The process comprises: exposing the aqueous fluoropolymer dispersion to oxidizing agent.

(10) International Publication Number
WO 2013/169580 A1

(54) Title: FLUOROPOLYMER DISPERSION TREATMENT EMPLOYING OXIDIZING AGENT TO REDUCE FLUOROPOLYMER RESIN DISCOLORATION

(57) Abstract: A process for reducing thermally induced discoloration of fluoropolymer resin produced by polymerizing fluoronomer in an aqueous dispersion medium to form aqueous fluoropolymer dispersion and isolating said fluoropolymer from the aqueous medium to obtain the fluoropolymer resin. The process comprises: exposing the aqueous fluoropolymer dispersion to oxidizing agent.
TITLE OF THE INVENTION
Fluoropolymer Dispersion Treatment Employing Oxidizing Agent to Reduce Fluoropolymer Resin Discoloration

FIELD OF THE INVENTION
This invention relates to a process for reducing thermally induced discoloration of fluoropolymer resin.

BACKGROUND OF THE INVENTION
A typical process for the aqueous dispersion polymerization of fluorinated monomer to produce fluoropolymer includes feeding fluorinated monomer to a heated reactor containing an aqueous medium and adding a free-radical initiator to commence polymerization. A fluorosurfactant is typically employed to stabilize the fluoropolymer particles formed. After several hours, the feeds are stopped, the reactor is vented and purged with nitrogen, and the raw dispersion in the vessel is transferred to a cooling vessel.

The fluoropolymer formed can be isolated from the dispersion to obtain fluoropolymer resin. For example, polytetrafluoroethylene (PTFE) resin referred to as PTFE fine powder is produced by isolating PTFE resin from PTFE dispersion by coagulating the dispersion to separate PTFE from the aqueous medium and then drying. Dispersions of melt-processable fluoropolymers such as copolymers of tetrafluoroethylene and hexafluoropropylene (FEP) and tetrafluoroethylene and perfluoro (alkyl vinyl ethers) (PFA) useful as molding resins can be similarly coagulated and the coagulated polymer is dried and then used directly in melt-processing operations or melt-processed into a convenient form such as chip or pellet for use in subsequent melt-processing operations.

Because of environmental concerns relating to fluorosurfactants, there is interest in using hydrocarbon surfactants in the aqueous polymerization medium in place of a portion of or all of the fluorosurfactant. However, when fluoropolymer dispersion is formed which contains hydrocarbon surfactant and is subsequently isolated to obtain fluoropolymer resin, the fluoropolymer resin is prone to thermally induced
By thermally induced discoloration is meant that undesirable color forms or increases in the fluoropolymer resin upon heating. It is usually desirable for fluoropolymer resin to be clear or white in color and, in resin prone to thermally induced discoloration, a gray or brown color, sometimes quite dark forms upon heating. For example, if PTFE fine power produced from dispersion containing the hydrocarbon surfactant sodium dodecyl sulfate (SDS) is converted into paste-extruded shapes or films and subsequently sintered, an undesirable gray or brown color will typically arise. Color formation upon sintering in PTFE produced from dispersion containing the hydrocarbon surfactant SDS has been described in Example VI of U.S. Patent 3,391,099 to Punderson. Similarly, when melt processible fluoropolymers such as FEP or PFA are produced from dispersions containing hydrocarbon surfactant such as SDS, undesirable color typically occurs when the fluoropolymer is first melt-processed, for example, when melt processed into a convenient form for subsequent use such as chip or pellet.

SUMMARY OF THE INVENTION

The invention provides a process for reducing thermally induced discoloration of fluoropolymer resin produced by polymerizing fluoromonomer in an aqueous dispersion medium to form aqueous fluoropolymer dispersion and isolating said fluoropolymer from the aqueous medium to obtain the fluoropolymer resin. It has been discovered that thermally induced discoloration of fluoropolymer resin can be reduced by:

- exposing the aqueous fluoropolymer dispersion to oxidizing agent.

Preferably, the process reduces the thermally induced discoloration by at least about 10% as measured by % change in L* on the CIELAB color scale.

The process of the invention is useful for fluoropolymer resin which exhibits thermally induced discoloration which ranges from mild to severe. The process of the invention may be employed for fluoropolymer resin which exhibits thermally induced discoloration prior to treatment which is significantly greater than equivalent fluoropolymer resin of commercial
quality manufactured using ammonium perfluorooctanoate fluorosurfactant. The process of the invention is advantageously employed when the fluoropolymer resin has an initial thermally induced discoloration value (\(L^*\)) at least about 4 L units on the CIELAB color scale below the \(L^*\) value of equivalent fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant.

The invention is particularly useful for fluoropolymer resin obtained from aqueous fluoropolymer dispersion made by polymerizing fluoromonomer containing hydrocarbon surfactant which causes thermally induced discoloration, preferably aqueous fluoropolymer dispersion polymerized in the presence of hydrocarbon surfactant.

DETAILED DESCRIPTION OF THE INVENTION

Fluoromonomer/Fluoropolymer

Fluoropolymer resins are produced by polymerizing fluoromonomer in an aqueous medium to form aqueous fluoropolymer dispersion. The fluoropolymer is made from at least one fluorinated monomer (fluoromonomer), i.e., wherein at least one of the monomers contains fluorine, preferably an olefinic monomer with at least one fluorine or a fluoroalkyl group attached to a doubly-bonded carbon. The fluorinated monomer and the fluoropolymer obtained therefrom each preferably contain at least 35 wt% F, preferably at least 50 wt% F and the fluorinated monomer is preferably independently selected from the group consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), trifluoroethylene, hexafluoroisobutylene, perfluoroalkyl ethylene, fluorovinyl ethers, vinyl fluoride (VF), vinylidene fluoride (VF2), perfluoro-2,2-dimethyl-1,3-dioxole (PDD), perfluoro-2-methylene-4-methyl-1,3-dioxolane (PMD), perfluoro(allyl vinyl ether) and perfluoro(butenyl vinyl ether) and mixtures thereof. A preferred perfluoroalkyl ethylene monomer is perfluorobutyl ethylene (PFBE). Preferred fluorovinyl ethers include perfluoro(alkyl vinyl ether) monomers (PAVE) such as perfluoro(propyl vinyl ether) (PPVE), perfluoro(ethyl vinyl ether) (PEVE), and perfluoro(methyl vinyl ether) (PMVE). Non-fluorinated
olefinic comonomers such as ethylene and propylene can be copolymerized with fluorinated monomers.

Fluorovinyl ethers also include those useful for introducing functionality into fluoropolymers. These include CF2=CF-(O-CF2CFRf)α-

O-CF2CFR'1SO2F, wherein R1 and R'2 are independently selected from F, Cl or a perfluorinated alkyl group having 1 to 10 carbon atoms, α = 0, 1 or 2. Polymers of this type are disclosed in U.S. Patent No. 3,282,875 (CF2=CF-O-CF2CF(CF3)-O-CF2CF2SO2F, perfluoro(3,6-dioxo-4-methyl-7-octenesulfonyl fluoride)), and in U.S. Patent Nos. 4,358,545 and 4,940,525 (CF2=CF-O-CF2CF2SO2F). Another example is CF2=CF-O-CF2CF(CF3)-O-CF2CO2CH3, methyl ester of perfluoro(4,7-dioxo-5-methyl-8-nonenecarboxylic acid), disclosed in U.S. Patent No. 4,552,631. Similar fluorovinyl ethers with functionality of nitrile, cyanate, carbamate, and phosphonic acid are disclosed in U.S. Patent Nos. 5,637,748; 6,300,445; and 6,177,196.

A preferred class of fluoropolymers useful for reducing thermally induced discoloration is perfluoropolymers in which the monovalent substituents on the carbon atoms forming the chain or backbone of the polymer are all fluorine atoms, with the possible exception of comonomer, end groups, or pendant group structure. Preferably the comonomer, end group, or pendant group structure will impart no more than 2 wt% C-H moiety, more preferably no greater than 1 wt% C-H moiety, with respect to the total weight of the perfluoropolymer. Preferably, the hydrogen content, if any, of the perfluoropolymer is no greater than 0.2 wt%, based on the total weight of the perfluoropolymer.

The invention is useful for reducing thermally induced discoloration of fluoropolymers of polytetrafluoroethylene (PTFE) including modified PTFE. Polytetrafluoroethylene (PTFE) refers to (a) the polymerized tetrafluoroethylene by itself without any significant comonomer present, i.e. homopolymer and (b) modified PTFE, which is a copolymer of TFE having such small concentrations of comonomer that the melting point of the resultant polymer is not substantially reduced below that of PTFE. The modified PTFE contains a small amount of comonomer modifier which reduces crystallinity to improve film forming capability during baking.
Examples of such monomers include perfluoroolefin, notably hexafluoropropylene (HFP) or perfluoro(alkyl vinyl ether) (PAVE), where the alkyl group contains 1 to 5 carbon atoms, with perfluoro(ethyl vinyl ether) (PEVE) and perfluoro(propyl vinyl ether) (PPVE) being preferred, chlorotrifluoroethylene (CTFE), perfluorobutyl ethylene (PFBE), or other monomer that introduces bulky side groups into the polymer molecule. The concentration of such comonomer is preferably less than 1 wt%, more preferably less than 0.5 wt%, based on the total weight of the TFE and comonomer present in the PTFE. A minimum amount of at least about 0.05 wt% is preferably used to have significant effect. PTFE (and modified PTFE) typically have a melt creep viscosity of at least about 1×10^6 Pa•s and preferably at least 1×10^8 Pa•s and, with such high melt viscosity, the polymer does not flow in the molten state and therefore is not a melt-processible polymer. The measurement of melt creep viscosity is disclosed in col. 4 of U.S. Patent 7,763,680. The high melt viscosity of PTFE arises from is extremely high molecular weight (Mn), e.g. at least 10^6. PTFE can also be characterized by its high melting temperature, of at least 330°C, upon first heating. The non-melt flowability of the PTFE, arising from its extremely high melt viscosity, results in a no melt flow condition when melt flow rate (MFR) is measured in accordance with ASTM D 1238 at 372°C and using a 5 kg weight, i.e., MFR is 0. The high molecular weight of PTFE is characterized by measuring its standard specific gravity (SSG). The SSG measurement procedure (ASTM D 4894, also described in U.S. Patent 4,036,802) includes sintering of the SSG sample free standing (without containment) above its melting temperature without change in dimension of the SSG sample. The SSG sample does not flow during the sintering.

The process of the present invention is also useful in reducing thermally induced discoloration of low molecular weight PTFE, which is commonly known as PTFE micropowder, so as to distinguish from the PTFE described above. The molecular weight of PTFE micropowder is low relative to PTFE, i.e. the molecular weight (Mn) is generally in the range of 10^4 to 10^5. The result of this lower molecular weight of PTFE micropowder is that it has fluidity in the molten state, in contrast to PTFE
which is not melt flowable. PTFE micropowder has melt flowability, which can be characterized by a melt flow rate (MFR) of at least 0.01 g/10 min, preferably at least 0.1 g/10 min and more preferably at least 5 g/10 min, and still more preferably at least 10 g/10 min., as measured in accordance with ASTM D 1238, at 372°C using a 5 kg weight on the molten polymer.

The invention is especially useful for reducing thermally induced discoloration of melt-processible fluoropolymers that are also melt-fabricable. Melt-processible means that the fluoropolymer can be processed in the molten state, i.e., fabricated from the melt using conventional processing equipment such as extruders and injection molding machines, into shaped articles such as films, fibers, and tubes. Melt-fabricable means that the resultant fabricated articles exhibit sufficient strength and toughness to be useful for their intended purpose. This sufficient strength may be characterized by the fluoropolymer by itself exhibiting an MIT Flex Life of at least 1000 cycles, preferably at least 2000 cycles, measured as disclosed in U.S. Patent Number 5,703,185. The strength of the fluoropolymer is indicated by it not being brittle.

Examples of such melt-processible fluoropolymers include homopolymers such as polychlorotrifluoroethylene and polyvinylidene fluoride (PVDF) or copolymers of tetrafluoroethylene (TFE) and at least one fluorinated copolymerizable monomer (comonomer) present in the polymer usually in sufficient amount to reduce the melting point of the copolymer substantially below that of PTFE, e.g., to a melting temperature no greater than 315°C.

A melt-processible TFE copolymer typically incorporates an amount of comonomer into the copolymer in order to provide a copolymer which has a melt flow rate (MFR) of 0.1 to 200 g/10 min as measured according to ASTM D-1 238 using a 5 kg weight on the molten polymer and the melt temperature which is standard for the specific copolymer. MFR will preferably range from 1 to 100 g/10 min, most preferably about 1 to about 50 g/10 min. Additional melt-processible fluoropolymers are the copolymers of ethylene (E) or propylene (P) with TFE or CTFE, notably ETFE and ECTFE.
A preferred melt-processible copolymer for use in the practice of the present invention comprises at least 40-99 mol% tetrafluoroethylene units and 1-60 mol% of at least one other monomer. Additional melt-processible copolymers are those containing 60-99 mol% PTFE units and 1-40 mol% of at least one other monomer. Preferred comonomers with TFE to form perfluropolymers are perfluromonomers, preferably perfluoroolefin having 3 to 8 carbon atoms, such as hexafluoropropylene (HFP), and/or perfluoro(alkyl vinyl ether) (PAVE) in which the linear or branched alkyl group contains 1 to 5 carbon atoms. Preferred PAVE monomers are those in which the alkyl group contains 1, 2, 3 or 4 carbon atoms, and the copolymer can be made using several PAVE monomers. Preferred TFE copolymers include FEP (TFE/HFP copolymer), PFA (TFE/PAVE copolymer), TFE/HFP/PAVE wherein PAVE is PEVE and/or PPVE, MFA (TFE/PMVE/PAVE wherein the alkyl group of PAVE has at least two carbon atoms) and THV (TFE/HFPA/F₃).

All these melt-processible fluoropolymers can be characterized by MFR as recited above for the melt-processible TFE copolymers, i.e. by the procedure of ASTM 1238 using standard conditions for the particular polymer, including a 5 kg weight on the molten polymer in the plastometer for the MFR determination of PFA and FEP.

Further useful polymers are film forming polymers of polyvinylidene fluoride (PVDF) and copolymers of vinylidene fluoride as well as polyvinyl fluoride (PVF) and copolymers of vinyl fluoride.

The invention is also useful when reducing thermally induced discoloration of fluorocarbon elastomers (fluoroelastomers). These elastomers typically have a glass transition temperature below 25°C and exhibit little or no crystallinity at room temperature and little or no melting temperature. Fluoroelastomer made by the process of this invention typically are copolymers containing 25 to 75 wt%, based on total weight of the fluoroelastomer, of copolymerized units of a first fluorinated monomer which may be vinylidene fluoride (VF₂) or tetrafluoroethylene (TFE). The remaining units in the fluoroelastomers are comprised of one or more additional copolymerized monomers, different from the first monomer, selected from the group consisting of fluorinated monomers, hydrocarbon
olefins and mixtures thereof. Fluoroelastomers may also, optionally, comprise units of one or more cure site monomers. When present, copolymerized cure site monomers are typically at a level of 0.05 to 7 wt%, based on total weight of fluorocarbon elastomer. Examples of suitable cure site monomers include: i) bromine-, iodine-, or chlorine-containing fluorinated olefins or fluorinated vinyl ethers; ii) nitrile group-containing fluorinated olefins or fluorinated vinyl ethers; iii) perfluoro(2-phenoxypropyl vinyl ether); and iv) non-conjugated dienes.

Preferred TFE based fluoroelastomer copolymers include TFE/PMVE, TFE/PMVE/E, TFE/P and TFE/PA/F. Preferred VFs based fluorocarbon elastomer copolymers include VF2/HFP, VF2/HFP/TFE, and VF2/PMVE/TFE. Any of these elastomer copolymers may further comprise units of cure site monomer.

Hydrocarbon Surfactants

In one embodiment of the present invention, the aqueous fluoropolymer dispersion medium used to form fluoropolymer resin contains hydrocarbon surfactant which causes thermally induced discoloration in the resin when the fluoropolymer resin is isolated and heated. The hydrocarbon surfactant is a compound that has hydrophobic and hydrophilic moieties, which enables it to disperse and stabilize hydrophobic fluoropolymer particles in an aqueous medium. The hydrocarbon surfactant is preferably an anionic surfactant. An anionic surfactant has a negatively charged hydrophilic portion such as a carboxylate, sulfonate, or sulfate salt and a long chain hydrocarbon portion, such as alkyl as the hydrophobic portion. Hydrocarbon surfactants often serve to stabilize polymer particles by coating the particles with the hydrophobic portion of the surfactant oriented towards the particle and the hydrophilic portion of the surfactant in the water phase. The anionic surfactant adds to this stabilization because it is charged and provides repulsion of the electrical charges between polymer particles. Surfactants typically reduce surface tension of the aqueous medium containing the surfactant significantly.
One example anionic hydrocarbon surfactant is the highly branched C10 tertiary carboxylic acid supplied as Versatic® 10 by Resolution Performance Products.

Another useful anionic hydrocarbon surfactant is the sodium linear alkyl polyether sulfonates supplied as the Avanel® S series by BASF. The ethylene oxide chain provides nonionic characteristics to the surfactant and the sulfonate groups provide certain anionic characteristics.

Another group of hydrocarbon surfactants are those anionic surfactants represented by the formula $R-L-M$ wherein R is preferably a straight chain alkyl group containing from 6 to 17 carbon atoms, L is selected from the group consisting of -ArSO_3^-, -SO_3^-, -SO_4^-, -PO_3^-, -PO_4^-, and -COO^-, and M is a univalent cation, preferably H^+, Na^+, K^+ and NH_4^+. -ArSO_3^- is aryl sulfonate. Preferred of these surfactants are those represented by the formula $\text{CH}_3(\text{CH}_2)_n-L-M$, wherein n is an integer of 6 to 17 and L is selected from -SO_4M, -PO_3M, -PO_4M, or -COOM, and L and M have the same meaning as above. Especially preferred are $R-L-M$ surfactants wherein the R group is an alkyl group having 12 to 16 carbon atoms and wherein L is sulfate, and mixtures thereof. Especially preferred of the $R-L-M$ surfactants is sodium dodecyl sulfate (SDS). For commercial use, SDS (sometimes referred to as sodium lauryl sulfate or SLS), is typically obtained from coconut oil or palm kernel oil feedstocks, and contains predominately sodium dodecyl sulfate but may contain minor quantities of other $R-L-M$ surfactants with differing R groups. "SDS" as used in this application means sodium dodecyl sulfate or surfactant...
mixtures which are predominantly sodium docecyl sulphate containing minor quantities of other R-L-M surfactants with differing R groups.

Another example of anionic hydrocarbon surfactant useful in the present invention is the sulfosuccinate surfactant Lankropol® K830 available from Akzo Nobel Surface Chemistry LLC. The surfactant is reported to be the following:
Butanedioic acid, sulfo-, 4-(1-methyl-2-((1-oxo-9-octadecenyl)amino)ethyl) ester, disodium salt; CAS No.:67815-88-7

Additional sulfosuccinate hydrocarbon surfactants useful in the present invention are diisodecyl sulfosuccinate, Na salt, available as Emulsogen® SB10 from Clariant, and diisotridecyl sulfosuccinate, Na salt, available as Poliro® TR/LNA from Cesapinia Chemicals.

Another preferred class of hydrocarbon surfactants is nonionic surfactants. A nonionic surfactant does not contain a charged group but has a hydrophobic portion that is typically a long chain hydrocarbon. The hydrophilic portion of the nonionic surfactant typically contains water soluble functionality such as a chain of ethylene ether derived from polymerization with ethylene oxide. In the stabilization context, surfactants stabilize polymer particles by coating the particles with the hydrophobic portion of the surfactant oriented towards the particle and the hydrophilic portion of the surfactant in the water phase.

Nonionic hydrocarbon surfactants include polyoxyethylene alkyi ethers, polyoxyethylene alkyi phenyl ethers, polyoxyethylene alkyi esters, sorbitan alkyi esters, polyoxyethylene sorbitan alkyi esters, glycerol esters, their derivatives and the like. More specifically examples of polyoxyethylene alkyi ethers are polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene behenyl ether and the like; examples of polyoxyethylene alkyi phenyl ethers are polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether and the like; examples of polyoxyethylene alkyi esters are polyethylene glycol monolauryl, polyethylene glycol monooleate, polyethylene glycol monostearate and the like; examples of sorbitan alkyi esters are polyoxyethylene sorbitan monolauryl, polyoxyethylene sorbitan
monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate and the like; examples of polyoxyethylene sorbitan alkyl esters are polyoxyethylene sorbitan monolaurylate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate and the like; and examples of glycerol esters are glycerol monomyristate, glycerol monostearate, glycerol monooleate and the like. Also examples of their derivatives are polyoxyethylene alkyl amine, polyoxyethylene alkyl phenyl-formaldehyde condensate, polyoxyethylene alkyl ether phosphate and the like. Particularly preferable are polyoxyethylene alkyl ethers and polyoxyethylene alkyl esters. Examples of such ethers and esters are those that have an HLB value of 10 to 18. More particularly there are polyoxyethylene lauryl ether (EO: 5 to 20. EO stands for an ethylene oxide unit.), polyethylene glycol monostearate (EO: 10 to 55) and polyethylene glycol monooleate (EO: 6 to 10).

Suitable nonionic hydrocarbon surfactants include octyl phenol ethoxylates such as the Triton® X series supplied by Dow Chemical Company:

Triton®

X15 (n~1.5)

X45 (n~4.5)

X100 (n~10)

Preferred nonionic hydrocarbon surfactants are branched alcohol ethoxylates such as the Tergitol® 15-S series supplied by Dow Chemical Company and branched secondary alcohol ethoxylates such as the Tergitol® TMN series also supplied by Dow Chemical Company:

Tergitol®

TMN-6 (n~8)

TMN-10 (n~11)

TMN-100 (n~10)

Ethyleneoxide/propylene oxide copolymers such as the Tergitol® L series surfactant supplied by Dow Chemical Company are also useful as nonionic surfactants in this invention.
Yet another useful group of suitable nonionic hydrocarbon surfactants are difunctional block copolymers supplied as Pluronic® R series from BASF, such as:

5

\[
\text{Pluronic® R} \\
31R1 (m=26, n=8) \\
17R2 (m=14, n=9) \\
10R5 (m=8, n=22) \\
25R4 (m=22, n=23)
\]

Another group of suitable nonionic hydrocarbon surfactants are tridecyl alcohol alkoxylates supplied as Iconol® TDA series from BASF Corporation.

15

\[
\text{Iconol®} \\
TDA-6 (n=6) \\
TDA-9 (n=9) \\
TDA-10 (n=10)
\]

In a preferred embodiment, all of the monovalent substituents on the carbon atoms of the hydrocarbon surfactants are hydrogen. The hydrocarbon is surfactant is preferably essentially free of halogen substituents, such as fluorine or chlorine. Accordingly, the monovalent substituents, as elements from the Periodic Table, on the carbon atoms of the surfactant are at least 75%, preferably at least 85 %, and more preferably at least 95% hydrogen. Most preferably, 100% of the monovalent substituents as elements of the Periodic Table, on the carbon atoms are hydrogen. However, in one embodiment, a number of carbon atoms can contain halogen atoms in a minor amount.

Examples of hydrocarbon-containing surfactants useful in the present invention in which only a minor number of monovalent substituents on carbon atoms are fluorine instead of hydrogen are the PolyFox® surfactants available from Omnova Solutions, Inc., described below.
Polymerization Process

For the practice of the present invention, fluoropolymer resin is produced by polymerizing fluoromonomer. Polymerization may be suitably carried out in a pressurized polymerization reactor which produces aqueous fluoropolymer dispersion. A batch or continuous process may be used although batch processes are more common for commercial production. The reactor is preferably equipped with a stirrer for the aqueous medium and a jacket surrounding the reactor so that the reaction temperature may be conveniently controlled by circulation of a controlled temperature heat exchange medium. The aqueous medium is preferably deionized and deaerated water. The temperature of the reactor and thus of the aqueous medium will preferably be from about 25 to about 120°C.

To carry out polymerization, the reactor is typically pressured up with fluoromonomer to increase the reactor internal pressure to operating pressure which is generally in the range of about 30 to about 1000 psig (0.3 to 7.0 MPa). An aqueous solution of free-radical polymerization
initiator can then be pumped into the reactor in sufficient amount to cause kicking off of the polymerization reaction, i.e. commencement of the polymerization reaction. The polymerization initiator employed is preferably a water-soluble free-radical polymerization initiator. For polymerization of TFE to PTFE, preferred initiator is organic peracid such as disuccinic acid peroxide (DSP), which requires a large amount to cause kickoff, e.g. at least about 200 ppm, together with a highly active initiator, such as inorganic persulfate salt such as ammonium persulfate in a smaller amount. For TFE copolymers such as FEP and PFA, inorganic persulfate salt such as ammonium persulfate is generally used. The initiator added to cause kickoff can be supplemented by pumping additional initiator solution into the reactor as the polymerization reaction proceeds.

For the production of modified PTFE and TFE copolymers, relatively inactive fluoromonomer such as hexafluoropropylene (HFP) can already be present in the reactor prior to pressuring up with the more active TFE fluoromonomer. After kickoff, TFE is typically fed into the reactor to maintain the internal pressure of the reactor at the operating pressure. Additional comonomer such as HFP or perfluoro (alkyl vinyl ether) can be pumped into the reactor if desired. The aqueous medium is typically stirred to obtain a desired polymerization reaction rate and uniform incorporation of comonomer, if present. Chain transfer agents can be introduced into the reactor when molecular weight control is desired.

