A blister pack may include a first layer, a second layer and a third layer. The first layer may include a hole. The second layer may include an indentation substantially aligned through the hole when the first and second layers are aligned and a second area surrounding the indentation. The third layer, which is in contact with the second layer, may include a third area that is substantially aligned with the second area when the second and third layers are aligned. The indentation may contain a medicament. The blister pack may include adhesives that secure the second layer to the first layer and the third layer. The second and third areas may be scored, cut and/or perforated. When sufficient force is applied to the third area, a blister, including the second and third areas, may be displaced containing the medicament.
FIG. 1A
Place First Layer in Loading Tray

Place Second Layer in Loading Tray

Fill Indentations in Second Layer with Medicaments

Print/Place Markings on Third Layer

Place Third Layer in Loading Tray

Place Loading Tray in Heat Press

Apply Force to Blister Pack Using Heat Press

FIG. 3
405 Determine Dose to Administer

410 Apply Force to Blister to Dislodge from Blister Pack

415 Apply Force to Indentation of Dislodged Blister to Remove Medicament

420 Administer Medicament to Patient

FIG. 4
MEDICAMENT CARRIERS AND METHODS OF USING SAME

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT REGARDING FEDERAL SPONSORED RESEARCH

[0002] NOT APPLICABLE

JOINT RESEARCH AGREEMENT

[0003] NOT APPLICABLE

INCORPORATION BY REFERENCE OF MATERIAL ON DISC

[0004] NOT APPLICABLE

BACKGROUND

[0005] 1. Technical Field

[0006] The disclosed embodiments generally relate to the fields of medicament storage and dispensing.

[0007] 2. Description of the Related Art

[0008] In conventional medicament dispensing systems, prescriptions are typically filled in either thirty-day or sixty-day allotments. With such systems, there is no accurate way to inventory medicaments, to audit patient compliance with a pharmacist’s or physician’s instructions, and/or to audit administration of the medicament. This is due in part because medicaments are dispensed in lots, and not every pill or dose is separately bar coded and/or otherwise traceable.

[0009] Medicaments can be supplied in a foil- or paper-wrapped blister pack containing a plurality of individual unit doses. A number of devices have been developed to assist physicians, pharmacists, nurses or other medical personnel in administering unit doses contained in a standard blister pack. U.S. Pat. No. 5,489,025 to Romick and U.S. Pat. No. 6,540,081 to Balz et al. are examples of such devices. Romick discloses a medication dispenser having a top plate with at least one aperture for receiving the blister portion of a blister pack, a bottom plate adapted to engage the top plate so as to confine the blister pack between the plates and having at least one aperture in register with the blister portion, and a bridge spanning the top plate and supported by support members. Balz et al. discloses a dispenser for dispensing a unit dose of a solid product contained in a blister pack. The dispenser includes a housing, a back plate, and a dispensing tray. The blister pack containing product is positioned between the housing and the back plate, whereby the product is dispensed through the back plate into the dispensing tray where it can be acquired for use. A puncture tab is integrated into the back plate to assist in rupturing the backing of the blister pack when dispensing the product.

[0010] Although these devices decrease the likelihood of errors in the administration of medication in a health care facility by preventing the unit doses from being removed from the blister portion of the blister pack until the foil backing is ruptured, the subject devices suffer from a number of limitations. Primarily, the devices are not intended for holding a plurality of different medications and/or varying dosages prescribed as part of a complex treatment regimen. In conventional blister pack holders, medicaments are organized according to their respective times of administration. As such, the existing blister pack holders are limited in their ability to provide the flexible dosage administration that is required for situations where the patient’s regimen is the subject of frequent dosage adjustments or the patient is prescribed more than one medication to be administered at varying times over the course of a day or over the course of several weeks or months.

[0011] Moreover, conventional devices are not suited for use by a patient in a home, assisted living facility, or other setting remote from the support of health care professionals. As described above, conventional blister pack holders organize medicaments according to their respective times of administration. However, they fail to provide a mechanism by which the administration of a prescribed medication or dosage can be remotely adjusted in real-time, in response to an unexpected change in a patient’s health condition. A delay of several hours to several days can often result before a patient is enabled to administer a new dosage or medicament. During this period, the patient may be confused as to the correct dosing regimen and continue to take doses according to the predetermined sequence provided in the blister pack. In addition, because a new prescription and allotment of blister packs is required every time a dose is adjusted, the patient must travel to a physician’s office and pharmacy. This is particularly disadvantageous for mobility-impaired patients and is a major source of drug non-compliance. Frequently, the patient’s condition deteriorates because the patient is unable to continue his course of treatment.

