Should filefdir™
~~be monitored? .~

Yes ,

Determine App 1D of
application for which the
file/dir is being monitored

314
"\l

316.

" Transform <
N event(s)?

No

Yes

Transform into a normalized
event regardiess of OS type

322
\

318

Issue change eventio
B change tracker, including
App 1D and file path

Determine 08 type

o~ Transform ™
. event(sy?

‘{e

Transform into 8 nomalized
event based on 08 type

:

Issue change avent io

'y » change tracker, including (e
App D and file path{s)
332
More ™
< change evenisto >
Yes ™ °

FIGURE 3

e, TOCESST e

Patent Application Publication = Mar. 16, 2023 Sheet 4 of 6 US 2023/0084025 A1

410
\

et ACCESS file 0 De processead

413

\~Archive ~~____| Extract a file to
. fle? o~

412~

process

o
414

“Did file ™
mwxghange?Axﬁ

£

Yes 416
Generate change 1D f
and time stamp

420

J

H
Generate hash of
binary file

" Yes
f 422
Ferform diff
operation

é f 424
Siore change
irt change repository

oo

428

__More files ™
T SJo exdtract?

Yes

No

~ More files ™
S0 processTs

Yes

FIGURE 4

Patent Application Publication

Mar. 16, 2023 Sheet S of 6

Display list of applications

being monitored

!

ane of the applications

Regceive a selection of

¥

k4

Display performance
rmonitoring GUH

!

US 2023/0084025 A1l

Receive a selection indicating a point
in time near which application
performance is 1o be evaluated

X

Cluery central monitoring server
for change events near the

indicated point in time

!

Display change events

AN yndo selection? .~ ‘

" Receive an

[ves

instruct monitored machine that is
hosting the application with the change
{0 be undone o undo the change

f 524

FIGURE 5

Patent Application Publication = Mar. 16, 2023 Sheet 6 of 6 US 2023/0084025 A1

Travel

13:36:00 13:40:00 13:41:00 13:42:00 13:43:00

FIGURE 8A
} 3
Qbiect Description Time lype
Travel delete: /optivmwarefics... 13:41:45 configuration
Travel modify: foptivmwareftes... 13:41:15 configuration
Travel added 5 secfads slesp... 13:40:06 code changs

820

FIGURE 6B

US 2023/0084025 Al

TRACKING CHANGES THAT AFFECT
PERFORMANCE OF DEPLOYED
APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/155,154 filed Oct. 9, 2018, which is
a continuation of U.S. patent application Ser. No. 15/230,
758 filed Aug. 8, 2016, now U.S. Pat. No. 10,095,560, which
is a continuation of U.S. patent application Ser. No. 14/612,
986 filed Feb. 3, 2015, now U.S. Pat. No. 9,411,847, which
is a continuation of U.S. patent application Ser. No. 13/491,
305 filed Jun. 7, 2012, now U.S. Pat. No. 8,954,387, all
entitled “Tracking Changes That Affect Performance of
Deployed Applications,” each of which is incorporated by
reference.

BACKGROUND

[0002] With the transition to virtualized infrastructure in
recent years, outages due to configuration changes to appli-
cations have been on the rise. Some of the more common
configuration changes include code push, and changes to the
clustering configuration, number of threads allocated to
applications, and datastore configuration. Although many of
these changes are tested prior to rolling them out in the
production environment, outages and significant perfor-
mance degradations are not discovered, indeed cannot be
discovered, if they result from scale issues, e.g., when the
changes are rolled out in a cloud environment having virtual
machines that number in the millions.

SUMMARY

[0003] One or more embodiments disclosed herein pro-
vide an application monitoring infrastructure that enables
application configuration changes on multiple machines
across multiple OS types to be tracked, and correlated to
performance degradation and outages.

[0004] A method for tracking configuration changes of
applications, according to an embodiment, includes the steps
of identifying data containers that are to be monitored for
changes, detecting a change to a monitored data container,
and storing data representative of a changed version of the
monitored data container responsive to detecting that the
monitored container was changed, wherein the data contain-
ers that are to be monitored for changes are identified from
templates, and a unique template is provisioned for each of
the applications.