In one embodiment of the present invention, the aqueous fluoropolymer dispersion is polymerized in the presence of hydrocarbon surfactant. Hydrocarbon surfactant is preferably present in the fluoropolymer dispersion because the aqueous fluoropolymer dispersion is polymerized in the presence of hydrocarbon surfactant, i.e., hydrocarbon surfactant is used as a stabilizing surfactant during polymerization. If desired fluorosurfactant such a fluoroalkane carboxylic acid or salt or fluoroether carboxylic acid or salt may be employed as stabilizing surfactant together with hydrocarbon surfactant and therefore may also present in the aqueous fluoropolymer dispersion produced. Preferably for
the practice of the present invention, the fluoropolymer dispersion is preferably free of halogen-containing surfactant such as fluorousurfactant, i.e., contains less than about 300 ppm, and more preferably less than about 100 ppm, and most preferably less than 50 ppm, or halogen-containing surfactant.

In a polymerization process employing hydrocarbon surfactant as the stabilizing surfactant, addition of the stabilizing surfactant is preferably delayed until after the kickoff has occurred. The amount of the delay will depend on the surfactant being used and the fluoromonomer being polymerized. In addition, it is preferably for the hydrocarbon surfactant to be fed into the reactor as the polymerization proceeds, i.e., metered. The amount of hydrocarbon surfactant present in the aqueous fluoropolymer dispersion produced is preferably 10 ppm to about 50,000 ppm, more preferably about 50 ppm to about 10,000 ppm, most preferably about 100 ppm to about 5000 ppm, based on fluoropolymer solids.

If desired, the hydrocarbon surfactant can be passivated prior to, during or after addition to the polymerization reactor. Passivating means to reduce the telogenic behavior of the hydrocarbon-containing surfactant. Passivation may be carried out by reacting said the hydrocarbon-containing surfactant with an oxidizing agent, preferably hydrogen peroxide or polymerization initiator. Preferably, the passivating of the hydrocarbon-containing surfactant is carried out in the presence of a passivation adjuvant, preferably metal in the form of metal ion, most preferably, ferrous ion or cuprous ion.

After completion of the polymerization when the desired amount of dispersed fluoropolymer or solids content has been achieved (typically several hours in a batch process), the feeds are stopped, the reactor is vented, and the raw dispersion of fluoropolymer particles in the reactor is transferred to a cooling or holding vessel.

The solids content of the aqueous fluoropolymer dispersion as polymerized produced can range from about 10% by weight to up to about 65 wt% by weight but typically is about 20% by weight to 45% by weight.
Particle size (Dv(50)) of the fluoropolymer particles in the aqueous fluoropolymer dispersion can range from 10 nm to 400 nm, preferably Dv(50) about 100 to about 400 nm.

Isolation of the fluoropolymer includes separation of wet fluoropolymer resin from the aqueous fluoropolymer dispersion. Separation of the wet fluoropolymer resin from the aqueous fluoropolymer dispersion can be accomplished by a variety of techniques including but not limited to gelation, coagulation, freezing and thawing, and solvent aided peptization (SAP). When separation of wet fluoropolymer resin is carried out by coagulation, the as polymerized dispersion may first be diluted from its as polymerized concentration. Stirring is then suitably employed to impart sufficient shear to the dispersion to cause coagulation and thereby produce undispersed fluoropolymer. Salts such as ammonium carbonate can be added to the dispersion to assist with coagulation if desired. Filtering can be used to remove at least a portion of the aqueous medium from the wet fluoropolymer resin. Separation can be performed by solvent aided pelletization as described in U.S. Patent Number 4,675,380 which produces granulated particles of fluoropolymer.

Isolating the fluoropolymer typically includes drying to remove aqueous medium which is retained in the fluoropolymer resin. After wet fluoropolymer resin is separated from the dispersion, fluoropolymer resin in wet form can include significant quantities of the aqueous medium, for example, up to 60% by weight. Drying removes essentially all of the aqueous medium to produce fluoropolymer resin in dry form. The wet fluoropolymer resin may be rinsed if desired and may be pressed to reduce aqueous medium content to reduce the energy and time required for drying.

For melt processible fluoropolymers, wet fluoropolymer resin is dried and used directly in melt-processing operations or processed into a convenient form such as chip or pellet for use in subsequent melt-processing operations. Certain grades of PTFE dispersion are made for the production of fine powder. For this use, the dispersion is coagulated, the aqueous medium is removed and the PTFE is dried to produce fine powder. For fine powder, conditions are suitably employed during
isolation which do not adversely affect the properties of the PTFE for end use processing. The shear in the dispersion during stirring is appropriately controlled and temperatures less than 200°C, well below the sintering temperature of PTFE, are employed during drying.

Reduction of Thermally Induced Discoloration

To reduce thermally induced discoloration in accordance with the present invention, aqueous fluoropolymer dispersion is exposed to oxidizing agent. Preferably, the process of the invention reduces the thermally induced discoloration by at least about 10% as measured by % change in L* on the CIELAB color scale. As discussed in detail in the Test Methods which follow, the % change in L* of fluoropolymer resin samples is determined using the CIELAB color scale specified by International Commission on Illumination (CIE). More preferably, the process reduces the thermally induced discoloration by at least about 20% as measured by % change in L*, still more preferably at least about 30%, and most preferably at least about 50%.

It is preferred for the practice of the present invention for the oxidizing agent to be an oxygen source. As used in this application, "oxygen source" means any chemical source of available oxygen. "Available oxygen" means oxygen capable of reacting as an oxidizing agent. The oxygen source employed in accordance with the present invention is preferably selected from the group consisting of air, oxygen rich gas, ozone containing gas and hydrogen peroxide. "Oxygen rich gas" means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

For the practice of the present invention, one preferred oxygen source is an ozone containing gas. Another preferred oxygen source is for the practice of the present invention is hydrogen peroxide. For providing
the exposure in the dispersion to the oxygen source, air, oxygen rich gas or ozone containing gas can be injected continuously or intermittently into the dispersion, preferably in stoichiometric excess, to provide the oxygen source during the exposure to ultraviolet light. Hydrogen peroxide can be added to the dispersion, also preferably in stoichiometric excess, by adding hydrogen peroxide solution. The concentration of hydrogen peroxide is preferably about 0.1 weight % to about 10 weight % based on fluoropolymer solids in the dispersion.

The exposure of the dispersion to oxidizing agent can practiced by a variety of techniques. One preferred embodiment comprises exposing the aqueous fluoropolymer dispersion to ultraviolet light in the presence of an oxygen source. For the practice of this embodiment, the aqueous fluoropolymer dispersion is preferably first diluted with water to a concentration less than the concentration of the as polymerized aqueous fluoropolymer dispersion because, depending upon the equipment used, exposure of ultraviolet light can be more effective for reducing discoloration for dilute dispersions. Preferred concentrations are about 2 weight percent to about 30 weight percent, more preferably about 2 weight percent to about 20 weight percent.

Ultraviolet light has a wavelength range or about 10 nm to about 400 nm and has been described to have bands including: UVA (315 nm to 400 nm), UVB (280 nm to 315 nm), and UVC (100 nm to 280 nm). Preferably, the ultraviolet light employed has a wavelength in the UVC band.

Any of various types of ultraviolet lamps can be used as the source of ultraviolet light. For example, submersible UV clarifier/sterilizer units sold for the purposes of controlling algae and bacterial growth in ponds are commercially available and may be used for the practice of this embodiment. These units include a low-pressure mercury-vapor UVC lamp within a housing for the circulation of water. The lamp is protected by a quartz tube so that water can be circulated within the housing for exposure to ultraviolet light. Submersible UV clarifier/sterilizer units of this type are sold, for example, under the brand name Pondmaster by Danner Manufacturing, Inc. of Islandia NY. For continuous treatment processes,
the dispersion can be circulated though units of this type to expose the
dispersion to ultraviolet light. Single pass or multiple pass treatments can
be employed.

Dispersion can also be processed in a batch operation in a

5 container suitable for exposure to ultraviolet light in the presence of an
oxygen source. In this embodiment, it is desirable for a suitably protected
ultraviolet lamp to be immersed in the dispersion. For example, a vessel
normally used for coagulation of the aqueous fluoropolymer dispersion to
produce fluoropolymer resin can be used for carrying out the process of
this embodiment by immersing the ultraviolet lamp in the dispersion held in
this vessel. The dispersion can be circulated or stirred if desired to
facilitate exposure to the ultraviolet light. When the oxygen source is a
gas as discussed below, circulation may be achieved or enhanced by
injecting the oxygen source into the dispersion. Ultraviolet lamps with

10 protective quartz tubes of the type employed in the submersible UV
clarifier/sterilizer units can be employed for immersion in dispersion after
being removed from their housing. Other ultraviolet lamps such as
medium-pressure mercury-vapor lamps can also be used with the lamp
suitably protected for immersion in the dispersion such as by enclosing the
lamp in a quartz photowell. A borosilicate glass photowell can also be

15 used although it may decrease effectiveness by filtering ultraviolet light in
the UVC and UVB bands. Suitable medium-pressure mercury vapor
lamps are sold by Hanovia of Fairfield, New Jersey.

As used for this embodiment, "oxygen source" means any chemical

20 source of available oxygen. "Available oxygen" means oxygen capable of
reacting as an oxidizing agent. The oxygen source employed in
accordance with this embodiment is preferably selected from the group
consisting of air, oxygen rich gas, ozone containing gas and hydrogen
peroxide. "Oxygen rich gas" means pure oxygen and gas mixtures

containing greater than about 21% oxygen by volume, preferably oxygen

25 enriched air. Preferably, oxygen rich gas contains at least about 22%
oxygen by volume. "Ozone containing gas" means pure ozone and gas
mixtures containing ozone, preferably ozone enriched air. Preferably, the
content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

For the practice of this embodiment, one preferred oxygen source is an ozone containing gas. Another preferred oxygen source for the practice of this embodiment is hydrogen peroxide. For providing the presence of the oxygen source in the dispersion during exposure to ultraviolet light, air, oxygen rich gas or ozone containing gas can be injected continuously or intermittently into the dispersion, preferably in stoichiometric excess, to provide the oxygen source during the exposure to ultraviolet light. Hydrogen peroxide can be added to the dispersion, also preferably in stoichiometric excess, by adding hydrogen peroxide solution. The concentration of hydrogen peroxide is preferably about 0.1 weight % to about 10 weight % based on fluoropolymer solids in the dispersion.

Ultraviolet light with an oxygen source is effective at ambient or moderate temperatures and thus elevated temperatures are typically not required for the practice of this embodiment. In a preferred form of this embodiment, exposing the aqueous fluoropolymer dispersion to ultraviolet light in the presence of an oxygen source is carried out at a temperature of about 5°C to about 70°C, preferably about 15°C to about 70°C.

The time for carrying out this embodiment with vary with factors including the power of the ultraviolet light used, the type of oxygen source, processing conditions, etc. Preferred times for this embodiment are about 15 minutes to about 10 hours.

Another preferred embodiment comprises exposing the aqueous fluoropolymer dispersion to light having a wavelength of 10 nm to 760 nm in the presence of an oxygen source and photocatalyst. For the practice of this embodiment, the aqueous fluoropolymer dispersion is preferably first diluted with water to a concentration less than the concentration of the as polymerized aqueous fluoropolymer dispersion because, depending upon the equipment used, exposure to light can be more effective for reducing discoloration for dilute dispersions. Preferred concentrations are about 2 weight percent to about 30 weight %, more preferably about 2 weight percent to about 20 weight percent.
Light to be employed in accordance with this embodiment has a wavelength range or about 10 nm to about 760 nm. This wavelength range includes ultraviolet light having a wavelength range of about 10 nm to about 400 nm. Ultraviolet light has a wavelength range or about 10 nm to about 400 nm and has been described to have bands including: UVA (315 nm to 400 nm), UVB (280 nm to 315 nm), and UVC (100 nm to 280 nm). Light to be employed in accordance with this embodiment also includes visible light having a wavelength range of about 400 nm to about 760 nm.

Any of various types of lamps can be used as the source of light. For example, submersible UV clarifier/sterilizer units sold for the purposes of controlling algae and bacterial growth in ponds are commercially available and may be used for the practice of this embodiment. These units include a low-pressure mercury-vapor UVC lamp within a housing for the circulation of water. The lamp is protected by a quartz tube so that water can be circulated within the housing for exposure to ultraviolet light. Submersible UV clarifier/sterilizer units of this type are sold, for example, under the brand name Pondmaster by Danner Manufacturing, Inc. of Islandia NY. For continuous treatment processes, the dispersion can be circulated though units of this type to expose the dispersion to light. Single pass or multiple pass treatments can be employed.

Dispersion can also be processed in a batch operation in a container suitable for exposure to light in the presence of an oxygen source and photocatalyst. In this embodiment, it is desirable for a suitably protected lamp to be immersed in the dispersion. For example, a vessel normally used for coagulation of the aqueous fluoropolymer dispersion to produce fluoropolymer resin can be used for carrying out the process of this embodiment by immersing the lamp in the dispersion held in this vessel. The dispersion can be circulated or stirred if desired to facilitate exposure to the light. When the oxygen source is a gas as discussed below, circulation may be achieved or enhanced by injecting the oxygen source into the dispersion. Ultraviolet lamps with protective quartz tubes of the type employed in the submersible UV clarifier/sterilizer units can be employed for immersion in dispersion after being removed from their
housing. Other ultraviolet lamps such as medium-pressure mercury vapor lamps can also be used with the lamp suitably protected for immersion in the dispersion such as by enclosing the lamp in a quartz photowell. A borosilicate glass photowell can also be used although it may decrease effectiveness by filtering ultraviolet light in the UVC and UVB bands. Suitable medium-pressure mercury vapor lamps are sold by Hanovia of Fairfield, New Jersey.

As used in this embodiment, "oxygen source" means any chemical source of available oxygen. "Available oxygen" means oxygen capable of reacting as an oxidizing agent. The oxygen source employed in accordance with the present this embodiment is preferably selected from the group consisting of air, oxygen rich gas, ozone containing gas and hydrogen peroxide. "Oxygen rich gas" means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

For the practice of this embodiment, one preferred oxygen source is an ozone containing gas. Another preferred oxygen source for the practice of this embodiment is hydrogen peroxide. For providing the presence of the oxygen source in the dispersion during exposure to ultraviolet light, air, oxygen rich gas or ozone containing gas can be injected continuously or intermittently into the dispersion, preferably in stoichiometric excess, to provide the oxygen source during the exposure to light. Hydrogen peroxide can be added to the dispersion, also preferably in stoichiometric excess, by adding hydrogen peroxide solution. The concentration of hydrogen peroxide is preferably about 0.1 weight % to about 10 weight % based on fluoropolymer solids in the dispersion.

Any of a variety of photocatalysts may be used in the practice of this embodiment. Preferably, the photocatalyst is a heterogeneous photocatalyst. Most preferably, the heterogeneous photocatalyst is selected from form the group consisting of titanium dioxide and zinc oxide.
For example, titanium dioxide sold under the tradename Degussa P25 having a primary particle size of 21 nm and being a mixture of 70% anatase and 30% rutile titanium dioxide has been found to be an effective heterogeneous photocatalyst. Heterogeneous photocatalyst can be used by dispersing it into the dispersion prior to exposure to light. Preferred levels of heterogenous photocatalyst are about 1 ppm to about 100 ppm based on fluoropolymer solids in the dispersion.

Light with an oxygen source and photocatalyst is effective at ambient or moderate temperatures and thus elevated temperatures are typically not required for the practice of this embodiment. In a preferred process in accordance with this embodiment, exposing the aqueous fluoropolymer dispersion to ultraviolet light in the presence of an oxygen source is carried out at a temperature of about 5°C to about 70°C, preferably about 15°C to about 70°C.

The time for carrying out this embodiment will vary with factors including the power of the ultraviolet light used, the type of oxygen source, processing conditions, etc. Preferred times for this embodiment are about 15 minutes to about 10 hours.

Another preferred embodiment comprises exposing the aqueous fluoropolymer dispersion to hydrogen peroxide. For the practice of this embodiment, the aqueous fluoropolymer dispersion is preferably first diluted with water to a concentration less than the concentration of the as polymerized aqueous fluoropolymer dispersion. Preferred concentrations are about 2 weight percent to about 30 weight percent, more preferably about 2 weight percent to about 20 weight percent.

Exposing of the aqueous fluoropolymer dispersion to hydrogen peroxide is preferably carried out by adding hydrogen peroxide to said aqueous fluoropolymer dispersion, preferably in an amount of about 0.1 weight % to about 10 weight percent based on weight of fluoropolymer solids. Preferably, the exposing of the aqueous fluoropolymer dispersion to hydrogen peroxide is carried out at a temperature of about 10°C to about 70 °C, preferably about 25°C to about 60°C. The time employed for the exposure of the aqueous fluoropolymer dispersion is preferably about 1 hour to about 48 hours.
It is preferable for the practice of this embodiment to also inject air, oxygen rich gas, or ozone containing gas into said fluoropolymer dispersion during the exposing of the aqueous fluoropolymer dispersion to the hydrogen peroxide. Oxygen rich gas means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume. Introduction of such gases can be accomplished by injecting the gases into the aqueous fluoropolymer dispersion.

Preferably, the exposing of the aqueous fluoropolymer dispersion to hydrogen peroxide is carried out in the presence of Fe^{+2}, Cu^{+1}, or Mn^{+2} ions. Preferably, the amount of Fe^{+2}, Cu^{+1}, or Mn^{+2} ions is about 0.1 ppm to about 100 ppm based on fluoropolymer solids in the dispersion.

Although the process can also be carried out in a continuous process, batch processes are preferable since batch processes facilitate controlled times for exposure of the hydrogen peroxide with the aqueous fluoropolymer dispersion to achieve the desired reduction in thermally induced discoloration. A batch process can be carried out in any suitable tank or vessel of appropriate materials of construction and, if desired, has heating capability to heat the dispersion during treatment. For example, a batch process can be carried out in a vessel normally used for coagulation of the aqueous fluoropolymer dispersion which typically includes an impeller which can be used to stirring the dispersion during treatment. Injection of air, oxygen rich gas, or ozone containing gas can also be employed to impart agitation to the dispersion.

Another preferred embodiment comprises exposing the aqueous fluoropolymer dispersion to oxidizing agent selected from the group consisting of hypochlorite salts and nitrite salts. For the practice of this embodiment, the aqueous fluoropolymer dispersion is preferably first diluted with water to a concentration less than the concentration of the as polymerized aqueous fluoropolymer dispersion. Preferred concentrations
are about 2 weight percent to about 30 weight percent, more preferably about 2 weight percent to about 20 weight percent.

Exposing of the aqueous fluoropolymer dispersion to oxidizing agent selected from the group consisting of hypochlorite salts and nitrite salts is preferably carried out by adding the oxidizing agent to the aqueous fluoropolymer dispersion, preferably in an amount of about 0.05 weight % to about 5 weight percent based on weight of fluoropolymer solids. Preferred hypochlorite salts for addition to the dispersion are sodium hypochlorite or potassium hypochlorite. Sodium hypochlorite or potassium hypochlorite are preferably used in an amount of about 0.05 weight % to about 5 weight percent based on weight of fluoropolymer solids. Provided that aqueous medium of the dispersion is sufficiently alkaline such as by containing sodium hydroxide, hypochlorite can also be generated in situ by injecting chlorine gas into the dispersion. Preferred nitrite salts for addition to the dispersion are sodium nitrite, potassium nitrite and ammonium nitrite. Sodium nitrite, potassium nitrite and ammonium nitrite are preferably used in an amount of about 0.5 weight % to about 5 weight percent based on weight of fluoropolymer solids.

Preferably, the exposing of the aqueous fluoropolymer dispersion to the oxidizing agent is carried out at a temperature of about 10°C to about 70°C. The exposure time with the aqueous fluoropolymer dispersion is preferably about 5 minutes to about 3 hours.

It is preferable for the practice of this embodiment to also introduce air, oxygen rich gas, or ozone containing gas into said fluoropolymer dispersion during the exposing of the aqueous fluoropolymer dispersion to the oxidizing agent. Oxygen rich gas" means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume. Introduction of such gases can be accomplished by injecting such gases into the aqueous fluoropolymer dispersion.
Although the embodiment can also be carried out in a continuous process, batch processes are preferable since batch processes facilitate controlled times for exposure of the hypochlorite salt or nitrite salt with the aqueous fluoropolymer dispersion to achieve the desired reduction in thermally induced discoloration. A batch process can be carried out in any suitable tank or vessel of appropriate materials of construction and, if desired, has heating capability to heat the dispersion during treatment. For example, a batch process can be carried out in a vessel normally used for coagulation of the aqueous fluoropolymer dispersion which typically includes an impeller which can be used to stirring the dispersion during treatment. Injection of air, oxygen rich gas, or ozone containing gas can also be employed to impart agitation to the dispersion.

Another preferred embodiment comprises adjusting the pH of the aqueous medium of the aqueous fluoropolymer dispersion to greater than about 8.5 and exposing the aqueous fluoropolymer dispersion to an oxygen source. For the practice of this embodiment, the aqueous fluoropolymer dispersion is preferably first diluted with water to a concentration less than the concentration of the as polymerized aqueous fluoropolymer dispersion. Preferred concentrations are about 2 weight percent to about 30 weight percent, more preferably about 2 weight percent to about 20 weight percent.

The pH of the aqueous fluoropolymer dispersion preferably is adjusted to about 8.5 to about 11. More preferably, the pH of the aqueous medium of the aqueous fluoropolymer dispersion is adjusted to about 9.5 to about 10.

The pH can be adjusted for the practice of this embodiment by addition of a base which is sufficiently strong to adjust the pH of the aqueous fluoropolymer dispersion to the desired level and which is otherwise compatible with the processing of the dispersion and the end use properties of the fluoropolymer resin produced. Preferred bases are alkali metal hydroxides such as sodium hydroxide or potassium hydroxide. Ammonium hydroxide can also be used.

As used in this embodiment, "oxygen source" means any chemical source of available oxygen. "Available oxygen" means oxygen capable of
reacting as an oxidizing agent. The oxygen source employed in accordance with this embodiment is preferably selected from the group consisting of air, oxygen rich gas, ozone containing gas and hydrogen peroxide. Oxygen rich gas" means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

For the practice of this embodiment, one preferred oxygen source is an ozone containing gas. Another preferred oxygen source is for the practice of this embodiment is hydrogen peroxide. For providing the exposure of dispersion to the oxygen source, air, oxygen rich gas or ozone containing gas can be injected continuously or intermittently into the dispersion, preferably in stoichiometric excess. Hydrogen peroxide can be added to the dispersion, also preferably in stoichiometric excess, by adding hydrogen peroxide solution. The concentration of hydrogen peroxide is preferably about 0.1 weight % to about 10 weight % based on fluoropolymer solids in the dispersion.

Preferably, the exposing of the aqueous fluoropolymer dispersion to oxygen source is carried out at a temperature of about 10°C to about 95°C, more preferably about 20°C to about 80°C, most preferably about 25°C to about 70°C. The time employed for the exposure of the aqueous fluoropolymer dispersion to oxygen source is preferably about 5 minutes to about 24 hours.

Although the process can also be carried out in a continuous process, batch processes are preferable since batch processes facilitate controlled times for exposure of the hydrogen peroxide with the aqueous fluoropolymer dispersion to achieve the desired reduction in thermally induced discoloration. A batch process can be carried out in any suitable tank or vessel of appropriate materials of construction and, if desired, has heating capability to heat the dispersion during treatment. For example, a batch process can be carried out in a vessel normally used for coagulation
of the aqueous fluoropolymer dispersion which typically includes an impeller which can be used to stirring the dispersion during treatment. Injection of air, oxygen rich gas, or ozone containing gas can also be employed to impart agitation to the dispersion.

In accordance one preferred form of the process of the invention, the fluoropolymer resin is also post-treated, preferably by exposing the fluoropolymer resin to an oxidizing agent. The additive effect of the post-treatment in combination with exposing the aqueous fluoropolymer dispersion to oxidizing agent in accordance with the invention can provide an improvement over the reduction of thermally induced discoloration provided only by exposing the aqueous fluoropolymer dispersion to oxidizing agent. The reduction of thermally induced discoloration measured by % change in L* on the CIELAB color scale provided by post-treatment in combination with exposing the aqueous fluoropolymer dispersion to oxidizing agent is preferably at least about 10% greater than the % change in L* on the CIELAB color scale provided by only exposing the aqueous fluoropolymer dispersion to the oxidizing agent under the same conditions, more preferably at least about 20% greater, still more preferably at least about 30% greater, most preferably at least about 50% greater.

Post-treatment of the fluoropolymer resin dispersion can be accomplished by a variety of techniques. One preferred post-treatment comprises exposing the fluoropolymer resin to fluorine. Exposure to fluorine may be carried out with a variety of fluorine radical generating compounds but preferably exposure of the fluoropolymer resin is carried out by contacting the fluoropolymer resin with fluorine gas. Since the reaction with fluorine is very exothermic, it is preferred to dilute the fluorine with an inert gas such as nitrogen. The level of fluorine in the fluorine/inert gas mixture may be 1 to 100 volume % but is preferably about 5 to about 25 volume % because it is more hazardous to work with pure fluorine. For fluoropolymer resins in which the thermally induced discoloration is severe, the fluorine/inert gas mixture should be sufficiently dilute to avoid overheating the fluoropolymer and the accompanying risk of fire.
Heating the fluoropolymer resin during exposure to fluorine increases the reaction rate. Because the reaction of fluorine to reduce thermally induced discoloration is very exothermic, some or all of the desired heating may be provided by the reaction with fluorine. This post-treatment can be carried out with the fluoropolymer resin heated to a temperature above the melting point of the fluoropolymer resin or at a temperature below the melting point of the fluoropolymer resin.