[0012] An additional shortcoming of conventional medication holders is that they are relatively complicated, requiring manufacture and assembly of various moveable parts. A still further shortcoming of conventional containers and storage devices is that they do not provide a practical means of quickly inventorying the exact amount of medication remaining in a prescription, and the amount of medication consumed by a patient.

[0013] Accordingly, what is needed is a convenient device for storing one or more types of medicaments.

[0014] A need exists for a device that permits inventorying of medicaments within a dispensing unit.

[0015] A need exists for a device that dispenses a dose of a medicament in an individual package.

[0016] A need exists for a device that dispenses a dose of a medicament in an individual package including information pertaining to the contained medicament.

[0017] A further need exists for a method of dispensing medicaments to patients in a manner that includes a prescribed treatment regimen.

[0018] The present disclosure is directed to solving one or more of the above-listed problems.
SUMMARY

Before the present methods, systems and materials are described, it is to be understood that this disclosure is not limited to the particular methodologies, systems and materials described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.

It must also be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural references unless the context clearly dictates otherwise. Thus, for example, reference to a "medicament" is a reference to one or more medicaments and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods, materials, and devices similar or equivalent to those described herein can be used in the practice or testing of embodiments, the preferred methods, materials, and devices are now described. All publications mentioned herein are incorporated by reference. Nothing herein is to be construed as an admission that the embodiments described herein are not entitled to antedate such disclosure by virtue of prior invention.

In an embodiment, a blister pack may include a first layer, a second layer and a third layer. The first layer may include a hole. The second layer may include an indentation that is substantially aligned through the hole when the first layer is aligned with the second layer. The indentation may contain a medicament. The second layer may include a second area surrounding the indentation. The third layer may be in contact with the second layer and may include a third area that is substantially aligned with the second area when the second layer is aligned with the third layer. The second area and the third area may each include one or more of a scoring, a cutting and a perforation. When sufficient force is applied to the third area, the second area and third area may be displaced from the blister pack to form a blister containing the medicament.

In an embodiment, a method of assembling a blister pack may include placing a first layer, having a hole, in a loading tray of a loading station, placing a second layer, having an indentation that is substantially aligned with the hole when the second layer is placed, placing a medicament in the indentation, placing a third layer on the second layer, and compressing the first layer, the second layer and the third layer in a heat press.

In an embodiment, a method of removing a medicament from a blister pack may include selecting a first blister containing a medicament from one or more blisters in a blister pack, applying force to a side of the first blister to dislodge the first blister from the blister pack, and removing the medicament from the first blister.

In an embodiment, a blister pack may include a ribbing comprising a plurality of blisters, whereby when sufficient force is applied to a blister, the blister is displaced from the ribbing, whereby when one or more blisters have been displaced, the ribbing provides substantially equivalent support to any remaining blisters as the ribbing provided prior to such displacement.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects, features, benefits and advantages of the embodiments described herein will be apparent with regard to the following description, appended claims and accompanying drawings where:

FIGS. 1A-1C depict exemplary layers of a blister pack according to an embodiment.

FIG. 1D depicts an alternate exemplary first layer of a blister pack according to an embodiment.

FIG. 2 depicts an exemplary backing sheet for a blister pack according to an embodiment.

FIG. 3 depicts a flow diagram for an exemplary method of assembling a blister pack according to an embodiment.

FIG. 4 depicts a flow diagram for an exemplary method of administering a medicament according to an embodiment.

DETAILED DESCRIPTION

As used herein, a "medicament" may include one or more of an individual, unit-of-issue dose of prescription and/or non-prescription medications, medical supplies, pharmaceuticals, nutraceuticals, injectibles, medical devices, diagnostic materials and other therapeutic products. A medicament may, where applicable, be in liquid, solid or gaseous form. Specific examples of medicaments may include, without limitation, suppositories, pre-filled syringes, inhalers, lotions, suspensions, blood testing strips, pills, tablets and caplets.