[0005] A method for tracking configuration changes of
applications, according to another embodiment, includes the
steps of identifying data containers that are to be monitored
for changes, receiving notifications of file events, transform-
ing multiple file events into a normalized file event, detect-
ing a change to a monitored data container based on the
normalized file event, and storing data representative of a
changed version of the monitored data container responsive
to detecting that the monitored container was changed.
[0006] Further embodiments of the present invention
include, without limitation, a non-transitory computer-read-
able storage medium that includes instructions that enable a
computer system to implement one or more aspects of the
above methods as well as a computer system configured to
implement one or more aspects of the above methods.

Mar. 16, 2023

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a simplified diagram of a computing
environment in which one or more embodiments may be
practiced.

[0008] FIG. 2 is a conceptual diagram that illustrates
various software components of a monitored machine that
enable tracking of changes made to applications running in
the monitored machine.

[0009] FIG. 3 is a flow diagram of a method for generating
change events when a change to a folder or a file is detected.
[0010] FIG. 4 is a flow diagram of a method for versioning
changes made to files of monitored applications.

[0011] FIG. 5 is a flow diagram of a method for generat-
ing, and processing inputs made to, an application perfor-
mance monitoring user interface.

[0012] FIG. 6A illustrates a sample application perfor-
mance monitoring user interface.

[0013] FIG. 6B illustrates a sample application change
tracking user interface.

DETAILED DESCRIPTION

[0014] FIG. 1 is a simplified diagram of a computing
environment in which one or more embodiments may be
practiced. In one embodiment, the computing environment
is a cloud computing environment that includes a plurality of
physical computing devices (“physical machines”) net-
worked together and managed by an entity such as a cloud
controller. The diagram of FIG. 1 illustrates components of
the computing environment that monitor the performance of
various applications and physical machines deployed
therein. The monitoring components include a health moni-
toring server 10 and a central monitoring server 20, one or
both of which may be implemented in a physical machine,
in a virtual machine, or as software as a service. Central
monitoring server 20 collects performance and change data
from a plurality of monitored machines 100, and health
monitoring server 10 accesses such data and displays them
to a system administrator, e.g., through a graphical user
interface (GUI). An example of health monitoring server 10
is VMware vFabric Appinsight, which is commercially
available from VMware, Inc. of Palo Alto, Calif. An
example of central monitoring server 20 is VMware vFabric
Hyperic, which is also commercially available from
VMware, Inc. It should be recognized that, in alternative
embodiments, the functions of health monitoring server 10
and central monitoring server 20 described herein may be
carried out by a single server.

[0015] Each of health monitoring server 10, central moni-
toring server 20, and monitored machines 100 includes
hardware components of a conventional computing device,
such as processor and system memory, and system level
software. Health monitoring server 10 further includes soft-
ware components running on top of its system level soft-
ware, one of which is shown in FIG. 1 as health monitor 11.
Health monitor 11 communicates with central monitoring
server 20 over a network to retrieve application performance
data and change data from central monitoring server 20
through an application programming interface (API) 23.
Health monitor 11 also processes the retrieved performance
data and change data to generate various GUIs that are
presented to the system administrator through a display 13.
[0016] Central monitoring server 20 further includes soft-
ware components running on top of its system software,

US 2023/0084025 Al

which are shown in FIG. 1 as central monitor 21 and AP 23.
Central monitor 21 communicates with monitored machines
100 to collect application performance and change data from
them, and store them in an event store 30. Central monitor
21 makes such collected data available to health monitor 11
through API 23.

[0017] Each of monitored machines 100 includes one or
more applications 110 running on top of its system software.
It also includes a performance monitoring agent 50 that
monitors the performance and/or behavior of applications
110, such as central processing unit (CPU) usage, physical
memory usage, and latency, and a change monitoring agent
60 that monitors changes to various files and folders desig-
nated by the system administrator as being monitoring
targets. Some examples of applications that can be tracked
include web server applications such as Tomcat, JBoss,
Websphere, Weblogic, and IIS, and database applications
such as MySQL, PostgreSQL, Oracle, and MSSQL. Moni-
tored machines 100 may be physical or virtual machines.
Physical machines include any computing device, such as
server-grade computing platforms, desktop and laptop com-
puting devices, and mobile computing devices, such as
tablet computers and smart phones.

[0018] FIG. 2 is a conceptual diagram that illustrates
various software components of a monitored machine that
enable tracking of changes made to applications 110 running
in the monitored machine. The presence of applications 110
running in monitored machine 100 is discovered through
application monitor 51, which keeps track of installed appli-
cations. Applications 110 running in monitored machine 100
may be designated for performance monitoring and change
tracking according to embodiments described herein, and
each application that is designated for such monitoring and
change tracking has a monitoring template 70 associated
therewith. Monitoring templates 70 are stored and main-
tained in a persistent storage device of monitored machine
100, and for efficient access, may be cached in system
memory of monitored machine 100. A sample monitoring
template is illustrated in TABLE 1.