For the process carried out below the melting point, the exposing of the fluoropolymer resin to fluorine is preferably carried out with the fluoropolymer resin heated to a temperature of about 20°C to about 250°C. In one embodiment, the temperature employed is about 150°C to about 250°C. In one another embodiment, the temperature is about 20°C to about 100°C. For PTFE fluoropolymer resins (including modified PTFE resins) which are not melt-processible, i.e., PTFE fine powders, it is desirable to carry the process below the melting point of the PTFE resin to avoid sintering and fusing the resin. Preferably, PTFE fine powder resins are heated to a temperature less than about 200°C to avoid adversely affecting end use characteristics of the PTFE resin. In one preferred embodiment, the temperature is about 20°C to about 100°C.

For fluoropolymers which are melt-processible, the process can be carried out with the fluoropolymer heated to below or above the melting point of the fluoropolymer resin. Preferably, the process for a melt-processible resin is carried out with the fluoropolymer resin heated to above its melting point. Preferably, the exposing of the fluoropolymer resin to fluorine is carried out with the fluoropolymer resin heated to a temperature above its melting up to about 400°C.

For processing with the fluoropolymer resin heated to below the melting point, the fluoropolymer resin is preferably processed in particulate form to provide desirable reaction rates such as powders, flake, pellets or beads. Suitable apparatus for processing below the melting point are tanks or vessels which contain the fluoropolymer resin for exposure to a fluorine or fluorine/inert gas mixture while stirring, tumbling, or fluidizing the fluoropolymer resin for uniform exposure of the resin to fluorine. For example, a double cone blender can be used for this purpose. Equipment
and methods useful for the removal of unstable end groups in melt-processible fluoropolymers, for example, those disclosed in Morgan et al., US 4,626,587 and Imbalzano et al., US 4,743,658, can be used to expose the fluoropolymer resin to fluorine at a temperature below its melting point.

In general, more fluorine is necessary for reducing thermally induced discoloration to desirable level than is typically required for removing unstable end groups, for example, at least 2 times the amount required for removing unstable end groups can be required. The amount of fluorine required will be dependent upon the level of discoloration but it is usually desirable to employ a stoichiometric excess of fluorine.

For processing the fluoropolymer resin heated to above the melting point, exposure to fluorine can be accomplished by a variety of methods with reactive extrusion being a preferred method for the practice of this post-treatment. In reactive extrusion, exposure to fluorine is performed while the molten polymer is processed in a melt extruder. When fluoropolymer flake is processed by melt extrusion into chip or pellet is a convenient point in the manufacturing process to practice the process of this post-treatment. Various types of extruders such a single-screw or multi-screw extruders can be used. Combinations of extruders are also suitably used. Preferably, the extruder includes mixing elements to improve mass transfer between the gas and the molten fluoropolymer resin. For the practice of this post-treatment, extruders are suitably fitted with a port or ports for feeding fluorine or fluorine/inert gas mixture for contacting the fluoropolymer. A vacuum port for removing volatiles is also preferably provided. Equipment and methods useful for stabilizing melt-processible fluoropolymers, for example, those disclosed in Chapman et al., US 6,838,545, Example 2, can be used to expose the fluoropolymer to fluorine at a temperature above its melting point. Similar to the process carried out below the melting point, more fluorine is generally necessary for reducing thermally induced discoloration to desirable level than is typically required for removing unstable end groups, for example, at least 2 times the amount required for removing unstable end groups can be required. The amount of fluorine required will be dependent upon the level of discoloration, but it is usually desirable to employ a stoichiometric
excess of fluorine. In the event more residence time than is provided in an extruder is desired for the exposure to fluorine, a kneader such as a surface renewal type kneader as disclosed in Hiraga et al. US 6,664,337 can be used to carry out the process of this post-treatment.

5 Another preferred post-treatment comprises heating the fluoropolymer resin to a temperature of about 160°C to about 400°C and exposing the heated fluoropolymer resin to an oxygen source. In one embodiment of this post-treatment, heating of the fluoropolymer is carried out by convection heating such as in an oven. Preferably, heat transfer gas employed in the oven is the oxygen source or includes the oxygen source as will be discussed below. The heat transfer gas may be circulated to improve heat transfer if desired and the heat transfer gas may include water vapor to increase its humidity.

This post-treatment is advantageously employed for fluoropolymer resin which is melt-processible. The process can be carried out with a melt-processible fluoropolymer resin heated to below or above the melting point of the fluoropolymer resin. Preferably, the process for a melt-processible resin is carried out with the fluoropolymer resin heated to above its melting point.

10 This post-treatment is also advantageously employed for PTFE fluoropolymer resins (including modified PTFE resins) which are not melt-processible. It is preferred for PTFE resins to be processed below their melting point. Most preferably, PTFE resins are heated to a temperature less than 200°C.

20 The fluoropolymer can be in various physical forms for processing in accordance with this post-treatment. For processing below the melting point of the fluoropolymer resin, the physical form of the fluoropolymer will have a greater impact on the time necessary to achieve a desired reduction in thermally induced discoloration. Preferably for processing below the melting point, the fluoropolymer resin is processed in finely divided form to promote exposure to the oxygen source such as by employing the powder recovered from isolation of the fluoropolymer, also called flake, prior to melt processing into chip or pellet. For processing above the melting point, the physical form of the fluoropolymer resin is
usually less important since the fluoropolymer resin will melt and fuse when heating. Although chip or pellet can also be used for treatment above the melting point, the powder recovered from isolation of the fluoropolymer prior to melt processing into chip or pellet is suitably used.

5 The fluoropolymer resin can be in wet or dry form. If wet fluoropolymer resin is used, drying of the wet fluoropolymer resin results as it is heated.

For this post-treatment, the fluoropolymer resin can be contained in an open container of suitable material such as aluminum, stainless steel, or high nickel alloy such as that sold under the trademark Monel®.

10 Preferably, pans or trays are employed which have a shallow depth to promote exposure to and mass transfer of oxygen from the oxygen source into the fluoropolymer resin.

The post-treatment can be carried out such that the fluoropolymer resin is under static conditions or dynamic conditions. The process is preferably carried out with the fluoropolymer resin under static conditions if the fluoropolymer is processed above the melting point and is preferably carried out with the fluoropolymer resin under dynamic conditions if processed below the melting point. "Static conditions" means that the fluoropolymer is not subjected to agitation such as by stirring or shaking although the heat transfer gas for convection heating may be circulated as noted above. Under static conditions, some settling of the resin may occur or, if conducted above the melting point, some flow of the melted resin within the container may occur. "Dynamic conditions" means that the process is carried while moving the fluoropolymer resin such as by stirring or shaking or actively passing a heat transfer gas through the fluoropolymer resin which may additionally cause movement the fluoropolymer resin. Heat transfer and mass transfer can be facilitated by the use of dynamic conditions which can be provided by, for example, a fluidized bed reactor or by otherwise flowing the gas through the polymer bed.

As used for this post-treatment, "oxygen source" means any chemical source of available oxygen. "Available oxygen" means oxygen capable of reacting as an oxidizing agent. The oxygen source preferably is either the heat transfer gas or is a component of the heat transfer gas.
Preferably, the oxygen source is air, oxygen rich gas, or ozone-containing gas. Oxygen rich gas means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone-containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

For example, when the oxygen source is air, an air oven can be used to carry out the process. Oxygen or ozone can be supplied to the air oven to provide an oxygen rich gas, i.e., oxygen enriched air, or ozone-containing gas, i.e., ozone enriched air, respectively.

The time necessary to carry out this post-treatment will vary with factors including the temperature employed, the oxygen source employed, the rate of circulation of the heat transfer gas, and the physical form of the fluoropolymer resin. In general, treatment times for the process carried out below the melting point of the fluoropolymer are significantly longer than those for processes carried out above the melting point. For example, fluoropolymer resin treated using air as the oxygen source below the melting point may require processing for about 1 to 25 days to achieve the desired color reduction. The time for a process carried out using air as the oxygen source above the melting point generally may vary from about 15 minutes to about 10 hours.

Resin treated above the melting point typically results in the formation of solid slabs of fluoropolymer resin which may be chopped into suitably-sized pieces to feed a melt extruder for subsequent processing.

Another preferred post-treatment comprises melt extruding the fluoropolymer resin to produce molten fluoropolymer resin and exposing the molten fluoropolymer resin to an oxygen source during the melt extruding. "Melt extruding" as used for this post-treatment means to melt the fluoropolymer resin and to subject the molten fluoropolymer resin to mixing of the fluoropolymer resin. Preferably, the melt extruding provides sufficient shear to provide effective exposure of the oxygen source with the molten fluoropolymer resin. To carry out melt extrusion for this post-treatment, various equipment can be used. Preferably, the molten
fluoropolymer resin is processed in a melt extruder. Fluoropolymer flake after isolation is often processed by melt extrusion into chip or pellet and this is a convenient point in the manufacturing process to practice the process of this post-treatment. Various types of extruders such as a single-screw or multi-screw extruder can be used. Combinations of extruders are also suitably used. Preferably, the melt extruder provides a high shear section such as by including kneading block sections or mixing elements to impart high shear to the molten fluoropolymer resin. In the event more residence time than can be provided in an extruder is desired, a kneader such as a surface renewal type kneader as disclosed in Hiraga et al. US 6,664,337 can be used to carry out this post-treatment.

For the practice of the process of this post-treatment, extruders or kneaders are suitably fitted with a port or ports for injecting the oxygen source for exposure with the fluoropolymer. A vacuum port for removing volatiles is also preferably provided. Equipment and methods useful for stabilizing melt-processible fluoropolymers, for example, those disclosed in Chapman et al., US 6,838,545, can be used to carry out the process of this post-treatment.

As used for this post-treatment, "oxygen source" means any chemical source of available oxygen. "Available oxygen" means oxygen capable of reacting as an oxidizing agent. Preferably, the oxygen source is air, oxygen rich gas, or ozone-containing gas. Oxygen rich gas" means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

In the practice of this post-treatment, the oxygen source can be injected to an appropriate port in the melt extruding equipment and the molten fluoropolymer resin is thereby exposed to the oxygen source. The location at which the molten polymer is exposed to oxygen source may be referred to as the reaction zone. In preferred melt extruders for the practice of this post-treatment having at least one high shear section
provided with kneading blocks or mixing elements, the molten fluoropolymer resin is exposed to the oxygen source in the high shear section, i.e., the reaction zone is in a high shear section. Preferably, the process of this post-treatment is carried out in multiple stages, i.e., the extruder has more than one reaction zone for exposure of the molten fluoropolymer to oxygen source. The amount of oxygen source required will vary with the degree of thermally induced discoloration exhibited by the fluoropolymer resin. It is usually desirable to employ a stoichiometric excess of the oxygen source.

Another preferred post-treatment comprises exposing wet fluoropolymer resin to an oxygen source during drying. The wet fluoropolymer resin for use in this post-treatment is preferably undispersed fluoropolymer as separated from the dispersion. Any of various equipment known for use in drying fluoropolymer resin can be used for this post-treatment. In such equipment a heated drying gas, typically air, is used as a heat transfer medium to heat the fluoropolymer resin and to convey away water vapor and chemicals removed from the fluoropolymer resin during drying. Preferably in accordance with this post-treatment, the drying gas employed is the oxygen source or includes the oxygen source as discussed below.

The process of this post-treatment can be carried out such that the fluoropolymer resin is dried under static conditions or dynamic conditions. "Static conditions" means that the fluoropolymer is not subjected to agitation such as by stirring or shaking during drying although drying in equipment such as tray drying in an oven result in circulation of the drying gas by convection. "Dynamic conditions" means that the process is carried while moving the fluoropolymer resin such as by stirring or shaking or actively passing a drying gas through the fluoropolymer resin which may additionally cause movement the fluoropolymer resin. Heat transfer and mass transfer can be facilitated by the use of dynamic conditions, for example, flowing the drying gas through the polymer bed. Preferably, the process of this post-treatment is carried out under dynamic conditions. Preferred equipment and process conditions for drying under dynamic conditions is disclosed by Egres, Jr. et al. US 5,391,709, in which the wet
fluoropolymer resin is deposited as a shallow bed on fabric and dried by passing heated air through the bed, preferably from top to bottom.

As used for this post-treatment, "oxygen source" means any chemical source of available oxygen. "Available oxygen" means oxygen capable of reacting as an oxidizing agent. Preferably, the oxygen source is air, oxygen rich gas, or ozone-containing gas. Oxygen rich gas" means pure oxygen and gas mixtures containing greater than about 21% oxygen by volume, preferably oxygen enriched air. Preferably, oxygen rich gas contains at least about 22% oxygen by volume. "Ozone containing gas" means pure ozone and gas mixtures containing ozone, preferably ozone enriched air. Preferably, the content of ozone in the gas mixture is at least about 10 ppm ozone by volume.

One preferred oxygen source for practice of this post-treatment is ozone containing gas, preferably ozone enriched air. Oxygen enriched air as the drying gas can be provided by employing an ozone generator which feeds ozone into the drying air as it is supplied to the drying apparatus used. Another preferred oxygen source is oxygen rich gas, preferably oxygen enriched air. Oxygen enriched air as the drying gas can be provided by feeding oxygen into the drying air as it is supplied to the drying apparatus used. Oxygen enriched air can also be provided by semipermeable polymeric membrane separation systems.

Temperatures of drying gas during drying can be in the range of about 100°C to about 300°C. Higher temperature drying gases shorten the drying time and facilitate the reduction of thermally induced discoloration. However, temperatures of the drying gas should not cause the temperature of the fluoropolymer resin to reach or exceed its melting point which will cause the fluoropolymer to fuse. For melt-processible fluoropolymers, preferred drying gas temperatures are 160°C to about 10°C below the melting point of the fluoropolymer. The end use properties of PTFE resin can be adversely affected by temperatures well below its melting point. Preferably, PTFE resin is dried using drying gas at a temperature of about 100°C to about 200°C, more preferably, about 150°C to about 180°C.
The time necessary to carry out the process of this post-treatment will vary with factors including the thickness of the wet fluoropolymer resin being dried, the temperature employed, the oxygen source employed and the rate of circulation of the drying gas. When ozone containing gas is used as the oxygen source, the reduction of thermally induced discoloration can be accomplished during normal drying times, preferably in the range of about 15 minutes to 10 hours. If desired, the post-treatment can be continued after the fluoropolymer resin is dry for the purposes of reducing thermally induced discoloration.

More than one post-treatment of fluoropolymer resin can be employed if desired.

The process of the invention is useful for fluoropolymer resin which exhibits thermally induced discoloration which may range from mild to severe. The process is especially useful for aqueous fluoropolymer dispersion which contains hydrocarbon surfactant which causes the thermally induced discoloration, preferably aqueous fluoropolymer dispersion that is polymerized in the presence of hydrocarbon surfactant.

The process of the invention is especially useful when the fluoropolymer resin prior to treatment exhibits significant thermally induced discoloration compared to equivalent commercial fluoropolymers. The invention is advantageously employed when the fluoropolymer resin has an initial thermally induced discoloration value (L^*_{i}) at least about 4 L units below the L^* value of equivalent fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant. The invention is more advantageously employed when the L^*_{i} value is at least about 5 units below the L^* value of such equivalent fluoropolymer resin, even more advantageously employed when the L^*_{i} value is at least 8 units below the L^* value of such equivalent fluoropolymer resin, still more advantageously employed when the L^*_{i} value is at least 12 units below the L^* value of such equivalent fluoropolymer resin, and most advantageously employed when the L^*_{i} value is at least 20 units below the L^* value of such equivalent fluoropolymer resin.

After the fluoropolymer resin is treated in accordance with the process of the invention, the resulting fluoropolymer resin is suitable for
end use applications appropriate for the particular type of fluoropolymer resin. Fluoropolymer resin produced by employing the present invention exhibits reduced thermally induced discoloration without detrimental effects on end use properties.

TEST METHODS

Raw Dispersion Particle Size (RDPS) of polymer particles is measured using a Zetasizer Nano-S series dynamic light scattering system manufactured by Malvern Instruments of Malvern, Worcestershire, United Kingdom. Samples for analysis are diluted to levels recommended by the manufacturer in 10x10x45 mm polystyrene disposable cuvettes using deionized water that has been rendered substantially free of particles by passing it through a sub-micron filter. The sample is placed in the Zetasizer for determination of Dv(50). Dv(50) is the median particle size based on volumetric particle size distribution, i.e. the particle size below which 50% of the volume of the population resides.

The melting point (T_m) of melt-processible fluoropolymers is measured by Differential Scanning Calorimeter (DSC) according to the procedure of ASTM D 4591-07 with the melting temperature reported being the peak temperature of the endotherm of the second melting. For PTFE homopolymer, the melting point is also determined by DSC. The unmelted PTFE homopolymer is first heated from room temperature to 380°C at a heating rate of 10°C and the melting temperature reported is the peak temperature of the endotherm on first melting.

Comonomer content is measured using a Fourier Transform Infrared (FTIR) spectrometer according to the method disclosed in U.S. Patent No. 4,743,658, col. 5, lines 9-23 with the following modifications. The film is quenched in a hydraulic press maintained at ambient conditions. The comonomer content is calculated from the ratio of the appropriate peak to the fluoropolymer thickness band at 2428 cm⁻¹ calibrated using a minimum of three other films from resins analyzed by fluorine 19 NMR to establish true comonomer content. For instance, the %HFP content is determined from the absorbance of the HFP band at 982
cm⁻¹, and the PEVE content is determined by the absorbance of the PEVE peak at 1090 cm⁻¹.

Melt flow rate (MFR) of the melt-processible fluoropolymers are measured according to ASTM D 1238-10, modified as follows: The cylinder, orifice and piston tip are made of a corrosion-resistant alloy, Haynes Stellite 19, made by Haynes Stellite Co. The 5.0 g sample is charged to the 9.53 mm (0.375 inch) inside diameter cylinder, which is maintained at 372°C±1 °C, such as disclosed in ASTM D 2116-07 for FEP and ASTM D 3307-10 for PFA. Five minutes after the sample is charged to the cylinder, it is extruded through a 2.10 mm (0.0825 inch) diameter, 8.00 mm (0.315 inch) long square-edge orifice under a load (piston plus weight) of 5000 grams. Other fluoropolymers are measured according to ASTM D 1238-10 at the conditions which are standard for the specific polymer.

Measurement of Thermally Induced Discoloration

1) Color Determination

The L* value of fluoropolymer resin samples is determined using the CIELAB color scale, details of which are published in CIE Publication 15.2 (1986). CIE L* a* b* (CIELAB) is the color space specified by the International Commission on Illumination (French Commission Internationale de l'éclairage). It describes all the colors visible to the human eye. The three coordinates of CIELAB represent the lightness of the color (L*), its position between red/magenta and green (a*), and its position between yellow and blue (b*).

2) PTFE Sample Preparation and Measurement

The following procedure is used to characterize the thermally induced discoloration of PTFE polymers including modified PTFE polymers. 4.0 gram chips of compressed PTFE powder are formed using a Carver stainless steel pellet mold (part # 2090-0) and a Carver manual hydraulic press (model 4350), both manufactured by Carver, Inc. of Wabash, Indiana. In the bottom of the mold assembly is placed a 29mm diameter disk of 0.1 mm thick Mylar film. 4 grams of dried PTFE powder are spread uniformly within the mold opening poured into the mold and distributed evenly. A second 29mm disk is placed on top of the PTFE and
the top plunger is placed in the assembly. The mold assembly is placed in the press and pressure is gradually applied until 8.27 MPa (1200 psi) is attained. The pressure is held for 30 seconds and then released. The chip mold is removed from the press and the chip is removed from the mold. Mylar films are peeled from the chip before subsequent sintering. Typically for each polymer sample, two chips are molded.

An electric furnace is heated is heated to 385°C. Chips to be sintered are placed in 4 inch x 5 inch (10.2 cm x 12.7 cm) rectangular aluminum trays which are 2 inches (5.1 cm) in depth. The trays are placed in the furnace for 10 minutes after which they are removed to ambient temperature for cooling.

4 gm chips processed as described above are evaluated for color using a HunterLab ColorQuest XE made by Hunter Associates Laboratory, Inc. of Reston, Virginia. The ColorQuest XE sensor is standardized with the following settings, Mode: RSIN, Area View: Large and Port Size: 2.54 cm. The instrument is used to determine the L* value of fluoropolymer resin samples using the CIELAB color scale.

For testing, the instrument is configured to use CIELAB scale with D65 Illuminant and 10° Observer. The L* value reported by this colorimeter is used to represent developed color with L* of 100 indicating a perfect reflecting diffuser (white) and L* of 0 representing black.

An equivalent fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant is used as the standard for color measurements. For the Examples in this application illustrating the invention for PTFE fluoropolymer, an equivalent commercial quality PTFE product made using ammonium perfluorooctanoate fluorosurfactant as the dispersion polymerization surfactant is TEFLOW® 601 A. Using the above measurement process, the resulting color measurement for TEFLOW® 601 A is L* std-PTFE = 87.3

3) Melt-Processible Fluoropolymers Sample Preparation and Measurement

The following procedure is used to characterize discoloration of melt-processible fluoropolymers, such as FEP and PFA, upon heating. A 10.16 cm (4.00 inch) by 10.16 cm (4.00 inch) opening is cut in the middle...
of a 20.32 cm (8.00 inch) by 20.32 cm (8.00 inch) by 0.254 mm (0.010 inch) thick metal sheet to form a chase. The chase is placed on a 20.32 cm (8.00 inch) by 20.32 cm (8.00 inch) by 1.59 mm (1/16 inch) thick molding plate and covered with Kapton® film that is slightly larger than the chase. The polymer sample is prepared by reducing size, if necessary, to no larger than 1 mm thick and drying. 6.00 grams of polymer sample is spread uniformly within the mold opening. A second piece of Kapton® film that is slightly larger than the chase is placed on top of the sample and a second molding plate, which has the same dimensions as the first, is placed on top of the Kapton® film to form a mold assembly. The mold assembly is placed in a P-H-I 20 ton hot press model number SP-21 OC-X4A-21 manufactured by Pasadena Hydraulics Incorporated of El Monte, California that is set at 350°C. The hot press is closed so the plates are just contacting the mold assembly and held for 5 minutes. The pressure on the hot press is then increased to 34.5 MPa (5,000 psi) and held for an additional 1 minute. The pressure on the hot press is then increased from 34.5 MPa (5,000 psi) to 137.9 MPa (20,000 psi) over the time span of 10 seconds and held for an additional 50 seconds after reaching 137.9 MPa (20,000 psi). The mold assembly is removed from the hot press, placed between the blocks of a P-H-I 20 ton hot press model number P-210H manufactured by Pasadena Hydraulics Incorporated that is maintained at ambient temperature, the pressure is increased to 137.9 MPa (20,000 psi), and the mold assembly is left in place for 5 minutes to cool. The mold assembly is then removed from the ambient temperature press, and the sample film is removed from the mold assembly. Bubble-free areas of the sample film are selected and 2.86 cm (1-1/8 inch) circles are stamped out using a 1-1/8 inch arch punch manufactured by C. S. Osborne and Company of Harrison, New Jersey. Six of the film circles, each of which has a nominal thickness of 0.254 mm (0.010 inch) and nominal weight of 0.37 gram are assembled on top of each other to create a stack with a combined weight of 2.2 +/- 0.1 gram.

The film stack is placed in a HunterLab ColorFlex spectrophotometer made by Hunter Associates Laboratory, Inc. of Reston,
Virginia, and the L^* is measured using a 2.54 cm (1.00 inch) aperture and
the CIELAB scale with D65 Illuminant and 10° Observer.

An equivalent fluoropolymer resin of commercial quality
manufactured using ammonium perfluorooctanoate fluorosurfactant is
used as the standard for color measurements. For the Examples in this
application illustrating the invention for FEP fluoropolymer resin, an
equivalent commercial quality FEP resin made using ammonium
perfluorooctanoate fluorosurfactant as the dispersion polymerization
surfactant is DuPont TEFLON® 6100 FEP. Using the above
measurement process, the resulting color measurement for DuPont
TEFLON® 6100 FEP is $L^*_{\text{std,FEP}} = 79.7$.

4) $\% \text{ change in } L^*$ with respect to the standard is used to characterize the
change in thermally induced discoloration of the fluoropolymer resin
after treatment as defined by the following equation

$$\% \text{ change in } L^* = \frac{(L^*_{t} - L^*_{i})}{(L^*_{\text{std}} - L^*_{i})} \times 100$$

$L^*_{i} = \text{Initial thermally induced discoloration value, the measured value for } L$
on the CIELAB scale for fluoropolymer resins prior to treatment to reduce
thermally induced discoloration measured using the disclosed test method
for the type of fluoropolymer.

$L^*_{t} = \text{Treated thermally induced discoloration value, the measured value}
for } L \text{ on the CIELAB scale for fluoropolymer resins after treatment to}
reduce thermally induced discoloration measured using the disclosed test
method for the type of fluoropolymer.

Standard for PTFE: measured $L^*_{\text{std,PTFE}} = 87.3$
Standard for FEP: measured $L^*_{\text{std,FEP}} = 79.7$
EXAMPLES

Apparatus for Drying of PTFE Polymer

A laboratory dryer for simulating commercially dried PTFE Fine Powder is constructed as follows: A length of 4 inch (10.16 cm) stainless steel pipe is threaded on one end and affixed with a standard stainless steel pipe cap. In the center of the pipe cap is drilled a 1.75 inch (4.45 cm) hole through which heat and air source is introduced. A standard 4 inch (10.16 cm) pipe coupling is sawed in half along the radial axis and the sawed end of one piece is butt welded to the end of the pipe, opposite the pipe cap. Overall length of this assembly is approximately 30 inches (76.2 cm) and the assembly is mounted in the vertical position with the pipe cap at the top. For addition of a control thermocouple, the 4 inch pipe assembly is drilled and tapped for a 1/4 inch (6.35 mm) pipe fitting at a position 1.75 inch (4.45 cm) above the bottom of the assembly. A 1/4 inch (6.35 mm) male pipe thread to 1/8 inch (3.175 mm) Swagelok fitting is threaded into the assembly and drilled through to allow the tip of a 1/8 inch (3.175 mm) J-type thermocouple to be extended through the fitting and held in place at the pipe's radial center. For addition of a other gases, the 4 inch (10.16 cm) pipe assembly is drilled and tapped for a 1/4 inch (6.35 mm) pipe fitting at a position 180° from the thermocouple port and higher at 3.75 inch (9.5 cm) above the bottom of the assembly. A 1/4 inch (6.35 mm) male pipe thread to 1/4 inch (6.35 mm) Swagelok fitting is threaded into the assembly and drilled through to allow the open end of a 1/4 inch (6.35 mm) stainless steel tube to be extended through the fitting and held in place at the pipe's radial center. The entire pipe assembly is wrapped with heat resistant insulation that can easily withstand 200°C continuous duty.