FIGS. 1A-1C depict exemplary layers of a blister pack according to an embodiment. As shown in FIG. 1, a blister pack 100 may include a first layer 105 (shown in FIG. 1A), a second layer 110 (shown in FIG. 1B) and a third layer 115 (shown in FIG. 1C). The first layer 105 of the blister pack 100 may include a bottom board. The bottom board may have one or more holes, such as 120. In an embodiment, a first area 125 may surround a hole 120. In an alternate embodiment, shown in FIG. 1D, no first area may be present surrounding a hole 120. In an embodiment, an adhesive may be applied to the first layer 105. In an embodiment, the first layer 105 may include, for example, cardboard and/or a plastic.

A second layer 110 may include a plastic or PVC material with one or more indentations, such as 130. Each indentation 130 may be placed such that the indentation aligns with a corresponding hole of the bottom board when the second layer 110 and the bottom board are aligned for use. The number and size of the one or more indentations 130 may vary based on the number and size of one or more medicaments to be contained within the blister pack 100.

Each of the first layer 105 and the second layer 110 may be scored, cut and/or perforated to enable an individual unit dose (a "blister") to be removed from the blister pack 100.

A third layer 115 may include, for example, a foil sheet with an adhesive. When the adhesive of the third layer 115 and the adhesive of the first layer 105 are heated and then cooled, each of the third layer and the first layer may become adhered to the second layer.
The foil sheet may be attached to a backing sheet. The foil sheet and/or the backing sheet may be scored, cut and/or perforated to match the scoring, cutting and/or perforation of the first layer 105 and the second layer 110 when the blister pack 100 is properly aligned. The scoring, cutting and/or perforation of the layers may ease removal of an individual unit dose from the blister pack.

In an embodiment, the third layer 115 may comprise a foil sheet, a paper sheet and a cardboard sheet. Each sheet may be scored, cut and/or perforated. The foil sheet may enable the third layer to be contacted by a heat press during assembly of a blister pack. The cardboard, or a similar material, may be used to stiffen the third layer to enable a blister to be properly removed from a blister pack (as described in more detail below). Additional alternative materials may also be used within the scope of this disclosure as will be apparent to one of ordinary skill in the art.

In an embodiment, a blister pack may be assembled using a loading station. A loading station may include a loading tray. The loading tray may include a plurality of spring-loaded pegs and/or pins, which become substantially flush with the loading tray when compressive force is applied to a blister pack 100. In an embodiment, the amount of force to apply to a blister pack 100 during assembly may be determinable based on the amount of compression of the spring-loaded pegs and/or pins.

Each layer of a blister pack 100 may include one or more guide holes 150, for example, on its outer perimeter. Each guide hole 150 may align with a corresponding loading tray guide peg and/or pin. The guide holes 150 may also be used to assist in alignment of a blister pack 100 when loaded into a medicament dispensing unit ("MDU").

FIG. 2 depicts an exemplary backing sheet for a blister pack according to an embodiment. The blister pack may include, for example, a barcode 205 and/or information 210 identifying the blister pack and/or identifying a medicament. The barcode 205 and/or information 210 may be printed on, for example, the backing sheet or a label attached to the backing sheet. In an embodiment, if the barcode 205 and/or other information 210 identifies a medicament, the barcode and/or other information may be printed and/or placed on the backing sheet proximate to the location at which the medicament is located within the blister pack.

A barcode 205 may include any electronically scannable and/or readable indicia, such as a barcode, an RFID tag, and/or any other marking that may be scanned and/or read by a device. The barcode 205 may be barcoded or read using an electronic scanner, such as a barcode scanner, an optical recognition scanner or a radio frequency identification ("RFID") scanner. In an embodiment, the barcode 205 may uniquely describe the blister pack. In an embodiment, the barcode 205 may include one or more segments pertaining to features of the blister pack and/or the one or more medicaments contained therein. For example, a first barcode segment may pertain to a layout format for the blister pack, a second barcode segment may pertain to an item number pertaining to at least one medicament in the blister pack, and a third barcode segment may pertain to a unique serial number for each item number. In an embodiment, if more than one type of medicament is included in a single blister pack, at least a segment of the barcode 205 may be used to determine where a medicament of a particular type is located in the blister pack.

The medicament information 210 may include, for example and without limitation, a lot number of the medicament, an expiration date of the medicament, a name of the medicament, a dosage pertaining to the medicament and/or a patient name. In an embodiment, the medicament information 210 may include any information that identifies the medicament and/or its usage after being removed from the blister pack.