TABLE 1

Mar. 16, 2023

files that are to be monitored recursively have a recursive
flag set to be true. Within a monitored folder, a regular
expression filter is used to determine which files are moni-
tored. In addition, monitoring template 70 may designate
folders and files to be monitored using environmental or
system variables so that files that affect the performance of
the application and whose location on the file system is
determined by environment/system variables may be moni-
tored and tracked according to embodiments described
herein. Using monitoring template 70, the folders and files
for any application being monitored may be custom defined.
By using monitoring template 70, the number of folders and
files to be monitored can be reduced to a manageable
(practical) number.

[0020] Change monitoring agent 60 monitors changes to
various files and folders of particular applications 110 being
monitored as specified in monitoring templates 70. As
shown, change monitoring agent 60 includes two modules.
The first is an event processor 62 that receives notifications
from the system software of monitored machine 100 that a
certain folder or file has been changed. The particular
components of system software that are providing the noti-
fications are a file system (FS) monitor 63, a database (DB)
monitor 64, and for Microsoft Windows® systems, a regis-
try monitor 65. In one embodiment, a Java® library known
as “ypathwatch” is used to monitor file system changes such
as file creation and deletion, file modification, file renaming,
and changes in subfolders. As will be further described
below in conjunction with FIG. 3, event processor 62
evaluates the changes detected by FS monitor 63, DB
monitor 64, and registry monitor 65 and produces change
events for further processing by change tracker 61, which is
the second module within change monitoring agent 60
shown in FIG. 2. Change tracker 61 receives change events
from event processor 62 and processes the versioning of the
changes to files using a versioning tool to store any changes
to the files in change repository 80, which may be provi-
sioned in system memory or local storage. In one embodi-
ment, the versioning tool known as Git is used.

<plugin package="“org.hyperic.hq.plugin.tomecat” name="tomcat” version="@project.version@”>

<metrics name="Some__metrics”>
</metrics>

<server name="Apache Tomcat” version="5.5" platforms="Unix,Win32">

<property name=“"VERSION_ FILE” value="“server/lib/catalina-storeconfig.jar’/>
<plugin type=“config_ track” class="org.hyperic.hq.product.FileChangeTrackPlugin”>

<monitored>

<folder path="conf” recursive="true” filter="* .properties|.*.xmll.* .policy”/>

<folder path="bin” recursive="false” filter="*.bat|.*.xml|.*.sh”/>
<folder path="lib” recursive="false” filter="* jar"/>
<folder path="webapps” recursive="true”

filter="*\jar[.*\.dlll.*\.class|.*\jspl.*\.php [.¥\.pl|.*\ js|.*\.py |. *\.pyc|. ¥\.cgi”/>

<folder path="data” recursive="false” filter=".*\.conf/>
<!-- system variable PGDATA -->
<folder path="%PGDATA%” recursive="false” filter=".*\.conf’/>
</monitored>
</plugin>
</server>
</plugin>

[0019] Monitoring template 70 for an application identi-
fies the application being monitored, and paths of folders
and files to be monitored, some recursively, for that appli-
cation. In the example given in TABLE 1, the application
being monitored is “Apache Tomcat” and the folders and

[0021] FIG. 3 is a flow diagram of a method for generating
change events when a change to a folder or file is detected.
In the embodiment described herein, this method is carried
out by change monitoring agent 60, in particular, event
processor 62.

US 2023/0084025 Al

[0022] The method begins at step 310 when FS monitor 63
detects one or more change events on the same file or folder
during a configurable time period, Tmin. In some situations,
multiple change events relating to effectively the same
change are triggered, and this time period is set so that such
change events can be captured and analyzed collectively. In
one embodiment, this time period is set as 2 milliseconds. At
step 312, event processor 62 determines whether or not the
file or folder should be monitored, based on the installed
applications that it discovered through application monitor
51 and the monitoring templates 70. For each monitored
folder, event processor 62 registers with the underlying
system software for change event notifications. If the file or
folder for which the change event is detected at step 310 is
not specified in a monitoring template’s filter of an installed
application, the method ends. On the other hand, if the file
or folder for which the change event is detected at step 310
is specified in a monitoring template of an installed appli-
cation, step 314 is executed where event processor 62
determines the application ID (App ID) of the installed
application for which the file or folder is being monitored.
Then, at step 316, event processor 62 determines whether a
single file event is being processed. If a single event is being
processed, step 318 is executed, where event processor 62
issues a change event, including the App ID and the path to
the changed file to change tracker 61. If, on the other hand,
a folder event or multiple file events are being processed,
step 320 is executed.