The dryer bed assembly for supporting polymer is constructed as follows: A 4 inch (10.16 cm) stainless steel pipe nipple is sawed in half along the radial axis and onto the sawed end of one piece is tack welded stainless steel screen with 1.3 mm wire size and 2.1 mm square opening. Filter media of polyether ether ketone (PEEK) or Nylon 6,6 fabric is cut into a 4 inch (10.16 cm) disk and placed on the screen base. A 4 inch
(10.1 6 cm) disk of stainless steel screen is placed on top of the filter fabric to hold it securely in place. Fabrics used include a Nylon 6,6 fabric and PEEK fabric having the characteristics described in US Patent 5,391,709. In operation, approximately 1/4 inch (6.35 mm) of polymer is placed uniformly across the filter bed and the dryer bed assembly is screwed into the bottom of the pipe assembly.

The heat and air source for this drying apparatus is a Master heat gun, model HG-751 B, manufactured by Master Appliance Corp. of Racine, WI. The end of this heat gun can be snuggly introduced through and supported by the hole in the cap at the top of the pipe assembly. Control of air flow is managed by adjusting a damper on the air intake of the heat gun. Control of temperature is maintained by an ECS Model 800-377 controller, manufactured by Electronic Control Systems, Inc of Fairmont WV. Adaptation of the controller to the heat gun is made as follows: The double pole power switch of the heat gun is removed. All power to the heat gun is routed through the ECS controller. The blower power is supplied directly from the ECS controller on/off switch. The heater circuit is connected directly to the ECS controller output. The thermocouple on the pipe assembly which is positioned above the polymer bed serves as the controller measurement device.

The apparatus described above is typically used to dry PTFE Fine Powder at 170°C for 1 hour and can easily maintain that temperature to within ± 1°C.

25 **Apparatus for Drying of FEP Polymer**

Equipment similar in design to that described in **Apparatus for Drying of PTFE Polymer** is used except the scale is increased so the dryer bed assembly is 8 inch (20.32 cm) in diameter and the stainless steel screen is a USA standard testing sieve number 20 mesh. Unless otherwise noted, the apparatus is used to dry FEP for two hours with 180°C air and can easily maintain that temperature to within ± 1°C. Typical polymer loading is 18 grams dry weight of polymer.

A secondary dryer bed assembly is produced by the addition of three evenly spaced nozzles with a centerline 3.0 cm above the polymer
bed. The nozzles can be used to introduce additional gasses to the drying air. One of many possible configurations is to connect an AQUA-6 portable ozone generator manufactured by A2Z Ozone of Louisville, Kentucky to each of the nozzles.

10 watt UVC Light Source

For experiments using 10 watt UVC light sources, the 254nm lamps are obtained from 10 watt Pondmaster submersible UV clarifier/sterilizer units manufactured by Danner Manufacturing, Inc. of Islandia, NY. These units, commonly used in the aquaculture industry, consist of 4 major components: (1) A ballast which provides the proper power supply. (2) A low pressure mercury vapor lamp which emits UVC radiation upon activation. (3) A quartz tube which protects the lamp and electronics from water damage while allowing short wavelength UV light to pass. (4) A dark plastic outer housing which is threaded at one end so as to screw onto the ballast and provide a seal around the quartz tube, thereby protecting lamp and electronics from water penetration. The housing is also designed to allow water to flow from one end of the protected lamp to the other end while preventing hazardous UV light from escaping the housing. For purposes of this experimentation, the plastic housing is removed and the threaded end is removed by saw. The treader adapter is then screwed back into the ballast, thereby sealing the quartz tube to the ballast but eliminating the black plastic UV shield. In this way the light source is made useful for batch (ie. non flow through) experiments.

Light intensity is measured with a meter that has the capability of reading up to 20.0 milliwatts/cm\(^2\) (mW/cm\(^2\)) by positioning three sensors (245nm UVC, 310nm UVB and 365nm UVA) four inches from the quartz protective tube. Measurements: UVC is 1.06 mW/cm\(^2\), UVB is 33.7 microwatt/cm\(^2\) and UVA is 19.2 microwatt/cm\(^2\).

450 watt Hanovia Lamp Light Source

For experiments using a 450 watt Hanovia lamp, a Model PC451 .050 450 watt medium pressure mercury vapor lamp, manufactured by Hanovia, Inc. of Fairfield, New Jersey is used with the following setup:
An Ace Glass Incorporated, Model 6386-20, 2000 ml jacketed filter reactor body is fitted with an Ace Glass, Inc. Model 5846-60 bottom PTFE plug in which a recess is machined to support a 48 mm diameter, jacketed immersion photowell. The photowell is connected to a circulating cooling bath of sufficient capacity to keep the coolant temperature exiting the photowell below 40°C. The lamp is operated with an appropriately matched power supply such as the Ace Glass Model No. 7830-58. A quartz photowell (Ace Glass Part # 7874-23) or a borosilicate photowell (Ace Glass Part # 7875-30) may be used although borosilicate may decrease effectiveness by filtering some ultraviolet light in the UVC and UVB bands.

Light intensity is measured with a meter (UVP Model UVX Radiometer) that has the capability of reading up to 20.0 milliwatts/cm² (mW/cm²) by positioning three sensors (245nm UVC (UVP Model UVX-25), 310nm UVB (UVP Model UVX-31) and 365nm UVA (UVP Model UVX36)) 3.5 inches from the borosilicate well. When the Hanovia 450 watt lamp is fully heated up, the UVC reads 10.1 mW/cm², the UVB reads 9.37 mW/cm² and the UVA reads 17.0 mW/cm².

When similar measurement is made with the quartz photowell, even before the Hanovia 450 watt lamp is fully heated up, the light intensity is so strong as to reach the maximum measurement capability of the light meter used.

SECTION A EXAMPLES: FLUOROPOLYMER DISPERSION

TREATMENT EMPLOYING ULTRAVIOLET LIGHT AND OXYGEN SOURCE TO REDUCE FLUOROPOLYMER RESIN DISCOLORATION

Fluoropolymer Preparation

PTFE-1 Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.12 gm of Pluronic® 31R1.
The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressurized with nitrogen and vented 2 more times. Autoclave agitator speed is set at 65 RPM. 20 ml of initiator solution containing 1.0 gm of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 11.67 gm of 70% active disuccinic acid peroxide (DSP), 0.167 gm of APS and 488.3 gm of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 100 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 5733 ppm of SDS hydrocarbon stabilizing surfactant and 216 ppm of iron sulfate heptahydrate is pumped to the autoclave at a rate of 4 ml/min until 185 ml of surfactant solution has been added. After approximately 70 minutes since kickoff, 1500 gm of TFE has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is cooled and discharged. Solids content of the dispersion is 18-19 wt%. Dv(50) raw dispersion particle size (RDPS) is 208 nm.

PTFE-2: Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water and 250 gm of wax. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.085 gm of Pluronic® 31R1 and 0.2 gm of sodium sulfite. The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressurized with nitrogen and vented 2 more times. Autoclave agitator speed is set at 65 RPM. 70 ml of initiator solution containing 0.5
gm of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 16.67 gm of 70% active disuccinic acid peroxide (DSP), 0.167 gm of APS and 488.3 gm of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 300 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 0.8 wt% of SDS hydrocarbon stabilizing surfactant is pumped to the autoclave at a rate of 2 ml/min until a total of 2200 gm of TFE has been fed since kickoff. After approximately 150 minutes since kickoff, 2200 gm of TFE and 270 ml of stabilizing surfactant solution has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is discharged. Dispersion thus obtained contains 26 - 27 wt% PTFE polymer. Dv(50) raw dispersion particle size (RDPS) is 210 nm.

Isolation of PTFE Dispersion

To a clean glass resin kettle having internal dimensions 17 cm deep and 13 cm in diameter is charged 600 gm of 5 wt% dispersion. The dispersion is agitated with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The following sequence is executed until the dispersion has completely coagulated as indicated by the separation of white PTFE polymer from a clear aqueous phase: At time zero, agitation speed is set at 265 revolutions per minute (RPM) and 20 ml of a 20 wt% aqueous solution of ammonium carbonate is slowly added to the resin kettle. At 1 minute from time zero, the agitator speed is raised to 565 RPM and maintained until the dispersion is completely coagulated. Once coagulated, the clear aqueous phase is removed by suction and 600 ml of cold (approximately 6°C), deionized water is added.
The slurry is agitated at 240 RPM for 5 minutes until agitation is halted and the wash water removed from the resin kettle. This washing procedure is repeated two more times with the final wash water being separated from the polymer by vacuum filtration as indicated below.

A ceramic filtration funnel (10 cm internal diameter) is placed on a vacuum flask with rubber sealing surface. A 30 cm by 30 cm lint free nylon filter cloth is placed in the filtration funnel and the washed polymer and water is poured into the funnel. A vacuum is pulled on the vacuum flask and once the wash water is removed, 1200 ml of additional deionized water is poured over the polymer and pulled through the polymer into the vacuum flask. Polymer thus coagulated, washed and isolated is removed from the filter cloth for further processing.

FEP: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80°C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psi (87.6 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (3.07 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the
reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction. After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C. Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.
Isolation of FEP Dispersion

The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine.

Thermally Induced Discoloration

Dried polymer is characterized as described above in the Test Methods - Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples.

Comparative Example 1: PTFE with Hydrocarbon Stabilizing Surfactant No Treatment

A quantity of PTFE-1 Dispersion as described above is diluted to 5 wt% solids with deionized water. The dispersion is coagulated and isolated via the method described above (Isolation of PTFE Dispersion). Polymer thus obtained is then dried at 170°C for 1 hour using the PTFE drier described above (Apparatus for Drying of PTFE Polymer). Dried polymer is characterized for thermally induced discoloration as described in the Test Methods Measurement of Thermally Induced Discoloration for PTFE. Resulting value for L* is 43.9, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 1.

Comparative Example 2 PTFE- UVC alone for 3 Hours

To a glass beaker is added 153 gm of PTFE-1 dispersion as described above having 19.61 % solids. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1800 grams of dispersion thus prepared is added to a 2000 ml jacketed resin kettle. The dispersion is heated to 40°C with gentle agitation. Two 10 watt 254nm UV lights are immersed in the dispersion. The lights are energized for 3 hours. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for thermally induced discoloration. L*
obtained for this polymer is 36.7 thereby giving a negative % change in L’ of -16.6%. The measured color is shown in Table 1.

Example 1 - PTFE UVC, Ozone Injection, 3 Hours

To a glass beaker is added 153 gm of PTFE-1 dispersion as described above having 19.6% solids. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1800 grams of dispersion thus prepared is added to a 2000 ml jacketed resin kettle. The dispersion is heated to 40°C with agitation aided by continuous injection with ozone enriched air through two sintered glass, fine bubble, injection tubes. Ozone thus injected is provided by a Clearwater Technologies, Inc. Model CD-10 ozone generator which is operated at maximum power with an air feed rate of 100 cc/min. Two 10 watt 254nm UV lights as described in 10 watt UVC Light Source are immersed in the dispersion. The lights are energized for 3 hours. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for thermally induced discoloration. L’ obtained for this polymer is 62.4 with a % change in L’ of 42.6% indicating a much improved color after treatment.

The measured color is shown in Table 1.

Example 2 - PTFE UVC, O₂ Injection, 3 Hours

Example 1 is repeated except pure oxygen is injected to the dispersion during exposure to UVC light. The resulting L’ is 60.1 providing a % change in L’ of 37.3%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 3 - PTFE UVC, Air Injection, 3 Hours

Example 1 is repeated except air is injected to the dispersion during exposure to UVC light. The resulting L’ is 54.7, providing a % change in L’ of 24.9%, indicating a much improved color after treatment. The measured color is shown in Table 1.
Example 4 - PTFE, UVC, 1 wt% H₂O₂ on polymer, O₂ Injection, 3 Hours, 60°C

To a glass beaker is added 155 gm of PTFE-1 as described above having 19.4% solids and 1.0 gm of 30 wt% hydrogen peroxide. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1800 grams of dispersion thus prepared is added to a 2000 ml jacketed resin kettle. The dispersion is heated to 60°C with agitation aided by continuous injection with 100 cc/min of oxygen through two sintered glass, fine bubble, injection tubes. Two 10 watt 254nm UV lights as described in 10 watt UVC Light Source are immersed in the dispersion. The lights are energized for 3 hours. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for thermally induced discoloration. L* obtained for this polymer is 75.9 providing a % change in L* of 73.7%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 5 - PTFE, UVC, 1 wt% H₂O₂ on polymer, O₂ Injection, 3 Hours, 40°C

Example 4 is repeated except the dispersion is heated to 40°C. The resulting L* is 78.1, providing % change in L* of 78.8%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 6 - PTFE, UVC, 1 wt% H₂O₂ on polymer, No Injection. 3 Hours, 40°C

Example 5 is repeated except no gas is injected to the dispersion during exposure to UVC light. The resulting L* is 75.6, % change in L* of 73.0%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 7 - PTFE, Hanovia 450watt, 1 wt% H₂O₂ on poly, Air Injection, 30min, borosilicate photowell
To a glass beaker is added 153 gm of PTFE-1 dispersion having 19.6% solids. 1.0 gm of 30 wt% hydrogen peroxide is added to the dispersion. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1200 grams of dispersion thus prepared is added to a 2000 ml reactor affixed with a borosilicate photowell described above in the description of the 450 watt Hanovia Lamp Light Source.

The dispersion is agitated by continuous injection with air through two sintered glass, fine bubble, injection tubes. A 450 watt Hanovia lamp is placed in the photowell and is energized for 30 minutes. After treatment, the resulting dispersion temperature has risen from ambient temperature to 33°C. The dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers, and finally evaluated for thermally induced discoloration. L* obtained for this polymer is 51.8 thereby giving a % change in L* of 18.2%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 8 - PTFE, Hanovia 450watt, 1wt% H₂O₂ on poly, Air Injection, 30min, quartz photowell

Example 7 is repeated except that a quartz photowell as described above is used rather than a borosilicate photowell. The resulting L* is 79.5, providing a % change in L* of 82.0%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 9 - PTFE, Hanovia 450watt, 1wt% H₂O₂ on poly, Air Injection, 30min, quartz photowell, PTFE

To a glass beaker is added 113.2 gm of PTFE-2 dispersion having 26.5% solids. 1.0 gm of 30 wt% hydrogen peroxide is added to the dispersion. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1200 grams of dispersion thus prepared is added to a 2000 ml reactor affixed with a quartz photowell described above in the description of the 450 watt Hanovia Lamp Light Source. The dispersion is agitated by continuous injection with air through
two sintered glass, fine bubble, injection tubes. A 450 watt Hanovia lamp is placed in the photowell and is energized for 30 minutes. After treatment, the resulting dispersion temperature has risen from ambient temperature to 37°C. The dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers, and finally evaluated for discoloration. \(L^* \) obtained for this polymer is 60.4 providing a % change in \(L^* \) of 38.0%, indicating a much improved color after treatment. The measured color is shown in Table 1.

<table>
<thead>
<tr>
<th>Examples</th>
<th>(L^*)</th>
<th>% change of (L^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 1 (no treatment)</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>Comparative Example 2</td>
<td>36.7</td>
<td>-16.6%</td>
</tr>
<tr>
<td>Example 1</td>
<td>62.4</td>
<td>42.6%</td>
</tr>
<tr>
<td>Example 2</td>
<td>60.1</td>
<td>37.3%</td>
</tr>
<tr>
<td>Example 3</td>
<td>54.7</td>
<td>24.9%</td>
</tr>
<tr>
<td>Example 4</td>
<td>75.9</td>
<td>73.7%</td>
</tr>
<tr>
<td>Example 5</td>
<td>78.1</td>
<td>78.8%</td>
</tr>
<tr>
<td>Example 6</td>
<td>75.6</td>
<td>73.0%</td>
</tr>
<tr>
<td>Example 7</td>
<td>51.8</td>
<td>18.2%</td>
</tr>
<tr>
<td>Example 8</td>
<td>79.5</td>
<td>82.0%</td>
</tr>
<tr>
<td>Example 9</td>
<td>60.4</td>
<td>38.0%</td>
</tr>
</tbody>
</table>

Comparative Example 3 - FEP with Hydrocarbon Stabilizing Surfactant - No Treatment

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine. The solids
are dried for 2 hours with 180°C air in the equipment described under "Apparatus for Drying of FEP Polymer". The dried powder is molded to produce color films as described in Test Methods Measurement of Thermally Induced Discoloration for Melt-Processible Fluoropolymers. Resulting value for L\(^+\) is 44.8, indicating discoloration of the polymer upon thermal processing of untreated polymer. The measured color is shown in Table 2.

Example 10 FEP - Treatment with UVC + Ozone Injection

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water and preheated to 40 °C in a water bath. A fresh FeSO\(_4\) solution is prepared by diluting 0.01 50 g of FeSO\(_4\)-7H\(_2\)O to 100 ml using deaerated deionized water. 1200 ml of the FEP dispersion, 4 ml of the FeSO\(_4\) solution, and 2 ml of 30 wt % H\(_2\)O\(_2\) are added to a 2000 ml jacketed glass reactor with internal diameter of 10.4 cm, which has 40 °C water circulating through the reactor jacket, and the contents are mixed. Two injection tubes that each have a 12 mm diameter by 24 mm long, fine-bubble, fritted-glass cylinder produced by LabGlass as part number 8680-130 are placed in the reactor, and each is connected to an AQUA-6 portable ozone generator manufactured by A2Z Ozone of Louisville, Kentucky. The ozone generators are turned on and used to bubble 1.18 standard L/min (2.5 standard ft\(^3\)/hr) of ozone enriched air through the dispersion. The dispersion is allowed to equilibrate for 5 minutes. A 10 watt UVC light as described in 10 watt UVC Light Source is placed in the reactor. The UVC lamp is turned on to illuminate the dispersion while injecting ozone enriched air and controlling temperature at 40 °C. After three hours, the lamp is extinguished and the injection gas is stopped. The dispersion is coagulated, filtered, dried and molded as described in Comparative Example 3. L\(^+\) obtained for this polymer is 58.4 with a % change in L\(^+\) of 39.0% indicating a much improved color after treatment. The measured color is shown in Table 2.

Example 11 - Treatment with UVC + Oxygen Injection.
Treatment is conducted utilizing the same conditions as Example 9 except 1.0 standard L/min of oxygen is bubbled through an injection tube with a 25 mm diameter fine-bubble, fritted-glass disc injection tube produced by Ace Glass as part number 7196-20 in place of ozone. L* obtained for this polymer is 55.2 with a % change in L* of 29.8% indicating a much improved color after treatment. The measured color is shown in Table 2.

Table 2 - FEP

<table>
<thead>
<tr>
<th>Examples</th>
<th>L*</th>
<th>% change of L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 3 (no treatment)</td>
<td>44.8</td>
<td></td>
</tr>
<tr>
<td>Example 10</td>
<td>58.4</td>
<td>39.0%</td>
</tr>
<tr>
<td>Example 11</td>
<td>55.2</td>
<td>29.8%</td>
</tr>
</tbody>
</table>

SECTION B EXAMPLES: FLUOROPOLYMER DISPERSION TREATMENT EMPLOYING LIGHT AND OXYGEN SOURCE IN PRESENCE OF PHOTOCATALYST TO REDUCE FLUOROPOLYMER RESIN DISCOLORATION

Fluoropolymer Preparation

PTFE-1 Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.12 gm of Pluronic® 31R1. The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressured with nitrogen and vented 2 more times. Autoclave agitator is set at 65 RPM. 20 ml of initiator solution containing 1.0 gm of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml
of an initiator solution composed of 11.67 g of 70% active disuccinic acid peroxide (DSP), 0.167 g of APS and 488.3 g of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 100 g of TFE has been fed since kickoff, an aqueous surfactant solution containing 5733 ppm of SDS hydrocarbon stabilizing surfactant and 216 ppm of iron sulfate heptahydrate is pumped to the autoclave at a rate of 4 ml/min until 185 ml of surfactant solution has been added. After approximately 70 minutes since kickoff, 1500 g of TFE has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is cooled and discharged. Solids content of the dispersion is 18-19 wt%. Dv(50) raw dispersion particle size (RDPS) is 208 nm.

PTFE-2: Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 g of deionized, deaerated water and 250 g of wax. To the autoclave is added an additional 500 g of deionized, deaerated water which contains 0.085 g of Pluronic® 31R1 and 0.2 g of sodium sulfite. The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressured with nitrogen and vented 2 more times. Autoclave agitator is set at 65 RPM. 70 ml of initiator solution containing 0.5 g of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 16.67 g of 70% active disuccinic acid peroxide (DSP), 0.167 g of APS and 488.3 g of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of
initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 300 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 0.8 wt% of SDS hydrocarbon stabilizing surfactant is pumped to the autoclave at a rate of 2 ml/min until a total of 2200 gm of TFE has been fed since kickoff. After approximately 150 minutes since kickoff, 2200 gm of TFE and 270 ml of stabilizing surfactant solution has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is discharged. Dispersion thus obtained contains 26 - 27 wt% PTFE polymer. Dv(50) raw dispersion particle size (RDPS) is 210 nm.

Isolation of PTFE Dispersion

To a clean glass resin kettle having internal dimensions 17 cm deep and 13 cm in diameter is charged 600 gm of 5 wt% dispersion. The dispersion is agitated with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The following sequence is executed until the dispersion has completely coagulated as indicated by the separation of white PTFE polymer from a clear aqueous phase: At time zero, agitation speed is set at 265 revolutions per minute (RPM) and 20 ml of a 20 wt% aqueous solution of ammonium carbonate is slowly added to the resin kettle. At 1 minute from time zero, the agitator speed is raised to 565 RPM and maintained until the dispersion is completely coagulated. Once coagulated, the clear aqueous phase is removed by suction and 600 ml of cold (approximately 6°C), deionized water is added. The slurry is agitated at 240 RPM for 5 minutes until agitation is halted and the wash water removed from the resin kettle. This washing procedure is repeated two more times with the final wash water being separated from the polymer by vacuum filtration as indicated below.

A ceramic filtration funnel (10 cm internal diameter) is placed on a vacuum flask with rubber sealing surface. A 30 cm by 30 cm lint free nylon filter cloth is placed in the filtration funnel and the washed polymer and water is poured into the funnel. A vacuum is pulled on the vacuum
flask and once the wash water is removed, 1200 ml of additional deionized water is poured over the polymer and pulled through the polymer into the vacuum flask. Polymer thus coagulated, washed and isolated is removed from the filter cloth for further processing.

FEP: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80°C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psi (87.6 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (3.07 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff.

Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after
kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.

Isolation of FEP Dispersion

The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine.
Thermally Induced Discoloration

Dried polymer is characterized as described above in the Test Methods - Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples.

Comparative Example 1: PTFE with Hydrocarbon Stabilizing Surfactant

No Treatment

A quantity of PTFE-1 Dispersion as described above is diluted to 5 wt% solids with deionized water. The dispersion is coagulated and isolated via the method described above (Isolation of Treated PTFE Dispersion). Polymer thus obtained is then dried at 170°C for 1 hour using the PTFE drier described above (Apparatus for Drying of PTFE Polymer). Dried polymer is characterized for thermally induced discoloration as described in the Test Methods, Measurement of Thermally Induced Discoloration for PTFE. Resulting value for L^* is 43.9, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 1.

Example 1: PTFE, UVC, H_2O_2, TiO_2, O_2, Injection, 1 Hour, 60°C

To a glass beaker is added 153 gm of PTFE-1 having 19.6% solids. 1.0 gm of 30 wt% hydrogen peroxide [1 wt% H_2O_2 on polymer] and 3.0 gm of 0.05 wt% aqueous dispersion of Degussa P25 TiO2, Kontrollnummer 1263, is added to the beaker. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1800 grams of dispersion thus prepared is added to a 2000 ml jacketed resin kettle. The dispersion is heated to 30°C with agitation aided by continuous injection with 100 cc/min of oxygen through two sintered glass, fine bubble, injection tubes. Two 10 watt 254nm UV lights are immersed in the dispersion. The lights are energized for 1 hour. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for thermally induced discoloration. L^* obtained for this polymer is 55.2 with a % change in L^* of 26.0%, indicating improved color after treatment. The measured color is shown in Table 1.
Example 2: PTFE, Hanovia 450 watt, H₂O₂, ZnO, Air Injection, 30 min, borosilicate photowell.

To a glass beaker is added 113.2 gm of PTFE-2 having 26.5% solids. 1.0 gm of 30 wt% hydrogen peroxide [1 wt% H₂O₂ on polymer] is added to the dispersion. 3.0 gm of a 0.05 wt% aqueous dispersion of Zinc Oxide nano powder (-30 nm), Product #30N-0801, available from Inframat Advanced Materials, is also added to the dispersion. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1200 grams of dispersion thus prepared is added to a 2000 ml reactor affixed with a quartz photowell described above (Description of 450 watt Hanovia Lamp Experimental Setup). The dispersion is agitated by continuous injection with air through two sintered glass, fine bubble, injection tubes. A 450 watt Hanovia quartz halogen lamp is placed in the photowell and is energized for 30 minutes. After treatment, the resulting dispersion temperature has risen from ambient temperature to 37°C. The dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers, and finally evaluated for discoloration. The resulting polymer exhibits a L* of 66.9, with a % change in L* of 53.0%, indicating much improved color after treatment. The measured color is shown in Table 1.