In an embodiment, the barcode 205 and/or the medicament information 210 may be printed and/or placed such that when a blister containing the medicament is displaced from the blister pack, the barcode and/or medicament information may be on the blister. In an embodiment, the barcode 205 and/or the medicament information 210 may be printed and/or placed such that when a blister containing the medicament is displaced from the blister pack, the barcode and/or medicament information may remain on the blister pack. In an embodiment, if different medicaments and/or different doses of the same medicament are included in a single blister pack, a barcode 205 and/or the medicament information 210 may be printed and/or placed such that the blister containing the medicament is labeled to identify the medicament and/or dosage of the medicament when the blister is removed from the blister pack.

Unique identifiers may be placed and/or printed on the backing sheet to provide a key for proper orientation of the blister pack 100 when inserted into an MDU. In an embodiment, a first identifier 215 may be placed on a first side of the blister pack 100 and a second identifier 220 may be placed on a second side of the blister pack 100. The first identifier 215 and the second identifier 220 may each be replicated one or more times on one side of the blister pack 100. In an embodiment, when a blister pack 100 is inserted in an MDU, the MDU may scan one or more of the first identifier 215 and the second identifier 220 to determine if the blister pack is inserted in the correct orientation. In an embodiment, each of the first identifier 215 and the second identifier 210 may comprise a bar code, an RFID tag, a scannable image, scannable text, and/or the like.

In an embodiment, a different portion of the blister pack 100, such as the first layer 105, may include one or more of a barcode and an identifying label. In an embodiment, additional or alternate information may be printed on the blister pack 100 within the scope of this disclosure.

FIG. 3 depicts a flow diagram for an exemplary method of assembling a blister pack according to an embodiment. A first layer may be placed 305 in a loading tray. In an embodiment, an adhesive may be applied to the first layer while in the loading tray or prior to placing the first layer in the loading tray.

The second layer may be placed 310 on the first layer with the indentations facing down. Each of the first layer and the second layer may be aligned using one or more guide pins of the loading tray. In an embodiment, an adhesive may be applied to one or more of the upper and lower surfaces of the second layer 310 prior to placement in the loading tray. In an embodiment, an adhesive may be applied to the upper surface of the second layer 310 after placement in the loading tray.

In an embodiment, one or more indentations may be flood-filled 315 with medicaments according to standard pharmacy practices using conventional pharmacy devices
for loading blister packs. Other methods of filling one or more indentations may also be performed within the scope of the present disclosure.

[0049] The third layer may have one or more bar codes and identifying labels printed and/or placed 320 on, for example, its backing sheet. In an embodiment, one or more of the bar codes and identifying labels may be printed and/or placed on the third layer prior to the third layer being placed on the second layer. In an embodiment, the printing or placement of one or more bar codes or identifying labels may be performed after the third layer is placed on the second layer.

[0050] When each appropriate indentation is filled, a third layer may be placed 325 on top of the second layer. The third layer may be aligned using the guide pins on the loading tray during placement. An adhesive may be applied to the lower surface of the third layer prior to placement in the loading tray.

[0051] The loading tray may then be placed 330 in a heat press. Force may be applied 335 to the loading tray, and one or more guide pins may be compressed to a position level with the blister pack to ensure a complete seal of the blister pack.

[0052] FIG. 4 depicts a flow diagram for an exemplary method of administering a medicament according to an embodiment. As shown in FIG. 4, when a medicament is to be administered or delivered, the desired dose ("blister") may be determined 405 from, for example, the identifying label on the blister card. Force may be applied 410 to a portion of the third layer corresponding to the blister in order to dislodge the blister from the blister pack. A blister may be dislodged 410 manually or by a MDU. The medicament may then be removed 415 from the blister by applying force to an indentation of the blister. The removed medicament may then be administered 420.

[0053] In an embodiment, the blister pack may be suited for blister administration by a patient in, for example, a home, assisted living facility, or other non-clinical setting via a distribution device. In an alternate embodiment, the blister pack may be used in a hospital, clinic, long-term care facility or other location in which medical personnel are typically present. In such clinical environments, the blister pack may be stored until the patient’s scheduled dosing time.

At the designated dosing time, a healthcare practitioner may inspect the blister pack label and scan the barcode to acknowledge the administration of the medicament. The practitioner may extract 410 the sealed blister from the blister pack by applying force to the third layer of the blister pack on the desired blister.