[0023] At step 320, event processor 62 determines
whether it can transform a folder event or multiple file
events into a single, normalized event, without relying on
any OS-specific knowledge. For example, if two or more
modify events are triggered for the same file within the time
period, Tmin, event processor 62 may interpret all such
modify events as a single modify event. In such situations,
event processor 62, at step 322, transforms the multiple
events into a single, normalized event. Thereafter, step 330
is executed, where event processor 62 issues a change event,
including the App ID and the path(s) to any changed files to
change tracker 61. The method ends after step 330 as there
are no more change events to process.

[0024] If, at step 320, event processor 62 determines that
it cannot transform a folder event or multiple events into a
single, normalized event, without relying on any OS-specific
knowledge, steps 324 and 326 are executed. At step 324,
event processor 62 determines the OS-type and, at step 326,
event processor 62 determines whether it can transform the
folder event or multiple events into a single, normalized
event, with reliance on OS-specific knowledge. For
example, in Windows® OS, a file creation triggers five
separate events—create, delete, recreate, modify, and
modify. Event processor 62, at step 328, transforms all such
events into a single, normalized file creation event and, at
step 330, issues a change event, including the App ID and
the path to the newly created file, to change tracker 61.
Another example is a folder copy event in Windows® OS,
which triggers a folder create event and multiple file events
for each file in the folder. Event processor 62, at step 328,
transforms the folder copy event and the subsequent file
events into a single, normalized folder event and, at step
330, issues a change event, including the App ID and the
paths to the files in the folder, to change tracker 61. With
Linux® OS, where a folder copy event triggers only a single
folder event, event processor 62, at step 328, transforms the

Mar. 16, 2023

folder copy event into a single, normalized folder event and,
at step 330, issues a change event, including the App ID and
the paths to the files in the folder, to change tracker 61. In
all three examples given above, the method ends after step
330 as there are no more change events to process.

[0025] In some situations where normalization may not be
desired or cannot be implemented, each change event is
processed as a separate change event at step 330. The
method ends when it is determined at step 332 that all
change events have been processed.

[0026] FIG. 4 is a flow diagram of a method for versioning
changes made to files of monitored applications. In the
embodiment illustrated herein, change tracker 61 is perform-
ing the steps of this method and change tracker 61 is
employing a versioning tool known as Git for steps 414
through 424 of this method.

[0027] When change tracker 61 pulls a change event with
a file path and a change type (create, delete or modify) from
a queue of change events maintained by event processor 62,
change tracker 61 accesses the files at the indicated file path.
This method begins at step 410 with the accessing of one
such file. In some situations, the accessed file may be an
archive file such as a JAR file or a WAR file, and change
tracker 61 checks for this at step 412. If the accessed file is
an archive file, change tracker extracts a file to process from
the archive file at step 413, and step 414 is executed
thereafter. If not, the method proceeds directly to step 414
and the accessed file is processed.

[0028] At step 414, the processed file is checked for
changes. If there are no changes, the file is not versioned and
the method jumps to step 426. If there are changes, a change
ID and a time stamp for the changes is generated at step 416.
If the changed file is binary file, as determined at step 418,
a hash of the binary file is generated (step 420) and stored
in change repository 80 along with the change ID and the
time stamp (step 424). I, on the other hand, the changed file
is a text file, a diff operation is performed on the text file
against the prior version of the text file to generate a diff file
(step 422) and the diff file is stored in change repository 80
along with the change ID and the time stamp (step 424).

[0029] If the file being processed is an archive file, as
determined at step 426, step 428 is executed to see if there
is any more file to be extracted from the archive file. If there
is any more file to be extracted from the archive file, the
method returns to step 413 where another file is extracted. If
there are no more files to be extracted from the archive file
or the file being processed is not an archive file, change
tracker 61 executes step 430 to see if there are any more files
to process. The method ends if there are no more files to
process, and returns to step 410 if there is at least one more
file to process.