<table>
<thead>
<tr>
<th>Examples</th>
<th>L*</th>
<th>% change of L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 1 (no treatment)</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td>55.2</td>
<td>26.0%</td>
</tr>
<tr>
<td>Example 2</td>
<td>66.9</td>
<td>53.0%</td>
</tr>
</tbody>
</table>

Comparative Example 2: FEP - No Treatment

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1SHS.
manufactured by The Strainrite Companies of Auburn, Maine. The solids are dried for 2 hours with 180°C air in the equipment described under Apparatus for Drying of FEP Polymer. The dried powder is molded to produce color films as described in Test Methods Measurement of Thermally Induced Discoloration for Melt-Processible Fluoropolymers. Resulting value for L’ is 44.8, indicating discoloration of the polymer upon thermal processing of untreated polymer. The measured color is shown in Table 2.

Example 3: FEP, UVC, TiO₂, H₂O₂, O₂ Injection, 3 Hours, 40°C

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water and preheated to 40 °C in a water bath. A TiO₂ solution is produced by sonicating 0.0030 g of Degussa P-25 TiO₂, lot P1S1-18C1, diluted to 6 ml with deionized water. 1200 ml of the FEP dispersion, all 6 ml of the TiO₂ solution, and 2 ml of 30 wt % H₂O₂ [0.97 wt% H₂O₂ to polymer] are added to a 2000 ml jacketed glass reactor with internal diameter of 10.4 cm, which has 40 °C water circulating through the reactor jacket, and the contents are mixed. A injection tube with a 25 mm diameter fine-bubble, fritted-glass disc injection tube produced by Ace Glass as part number 7196-20 is placed in the reactor, and 1.0 standard L/min of oxygen is bubbled through the dispersion. The dispersion is allowed to equilibrate for 5 minutes. A 10 watt UVC light as described in 10 watt UVC Light Source is placed in the reactor. The UVC lamp is turned on to illuminate the dispersion while injection with oxygen and controlling temperature at 40 °C. After three hours, the lamp is extinguished and the injection gas is stopped. The dispersion is coagulated, filtered, dried and molded as described in Comparative Example 2. L’ obtained for this polymer is 50.6 with a % change in L’ of 16.6, indicating a much improved color after treatment.

The measured color is shown in Table 2.

Example 4: FEP, UVC, TiO₂, H₂O₂, O₂ Injection, 6 Hours, 25°C
Treatment is conducted utilizing the same conditions as Example 3 except the circulating water bath temperature is reduced to 25 °C and the illumination time is increased to six hours. L* obtained for this polymer is 62.5 with a % change in L* of 50.7, indicating a much improved color after treatment. The measured color is shown in Table 2.

Example 5: FEP, UVC, TiO2, H2O2, O2 Injection, 3 Hours, 25°C

Treatment is conducted utilizing the same conditions as Example 4 except the illumination time is decreased to three hours and Degussa P-25 TiO2, Kontrollnummer 1263 is used. L* obtained for this polymer is 63.3 with a % change in L* of 53.0, indicating a much improved color after treatment. The measured color is shown in Table 2.

Table 2 - FEP

<table>
<thead>
<tr>
<th>Examples</th>
<th>L*</th>
<th>% change in L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 2</td>
<td>44.8</td>
<td></td>
</tr>
<tr>
<td>Example 3</td>
<td>50.6</td>
<td>16.6%</td>
</tr>
<tr>
<td>Example 4</td>
<td>62.5</td>
<td>50.7%</td>
</tr>
<tr>
<td>Example 5</td>
<td>63.3</td>
<td>53.0%</td>
</tr>
</tbody>
</table>

SECTION C EXAMPLES: FLUOROPOLYMER DISPERSION TREATMENT EMPLOYING HYDROGEN PEROXIDE TO REDUCE FLUOROPOLYMER RESIN DISCOLORATION

Fluoropolymer Preparation

FEP: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm.
while cooling to 80°C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psi (87.6 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (3.07 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff.

Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45.176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed,
PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.

Isolation of FEP Dispersion

The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine.

Thermally Induced Discoloration

Dried polymer is characterized as described above in the Test Methods - Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples.

Comparative Example 1 - FEP with Hydrocarbon Stabilizing Surfactant - No Treatment

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine. The solids
are dried for 16 hours in a circulating air oven set at 150 °C to produce a dry powder. The dried powder is molded to produce color films as described in Test Methods Measurement of Thermally Induced Discoloration for Melt-Processible Fluoropolymers. Resulting value for L* is 25.9, indicating discoloration of the polymer upon thermal processing of untreated polymer. The measured color is shown in Table 1.

Example 1

Aqueous FEP dispersion polymerized as described above 1 is diluted to 5 weight percent solids with deionized water. 1200 ml of the FEP dispersion and 2 ml of 30 wt % H2O2 are added to a 2000 ml jacketed glass reactor with internal diameter of 13.3 cm (5-1/4 inches), which has 50 °C water circulating through the reactor jacket. An impeller with four 3.18 cm (1.25 inch) long flat blades set at a 45° angle and two injection tubes that each have a 12 mm diameter by 24 mm long, fine-bubble, fritted-glass cylinder produced by LabGlass as part number 8680-130 are placed in the reactor. The injection tubes are connected to an air supply that is passed through a Drierite gas purification column model 27068 produced by W.A. Hammond Drierite Company of Xenia, Ohio and the air supply is adjusted to deliver 1.42 standard L/min (3.0 standard ft³/hr). The agitator is set at 60 rpm. After 5 minutes of mixing, the dispersion temperature is 48.5 °C, and the reaction timer is started. After seven hours of reaction, 42 ml of deionized water and 2 ml of 30 wt % H2O2 are added to replace evaporative losses resulting in a total of 1.95 wt% H2O2 on polymer. The reaction is ended after 16 hours by stopping the agitator, ceasing the air flow, discontinuing the hot water circulation, and then removing the dispersion from the reactor. The dispersion is coagulated, filtered, dried and molded as described in Comparative Example 1. L* obtained for this polymer is 37.4 with a % change in L* of 21.4% indicating improved color after treatment. The measured color is shown in Table 1.

Example 2
Treatment is conducted utilizing the same conditions as Example 1 except 4 mL of a fresh FeSO\(_4\) solution prepared by diluting 0.0150 g of FeSO\(_4\)-7H\(_2\)O to 100 mL using deaerated deionized water is added prior to treatment and 86 mL of deionized water is added during treatment. \(L^*\) obtained for this polymer is 46.9 with a % change in \(L^*\) of 39.0% indicating a much improved color after treatment. The measured color is shown in Table 1.

<table>
<thead>
<tr>
<th>Example</th>
<th>(L^*)</th>
<th>% change in (L^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example - No Treatment</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td>37.4</td>
<td>21.4%</td>
</tr>
<tr>
<td>Example 2</td>
<td>46.9</td>
<td>39.0%</td>
</tr>
</tbody>
</table>

SECTION D EXAMPLES: FLUOROPOLYMER DISPERSION TREATMENT EMPLOYING HYPOCHLORITE SALTS AND NITRITE SALTS TO REDUCE FLUOROPOLYMER RESIN DISCOLORATION

Fluoropolymer Preparation

PTFE-1: Preparation and Isolation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.12 gm of Pluronic® 31R1. The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressured with nitrogen and vented 2 more times. Autoclave agitator is set at 65 RPM. 20 mL of
initiator solution containing 1.0 gm of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 11.67 gm of 70% active disuccinic acid peroxide (DSP), 0.167 gm of APS and 488.3 gm of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 100 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 5733 ppm of SDS hydrocarbon stabilizing surfactant and 216 ppm of iron sulfate heptahydrate is pumped to the autoclave at a rate of 4 ml/min until 185 ml of surfactant solution has been added. After approximately 70 minutes since kickoff, 1500 gm of TFE has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is cooled and discharged. Solids content of the dispersion is 18-19 wt%. Dv(50) raw dispersion particle size (RDPS) is 208 nm.

To a clean glass resin kettle having internal dimensions 17 cm deep and 13 cm in diameter is charged with 600 gm of 5 wt% dispersion. The dispersion is agitated with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The following sequence is executed until the dispersion has completely coagulated as indicated by the separation of white PTFE polymer from a clear aqueous phase: At time zero, agitation speed is set at 265 revolutions per minute (RPM) and 20 ml of a 20 wt% aqueous solution of ammonium carbonate is slowly added to the resin kettle. At 1 minute from time zero, the agitator speed is raised to 565 RPM and maintained until the dispersion is completely coagulated. Once coagulated, the clear aqueous phase is removed by suction and 600 ml of cold (approximately 6°C), deionized water is added. The slurry is agitated at 240 RPM for 5 minutes until agitation is halted and the wash water removed from the resin kettle. This
washing procedure is repeated two more times with the final wash water being separated from the polymer by vacuum filtration as indicated below. A ceramic filtration funnel (10 cm internal diameter) is placed on a vacuum flask with rubber sealing surface. A 30 cm by 30 cm lint free nylon filter cloth is placed in the filtration funnel and the washed polymer and water is poured into the funnel. A vacuum is pulled on the vacuum flask and once the wash water is removed, 1200 ml of additional deionized water is poured over the polymer and pulled through the polymer into the vacuum flask. Polymer thus coagulated, washed and isolated is removed from the filter cloth for further processing.

PTFE-2: Preparation and Isolation of Hydrocarbon Stabilized PTFE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 42 pounds (19.1 kg) of deionized water and 850 gm of paraffin wax. While agitating at 50 rpm, 100 ml of a 0.1 % deionized, deaerated, aqueous solution of Pluronic® 31R1 block copolymer surfactant (BASF) is added. The contents of the reactor are heated to 103 °C, the agitator rate is set to 20 rpm and the vent valve is fully opened for 1 minute. After closing the vent valve, the reactor is pressured to between 15 and 20 psig (205 and 339 kPa) with nitrogen. The agitator rate is set to 50 rpm and the reactor contents are cooled to 85 °C. The agitator rate is set to 20 rpm, and the reactor is purged with TFE and vented to approximately 5 psig (136 kPa) three times. The agitator rate is returned to 50 rpm, then 100 ml of a 0.1 % APS solution prepared with deoxygenated demineralized water is injected at 80 ml/min. TFE is added until the pressure is 380 psig (2.72 MPa). Then, 150 ml of an aqueous initiator solution comprised of 20.0 gm of DSP diluted to 1000 ml with deoxygenated demineralized water is added at 80 ml/min. Once a 10 psi (69 kPa) drop in pressure is realized, TFE is added at a rate sufficient to maintain 370 psig (2.65 MPa). After 1.0 lb (0.45 kg) of TFE has been added following initial pressurization, 600 ml of an aqueous solution comprised of 24.0 gm of SDS, 0.1 gm of iron(II) sulfate heptahydrate, and
0.02 gm of 18M sulfuric acid diluted to 1000 ml with deoxygenated demineralized water is added at the rate of 30 ml/min. After 4.0 lbs (1.8 kg) of TFE has been added following initial pressurization, 100 ml of an aqueous initiator solution comprised of 20.0 gm of DSP diluted to 1000 ml with deoxygenated demineralized water is added at 3 ml/min. After a total of 22 lbs (10.0 kg) of TFE has been added following initial pressurization, TFE addition is stopped and the reactor is vented. The contents of the reactor are discharged and the supernatant wax is removed. Solids content of the dispersion is 37.99 wt% and the Dv(50) raw dispersion particle size (RDPS) is 215.0 nm. The dispersion is diluted to 14% solids and coagulated under vigorous agitation. The coagulated dispersion (fine powder) is separated from the liquid and dried at 150 °C for 3 days. The standard specific gravity (SSG) of the resulting PTFE homopolymer, measured according to the method described in U.S. Patent 4,036,802, is determined to be 2.1796.

Thermally Induced Discoloration

Dried polymer is characterized as described above in the Test Methods - Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples unless otherwise stated.

Comparative Example 1: PTFE with Hydrocarbon Stabilizing Surfactant

No Treatment

A quantity of PTFE-1 Dispersion as prepared above is diluted to 5 wt% solids with deionized water. The dispersion is coagulated and isolated via the method described above (Isolation of Treated PTFE Dispersion). Polymer thus obtained is then dried at 170°C for 1 hour using the PTFE drier described above (Apparatus for Drying of PTFE Polymer). Dried polymer is characterized for thermally induced discoloration as described in the Test Methods, Measurement of Thermally Induced Discoloration for PTFE. Resulting value for L* is 43.9, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 1.

72
Example 1: PTFE, 0.33-0.5 wt% NaOCl on poly, 1 Hour, Ambient Temp

To a glass resin kettle is added to 155 g of PTFE-1 dispersion as prepared above having 19.4% solids. The net weight is raised to 600 g with deionized water, thus reducing the %solids to 5 wt%. To the dispersion is added 1.0 g of 10-15 wt% sodium hypochlorite solution [0.33-0.5 wt% NaOCl on polymer]. The dispersion is agitated at 240 rpm for 1 hour with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for discoloration. L' obtained for this polymer is 57.2 providing a % change in L' of 30.6%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 2: PTFE, 0.33-0.5 wt% NaOCl on poly, 1 Hour, 50°C

The procedure of Example 1 is essentially repeated except that the dispersion is treated at 50°C rather than room temperature. To a 2000 ml jacketed resin kettle is added 305 g of PTFE Dispersion having a solids content of 19.6%. Net weight is raised to 1188 g with deionized water. The dispersion is heated to 50°C while agitating at 240 rpm. Once at temperature, 2.0 g of 10-15 wt% NaOCl aqueous solution is added to the resin kettle [0.33-0.5 wt% NaOCl on polymer]. Dispersion temperature is held constant and agitation is continued for 1 hour. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for discoloration. L' obtained for this polymer is 53.9 providing a % change in L' of 23.0%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 3: PTFE, 0.16-0.25 wt% NaOCl on poly, 1 Hour, 50°C
The procedure of Example 2 is repeated except 1.0 gm of 10-15 wt% NaOCl [0.16-0.25 wt% NaOCl on polymer] is added to the dispersion. L* obtained for this polymer is 53.1 providing a % change in L* of 21.2%, indicating improved color after treatment. The measured color is shown in Table 1.

Example 4 - PTFE, 0.33-0.5 wt% NaOCl on poly, 5 min, Ambient Temp.

The procedure of Example 1 is repeated except the dispersion is only mixed for 5 minutes before beginning the coagulation and isolation procedure. L* obtained for this polymer is 56.4 providing a % change in L* of 28.8%, indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 5 - PTFE, 0.11-0.17 wt% NaOCl on poly, 1 hour, Ambient Temp.

The procedure of Example 1 is repeated except the amount of NaOCl solution added is reduced from 1.0 gm to 0.33 gm [0.11-0.17 wt% NaOCl on polymer]. L* obtained for this polymer is 53.2 providing a % change in L* of 21.4%, indicating improved color after treatment. The measured color is shown in Table 1.

<table>
<thead>
<tr>
<th>Examples</th>
<th>L*</th>
<th>% change of L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 1 (no treatment)</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td>57.2</td>
<td>30.6%</td>
</tr>
<tr>
<td>Example 2</td>
<td>53.9</td>
<td>23.0%</td>
</tr>
<tr>
<td>Example 3</td>
<td>53.1</td>
<td>21.2%</td>
</tr>
<tr>
<td>Example 4</td>
<td>56.4</td>
<td>28.8%</td>
</tr>
<tr>
<td>Example 5</td>
<td>53.2</td>
<td>21.4%</td>
</tr>
</tbody>
</table>

Comparative Example 2: PTFE with Hydrocarbon Stabilizing Surfactant

No Treatment
To a 2L glass reactor equipped with four metal baffles is charged with 604.0 ml of demineralized water and 396.0 ml of PTFE-2 dispersion (density = 1.270, 37.99% solids). The mixture is stirred at 550 rpm with a mechanical stirrer equipped with a four-bladed agitator. The dispersion gelled at 7:45, broke at 8:51 and is stirred for a total of 10:51 including a 2 minute post-break period. The resulting wet powder is filtered through cheesecloth and rinsed with 1000 ml of demineralized water 2x. Drying is conducted in equipment similar in design to that described above except the scale is increased so the dryer bed assembly is 8 inch (20.32 cm) in diameter and the stainless steel screen is a USA standard testing sieve number 20 mesh. 140 gm of wet powder is spread inside the 20 mesh steel screen fitted with a PEEK filter to a depth of 0.25 inches. The screen is placed in the Drying Apparatus and dried at 175 °C for 23 minutes with an airflow of 50-75 ft/min.

Dried polymer is characterized for thermally induced discoloration as described in the Test Methods, Measurement of Thermally Induced Discoloration for PTFE except that the chips are evaluated for color using a Hunter Lab ColorFlex with a 1.0 inch diameter aperture. Resulting value for L* is 51.4, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 2.

Example 6: PTFE, Coagulation with 5.0 gm NaNO^3.32% based on weight of PTFE

To a 2L glass reactor equipped with four metal baffles is charged with 604.0 ml of demineralized water and 5.0 gm of sodium nitrite (3.32% based on weight of PTFE). After stirring gently for five minutes, 396.0 ml of PTFE-2 dispersion (density = 1.270, 37.99% solids) is added. The mixture is stirred at 550 rpm with a mechanical stirrer equipped with a four-bladed agitator. The dispersion gelled at 0:05, broke at 1:00 and is stirred for a total of 3:00 including a 2 minute post-break period. The resulting wet powder is filtered through cheesecloth and rinsed with 1000 ml of demineralized water 2x. Drying is conducted as stated in Comparative Example 2. Dried polymer is characterized for thermally induced discoloration as described in the Test Methods, Measurement of
Thermally Induced Discoloration for PTFE except that the chips are evaluated for color using a Hunter Lab ColorFlex with a 1.0 inch diameter aperture. \(L^* \) obtained for this polymer is 84.9 providing a % change in \(L^* \) of 93.3%, indicating a much improved color after treatment. The measured color is shown in Table 2.

Example 7: PTFE, Coagulation with 2.5 qm NaNO\(_2\), 1.67% based on weight of PTFE

The procedure of Example 6 is repeated except that only 2.5 gm of NaNO\(_2\) (1.67% based on weight of PTFE) is added. \(L^* \) obtained for this polymer is 83.5 providing a % change in \(L^* \) of 89.4%, indicating a much improved color after treatment. The measured color is shown in Table 2.

<table>
<thead>
<tr>
<th>Examples</th>
<th>(L^*)</th>
<th>% change of (L^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 1 (no treatment)</td>
<td>51.4</td>
<td></td>
</tr>
<tr>
<td>Example 6</td>
<td>84.9</td>
<td>93.3%</td>
</tr>
<tr>
<td>Example 7</td>
<td>83.5</td>
<td>89.4%</td>
</tr>
</tbody>
</table>

SECTION E EXAMPLES: FLUOROPOLYMER DISPERSION TREATMENT EMPLOYING HIGH PH AND OXYGEN SOURCE TO REDUCE FLUOROPOLYMER RESIN DISCOLORATION

Fluoropolymer Preparation

PTFE-1 Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.12 gm of Pluronic® 31R1. The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressured with nitrogen and vented 2 more times. Autoclave agitator is set at 65 RPM.
initiator solution containing 1.0 g m o f ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave. The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 11.67 gm of 70% active disuccinic acid peroxide (DSP), 0.1 67 gm of APS and 488.3 gm of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 100 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 5733 ppm of SDS hydrocarbon stabilizing surfactant and 216 ppm of iron sulfate heptahydrate is pumped to the autoclave at a rate of 4 ml/min until 185 ml of surfactant solution has been added. After approximately 70 minutes since kickoff, 1500 gm of TFE has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is cooled and discharged. Solids content of the dispersion is 18-19 wt%. Dv(50) raw dispersion particle size (RDPS) is 208 nm.

Isolation of PTFE Dispersion

To a clean glass resin kettle having internal dimensions 17 cm deep and 13 cm in diameter is charged with 600 gm of 5 wt% dispersion. The dispersion is agitated with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The following sequence is executed until the dispersion has completely coagulated as indicated by the separation of white PTFE polymer from a clear aqueous phase: At time zero, agitation speed is set at 265 revolutions per minute (RPM) and 20 ml of a 20 wt% aqueous solution of ammonium carbonate is slowly added to the resin kettle. At 1 minute from time zero, the agitator speed is raised to 565 RPM and maintained until the dispersion is completely coagulated. Once coagulated, the clear aqueous phase is removed by suction and 600 ml of cold (approximately 6°C), deionized water is added.
The slurry is agitated at 240 RPM for 5 minutes until agitation is halted and the wash water removed from the resin kettle. This washing procedure is repeated two more times with the final wash water being separated from the polymer by vacuum filtration as indicated below.

A ceramic filtration funnel (10 cm internal diameter) is placed on a vacuum flask with rubber sealing surface. A 30 cm by 30 cm lint free nylon filter cloth is placed in the filtration funnel and the washed polymer and water is poured into the funnel. A vacuum is pulled on the vacuum flask and once the wash water is removed, 1200 ml of additional deionized water is poured over the polymer and pulled through the polymer into the vacuum flask. Polymer thus coagulated, washed and isolated is removed from the filter cloth for further processing.

FEP: Preparation of TFE/HFP/PEVE Hydrocarbon Stabilized Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (103 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80°C. The agitator speed is reduced to 20 rpm and a 2 psig (14 kPa) vacuum is pulled. A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® 31R1 solution and 0.3 gm of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (2.96 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.34 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the
reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (70 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.48 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.
Isolation of FEP Dispersion

The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO1 50P1 SHS manufactured by The Strainrite Companies of Auburn, Maine.

Thermally Induced Discoloration

Dried polymer is characterized as described above in the Test Methods - Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples.

Comparative Example 1: PTFE with Hydrocarbon Stabilizing Surfactant

No Treatment

A quantity of PTFE Dispersion as prepared above is diluted to 5 wt% solids with deionized water. The dispersion is coagulated and isolated via the method described above (Isolation of Treated PTFE Dispersion). Polymer thus obtained is then dried at 170°C for 1 hour using the PTFE drier described above (Apparatus for Drying of PTFE Polymer).

Dried polymer is characterized for thermally induced discoloration as described in the Test Methods, Measurement of Thermally Induced Discoloration for PTFE. Resulting value for L^* is 43.9, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 1.

Example 1: PTFE. NaOH pH=1.0. Ozone. 2:17 Hour @75°C

To a 2000 ml jacketed resin kettle is added 483.6 gm of PTFE Dispersion as described above having a solids content of 18.6 wt%. Net weight is raised to 1800 gm with deionized water. While agitating at 300 rpm, the dispersion is heated to 75°C by setting the appropriate temperature on the jacket circulating bath. Once at temperature, pH of the dispersion is adjusted to 10 by adding approximately 8 drops of 50 wt% sodium hydroxide solution to the resin kettle. The dispersion is injected with ozone enriched air through a 25 mm diameter sintered glass, fine
bubble, injection tube. Ozone thus injected is provided by a Clearwater Technologies, Inc. Model CD-10 ozone generator which is operated at maximum power with an air feed rate of 100 cc/min. Dispersion temperature is held constant and agitation is continued for 2.17 hours. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for discoloration. L* obtained for this polymer is 61.7 with a % change in L* of 41.0% indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 2: PTFE, NaOH pH=1.0, Ozone, 3.0 Hours @50°C

The procedure of Example 1 was repeated except the dispersion is heated to 50°C rather than 75°C and the treatment is conducted for 3 hours rather than 2.17 hours. L* obtained for this polymer is 59.3 with a % change in L* of 35.5% indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 3: PTFE, NaOH pH=1.0, Oxygen, 3.0 Hours @50°C

To a 2000 ml jacketed resin kettle is added 465 gm of PTFE dispersion as described above having a solids content of 19.4 wt%. Net weight is raised to 1800 gm with deionized water. While agitating at 300 rpm, the dispersion is heated to 50°C by setting the appropriate temperature on the jacket circulating bath. Once at temperature, pH of the dispersion is adjusted to 9.9 by adding approximately 8 drops of 50 wt% sodium hydroxide solution to the resin kettle. The dispersion is injected with oxygen through a 25 mm diameter sintered glass, fine bubble, injection tube. Dispersion temperature is held constant and agitation is continued for 3.0 hours. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers and finally evaluated for discoloration. L* obtained for this polymer is 54.2 with a % change in L* of 23.7% indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 4: PTFE, NaOH pH=9, Oxygen, 3.0 Hours @50°C
The procedure of Example 3 was repeated except that the pH of the dispersion was only raised to 9 with approximately 4 drops of 50 wt% sodium hydroxide solution. L^* obtained for this polymer is 51.0 with a % change in L^* of 16.4% indicating improved color after treatment. The measured color is shown in Table 1.

Example 5 - PTFE, KOH pH=10. Oxygen, 3.0 Hours @50°C

The procedure of Example 3 was repeated except that the pH of the dispersion was raised to 10 with approximately 65 drops of 10 wt% potassium hydroxide rather than with sodium hydroxide. L^* obtained for this polymer is 53.0 with a % change in L^* of 21.0% indicating improved color after treatment. The measured color is shown in Table 1.