[0054] The blister pack may also serve as a medication management and compliance tool by ensuring accurate delivery of both custom packaged and commercially available sealed unit dose and unit-of-issue therapeutic products to a patient. The blister pack may foster compliance with a prescribed treatment regimen by, for example, ensuring that the patient remains within recommended therapeutic levels. If the health of a patient changes or a dosing change is required, a healthcare practitioner may adjust the prescribed dosage in real-time without the need for a new prescription. The healthcare practitioner may achieve this by reviewing the stored inventory record of medicaments within the patient’s blister pack and directing the patient to take a different medication or dosage having a higher or lower strength, as appropriate.

[0055] The design of the blister pack may enable medications to be administered to a patient in a non-consecutive order, without any serial delivery restrictions. As such, a remotely located practitioner may make dosing changes without any disruption to the patient’s course of treatment via a MDU.

[0056] Unlike conventional blister packs, individual blisters may be ejected from the blister pack, and each blister may remain sealed in a unit dose after ejection. This may permit a user to eject a medicament from the blister pack for later use (allowing the patient to be separated from the blister pack at the time of medication administration).

[0057] In an embodiment, a blister pack may include one or more blisters surrounded by a ribbing. The ribbing may provide support to all blisters when force is applied to a blister. In other words, as a blister is displaced, the ribbing may support the area surrounding the blister that is being displaced and the remaining blisters so that the blister that is being displaced may be properly placed. After one or more blisters have been displaced, the ribbing may still provide substantially equivalent support to the remaining blisters to permit displacement of the remaining blisters from the blister pack in the future. In an embodiment, the ribbing may surround each blister prior to the blister being displaced from the blister pack. In an embodiment, the ribbing may remain when all blisters have been displaced from the blister pack.

[0058] Conventional medication dispensing systems dispense medicaments in a lot. In other words, such systems do not separately encode each pill or dose. As such, the doses are not traceable. In an embodiment, individual blisters may be labeled to denote the medicament contained therein. Thus, delivery and administration of medicaments may occur on a unit dosage basis in which each dose is inventoried with its own electronically coded identifier. This may enable a healthcare practitioner to accurately monitor patient compliance with a prescribed treatment regimen from a remote location.

[0059] The blister pack may be of a standard pharmacy size and may be filled directly by standard pharmacy tools known to those of ordinary skill in the art. For example, the blister card may be about 9 inches by about 6 inches. The blister card may include one or more guide holes on one or more sides. The guide holes may be used to align the blister card in a loading tray of a loading station. The blister card may further include one or more blisters as described above.

[0060] It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

What is claimed is:

1. A blister pack, comprising:
 a first layer having a hole;
 a second layer including an indentation, wherein the indentation contains a medicament, wherein the second
layer comprises a second area, wherein the second area surrounds the indentation; and
a third layer in contact with the second layer, wherein the third layer includes a third area;
wherein the second area and the third area each comprise one or more of a scoring, a cutting and a perforation,
wherewith when sufficient force is applied to the third area, the second area and third area are displaced from the blister pack to form a blister containing the medicament.
2. The blister pack of claim 1, further comprising:
a first adhesive for securing the first layer to the second layer; and
a second adhesive for securing the second layer to the third layer.
3. The blister pack of claim 1 wherein the first layer comprises a first area surrounding the hole, wherein the first area comprises one or more of a scoring, a cutting and a perforation, wherewith when sufficient force is applied to the third area, the first area is displaced from the blister pack.
4. The blister pack of claim 1 wherein the third layer comprises a foil sheet.
5. The blister pack of claim 1 wherein the third layer comprises one or more labels.
6. The blister pack of claim 1 wherein the third layer comprises one or more barcodes.
7. The blister pack of claim 1 wherein the third area comprises a label pertaining to the medicament.
8. The blister pack of claim 7 wherein the label comprises one or more of the following:
a barcode;
a lot number of the medicament;
an expiration date of the medicament;
a name of the medicament;
a dosage pertaining to the medicament; and
a name of a patient.
9. The blister pack of claim 1 wherein the third area comprises one or more of the following:
a barcode;
a lot number of the medicament;
an expiration date of the medicament; and
a name of the medicament;
a dosage pertaining to the medicament; and
a name of a patient.
10. The blister pack of claim 1 wherein the second layer comprises a plastic.
11. The blister pack of claim 1 wherein the second layer comprises polyvinyl chloride.
12. The blister pack of claim 1 wherein the first layer comprises cardboard.
13. The blister pack of claim 1 wherein the first layer comprises a plastic.
14. The blister pack of claim 1, further comprising:
one or more guide holes cut from the first layer, the second layer and the third layer.
15. The blister pack of claim 1, wherein each of the first layer, the second layer and the third layer are approximately 9 inches by approximately 6 inches.
16. A method of assembling a blister pack, the method comprising:
placing a first layer in a loading tray of a loading station, wherein the first layer comprises a hole;
placing a second layer on the first layer, wherein the second layer comprises an indentation, wherein the indentation is substantially aligned with the hole when the second layer is placed;
placing a medicament in the indentation;
placing a third layer on the second layer, and
compressing the first layer, the second layer and the third layer in a heat press.
17. The method of claim 16, further comprising:
placing an adhesive on a first side of the first layer,
wherewith placing the second layer on the first layer comprises placing the second layer on the first side of the first layer.
18. The method of claim 16, further comprising:
placing an adhesive on the third layer,
wherewith placing the third layer on the second layer comprises placing the third layer on the second layer such that the adhesive contacts the second layer.
19. The method of claim 16, further comprising:
printing a first marking on the third layer, wherein the first marking comprises one or more of a barcode, a lot number of the medicament, an expiration date of the medicament, a name of the medicament, a dosage pertaining to the medicament, and a name of a patient.
20. The method of claim 19 wherein the first marking is printed within the third area.
21. The method of claim 20, further comprising:
printing a second marking on the third layer, wherein the second marking comprises one or more of a barcode, a lot number of the medicament, an expiration date of the medicament, a name of the medicament, a dosage pertaining to the medicament, and a name of a patient.
22. The method of claim 16, further comprising:
placing a first label on the third layer, wherein the first label contains one or more of a barcode, a lot number of the medicament, an expiration date of the medicament, a name of the medicament, a dosage pertaining to the medicament, and a name of a patient.
23. The method of claim 22 wherein the first label is placed within the third area.
24. The method of claim 23, further comprising:
placing a second label on the third layer, wherein the second label contains one or more of a barcode, a lot number of the medicament, an expiration date of the medicament, a name of the medicament, a dosage pertaining to the medicament, and a name of a patient, wherein the second marking is not printed within the third area.
25. The method of claim 16 wherein the second layer comprises a plastic.

26. The method of claim 16 wherein the second layer comprises polyvinyl chloride.

27. The method of claim 16 wherein the first layer comprises cardboard.

28. The method of claim 16 wherein the first layer comprises a plastic.

29. The method of claim 16 wherein an area of the first layer surrounding the hole comprises one or more of a scoring, a cutting and a perforation.

30. The method of claim 16 wherein an area of the second layer surrounding the indentation comprises one or more of a scoring, a cutting and a perforation.

31. The method of claim 16 wherein an area of the third layer comprises one or more of a scoring, a cutting and a perforation.

32. A method of removing a medicament from a blister pack, the method comprising:

 selecting a first blister from one or more blisters in a blister pack, wherein the first blister contains a medicament;

 applying force to a first side of the first blister to dislodge the first blister from the blister pack; and

 removing the medicament from the first blister.

33. The method of claim 32 wherein removing the medicament from the first blister comprises applying force to a second side of the first blister to remove the medicament.

34. The method of claim 32 wherein removing the medicament from the first blister comprises:

 removing the first side from the first blister; and

 removing the medicament from the first blister.

35. A blister pack, comprising:

 a ribbing comprising a plurality of blisters;

 whereby when sufficient force is applied to a blister, the blister is displaced from the ribbing;

 whereby when one or more blisters have been displaced, the ribbing provides substantially equivalent support to any remaining blisters as the ribbing provided prior to such displacement.

36. The blister pack of claim 35 wherein the ribbing surrounds each blister before a blister is displaced.

37. A backing sheet for a blister pack, the backing sheet comprising:

 a foil layer;

 a paper layer attached, on a first side, to the foil layer; and

 a stiffening layer attached to a second side of the paper layer.

38. The backing sheet of claim 37 wherein the stiffening layer comprises cardboard.

39. The backing sheet of claim 37, wherein each of the foil layer, the paper layer, and the stiffening layer comprises one or more of a scoring, a cutting and a perforation.

* * * * *