[0030] As previously described, central monitor 21 of
central monitoring server 20 communicates with monitored
machines 100 to collect performance and change data from
them, and store them in event store 30. The frequency of the
collection is configurable. The performance data that are
collected include App 1D and time history of the CPU usage,
memory usage, and latency. The change data that are col-
lected and stored in event store 30 include the change ID,
App ID, time stamp, path of changed file, and the diff file.

[0031] Health monitor 11 of health monitoring server 10
accesses the performance data and the change data through
API 23 to carry out a method for generating, and processing

US 2023/0084025 Al

inputs made to, an application performance monitoring UL
The steps of this method are illustrated in FIG. 5.

[0032] At step 510, health monitor 11 displays a list of
applications being monitored on a Ul. A system administra-
tor viewing the Ul may select an application of interest, e.g.,
travel web server. Upon receiving this selection at step 512,
health monitor displays a performance monitoring UI for the
selected application at step 514. A sample performance
monitoring UI is illustrated in FIG. 6A, and shows a time
history of CPU usage 601 and latency 602. A user-selectable
warning symbol 610 is displayed at a particular point in time
of the illustrated time histories as an indicator of when
performance degradation of the selected application has
occurred. When the system administrator makes an input
selection (e.g., a mouse click or a tap on a touch screen) on
warning symbol 610 and health monitor 11 receives this
selection at step 516, health monitor 11 queries central
monitoring server 20 for change events that are close in time
to the performance degradation. In response to the query,
central monitoring server 20 searches change data of the
selected application maintained in event store 30 and returns
the requested data to health monitor 11. At step 520, health
monitor 11 displays the change events on another UL one
example of which is illustrated in FIG. 6B. Upon viewing
the change events, the system administrator may implement
fixes or roll back the changes that caused the performance
degradation by making an input selection on top of one of
the change events (step 522). In the sample illustration of
FIG. 6B, the code change implemented at 13:40:06 can be
rolled back by manipulating cursor 620 to that location and
making an input selection on that highlighted line. In
response to the input selection, health monitor 11 issues an
undo command identifying the change event by its change
1D through API 23 (step 524). Central monitoring server 20
passes this undo command to the appropriate monitored
machine and, in turn, the monitored machine executes the
undo command using its versioning tool.

[0033] Ifthe monitored machine is a virtual machine, as an
alternative to the pinpoint rolling back, the entire virtual
machine may be rolled back to the most recent snapshot that
was taken prior to the point in time performance degradation
was observed.

[0034] The various embodiments described herein may
employ various computer-implemented operations involv-
ing data stored in computer systems. For example, these
operations may require physical manipulation of physical
quantities—usually, though not necessarily, these quantities
may take the form of electrical or magnetic signals, where
they or representations of them are capable of being stored,
transferred, combined, compared, or otherwise manipulated.
Further, such manipulations are often referred to in terms,
such as producing, identifying, determining, or comparing.
Any operations described herein that form part of one or
more embodiments of the invention may be useful machine
operations. In addition, one or more embodiments of the
invention also relate to a device or an apparatus for per-
forming these operations. The apparatus may be specially
constructed for specific required purposes, or it may be a
general purpose computer selectively activated or config-
ured by a computer program stored in the computer. In
particular, various general purpose machines may be used
with computer programs written in accordance with the

Mar. 16, 2023

teachings herein, or it may be more convenient to construct
a more specialized apparatus to perform the required opera-
tions.

[0035] The various embodiments described herein may be
practiced with other computer system configurations includ-
ing hand-held devices, microprocessor systems, micropro-
cessor-based or programmable consumer electronics, mini-
computers, mainframe computers, and the like.

[0036] One or more embodiments of the present invention
may be implemented as one or more computer programs or
as one or more computer program modules embodied in one
or more computer readable media. The term computer
readable medium refers to any data storage device that can
store data which can thereafter be input to a computer
system—computer readable media may be based on any
existing or subsequently developed technology for embody-
ing computer programs in a manner that enables them to be
read by a computer. Examples of a computer readable
medium include a hard drive, network attached storage
(NAS), read-only memory, random-access memory (e.g., a
flash memory device), a CD (Compact Discs)-CD-ROM, a
CD-R, or a CD-RW, a DVD (Digital Versatile Disc), a
magnetic tape, and other optical and non-optical data storage
devices. The computer readable medium can also be dis-
tributed over a network coupled computer system so that the
computer readable code is stored and executed in a distrib-
uted fashion.