<table>
<thead>
<tr>
<th>Examples</th>
<th>L^*</th>
<th>% change of L^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 1 (no treatment)</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td>61.7</td>
<td>41.0%</td>
</tr>
<tr>
<td>Example 2</td>
<td>59.3</td>
<td>35.5%</td>
</tr>
<tr>
<td>Example 3</td>
<td>54.2</td>
<td>23.7%</td>
</tr>
<tr>
<td>Example 4</td>
<td>51.0</td>
<td>16.4%</td>
</tr>
<tr>
<td>Example 5</td>
<td>53.0</td>
<td>21.0%</td>
</tr>
</tbody>
</table>

Comparative Example 2 - No Treatment

Aqueous FEP dispersion polymerized as described in FEP Polymerization Example 1 is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO1 50P1 SHS manufactured by The Strainrite Companies of Auburn, Maine. The solids are dried for 16 hours in a circulating air oven set at 150 °C to produce a dry powder. The dried powder is molded to produce color films as described in Test Methods Measurement of Thermally Induced Discoloration for Melt-Processible Fluoropolymers.
Resulting value for L_* is 25.9, indicating discoloration of the polymer upon thermal processing of untreated polymer. The measured color is shown in Table 2.

Example 6 - FEP, pH 10, NaOH, H_2O_2, Ozone, 3 Hours@50C

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water and preheated to 50 °C in a water bath. 1200 ml of the FEP dispersion is titrated with 9 drops of 50% NaOH to increase the pH to 10. 2 ml of 30 wt % H_2O_2 is added. [0.97 wt% H_2O_2 to polymer]. The dispersion is transferred to a 2000 ml jacketed glass reactor with internal diameter of 13.3 cm (5-1/4 inches), which has 50 °C water circulating through the reactor jacket. An impeller with four 3.18 cm (1.25 inch) long flat blades set at a 45° angle and two injection tubes that each have a 12 mm diameter by 24 mm long, fine-bubble, fritted-glass cylinder produced by LabGlass as part number 8680-130 are placed in the reactor. The agitator is set at 60 rpm. Each injection tube is connected to an AQUA-6 portable ozone generator manufactured by A2Z Ozone of Louisville, Kentucky. The ozone generators are turned on and used to bubble 1.18 standard L/min (2.5 standard ft³/hr) of ozone through the dispersion. After 5 minutes of mixing, the dispersion temperature is 49.2 °C, and the reaction timer is started. The reaction is ended after 3 hours by stopping the agitator, ceasing the ozone flow, discontinuing the hot water circulation, and then removing the dispersion from the reactor. The dispersion is coagulated, filtered, dried and molded as described in Comparative Example 2. L_* obtained for this polymer is 31.9 with a % change in L_* of 11.2% indicating improved color after treatment. The measured color is shown in Table 2.

<table>
<thead>
<tr>
<th>Example</th>
<th>L_*</th>
<th>% change in L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 2 (No Treatment)</td>
<td>25.9</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 - FEP
SECTION F EXAMPLES: FLUORINATION OF FLUOROPOLYMER RESIN TO REDUCE DISCOLORATION

5 Fluoropolymer Preparation

FEP: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80°C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psi (87.6 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® 31R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 470 psig (3.34 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-three-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a goal rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa)
until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.2 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,182 ppm of SDS hydrocarbon stabilizing surfactant and 60,755 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, and finally to 0.4 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 28 ml of surfactant solution added during reaction. During reaction, the pressure in the reactor reaches the maximum desired limit of 650 psig (4.58 MPa) and the TFE feed rate is reduced from the goal rate to control the pressure. The total reaction time is 266 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 52 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 100 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.30 wt% and Dv(50) raw dispersion particle size (RDPS) is 146.8 nm. 542 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 16.4 gm/10 min, an HFP content of 11.1 wt%, and a PEVE content of 1.27 wt%, and a melting point of 247.5 °C.

Example 1: Exposing Fluoropolymer Resin to Fluorine

Aqueous FEP dispersion polymerized as described above is coagulated in a heated glass reactor. 1250 ml of dispersion is heated to 85 °C in a water bath and then transferred to a 2,000 ml jacketed glass
reactor with four internal baffles produced by Lab Glass or Vineland, NJ where the temperature is maintained at by circulating 85 °C water through the jacket. Two high-shear impellers are turned at 2,470 rpm for 3600 seconds to cause the dispersion to separate into a polymer phase and a water phase. The water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO1 50P1SHS manufactured by The Strainrite Companies of Auburn, Maine. The polymer phase is dried for 40 hours in a circulating air oven set at 150 °C to produce a dry powder.

A sample of dried powder is molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers to establish the base value of L* (L* = 30.5) for untreated color which value is more than 49 L units below the L* value of FEP fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant, where the standard being used for this example is 79.7.

The dried powder is pelletized by extruding it through a 28 mm twin-screw extruder that feeds into a 3.81 cm (1.5 inch) single-screw extruder, which is equipped with a die. The twin-screw extruder serves as a resin melter, and in the case of FEP, backbone, stabilization is conducted. The single-screw extruder serves as a melt pump to generate the pressure necessary to move the resin through the optional screen pack and die. The extrusion equipment described above is a "Kombiplast" extruder from the Coperion Corporation. Corrosion-resistant materials are used for those parts that come into contact with the polymer melt. The twin-screw extruder has two corotating screws disposed side by side. The screw configurations are designed with an intermeshing profile and tight clearances, causing them to be self-wiping. The screw configurations include kneading blocks and conveying screw bushings. The twin-screw extruder empties into a single-screw melt pump, which is designed to generate pressure at low shear rates for filtration and pellet formation. The molten polymer passes through a 0.95 cm (3/8 inch) die hole. The melt strand is then quenched in a water bath to produce a solid strand, which is chopped to produce pellets.
The extruders are operated with the barrel temperatures set at 350 °C and screw speeds of 200 rpm for the twin-screw extruder and 20 rpm for the single-screw extruder. The polymer powder is fed at 9.07 kg/hr (20 lb/hr).

A fluorination reactor is used to further treat the pellets by exposing them to fluorine. The fluorination reactor is a modified double-cone blender equipped with gas inlet and vent connections and an electric heating mantle as described in US 4,626,587. The reactor is operated in stationary mode. The fluorination is conducted at 190 °C with 30 minutes of operation at a fluorine/nitrogen ratio of 4/96 volume percent, 30 minutes of operation at a fluorine/nitrogen ratio of 7/93 volume percent, and then 360 minutes of operation at a fluorine/nitrogen ratio of 10/90 volume percent. At the end of the cycle, fluorine flow is stopped, the electric mantle is turned off, and the reactor is evacuated. The residual fluorine is purged from the reactor with nitrogen. This cycle is repeated.

The extruded pellets and fluorinated pellets are molded to produce color films as described in Test Methods, Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers. Measurements are shown in Table 1. L* obtained after exposure to fluorine (L*ₜ) is 72.2 with a % change in L* of 84.8% indicating much improved color over the starting powder. The measured colors are shown in Table 1. It is also to be noted that the conditions in the extruder are more aggressive with higher temperature, higher shear rate, and longer residence time than the conditions in the molding operation to produce film test chips. The more aggressive conditions in the extruder result in test chips of extruded pellets which exhibit an initial decrease in L* as compared to the molded powder sample, prior to the exposure the polymer resin to fluorine.

Table 1

<table>
<thead>
<tr>
<th>State</th>
<th>L*</th>
<th>% change in L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Powder</td>
<td>30.5</td>
<td>-</td>
</tr>
<tr>
<td>Extruded Pellets</td>
<td>19.2</td>
<td>-23.0%</td>
</tr>
</tbody>
</table>
Fluorinated Pellets | 72.2 | 84.8%

SECTION G EXAMPLES: EMPLOYING PRETREATMENT AND FLUORINATION OF FLUOROPOLYMER RESIN TO REDUCE DISCOLORATION

Fluoropolymer Preparation

FEP-1: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80 °C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psi (87.6 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® 31R1 solution and 0.3 gm of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 470 psig (3.34 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-three-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a goal
rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.2 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45.182 ppm of SDS hydrocarbon stabilizing surfactant and 60,755 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, and finally to 0.4 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 28 ml of surfactant solution added during reaction. During reaction, the pressure in the reactor reaches the maximum desired limit of 650 psig (4.58 MPa) and the TFE feed rate is reduced from the goal rate to control the pressure. The total reaction time is 266 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 52 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 100 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.30 wt% and Dv(50) raw dispersion particle size (RDPS) is 146.8 nm. 542 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 16.4 gm/10 min, an HFP content of 11.11 wt%, and a PEVE content of 1.27 wt%, and a melting point of 247.5 °C.
A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80 °C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psi (87.6 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3 gm of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (3.07 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction. After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is
pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.

Thermally Induced Discoloration

Dried polymer is characterized as described in the Test Methods section above as Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples.

Example 1: Pretreatment of Fluoropolymer resin by Exposure to Oxygen followed by Exposure to Fluorine

Aqueous FEP-1 dispersion polymerized as above is coagulated in a heated glass reactor. 1250 ml of dispersion is heated to 85 °C in a water bath and then transferred to a 2,000 ml jacketed glass reactor with four internal baffles produced by Lab Glass or Vineland, NJ where the
temperature is maintained at by circulating 85 °C water through the jacket. Two high-shear impellers are turned at 2,470 rpm for 3600 seconds to cause the dispersion to separate into a polymer phase and a water phase. The water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine. The polymer phase is dried for 40 hours in a circulating air oven set at 150 °C to produce a dry powder.

A sample of dried powder is molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers to establish the base value of L^* ($L^*_i = 30.5$) for untreated color which value is more than 49 L units below the L^* value of FEP fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant, where the standard being used for this example is 79.7. The measured color is shown as "Starting Powder" in Table 1.

All of the experiments are carried out with a 25 mm twin-screw extruder, equipped with an injection probe, which is a rod having a longitudinal bore opening flush with the surface of the extruder barrel in the reaction zone, and a vacuum port connected to a fluorine/hydrofluoric acid scrubbing system. The twin-screw extruder feeds into a 3.81 cm (1.5 inch) single-screw extruder, which is equipped with a die. The twin-screw extruder serves as a resin melter and end group reactor in which the desired end group, and in the case of FEP, backbone, stabilization is conducted. The single-screw extruder serves as a melt pump to generate the pressure necessary to move the resin through the optional screen pack and die.

The extrusion equipment described above is a "Kombiplast" extruder from the Coperion Corporation. Corrosion-resistant materials are used for those parts that come into contact with the polymer melt and fluorinating agent. The twin-screw extruder has two corotating screws disposed side by side. The screw configurations are designed with an intermeshing profile and tight clearances, causing them to be self-wiping. The screw configurations include kneading blocks, mixing elements, and
conveying screw bushings. The first 19.4 Length/Diameter (L/D, D being the diameter of the bushings) of the extruder is the melting zone. This contains the feeding, solids conveying, and kneading block sections. The kneading block sections provide high shear and insure proper melting of the polymer. The melting section ends with a left handed bushing (rearward pumping) that forms a melt seal and insures complete filling of the final kneading blocks. The reagent is injected immediately after this section. The next 20.7 L/D contain the injection, mixing and reaction sections with multiple mixing elements and constitute the reaction zone of the extruder. The mixing elements used and their arrangement consist of four working sections with TME elements followed by a working section with a single ZME element. The next 5.4 L/D contains the vacuum extraction section (devolatilization zone), which is connected to a scrubbing system designed to neutralize F₂, HF, and other reaction products, depending on the reaction being carried out. The vacuum extraction section follows a conventional design, which includes melt forwarding elements that provide for free volume, so that the molten polymer is exposed to subatmospheric pressure, which prevent reactive and corrosive gases from escaping into the atmosphere. The vacuum is operated between 55-90 kPa absolute (8 and 13 psia). Undercut bushings (SK) are an effective way to provide the forwarding elements in the vacuum extraction section of the extruder. The final 3.3 L/D are used to provide a vacuum seal and pump the molten polymer into the single-screw extruder. Chemical reactions mainly occur in the section between the injection nozzle and the vacuum port that contains the mixing sections. Backbone stabilization in the case of FEP occurs in both the kneading block sections and the mixing sections. The twin-screw extruder empties into a single-screw melt pump, which is designed to generate pressure at low shear rates for filtration and pellet formation. The molten polymer passes through a 0.95 cm (3/8 inch) die hole. The melt strand is then quenched in a water bath to produce a solid strand. The strand is then chopped to produce pellets.

The twin-screw extruder is operated with barrel temperatures of 350°C and a screw speed of 200 rpm. The single-screw extruder is
operated with barrel temperatures of 350°C and a screw speed of 20 rpm. The polymer is fed to the extruder at 18 kg/hr. Dry, compressed air is injected through a nozzle into the injection zone at an oxygen-to-polymer ratio of 0.10% by weight. The pellets are dried for 40 hours in a circulating air oven set at 150 °C to remove any residual moisture.

The pellets produced by reaction with oxygen from the air injection are processed through the extruder again under the same conditions except the air is replaced with a gas that is 10 volume percent fluorine and 90 volume percent nitrogen. The gas is injected at a fluorine-to-polymer ratio of 0.08% by weight.

The pellets produced with air injection and the pellets produced with air injection followed by fluorine injection are molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration Measurements for melt-processible fluoropolymers are shown in Table 1. \(L^* \) obtained after pretreatment with air injection (\(L^*_{t1} \)) is 71.2 with a % change in \(L^* \) of 82.7% indicating improved color over the starting powder. \(L^* \) obtained after subsequent exposure to fluorine (\(L^*_{t2} \)) is 79.5 with a % change in \(L^* \) of 99.6% indicating an even greater improvement when both pretreatment and fluorination are combined.

<table>
<thead>
<tr>
<th>State</th>
<th>(L^*)</th>
<th>% change in (L^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting powder</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>Pellets produced with air injection</td>
<td>71.2</td>
<td>82.7%</td>
</tr>
<tr>
<td>Pellets produced with air injection followed by fluorine injection</td>
<td>79.5</td>
<td>99.6%</td>
</tr>
</tbody>
</table>

Table 1
EXAMPLE 2: Pretreatment of Fluoropolymer Dispersion plus Pretreatment of Fluoropolymer Resin, Subsequent Exposure of Fluoropolymer Resin To Fluorine

Aqueous FEP-2 dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO1 50P1SHS manufactured by The Strainrite Companies of Auburn, Maine. The solids are dried for 16 hours in a circulating air oven set at 150 °C to produce a dry powder.

A sample of dried powder is molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers to establish the base value of L* (L* = 25.9) for untreated color which value is more than 53 L units below the L* value of FEP fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant, where the standard being used for this example is 79.7. The measured color is shown as "Starting Powder" in Table 2.

Dispersion Pretreatment: 1200 ml of the 5 weight percent solids FEP dispersion described above is preheated to 50 °C in a water bath. The dispersion and 2 ml of 30 wt % H₂O₂ are added to a 2000 ml jacketed glass reactor with internal diameter of 13.3 cm (5-1/4 inches), which has 50 °C water circulating through the reactor jacket. An impeller with four 3.18 cm (1.25 inch) long flat blades set at a 45° angle and two injection tubes that each have a 12 mm diameter by 24 mm long fine-bubble, fritted-glass cylinder produced by LabGlass as part number 8680-130 are placed in the reactor. The injection tubes are connected to an air supply that is passed through a Drierite gas purification column model 27068 produced by W.A. Hammond Drierite Company of Xenia, Ohio and the air supply is adjusted to deliver 1.42 standard L/min (3.0 standard ft³/hr). The
agitator is set at 60 rpm. After 5 minutes of mixing, the dispersion
temperature is 48.5 °C, and the reaction timer is started. After seven
hours of reaction, 42 ml of deionized water and 2 ml of 30 wt % H2O2 are
added to replace evaporative losses. The reaction is ended after 16 hours
by stopping the agitator, ceasing the air flow, discontinuing the hot water
circulation, and then removing the dispersion from the reactor. The
dispersion is coagulated, filtered, dried and molded as described above.
The measured color is shown as "Powder after H2O2 treatment" in Table 2.

Resin Pretreatment: The solids are dried for 2 hours with 180°C

ozone enriched air in the equipment described under "Apparatus for
Drying of FEP Polymer" with the use of three AQUA-6 portable ozone
generator manufactured by A2Z Ozone of Louisville, Kentucky to
discharge ozone through three evenly spaced nozzles above the polymer
bed. The drying of the fluoropolymer resin with ozone is yet another
pretreatment of the resin prior to expose the fluoropolymer to fluorine. The
dried powder is molded to produce color films and measured as described
above in the Test Methods above as Measurement of Thermally Induced
Discoloration for melt-processible fluoropolymers. The measured color is
shown as "Powder after ozone drying" in Table 2. The drying is repeated
to produce 10 kg of dried powder.

The dried powder is pelletized by extruding it through a 28 mm twin-
screw extruder that feeds into a 3.81 cm (1.5 inch) single-screw extruder,
which is equipped with a die. The twin-screw extruder serves as a resin
melter, and in the case of FEP, backbone stabilization is conducted. The
single-screw extruder serves as a melt pump to generate the pressure
necessary to move the resin through the optional screen pack and die.
The extrusion equipment described above is a "Kombiplast" extruder from
the Coperion Corporation. Corrosion-resistant materials are used for
those parts that come into contact with the polymer melt. The twin-screw
extruder has two co-rotating screws disposed side by side. The screw
configurations are designed with an intermeshing profile and tight
clearances, causing them to be self-wiping. The screw configurations
include kneading blocks, and conveying screw bushings. The twin-screw
extruder empties into a single-screw melt pump, which is designed to
generate pressure at low shear rates for filtration and pellet formation. The molten polymer passes through a 0.95 cm (3/8 inch) die hole. The melt strand is then quenched in a water bath to produce a solid strand. The strand is then chopped to produce pellets.

The extruders are operated with the barrel temperatures set at 350 °C and screw speeds of 200 rpm for the twin-screw extruder and 20 rpm for the single-screw extruder. The polymer powder is fed at 9.07 kg/hr (20 lb/hr).

Fluorine Exposure: A fluorination reactor is used to further treat the pellets. The fluorination reactor is a modified double-cone blender equipped with gas inlet and vent connections and an electric heating mantle as described in US 4,626,587. The reactor is operated in stationary mode. The fluorination is conducted at 190 °C with 30 minutes of operation at a fluorine/nitrogen ratio of 4/96 volume percent, 30 minutes of operation at a fluorine/nitrogen ratio of 7/93 volume percent, and then 360 minutes of operation at a fluorine/nitrogen ratio of 10/90 volume percent. At the end of the cycle, fluorine flow is stopped, the electric mantle is turned off, and the reactor is evacuated. The residual fluorine is purged from the reactor with nitrogen.

The powder before pretreatment, powder after H2O2 (dispersion pretreatment), powder after ozone drying (resin pretreatment), extruded pellets, and fluorinated pellets are molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers. The measured colors are shown in Table 2. L* obtained after pretreatment of dispersion and isolation of the fluoropolymer resin is 37.4 with a % change in L* of 21.4% indicating much improved color after dispersion pretreatment with H2O2. L* obtained after subsequent drying with ozone is 67.6 with a % change in L* of 77.5% indicating a very much improved color when this second pretreatment is used. L* obtained after subsequent exposure to fluorine is 75.9 with a % change in L* of 92.9% indicating an even greater improvement when pretreatment (s) and fluorination are combined. It is also to be noted that the conditions in the
extruder are more aggressive with higher temperature, higher shear rate, and longer residence time than the conditions in the molding operation to produce film test chips. The more aggressive conditions in the extruder result in test chips of extruded pellets which exhibit an initial decrease in L* as compared to the molded powder sample, prior to the exposure the polymer resin to fluorine.

Table 2

<table>
<thead>
<tr>
<th>State</th>
<th>L*</th>
<th>% change in L* Relative to Starting Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Powder</td>
<td>25.9</td>
<td>-</td>
</tr>
<tr>
<td>Powder after H_2O_2 treatment (Dispersion Pretreatment)</td>
<td>37.4</td>
<td>21.4%</td>
</tr>
<tr>
<td>Powder after ozone drying (Resin Pretreatment)</td>
<td>67.6</td>
<td>77.5%</td>
</tr>
<tr>
<td>Extruded Pellets</td>
<td>61.9</td>
<td>66.9%</td>
</tr>
<tr>
<td>Fluorinated Pellets</td>
<td>75.9</td>
<td>92.9%</td>
</tr>
</tbody>
</table>

SECTION H EXAMPLES: FLUOROPOLYMER RESIN TREATMENT EMPLOYING HEATING AND OXYGEN SOURCE TO REDUCE DISCOLORATION

Apparatus for Dynamic Drying of PTFE Polymer

A laboratory dryer for simulating commercially dried PTFE Fine Powder is constructed as follows: A length of 4 inch (10.16 cm) stainless steel pipe is threaded on one end and affixed with a standard stainless steel pipe cap. In the center of the pipe cap is drilled a 1.75 inch (4.45 cm) hole through which heat and air source is introduced. A standard 4"
(10.1 6 cm) pipe coupling is sawed in half along the radial axis and the sawed end of one piece is butt welded to the end of the pipe, opposite the pipe cap. Overall length of this assembly is approximately 30 inches (76.2 cm) and the assembly is mounted in the vertical position with the pipe cap at the top. For addition of a control thermocouple, the 4" pipe assembly is drilled and tapped for a 1/4 inch (6.35 mm) pipe fitting at a position 1.75 inch (4.45 cm) above the bottom of the assembly. A 1/4 inch (6.35 mm) male pipe thread to 1/8 inch (3.175 mm) Swagelok fitting is threaded into the assembly and drilled through to allow the tip of a 1/8 inch (3.175 mm) J-type thermocouple to be extended through the fitting and held in place at the pipe's radial center. For addition of a other gases, the 4 inch (10.16 cm) pipe assembly is drilled and tapped for a 1/4 inch (6.35 mm) pipe fitting at a position 180° from the thermocouple port and higher at 3.75 inch (9.5 cm) above the bottom of the assembly. A 1/4 inch (6.35 mm) male pipe thread to 1/4 inch (6.35 mm) Swagelok fitting is threaded into the assembly and drilled through to allow the open end of a 1/4 inch (6.35 mm) stainless steel tube to be extended through the fitting and held in place at the pipe's radial center. The entire pipe assembly is wrapped with heat resistant insulation that can easily withstand 200°C continuous duty.

The dryer bed assembly for supporting polymer is constructed as follows: A 4" (10.16 cm) stainless steel pipe nipple is is sawed in half along the radial axis and onto the sawed end of one piece is tack welded stainless steel screen with 1.0 mm wire size and 31 mm square opening. Filter media of polyether ether ketone (PEEK) or Nylon 6,6 fabric is cut into a 4 inch (10.16 cm) disk and placed on the screen base. A 4 inch (10.16 cm) disk of stainless steel screen is placed on top of the filter fabric to hold it securely in place. Fabrics used include a Nylon 6,6 fabric and PEEK fabric having the characteristics described in US Patent 5,391,709. In operation, approximately 1/4 inch (6.35 mm) of polymer is placed uniformly across the filter bed and the dryer bed assembly is screwed into the bottom of the pipe assembly.

The heat and air source for this drying apparatus is a Master heat gun, model HG-751 B, manufactured by Master Appliance Corp. of Racine, WI. The end of this heat gun can be snuggly introduced through and
supported by the hole in the cap at the top of the pipe assembly. Control of air flow is managed by adjusting a damper on the air intake of the heat gun. Control of temperature is maintained by an ECS Model 800-377 controller, manufactured by Electronic Control Systems, Inc of Fairmont WV. Adaptation of the controller to the heat gun is made as follows: The double pole power switch of the heat gun is removed. All power to the heat gun is routed through the ECS controller. The blower power is supplied directly from the ECS controller on/off switch. The heater circuit is connected directly to the ECS controller output. The thermocouple on the pipe assembly which is positioned above the polymer bed serves as the controller measurement device.

The apparatus described above is typically used to dry PTFE Fine Powder at 170°C for 1 hour and can easily maintain that temperature to within ±1°C.

Apparatus for Dynamic Drying of FEP Polymer

Equipment similar in design to that described in Apparatus for Dynamic Drying of PTFE Polymer is used except the scale is increased so the dryer bed assembly is 8 inch (20.32 cm) in diameter and the stainless steel screen is a USA standard testing sieve number 20 mesh. Unless otherwise noted, the apparatus is used to dry FEP for two hours with 180°C air and can easily maintain that temperature to within ±1°C. Typical polymer loading is 18 grams dry weight of polymer.

A secondary dryer bed assembly is produced by the addition of three evenly spaced nozzles with a centerline 3.0 cm above the polymer bed. The nozzles can be used to introduce additional gasses to the drying air. One of many possible configurations is to connect an AQUA-6 portable ozone generator manufactured by A2Z Ozone of Louisville, Kentucky to each of the nozzles.

Fluoropolymer Preparation

FEP 1: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water
capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of
deionized water. The reactor temperature then is increased to 103 °C
while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the
reactor is vented for 60 seconds. The reactor pressure is increased to 15
psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm
while cooling to 80°C. The agitator speed is reduced to 20 rpm and a
vacuum is pulled to 12.7 psia (88 kPa). A solution containing 500 ml of
deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3
g of sodium sulfite is drawn into the reactor. With the reactor paddle
agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged
three times with TFE. The agitator speed is increased to 46 rpm and the
reactor temperature then is increased to 103 °C. After the temperature
has become steady at 103 °C, HFP is added slowly to the reactor until the
pressure is 470 psig (3.34 MPa). 112 ml of liquid PEVE is injected into the
reactor. Then TFE is added to the reactor to achieve a final pressure of
630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator
solution containing 2.20 wt% of ammonium persulfate (APS) is charged
into the reactor. Then, this same initiator solution is pumped into the
reactor at a TFE to initiator solution mass ratio of twenty-three-to-one for
the remainder of the polymerization after polymerization has begun as
indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff.
Additional TFE is also added to the reactor beginning at kickoff at a goal
rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the
reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa)
until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after
kickoff. Furthermore, liquid PEVE is added to the reactor beginning at
kickoff at a rate of 0.2 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous
surfactant solution containing 45,182 ppm of SDS hydrocarbon stabilizing
surfactant and 60,755 ppm of 30% ammonium hydroxide solution is
pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant
solution pumping rate is increased to 0.3 ml/min after 8.0 lb (3.6 kg) of
TFE has been fed since kickoff, and finally to 0.4 ml/min after 11.0 lb (5.0
kg) of TFE has been fed since kickoff resulting in a total of 28 ml of surfactant solution added during reaction. During reaction, the pressure in the reactor reaches the maximum desired limit of 650 psig (4.58 MPa) and the TFE feed rate is reduced from the goal rate to control the pressure.

The total reaction time is 266 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 52 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 100 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C. Solids content of the dispersion is 20.30 wt% and Dv(50) raw dispersion particle size (RDPS) is 146.8 nm. 542 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 16.4 gm/1 0 min, an HFP content of 11.1 wt%, and a PEVE content of 1.27 wt%, and a melting point of 247.5 °C.

FEP 2: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A polymerization is conducted utilizing the same conditions as preparation of FEP 1 except for total TFE fed during reaction, PEVE pumping rate, pumped initiator rate, and aqueous surfactant solution addition. The liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min and stopped after 64 ml of PEVE are added. The initiator solution is pumped into the reactor beginning at kickoff at a TFE to initiator solution mass ratio of eighteen-to-one for the duration of the reaction. The aqueous surfactant solution contains 45,175 ppm of SDS hydrocarbon stabilizing surfactant and 60,917 ppm of 30% ammonium hydroxide solution. The aqueous surfactant solution pumping schedule is modified so that after 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing is pumped to the autoclave at a rate of 0.2 ml/min, and then the aqueous surfactant solution pumping rate
is increased to 0.3 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff resulting in a total of 50 ml of surfactant solution added during reaction. During reaction, the pressure in the reactor reaches the maximum desired limit of 650 psig (4.58 MPa) and the TFE feed rate is reduced from the goal rate to limit the pressure. The total reaction time is 311 minutes after initiation of polymerization during which 10.2 lb (4.63 kg) of TFE and 64 ml of PEVE are added. At the end of the reaction period, an additional 100 ml of surfactant solution is added to the reactor.

Solids content of the dispersion is 17.64 wt% and Dv(50) raw dispersion particle size (RDPS) is 174.1 nm, 298 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 20.1 gm/10 min, an HFP content of 10.27 wt%, and a PEVE content of 1.27 wt%, and a melting point of 251.2 °C.

FEP 3: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80 °C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psia (88 kPa). A solution containing 500 ml of deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (3.07 MPa). 112 ml of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged.
into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff.

Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70°C.

Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.
PTFE Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.12 gm of Pluronic® 31R1. The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressured with nitrogen and vented 2 more times. Autoclave agitator is set at 65 RPM. 20 ml of initiator solution containing 1.0 gm of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 11.67 gm of 70% active disuccinic acid peroxide (DSP), 0.167 gm of APS and 488.3 gm of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 100 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 5733 ppm of SDS hydrocarbon stabilizing surfactant and 216 ppm of iron sulfate heptahydrate is pumped to the autoclave at a rate of 4 ml/min until 185 ml of surfactant solution has been added. After approximately 70 minutes since kickoff, 1500 gm of TFE has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is cooled and discharged. Solids content of the dispersion is 18-19 wt% and Dv(50) raw dispersion particle size (RDPS) of 208 nm.

Isolation of PTFE Dispersion

To a clean glass resin kettle having internal dimensions 17 cm deep and 13 cm in diameter is charged with 600gm of 5 wt% dispersion. The dispersion is agitated with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade
impeller having a 45° downward pumping pitch. The following sequence is executed until the dispersion has completely coagulated as indicated by the separation of white PTFE polymer from a clear aqueous phase: At time zero, agitation speed is set at 265 revolutions per minute (RPM) and 20 mL of a 20 wt% aqueous solution of ammonium carbonate is slowly added to the resin kettle. At 1 minute from time zero, the agitator speed is raised to 565 RPM and maintained until the dispersion is completely coagulated. Once coagulated, the clear aqueous phase is removed by suction and 600 mL of cold (approximately 6°C), deionized water is added. The slurry is agitated at 240 RPM for 5 minutes until agitation is halted and the wash water removed from the resin kettle. This washing procedure is repeated two more times with the final wash water being separated from the polymer by vacuum filtration as indicated below.

A ceramic filtration funnel (10 cm internal diameter) is placed on a vacuum flask with rubber sealing surface. A 30 cm by 30 cm lint free nylon filter cloth is placed in the filtration funnel and the washed polymer and water is poured into the funnel. A vacuum is pulled on the vacuum flask and once the wash water is removed, 1200 mL of additional deionized water is poured over the polymer and pulled through the polymer into the vacuum flask. Polymer thus coagulated, washed and isolated is removed from the filter cloth for further processing.

Example 1: Heating of FEP below the Melting Point

Aqueous FEP 1 dispersion polymerized as described above is coagulated in a heated glass reactor. 1250 mL of dispersion is heated to 85 °C in a water bath and then transferred to a 2,000 mL jacketed glass reactor with four internal baffles produced by Lab Glass of Vineland, NJ where the temperature is maintained at 85 °C by circulating heated water through the jacket. Two high shear impellers are turned at 2,470 rpm for 3600 seconds to cause the dispersion to separate into a polymer phase and a water phase. The contents are filtered through 150 micron mesh filter bag model NMO1 50P1 SHS manufactured by The Strainrite Companies of Auburn, Maine. The polymer is dried for 40 hours in a circulating air oven set at 150 °C to produce a dry powder.
A sample of dried powder is molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers to establish the base value of L^* ($L^*_i = 30.5$) for untreated color which value is more than 49 L units below the L^* value of FEP fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant, where the standard being used for this example is 79.7.

Four samples, each of which contains 7.0 grams of the dry powder, are placed in 7.62 cm (3.00 inch) diameter disposable aluminum pans. The pans are placed in a Fisher Scientific Model 126 laboratory air oven. The air fan is turned on to introduce 154 standard liter/hour (5.45 standard ft3/hour) of air (make-up air). The temperature set point is adjusted so that a thermocouple placed in the oven immediately over the pans reads 235 °C. Pans are removed after 5, 9, 14, and 21 days. Untreated and the air baked powders are run through a melt indexer using standard conditions as described in ASTM D 2116 - 07 paragraph 11 to simulate the conditions experienced while melt processing. The color of the extrudate strands is observed and recorded. Each of the samples produced by running through the indexer as well as powder that has not gone through the indexer is molded to produce color films as described in Test Methods, Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers. L^* and % change in L^* with respect to FEP standard are determined as explained in the Test Methods section described above. Observations and measurements are shown in Table I. After 21 days, an 81.1% improvement over untreated fluoropolymer is seen for fluoropolymer exposed to an oxygen source (air) at temperatures below the melting point of the fluoropolymer. It is also to be noted that there are higher temperatures in the indexer than exist in the molding operation to produce film test chips. The higher temperatures in the indexer result in test chips of extruded strands which exhibit an initial decrease in L^* as compared to the molded powder sample, prior to the exposure of the dry powder to an oxygen source at temperatures below the melting point.
Table 1

<table>
<thead>
<tr>
<th>Air Bake Time (days)</th>
<th>Indexer Extrudate Appearan</th>
<th>L^*</th>
<th>% change in L^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not run through indexer</td>
<td>30.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Brown</td>
<td>7.4</td>
<td>-47.0%</td>
</tr>
<tr>
<td>5</td>
<td>Light Brown</td>
<td>45.0</td>
<td>29.5%</td>
</tr>
<tr>
<td>9</td>
<td>Light Tan</td>
<td>55.4</td>
<td>50.6%</td>
</tr>
<tr>
<td>14</td>
<td>Slight discoloration</td>
<td>63.1</td>
<td>66.3%</td>
</tr>
<tr>
<td>21</td>
<td>Clear</td>
<td>70.4</td>
<td>81.1%</td>
</tr>
</tbody>
</table>

Example 2: Heating of FEP above the Melting Point

Aqueous FEP-2 dispersion polymerized as described above is coagulated by freezing the dispersion in a 20 liter Cubitainer® produced by Hedwin Corporation of Baltimore, Maryland. The Cubitainer® is placed in a So-Low model CH25-13 freezer manufactured by Environmental Equipment of Cincinnati, Ohio that is maintained at -30 °C and frozen for 40 hours. The Cubitainer® is then removed and allowed to thaw for 40 hours. The contents are filtered through a 150 micron mesh filter bag model NMO1 50P1 SHS manufactured by The Strainrite Companies of Auburn, Maine. The solids are dried for 40 hours in a circulating air oven set at 150 °C to produce a dry powder.

A sample of dried powder is molded to produce color films as described in the Test Methods section above as Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers to establish the base value of L^* ($L^*_{i} = 35.6$) for untreated color which value is more than 44 L units below the L^* value of FEP fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant, where the standard being used for this example is 79.7.
40.1 grams of the dry powder are evenly distributed in a #637 disposable aluminum pan that is 17.15 cm (6.75 inch) by 7.62 cm (3.00 inch) by 5.72 cm (2.25 inch) deep with tapered sides. The pan is placed in a Fisher Scientific Model 126 laboratory oven. An air fan is turned on to introduce 154 standard liter/hour (5.45 standard ft³/hour) of air (make-up air). The temperature set point is adjusted so that a thermocouple placed in the oven immediately over the pans reads 365 °C. The pan is removed after 2 hours and allowed to cool. The resulting polymer is a thin, bubbly, white slab. The polymer is removed and molded to produce color films as described in Test Methods, Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers. L* and % change in L* with respect to FEP standard are determined as explained in the Test Methods section described above. Measurements are shown in Table 2. A 93.9% improvement over untreated fluoropolymer is seen for fluoropolymer exposed to an oxygen source (air) at temperatures above the melting point of the fluoropolymer.

Table 2

<table>
<thead>
<tr>
<th>State</th>
<th>L*</th>
<th>% change in L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting powder</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td>After Baking</td>
<td>77.0</td>
<td>93.9%</td>
</tr>
</tbody>
</table>

Example 3: FEP Dried Using Dynamic Drying

Aqueous FEP-3 dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1SHS manufactured by The Strainrite Companies of Auburn, Maine.

A portion of the solids is dried for 40 hours in a circulating air oven set at 150 °C to produce a dry powder. The dried powder is molded to produce color films as described in Test Methods Measurement of
Thermally Induced Discoloration for Melt-Processible Fluoropolymers. Resulting value for L'_{i} is 25.9, indicating discoloration of the polymer upon thermal processing of untreated polymer. Measurements are shown in Table 3.

Another portion of the solids is dried by evenly distributing 18 grams dry weight of polymer on an 8 inch (20.32 cm) diameter PEEK fabric having the characteristics described in US Patent 5,391,709 that is supported by a USA standard testing sieve number 20 mesh stainless steel screen and 180°C air is passed through the polymer bed for 2 hours in the Drying Apparatus described above for melt-processible fluoropolymers. The dried powder is molded to produce color films as described in Test Methods Measurement of Thermally Induced Discoloration for Melt-Processible Fluoropolymers. Resulting value for L'_{t} is 44.8, providing a % change in L' of 35.1 % indicating improvement by dynamic drying of the polymer with 180°C air despite the significantly shorter drying time. Measurements are shown in Table 3.

Another portion of the solids is dried by evenly distributing 18 grams dry weight of polymer on an 8 inch (20.32 cm) diameter PEEK fabric supported by a USA standard testing sieve number 20 mesh stainless steel screen and 180°C air that is enriched with ozone supplied by three AQUA-6 portable ozone generators manufactured by A2Z Ozone of Louisville, Kentucky and passed through the polymer bed for 2 hours. The dried powder is molded to produce color films as described in Test Methods Measurement of Thermally Induced Discoloration for Melt-Processible Fluoropolymers. Resulting value for L'_{t} is 55.8, providing a % change in L' of 55.6% indicating improvement by dynamic ozone drying of the polymer with 180°C air despite the significantly shorter drying time.

Table 3

<table>
<thead>
<tr>
<th>State</th>
<th>L^*</th>
<th>% change in L^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 °C Static Air Drying</td>
<td>25.9</td>
<td></td>
</tr>
</tbody>
</table>
Example 4: PTFE Dried Using Dynamic Drying

Aqueous PTFE dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated and isolated via the method described above (Isolation of PTFE Dispersion).

A portion of the solids is statically dried for 2 hours in a circulating air oven set at 170 °C to produce a dry powder. Dried polymer is characterized for thermally induced discoloration as described in the Test Methods Measurement of Thermally Induced Discoloration for PTFE. Resulting value for \(L^* \) is 37.7, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 4.

Another portion of the solids is then dried at 170°C for 1 hour using the PTFE drier described above (Apparatus for Drying of PTFE Polymer). Dried polymer is characterized for thermally induced discoloration as described in the Test Methods Measurement of Thermally Induced Discoloration for PTFE. Resulting value for \(L^* \) is 43.9, providing a % change in \(L^* \) of 7.9% indicating improvement by dynamic drying of the polymer with 170°C air despite the shorter drying time. Measurements are shown in Table 4.

Another portion of the solids is then dried at 170°C for 30 minutes using the PTFE drier described above (Apparatus for Drying of PTFE Polymer) with the addition of ozone enriched air. During the hour of drying, 100 cc/min of ozone enriched air is introduced into the dryer. Ozone is produced by passing 100 cc/min of air into a Clearwater Technologies, Inc. Model CD-1 0 ozone generator which is operated at the full power setting. The resulting value for \(L^* \) is 65.9 providing a % change in \(L^* \) of 50.7% indicating improvement by ozone dynamic drying of the polymer with 170°C. Measurements are shown in Table 4.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>L*</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 °C Dynamic Air Drying</td>
<td>44.8</td>
<td>35.1 %</td>
</tr>
<tr>
<td>180 °C Dynamic Ozone Drying</td>
<td>55.8</td>
<td>55.6 %</td>
</tr>
</tbody>
</table>

Example:

PTFE Dried Using Dynamic Air Drying: 44.8 to 35.1 %

PTFE Dried Using Dynamic Ozone Drying: 55.8 to 55.6 %
Table 4

<table>
<thead>
<tr>
<th>State</th>
<th>L*</th>
<th>% change in L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 °C Static Air Drying</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td>180 °C Dynamic Air Drying</td>
<td>43.9</td>
<td>7.9%</td>
</tr>
<tr>
<td>180 °C Dynamic Ozone Drying</td>
<td>65.9</td>
<td>50.7%</td>
</tr>
</tbody>
</table>

5 SECTION I EXAMPLES: FLUOROPOLYMER RESIN TREATMENT EMPLOYING MELT EXTRUSION AND EXPOSURE TO OXYGEN SOURCE TO REDUCE DISCOLORATION

Fluoropolymer Preparation

10 FEP 1: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80°C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psia (88 kPa). A solution containing 500 mL of deaerated deionized water, 0.5 grams of Pluronic® 31R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 470 psig (3.34 MPa). 112 mL of liquid PEVE is injected into the reactor. Then TFE is added to the reactor to achieve a final pressure
of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-three-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a goal rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.2 mL/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,182 ppm of SDS hydrocarbon stabilizing surfactant and 60,755 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, and finally to 0.4 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 28 ml of surfactant solution added during reaction. During reaction, the pressure in the reactor reaches the maximum desired limit of 650 psig (4.58 MPa) and the TFE feed rate is reduced from the goal rate to control the pressure. The total reaction time is 266 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 52 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 100 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C. Solids content of the dispersion is 20.30 wt% and Dv(50) raw dispersion particle size (RDPS) is 146.8 nm. 542
grams of wet coagulum is recovered on cleaning the autoclave. The
TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 16.4
gm/1 0 min, an HFP content of 11.1 wt%, and a PEVE content of 1.27
wt%, and a melting point of 247.5 °C.

Example 1: Oxidative Reactive Extrusion of FEP
Aqueous FEP dispersion polymerized as described above is
coaagulated in a heated glass reactor. 1250 ml of dispersion is heated to
85 °C in a water bath and then transferred to a 2,000 ml jacketed glass
reactor with four internal baffles produced by Lab Glass or Vineland, NJ
where the temperature is maintained at by circulating 85 °C water through
the jacket. Two high-shear impellers are turned at 2,470 rpm for 3600
seconds to cause the dispersion to separate into a polymer phase and a
water phase. The water is separated from the solids by filtering through a
150 micron mesh filter bag model NMO150P1SHS manufactured by The
Strainrite Companies of Auburn, Maine. The polymer phase is dried for 40
hours in a circulating air oven set at 150 °C to produce a dry powder.

A sample of dried powder is molded to produce color films as
described in the Test Methods section above as Measurement of
Thermally Induced Discoloration for melt-processible fluoropolymers to
establish the base value of L' (L'_0 = 30.5) for untreated color which value is
more than 49 L units below the L' value of FEP fluoropolymer resin of
commercial quality manufactured using ammonium perfluorooctanoate
fluorosurfactant, where the standard being used for this example is 79.7.

All of the experiments are carried out with a 25 mm twin-screw
extruder, equipped with an injection probe, which is a rod having a
longitudinal bore opening flush with the surface of the extruder barrel in
the reaction zone, and a vacuum port connected to a fluorine/hydrofluoric
acid scrubbing system. The twin-screw extruder feeds into a 3.81 cm (1.5
inch) single-screw extruder, which is equipped with a die. The twin-screw
extruder serves as a resin melter and end group reactor in which the
desired end group and backbone, stabilization is conducted. The single-
screw extruder serves as a melt pump to generate the pressure necessary
to move the resin through the optional screen pack and die.
The extrusion equipment described above is a "Kombiplast" extruder from the Coperion Corporation. Corrosion-resistant materials are used for those parts that come into contact with the polymer melt and fluorinating agent. The twin-screw extruder has two corotating screws disposed side by side. The screw configurations are designed with an intermeshing profile and tight clearances, causing them to be self-wiping. The screw configurations include kneading blocks, mixing elements, and conveying screw bushings. The first 19.4 Length/Diameter (L/D, D being the diameter of the bushings) of the extruder is the melting zone. This contains the feeding, solids conveying, and kneading block sections. The kneading block sections provide high shear and insure proper melting of the polymer. The melting section ends with a left handed bushing (rearward pumping) that forms a melt seal and insures complete filling of the final kneading blocks. The reagent is injected immediately after this section. The next 20.7 L/D contain the injection, mixing and reaction sections with multiple mixing elements and constitute the reaction zone of the extruder. The mixing elements used and their arrangement consist of four working sections with TME elements followed by a working section with a single ZME element. The next 5.4 L/D contains the vacuum extraction section (devolutilization zone), which is connected to a scrubbing system designed to neutralize F_2, HF, and other reaction products, depending on the reaction being carried out. The vacuum extraction section follows a conventional design, which includes melt forwarding elements that provide for free volume, so that the molten polymer is exposed to subatmospheric pressure, which prevent reactive and corrosive gases from escaping into the atmosphere. The vacuum is operated between 55-90 kPa absolute (8 and 13 psia). Undercut bushings (SK) are an effective way to provide the forwarding elements in the vacuum extraction section of the extruder. The final 3.3 L/D are used to provide a vacuum seal and pump the molten polymer into the single-screw extruder. Chemical reactions mainly occur in the section between the injection nozzle and the vacuum port that contains the mixing sections. Backbone stabilization in the case of FEP occurs in both the kneading block sections and the mixing sections. The twin-screw extruder empties
into a single-screw melt pump, which is designed to generate pressure at low shear rates for filtration and pellet formation. The molten polymer passes through a 0.95 cm (3/8 inch) die hole. The melt strand is then quenched in a water bath to produce a solid strand. The strand is then chopped to produce pellets.

The twin-screw extruder is operated with barrel temperatures of 350°C and a screw speed of 200 rpm. The single-screw extruder is operated with barrel temperatures of 350°C and a screw speed of 20 rpm. The polymer is fed to the extruder at 18 kg/hr. Dry, compressed air is injected through a nozzle into the injection zone at an oxygen-to-polymer ratio of 0.10% by weight.

The pellets produced with air are molded to produce color films as described in Test Methods, Measurement of Thermally Induced Discoloration for melt-processible fluoropolymers. \(L^* \) is 71.2 with a % change in \(L^* \) of 82.7% is seen for fluoropolymer exposed to air injection while melt extruding. The measured colors are shown in Table 1.

<table>
<thead>
<tr>
<th>State</th>
<th>(L^*)</th>
<th>% change in (L^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting powder</td>
<td>30.5</td>
<td>-</td>
</tr>
<tr>
<td>Pellets produced with air injection</td>
<td>71.2</td>
<td>82.7%</td>
</tr>
</tbody>
</table>

SECTION J EXAMPLES: DRYING WET FLUOROPOLYMER RESIN AND EXPOSING TO OXYGEN SOURCE TO REDUCE DISCOLORATION

Fluoropolymer Preparation

PTFE - Preparation of Hydrocarbon Stabilized PTFE Dispersion

To a 12 liter, horizontally disposed, jacketed, stainless steel autoclave with a two blade agitator is added 5200 gm of deionized, deaerated water. To the autoclave is added an additional 500 gm of deionized, deaerated water which contains 0.12 gm of Pluronic® 31 R 1.
The autoclave is sealed and placed under vacuum. The autoclave pressure is raised to 30 psig (308 kPa) with nitrogen and vented to atmospheric pressure. The autoclave is pressurized with nitrogen and vented 2 more times. Autoclave agitator speed is set at 65 RPM. 20 ml of initiator solution containing 1.0 gm of ammonium persulfate (APS) per liter of deionized, deaerated water is added to the autoclave.

The autoclave is heated to 90°C and TFE is charged to the autoclave to bring the autoclave pressure to 400 psig (2.86 MPa). 150 ml of an initiator solution composed of 11.67 gm of 70% active disuccinic acid peroxide (DSP), 0.167 gm of APS and 488.3 gm of deionized water is charged to the autoclave at 80 ml/min. After the autoclave pressure drops 10 psi (69 kPa) from the maximum pressure observed during injection of initiator solution, the autoclave pressure is brought back to 400 psig (2.86 MPa) with TFE and maintained at that pressure for the duration of the polymerization. After 100 gm of TFE has been fed since kickoff, an aqueous surfactant solution containing 5733 ppm of SDS hydrocarbon stabilizing surfactant and 216 ppm of iron sulfate heptahydrate is pumped to the autoclave at a rate of 4 ml/min until 185 ml of surfactant solution has been added. After approximately 70 minutes since kickoff, 1500 gm of TFE has been added to the autoclave. The agitator is stopped, the autoclave is vented to atmospheric pressure and the dispersion is cooled and discharged. Solids content of the dispersion is 18-19 wt%. Dv(50) raw dispersion particle size (RDPS) is 208 nm.

Isolation of PTFE Dispersion

To a clean glass resin kettle having internal dimensions 17 cm deep and 13 cm in diameter is charged 600 gm of 5 wt % dispersion. The dispersion is agitated with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The following sequence is executed until the dispersion has completely coagulated as indicated by the separation of white PTFE polymer from a clear aqueous phase: At time zero, agitation speed is set at 265 revolutions per minute (RPM) and 20 ml of a 20 wt % aqueous solution of ammonium carbonate is slowly
added to the resin kettle. At 1 minute from time zero, the agitator speed is raised to 565 RPM and maintained until the dispersion is completely coagulated. Once coagulated, the clear aqueous phase is removed by suction and 600 mL of cold (approximately 6°C), deionized water is added. The slurry is agitated at 240 RPM for 5 minutes until agitation is halted and the wash water removed from the resin kettle. This washing procedure is repeated two more times with the final wash water being separated from the polymer by vacuum filtration as indicated below.

A ceramic filtration funnel (10 cm internal diameter) is placed on a vacuum flask with rubber sealing surface. A 30 cm by 30 cm lint free nylon filter cloth is placed in the filtration funnel and the washed polymer and water is poured into the funnel. A vacuum is pulled on the vacuum flask and once the wash water is removed, 1200 mL of additional deionized water is poured over the polymer and pulled through the polymer into the vacuum flask. Polymer thus coagulated, washed and isolated is removed from the filter cloth for further processing.

FEP: Preparation of Hydrocarbon Stabilized TFE/HFP/PEVE Dispersion

A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) is charged with 60 pounds (27.2 kg) of deionized water. The reactor temperature then is increased to 103 °C while agitating at 46 rpm. The agitator speed is reduced to 20 rpm and the reactor is vented for 60 seconds. The reactor pressure is increased to 15 psig (205 kPa) with nitrogen. The agitator speed is increased to 46 rpm while cooling to 80°C. The agitator speed is reduced to 20 rpm and a vacuum is pulled to 12.7 psia (88 kPa). A solution containing 500 mL of deaerated deionized water, 0.5 grams of Pluronic® R1 solution and 0.3 g of sodium sulfite is drawn into the reactor. With the reactor paddle agitated at 20 rpm, the reactor is heated to 80 °C, evacuated and purged three times with TFE. The agitator speed is increased to 46 rpm and the reactor temperature then is increased to 103 °C. After the temperature has become steady at 103 °C, HFP is added slowly to the reactor until the pressure is 430 psig (3.07 MPa). 112 mL of liquid PEVE is injected into the
reactor. Then TFE is added to the reactor to achieve a final pressure of 630 psig (4.45 MPa). Then 80 ml of freshly prepared aqueous initiator solution containing 2.20 wt% of ammonium persulfate (APS) is charged into the reactor. Then, this same initiator solution is pumped into the reactor at a TFE to initiator solution mass ratio of twenty-to-one for the remainder of the polymerization after polymerization has begun as indicated by a 10 psi (69 kPa) drop in reactor pressure, i.e. kickoff. Additional TFE is also added to the reactor beginning at kickoff at a rate of 0.06 lb/min (0.03 kg/min) subject to limitation in order to prevent the reactor from exceeding the maximum desired limit of 650 psig (4.58 MPa) until a total of 12.0 lb (5.44 kg) of TFE has been added to the reactor after kickoff. Furthermore, liquid PEVE is added to the reactor beginning at kickoff at a rate of 0.3 ml/min for the duration of the reaction.