[0037] Although one or more embodiments of the present
invention have been described in some detail for clarity of
understanding, it will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as illustrative and not restrictive, and the scope of the
claims is not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
In the claims, elements and/or steps do not imply any
particular order of operation, unless explicitly stated in the
claims.

[0038] Virtualization systems in accordance with the vari-
ous embodiments may be implemented as hosted embodi-
ments, non-hosted embodiments or as embodiments that
tend to blur distinctions between the two, are all envisioned.
Furthermore, various virtualization operations may be
wholly or partially implemented in hardware. For example,
a hardware implementation may employ a look-up table for
modification of storage access requests to secure non-disk
data.

[0039] Many variations, modifications, additions, and
improvements are possible, regardless the degree of virtu-
alization. The virtualization software can therefore include
components of a host, console, or guest operating system
that performs virtualization functions. Plural instances may
be provided for components, operations or structures
described herein as a single instance. Finally, boundaries
between various components, operations and data stores are
somewhat arbitrary, and particular operations are illustrated
in the context of specific illustrative configurations. Other
allocations of functionality are envisioned and may fall
within the scope of the invention(s). In general, structures
and functionality presented as separate components in exem-
plary configurations may be implemented as a combined
structure or component. Similarly, structures and function-
ality presented as a single component may be implemented
as separate components. These and other variations, modi-

US 2023/0084025 Al

fications, additions, and improvements may fall within the
scope of the appended claim(s).

What is claimed is:

1. A method comprising:

accessing a file;

detecting a plurality of change events to the file;

creating a change ID and a time stamp for the detected

plurality of change events;

determining whether the file is a binary file or a text file;

and

storing a result of the determining in a change repository.

2. The method of claim 1, wherein when the file is a
binary file, the method further comprises performing a hash
of the binary file and storing the hash in the change reposi-
tory.

3. The method of claim 1, wherein when the file is a text
file, performing a diff operation on the text file against a
prior version of the text file to generate a diff file, and storing
the generated diff file in the repository.

4. The method of claim 1, further comprising extracting
the file from an archive file.

5. The method of claim 1, wherein accessing the file is a
result of pulling a change event with a file path and a change
type from a queue of change events.

6. The method of claim 1, wherein the file is a JAR file.

7. The method of claim 1, wherein each of the plurality of
change events are relating to effectively the same change.

8. A system comprising;

a memory;

a change tracker comprising one or more processors

programmed to:

access a file;

detect a plurality of change events to the file;

create a change ID and a time stamp for the detected
plurality of change events;

determine whether the file is a binary file or a text file;
and

store a result of the determining in a change repository.

9. The system of claim 8, wherein the plurality of change
events occur during a defined period of time.

10. The system of claim 8, wherein when the file is a text
file, performing a diff operation on the text file against a

Mar. 16, 2023

prior version of the text file to generate a diff file, and storing
the generated diff file in the repository.

11. The system of claim 8, wherein the one or more
processors are further programmed to cache the template in
a system memory of the monitored machine.

12. The system of claim 8, wherein the processor is
further programmed to extract the file from an archive file.

13. The system of claim 8, wherein the file is a JAR file
events.

14. The system of claim 8, wherein each of the plurality
of change events are relating to effectively the same change.

15. One or more non-transitory computer-readable media
comprising computer-executable instructions that when
executed by a processor, cause the processor to perform
operations comprising:

accessing a file;

detecting a plurality of change events to the file;

creating a change ID and a time stamp for the detected

plurality of change events;

determining whether the file is a binary file or a text file;

and

storing a result of the determining in a change repository.

16. The one or more non-transitory computer-readable
media of claim 15, wherein when the file is a binary file, the
method further comprises performing a hash of the binary
file and storing the hash in the change repository.

17. The one or more non-transitory computer-readable
media of claim 15, wherein the defined period of time is two
milliseconds.

18. The one or more non-transitory computer-readable
media of claim 15, wherein when the file is a text file,
performing a diff operation on the text file against a prior
version of the text file to generate a diff file, and storing the
generated diff file in the repository.

19. The one or more non-transitory computer-readable
media of claim 15, wherein accessing the file is a result of
pulling a change event with a file path and a change type
from a queue of change events.

20. The one or more non-transitory computer-readable
media of claim 15, wherein each of the plurality of change
events are relating to effectively the same change.

#* #* #* #* #*