After 4.0 lb (1.8 kg) of TFE has been fed since kickoff, an aqueous surfactant solution containing 45,176 ppm of SDS hydrocarbon stabilizing surfactant and 60,834 ppm of 30% ammonium hydroxide solution is pumped to the autoclave at a rate of 0.2 ml/min. The aqueous surfactant solution pumping rate is increased to 0.3 ml/min after 6.0 lb (2.7 kg) of TFE has been fed since kickoff, then to 0.4 ml/min after 8.0 lb (3.6 kg) of TFE has been fed since kickoff, to 0.6 ml/min after 10.0 lb (4.5 kg) of TFE has been fed since kickoff, and finally to 0.8 ml/min after 11.0 lb (5.0 kg) of TFE has been fed since kickoff resulting in a total of 47 ml of surfactant solution added during reaction. The total reaction time is 201 minutes after initiation of polymerization during which 12.0 lb (5.44 kg) of TFE and 60 ml of PEVE are added. At the end of the reaction period, the TFE feed, PEVE feed, the initiator feed and surfactant solution feed are stopped; an additional 25 ml of surfactant solution is added to the reactor, and the reactor is cooled while maintaining agitation. When the temperature of the reactor contents reaches 90°C, the reactor is slowly vented. After venting to nearly atmospheric pressure, the reactor is purged with nitrogen to remove residual monomer. Upon further cooling, the dispersion is discharged from the reactor at below 70 °C.

Solids content of the dispersion is 20.07 wt% and Dv(50) raw dispersion particle size (RDPS) is 143.2 nm. 703 grams of wet coagulum
is recovered on cleaning the autoclave. The TFE/HFP/PEVE terpolymer (FEP) has a melt flow rate (MFR) of 29.6 gm/10 min, an HFP content of 9.83 wt%, a PEVE content of 1.18 wt%, and a melting point of 256.1 °C.

5 Isolation of FEP Dispersion

The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO150P1 SHS manufactured by The Strainrite Companies of Auburn, Maine.

10 Thermally Induced Discoloration

Dried polymer is characterized as described above in the Test Methods - Measurement of Thermally Induced Discoloration as applicable to the type of polymer used in the following Examples.

15 Comparative Example 1: PTFE with Hydrocarbon Stabilizing Surfactant

No Treatment

A quantity of PTFE dispersion as described above is diluted to 5 wt % solids with deionized water. The dispersion is coagulated and isolated via the method described above (Isolation of PTFE Dispersion). Polymer thus obtained is then dried at 170°C for 1 hour using the PTFE drier described above in Apparatus for Drying of PTFE Polymer. Dried polymer is characterized for thermally induced discoloration as described in the Test Methods Measurement of Thermally Induced Discoloration for PTFE. Resulting value for L^* is 43.9, indicating extreme discoloration of the polymer upon thermal processing for untreated polymer. The measured color is shown in Table 1.

Example 1a: PTFE PTFE, Dried with Ozone at ½ Power

A quantity of PTFE Dispersion as described above is diluted to 5 wt% solids with deionized water. The dispersion is coagulated and isolated via the method described above (Coagulation and Isolation of PTFE Dispersion). Polymer thus obtained is then dried at 170°C for 1
hour using the PTFE drier described above (Apparatus for Drying of PTFE Polymer). During the hour of drying, 100 cc/min of ozone enriched air is introduced into the dryer. Ozone is produced by passing 100 cc/min of air into a Clearwater Technologies, Inc. Model CD-10 ozone generator which is operated at 1/2 power setting. Dried polymer is characterized as described in the Test Methods Measurement of Thermally Induced Discoloration for PTFE. \(L^* \) obtained for this polymer is 63.7 with a % change in \(L^* \) of 45.6% indicating a much improved color after treatment. The measured color is shown in Table 1.

Example 1b: PTFE, Dried with Ozone at Full Power

Example 1 is repeated except the ozone generator is operated at full power. \(L^* \) obtained for this polymer is 65.9 with a % change in \(L^* \) of 50.7% indicating a much improved color after treatment. The measured color is shown in Table 1.

Comparative Example 2 - PTFE, UVC, 1wt% \(\text{H}_2\text{O}_2 \) on polymer, \(\text{O}_2 \) Injection, 3 Hours, 60°C

To a glass beaker is added 155gm of PTFE dispersion as prepared above having 19.4% solids and 1.0 gm of 30 wt% hydrogen peroxide. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. A total of 1800 gms of dispersion thus prepared is added to a 2000 ml jacketed resin kettle. The dispersion is heated to 60°C with agitation aided by continuous injection with 100 cc/min of oxygen through two sintered glass, fine bubble, sparge tubes. Two 10 watt 254nm UV lights are immersed in the dispersion. The lights are energized for 3 hours. 1200 gm of the treated dispersion is coagulated and isolated as described above. Half of the resulting wet polymer is dried in the apparatus for drying of PTFE polymers at 170 °C for 1 hour using only air as the drying gas. Dried polymer is characterized as described in the Test Methods Measurement of Thermally Induced Discoloration for PTFE. \(L^* \) obtained for this polymer is 75.9 with a % change in \(L^* \) of 73.7%. The measured color is shown in Table 1.
Example 2 - PTFE, UVC, 1wt% H₂O₂ on polymer, O₂ Injection, 3 Hours, 60°C

The remaining half of wet polymer obtained from Comparative Example 2 after coagulation and isolation is dried in the apparatus for drying of PTFE polymers described above with the addition of ozone enriched air. During the hour of drying at 170 °C, 100 cc/min of ozone enriched air is introduced into the dryer. Ozone is produced by passing 100 cc/min of air into a Clearwater Technologies, Inc. Model CD-1 0 ozone generator which is operated at the full power setting. Dried polymer is characterized for Thermally Induced Discoloration. L' obtained for this polymer is 84.9 with a % change in L' of 94.5% indicating a much improved color after treatment. The measured color is shown in Table 1.

Comparative Example 3 - PTFE, 0.33-0.5 wt% NaOCl on poly, 1 Hour, Ambient Temp

To a glass resin kettle is added 155gm of PTFE dispersion as described above having 19.4% solids. The net weight is raised to 600 gm with deionized water, thus reducing the %solids to 5 wt%. To the dispersion is added 1.0 gm of 10-15 wt% sodium hypochlorite solution. The dispersion is agitated at 240 rpm for 1 hour with a variable speed, IKA Works, Inc., RW20 digital overhead stirrer affixed with a 6.9 cm diameter, rounded edge three blade impeller having a 45° downward pumping pitch. The resulting, treated dispersion is coagulated and isolated as described above, dried in the apparatus for drying of PTFE polymers using only ambient air as the drying gas and finally characterized for Thermally Induced Discoloration. L' obtained for this polymer is 57.2 with a % change in L' of 30.6%. The measured color is shown in Table 1.

Example 3 - PTFE, 0.33-0.5 wt% NaOCl on poly, 1 Hour, Ambient Temp

The procedure of Comparative Example 3 is repeated and after coagulation and isolation, the wet polymer is dried in the apparatus for drying of PTFE polymers with the addition of ozone enriched air. During the hour of drying at 170 °C, 100 cc/min of ozone enriched air is
introduced into the dryer. Ozone is produced by passing 100 cc/min of air into a Clearwater Technologies, Inc. Model CD-10 ozone generator which is operated at the full power setting. Dried polymer is characterized for Thermally Induced Discoloration. L* obtained for this polymer is 84.9 with a % change in L* of 94.5% indicating a much improved color after treatment. The measured color is shown in Table 1.

Comparative Example 4 - PTFE, NaOH pH=9.9, Oxygen, 3.0 Hours @50°C

To a 2000 ml jacketed resin kettle is added 465 gm of PTFE Dispersion as described above having a solids content of 19.4 wt%. Net weight is raised to 1800 gm with deionized water. While agitating at 300 rpm, the dispersion is heated to 50°C by setting the appropriate temperature on the jacket circulating bath. Once at temperature, pH of the dispersion is adjusted to 9.9 by adding approximately 8 drops of 50 wt% sodium hydroxide solution to the resin kettle. The dispersion is sparged with oxygen through a 25 mm diameter sintered glass, fine bubble, sparge tube. Dispersion temperature is held constant and agitation is continued for 3.0 hours. 1200 gm of the treated dispersion is coagulated and isolated as described above. Half of the resulting wet polymer is dried at 170 °C for one hour in the apparatus for drying of PTFE polymers using only air as the drying gas. Dried Polymer is characterized for Thermally Induced Discoloration. L* obtained for this polymer is 54.2 with a % change in L* of 23.7%. The measured color is shown in Table 1.

Example 4 - PTFE, NaOH pH=9.9, Oxygen, 3.0 Hours @50°C

The remaining half of wet polymer obtained from Comparative Example 4 after coagulation and isolation is dried at 170 °C for 1 hour in the apparatus for drying of PTFE polymers with the addition of ozone enriched air. During the hour of drying, 100 cc/min of ozone enriched air is introduced into the dryer. Ozone is produced by passing 100 cc/min of air into a Clearwater Technologies, Inc. Model CD-10 ozone generator which is operated at the full power setting. The dried polymer is
characterized for Thermally Induced Discoloration. L' obtained for this polymer is 81.3 with a % change in L' of 86.2% indicating a much improved color after treatment. The measured color is shown in Table 1.

Comparative Example 5 (PTFE. NaOH pH=9.9, Oxygen, 1.0 Hour @50°C)

To a 2000 ml jacketed resin kettle is added 310 gm of PTFE Dispersion as described above having a solids content of 19.4 wt%. Net weight is raised to 1200 gm with deionized water. While agitating at 300 rpm, the dispersion is heated to 50°C by setting the appropriate temperature on the jacket circulating bath. Once at temperature, pH of the dispersion is adjusted to 9.9 by adding approximately 5 drops of 50 wt% sodium hydroxide solution to the resin kettle. The dispersion is sparged with oxygen through a 25 mm diameter sintered glass, fine bubble, sparge tube. Dispersion temperature is held constant and agitation is continued for 1.0 hour. The treated dispersion is coagulated and isolated as described above. Half of the resulting wet polymer is dried in the apparatus for drying of PTFE polymers at 170 °C for one hour using only air as the drying gas. Dried polymer is characterized for Thermally Induced Discoloration. L' obtained for this polymer is 49.3 with a % change in L' of 12.4%. The measured color is shown in Table 1.

Example 5 - PTFE. NaOH pH=9.9, Oxygen, 1.0 Hours @50°C

The remaining half of wet polymer obtained from Comparative Example 5 after coagulation and isolation is dried in the apparatus for drying of PTFE polymers at 170 °C for one hour with the addition of ozone enriched air. During the hour of drying, 100 cc/min of ozone enriched air is introduced into the dryer. Ozone is produced by passing 100 cc/min of air into a Clearwater Technologies, Inc. Model CD-10 ozone generator which is operated at the full power setting. Dried polymer is characterized for Thermally Induced Discoloration. L' obtained for this polymer is 75.5 with a % change in L' of 72.8% indicating a much improved color after treatment. The measured color is shown in Table 1.

Table 1
<table>
<thead>
<tr>
<th>Examples</th>
<th>L* drying with air</th>
<th>% change in L*</th>
<th>L* drying with ozone enriched air</th>
<th>% change in L with ozone enriched air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Ex 1 (No Treatment)</td>
<td>43.9</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Example 1a</td>
<td>-</td>
<td>-</td>
<td>63.7</td>
<td>45.6%</td>
</tr>
<tr>
<td>Example 1b</td>
<td>-</td>
<td>-</td>
<td>65.9</td>
<td>50.7%</td>
</tr>
<tr>
<td>Comp Ex 2</td>
<td>75.9</td>
<td>73.7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Example 2</td>
<td>-</td>
<td>-</td>
<td>84.9</td>
<td>94.5%</td>
</tr>
<tr>
<td>Comp Ex 3</td>
<td>57.2</td>
<td>30.6%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Example 3</td>
<td>-</td>
<td>-</td>
<td>84.9</td>
<td>94.5%</td>
</tr>
<tr>
<td>Comp Ex 4</td>
<td>54.2</td>
<td>23.7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Example 4</td>
<td>-</td>
<td>-</td>
<td>81.3</td>
<td>86.2%</td>
</tr>
<tr>
<td>Comp Ex 5</td>
<td>49.3</td>
<td>12.4%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Example 5</td>
<td>-</td>
<td>-</td>
<td>75.5</td>
<td>72.8%</td>
</tr>
</tbody>
</table>

Comparative Example 6 - FEP - No Treatment

Aqueous FEP dispersion polymerized as described above is diluted to 5 weight percent solids with deionized water. The dispersion is coagulated by freezing the dispersion at -30 °C for 16 hours. The dispersion is thawed and the water is separated from the solids by filtering through a 150 micron mesh filter bag model NMO1 50P1SHS manufactured by The Strainrite Companies of Auburn, Maine. The solids are divided to allow the sample to be dried by more than one technique.

A first portion of polymer is dried for 2 hours with 180°C air in the equipment described under Apparatus for Drying of FEP Polymer solids using only air as the drying gas. The dried powder is molded to produce color films to characterize for thermally induced discoloration as described in the Test Methods section above as Measurement of Thermally Induced...
Discoloration for FEP. L* obtained for this polymer is 44.8. The measured color is shown in Table 2.

Example 7 - FEP - Ozone Drying

Another portion of polymer prepared in Comparative Example 6 is dried for 2 hours with 180°C air that is enriched with ozone in the equipment described under Apparatus for Drying of FEP Polymer with the dryer bed assembly with three evenly spaced nozzles. Each nozzle is connected to an AQUA-6 portable ozone generator manufactured by A2Z Ozone of Louisville, Kentucky, which is operated during the drying process. L* obtained for this polymer is 55.8 with a % change in L* of 31.5% indicating a much improved color after treatment. The measured color is shown in Table 2.

Example 8 - FEP - Pretreatment with UVC + Ozone Injection

Aqueous FEP dispersion polymerized as described Comparative Example 6 is diluted to 5 weight percent solids with deionized water and preheated to 40 °C in a water bath. A fresh FeSO₄ solution is prepared by diluting 0.0150 g of FeSO₄·7H₂O to 100 ml using deaerated deionized water. 1200 ml of the FEP dispersion, 4 ml of the FeSO₄ solution, and 2 ml of 30 wt % H₂O₂ are added to a 2000 ml jacketed glass reactor with internal diameter of 10.4 cm, which has 40 °C water circulating through the reactor jacket, and the contents are mixed. Two sparge tubes that each have a 12 mm diameter by 24 mm long, fine-bubble, fritted-glass cylinder produced by LabGlass as part number 8680-1 30 are placed in the reactor, and each is connected to an AQUA-6 portable ozone generator described above. The ozone generators are turned on and used to bubble 1.18 standard L/min (2.5 standard ft³/hr) of ozone enriched air through the dispersion. The dispersion is allowed to equilibrate for 5 minutes. A 10 watt UVC light as described in 10 watt UVC Light Source is placed in the reactor. The UVC lamp is turned on to illuminate the dispersion while injection with ozone enriched air and controlling temperature at 40 °C. After three hours, the lamp is extinguished and the ozone enriched air is
stopped. The dispersion is coagulated, filtered, dried and molded as described in Comparative Example 6 to compare the differences between drying with air only and ozone enriched air. L' obtained for polymer dried with air only is 58.4 with a % change in L' of 39.0%. L' obtained for polymer dried with ozone enriched air is 76.2 with a % change in L' of 90.0% indicating a much improved color after treatment. The measured color is shown in Table 2.

Example 9 - FEP - Pretreatment with UVC + Oxygen Injection

Treatment is conducted utilizing the same conditions as Example 8 except 1.0 standard L/min of oxygen is bubbled through a sparge tube with a 25 mm diameter fine fritted glass disc sparge tube produced by Ace Glass as part number 7196-20 in place of ozone. Dried polymer is characterized for Thermally induced Discoloration.

L' obtained for polymer dried with air only is 55.2 with a % change in L' of 29.8%. L' obtained for polymer dried with ozone enriched air is 60.4 with a % change in L' of 44.7% indicating a much improved color after treatment. The measured color is shown in Table 2.

Example 10- FEP - Pretreatment with H₂O₂ Treatment

Aqueous FEP dispersion polymerized as described in Comparative Example 6 is diluted to 5 weight percent solids with deionized water. 1200 ml of the FEP dispersion preheated to 50 °C in a water bath. The preheated dispersion and 2 ml of 30 wt % H₂O₂ are added to a 2000 ml jacketed glass reactor with internal diameter of 13.3 cm (5-1/4 inches) that has 50 °C water circulating through the reactor jacket. An impeller with four 3.18 cm (1.25 inch) long flat blades set at a 45° angle and two sparge tubes that each have a 12 mm diameter by 24 mm long fine-bubble, fritted-glass cylinder produced by LabGlass as part number 8680-130 are placed in the reactor. The sparge tubes are connected to an air supply that is passed through a Drierite gas purification column model 27068 produced by W.A. Hammond Drierite Company of Xenia, Ohio, and the air supply is adjusted to deliver 1.42 standard L/min (3.0 standard ft³/hr). The
agitator is set at 60 rpm. After 5 minutes of mixing, the dispersion
25 temperature is 49.5 °C and the reaction timer is started. After 45 minutes
of reaction, 50 ml of deionized water and 2 ml of 30 wt % H2O2 are added
to offset evaporative losses. The reaction is ended after 16 hours by
5 stopping the agitator, ceasing the air flow, discontinuing the hot water
circulation, and then removing the dispersion from the reactor. The
dispersion is coagulated, filtered, dried and molded as described in
Comparative Example 6 to compare the differences between drying with
air only and ozone enriched air. L* obtained for polymer dried with air only
is 35.2 with a % change in L* of -27.5%. L* obtained for polymer dried
with ozone enriched air is 63.7 with a % change in L* of 54.2% indicating a
much improved color after treatment. The measured color is shown in
Table 2. It is to be noted that the pretreatment in this example results in
dried polymer in air alone showing a severe decrease in the value of L* as
compared to untreated polymer. However, drying the pretreated polymer
in ozone enriched air results in a greater % change in L* than polymer
dried in ozone enriched air with no pretreatment (see Comparative
Example 6 which shows a % change of L* = 31.5%). This shows that the
pretreatment of dispersion with H2O2 confers an added beneficial effect in
improving the thermally induced discoloration when drying polymer with
ozone enriched air.

Example 11 - FEP - Pretreatment with UVC + Catalyst + Oxygen Injection
Aqueous FEP dispersion polymerized as described Comparative
Example 6 is diluted to 5 weight percent solids with deionized water and
preheated to 40 °C in a water bath. A TiO2 solution is produced by
sonicating 0.0030 g of Degussa P-25 TiO2 lot Kontrollnummner 1263 diluted
to 6 ml with deionized water. 1200 ml of the FEP dispersion, all 6 ml of
the TiO2 solution, and 2 ml of 30 wt % H2O2 are added to a 2000 ml
jacketed glass reactor with internal diameter of 10.4 cm, which has 40 °C
water circulating through the reactor jacket, and the contents are mixed. A
sparge tube with a 25 mm diameter fine-bubble, fritted-glass disc sparge
tube produced by Ace Glass as part number 7196-20 is placed in the reactor, and 1.0 standard L/min of oxygen is bubbled through the dispersion. The dispersion is allowed to equilibrate for 5 minutes. A 10 watt UVC light as described in 10 watt UVC Light Source is placed in the reactor. The UVC lamp is turned on to illuminate the dispersion while injection with oxygen and controlling temperature at 40 °C. After three hours, the lamp is extinguished and the sparge gas is stopped. The dispersion is coagulated, filtered, dried and molded as described in Comparative Example 6 to compare the differences between drying with air only and ozone enriched air. L* obtained for polymer dried with air only is 63.3 with a % change in L* of 53.0%. L* obtained for polymer dried with ozone enriched air is 79.0 with a % change in L* of 98.0% indicating a much improved color after treatment. The measured color is shown in Table 2.

<table>
<thead>
<tr>
<th>Examples</th>
<th>L* drying with air</th>
<th>% change in L*</th>
<th>L* drying with ozone enriched air</th>
<th>% change in L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. Ex 6</td>
<td>44.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(No Treatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 7</td>
<td>-</td>
<td>-</td>
<td>55.8</td>
<td>31.5%</td>
</tr>
<tr>
<td>Example 8</td>
<td>58.4</td>
<td>39.0%</td>
<td>76.2</td>
<td>90.0%</td>
</tr>
<tr>
<td>Example 9</td>
<td>55.2</td>
<td>29.8%</td>
<td>60.4</td>
<td>44.7%</td>
</tr>
<tr>
<td>Example 10</td>
<td>35.2</td>
<td>-27.5%</td>
<td>63.7</td>
<td>54.2%</td>
</tr>
<tr>
<td>Example 11</td>
<td>63.3</td>
<td>53.0%</td>
<td>79.0</td>
<td>98.0%</td>
</tr>
</tbody>
</table>
What is claimed is:

1. Process for reducing thermally induced discoloration of fluoropolymer resin, said fluoropolymer resin produced by polymerizing fluoromonomer in an aqueous dispersion medium to form aqueous fluoropolymer dispersion and isolating said fluoropolymer from said aqueous medium to obtain said fluoropolymer resin, said process comprising:
 - exposing the aqueous fluoropolymer dispersion to oxidizing agent.

2. The process of claim 1 wherein said process reduces thermally induced discoloration by at least about 10% as measured by % change in L^* on the CIELAB color scale.

3. The process of any of the preceding claims wherein said aqueous fluoropolymer dispersion contains hydrocarbon surfactant which causes said thermally induced discoloration.

4. The process of claim 3 wherein said aqueous fluoropolymer dispersion is polymerized in the presence of hydrocarbon surfactant.

5. The process of any of the preceding claims wherein said oxidizing agent is an oxygen source.

6. The process of claim 4 wherein said oxygen source is selected from the group consisting of air, oxygen rich gas, ozone containing gas and hydrogen peroxide.

7. The process of any of the preceding claims wherein the solids content of said dispersion during said exposing to oxidizing agent is about 2 weight % to about 30 weight %.

8. The process of any of the preceding claims wherein the fluoropolymer resin has an initial thermally induced discoloration value (L_0) about 4 L units below the L value of equivalent fluoropolymer resin of commercial quality manufactured using ammonium perfluorooctanoate fluorosurfactant.

9. The process of any of the preceding claims further comprising post-treating the fluoropolymer resin.

10. The process of claim 9 wherein said post-treating comprises exposing the fluoropolymer resin to oxidizing agent.
11. The process of claim 9 wherein the reduction of thermally induced discoloration measured by % change in L^* on the CIELAB color scale provided by said post-treating in combination with exposing the aqueous fluoropolymer dispersion to oxidizing agent is at least about 10% greater than the % change in L^* on the CIELAB color scale provided by only exposing the aqueous fluoropolymer dispersion to oxidizing agent under the same conditions.
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>C08F8/06</th>
<th>C08F14/18</th>
<th>C08F2/16</th>
<th>C08F6/16</th>
<th>C08L27/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td>C08F14/26</td>
<td>C08F214/26</td>
<td>C08F214/28</td>
<td>C08F216/14</td>
<td>C08F2/26</td>
</tr>
<tr>
<td></td>
<td>C08F2/30</td>
<td>C08L27/18</td>
<td>C08F6/22</td>
<td>C08F6/28</td>
<td>C08F8/22</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| C08F | C08L | C08J | C08K | B01J | B29C | B29K |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- EPO-Internal
- WPI Data
- CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE CA, [Online] 14 Apr 1 2005 (2005-04-14) TSUDA N0BUJI K0 ET AL: "Method for producing fluorine-containing polymer compositions with good corrosion resistance during processing" XP002702454, retrieved from CA; STN Database accession no. 142-374687 abstract</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>- & Wo 2005/033150 AI (DAI KIN IND LTD [JP]; TSUDA N0BUJI K0 [JP]; SAWAUCHI CHI E [JP]; SAWADA Y) 14 Apr 1 2005 (2005-04-14) abstract; claims 1-7 examples 1-3; table 2</td>
<td>9-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search: 24 September 2013

Date of mailing of the international search report: 01/10/2013

Name and mailing address of the ISA/European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Hol lender, C
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>FR 1 143 777 A (ELECTRO CHIMIE SOC D) 4 October 1957 (1957-10-04) abstract; examples page 1, left-hand column, paragraph 2 - page 2, left-hand column, paragraph 2</td>
<td>9-11</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 380 605 A1 (ATOFINA [FR]) 14 January 2004 (2004-01-14) claims 1, 17 paragraphs [0002], [0017], [0019] - paragraphs [0024]; [0025], [0037] - paragraphs [0051]; [0052]; table 1</td>
<td>1-8</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 043 353 A1 (DAIKIN IND LTD [JP]) 11 October 2000 (2000-10-11) claims 1, 4-7 paragraphs [0001]; [0002], [0005]; [0013]; [0016] paragraphs [0019]; [0028], [0040]</td>
<td>1-8</td>
</tr>
<tr>
<td>X</td>
<td>FR 1 140 964 A (PECHEINEY) 22 August 1957 (1957-08-22) abstract; examples page 1, left-hand column, paragraph 1 - page 2, left-hand column, paragraph 3</td>
<td>1-8</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WO 2005033150 A1</td>
<td>14-04-2005</td>
<td>NONE</td>
</tr>
<tr>
<td>FR 1143777 A</td>
<td>04-10-1957</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2842203 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H11181098 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9933904 A1</td>
</tr>
<tr>
<td>FR 1140964 A</td>
<td>22-08-1957</td>
<td>NONE</td>
</tr>
</tbody>
</table>