SYSTEM AND METHOD FOR PROVIDING SEQUENTIALLY RELEVANT CONTENT

Applicant: Cortica, Ltd., TEL AVIV (IL)

Inventors: Igal Raichelgauz, New York, NY (US); Karina Odinaev, New York, NY (US); Yehoshua Y. Zeevi, Haifa (IL)

Assignee: Cortica, Ltd., TEL AVIV (IL)

Appl. No.: 15/585,698

Filed: May 3, 2017

Related U.S. Application Data

Continuation of application No. 15/084,083, filed on Mar. 29, 2016, now Pat. No. 9,646,006, which is a continuation of application No. 14/167,388, filed on Jan. 29, 2014, now Pat. No. 9,330,189, which is a continuation-in-part of application No. 13/685,182, filed on Nov. 26, 2012, now Pat. No. 9,235,557, which is a continuation-in-part of application No. 13/624,397, filed on Sep. 21, 2012, now Pat. No. 9,191,626, which is a continuation-in-part of application No. 13/344,400, filed on Jan. 5, 2012, now Pat. No. 8,959,037, which is a continuation-in-part of application No. 12/084,150, filed on Apr. 7, 2009, now Pat. No. 8,655,801, which is a continuation-in-part of application No. 12/195,863, filed on Aug. 21, 2008, now Pat. No. 8,326,775, said application No. 13/685,182 is a continuation-in-part of application No. 13/434,221, filed on May 1, 2009, now Pat. No. 8,112,376, said application No. 13/685,182 is a continuation-in-part of application No. 12/084,150, filed on Apr. 7, 2009, now Pat. No. 8,655,801, filed as application No. PCT/IL2006/001235 on Oct. 26, 2006, said application No. 13/685,182 is a continuation-in-part of application No. 12/195,863, filed on Aug. 21, 2008, now Pat. No. 8,326,775, which is a continuation-in-part of application No. 12/084,150, filed on Apr. 7, 2009, now Pat. No. 8,655,801.

Foreign Application Priority Data

Oct. 26, 2005 (IL) .. 171577
Jan. 29, 2006 (IL) .. 173409
Aug. 21, 2007 (IL) .. 185414

Publication Classification

Int. Cl. G06F 17/30 (2006.01)
G06F 17/16 (2006.01)

U.S. Cl. CPC G06F 17/3038 (2013.01); G06F 17/30843

ABSTRACT

A system and method for determining sequentially relevant content. The method includes generating at least one signature for a multimedia content item stored in a mobile device; matching the generated at least one signature to a plurality of signatures of content items; and determining, based on the matching, at least one sequentially relevant content item.
FIG. 1
START

Web page is uploaded to a web browser

Receive a request to match a multimedia content to an appropriate ad item

Generate a signature to the multimedia content

Match ad item respective of the signature of the multimedia content

Display ad item upon a user gesture respective of the multimedia content

More requests?

Yes

A

No

END

FIG. 2
FIG. 4
Receive a MMCI and a request to match relevant content to the MMCI

Generate a signature respective to the MMCI

Store the MMCI and the respective signatures in database

Match sequentially relevant content

Send matched content to the user device

More requests?

Yes → A

No → END
SYSTEM AND METHOD FOR PROVIDING SEQUENTIALLY RELEVANT CONTENT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0002] (a) U.S. patent application Ser. No. 13/624,397 filed on Sep. 21, 2011, now U.S. Pat. No. 9,191,626, which is a CIP of the below-noted U.S. patent application Ser. Nos. 13/344,400, 12/084,150, and 12/195,863;

[0003] (b) U.S. patent application Ser. No. 13/344,400 filed on Jan. 5, 2012, now U.S. Pat. No. 8,950,037, which is a continuation of U.S. patent application Ser. No. 12/434,221, filed on May 1, 2009, now U.S. Pat. No. 8,112,376;

[0004] (c) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005, and Israeli Application No. 173409 filed on Jan. 29, 2006; and

[0005] (d) U.S. patent application Ser. No. 12/195,863 filed on Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part (CIP) of the above-referenced U.S. patent application Ser. No. 12/084,150.

[0006] All of the applications referenced above are herein incorporated by reference for all that they contain.

TECHNICAL FIELD

[0007] The disclosure generally relates to systems and methods for capturing information viewed on a mobile device, and more specifically to systems and methods for enabling display of matching relevant content to multimedia content captured by a mobile device.

BACKGROUND

[0008] As the World Wide Web (WWW) continues to exponentially grow in size and content, the task of finding relevant multimedia content becomes increasingly complex. Upon finding such content, many users wish to have the ability to view the content at a later time, from a different device or source. Current communication tools such as web browsers or search engines do not provide an easy and convenient way for a person to view, locate, or otherwise access information at a later time and/or from a different device. One solution that caters to this need involves use of bookmarks (URLs) to a web page that contains the specific content. However, URLs, and by extension bookmarks pointing to web pages, are dynamically changed. Thus, visiting a URL, e.g., a week later, may lead users to content other than the particular content that the users wish to view.

[0009] Other solutions allow viewing the same web page across different devices. For example, a web page CNN.COM opened on a smartphone device can be opened on the PC when a user launches the browser thereon. However, only a recent session on one device can be displayed (or opened) on another device. For example, the last viewed web page or video. In addition, such a solution requires that the devices be registered with a particular user. Thus, content viewed on a device that does not belong to the user can be later viewed on the user’s device without having the user search, locate and access the content.

[0010] It would therefore be advantageous to provide a solution for providing an efficient way for a user to mark a multimedia content such that the user is capable of accessing the multimedia content item or a successive related content item at a later time and/or from a different device.

SUMMARY

[0011] A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “some embodiments” or “certain embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.

[0012] Certain embodiments disclosed herein include a method for determining sequentially relevant content. The method comprises: generating at least one signature for a multimedia content item stored in a mobile device; matching the generated at least one signature to a plurality of signatures of content items; and determining, based on the matching, at least one sequentially relevant content item.

[0013] Certain embodiments disclosed herein also include a non-transitory computer readable medium having stored thereon causing a processing circuitry to execute a process, the process comprising: generating at least one signature for a multimedia content item stored in a mobile device; matching the generated at least one signature to a plurality of signatures of content items; and determine, based on the matching, at least one sequentially relevant content item.

[0014] Certain embodiments disclosed herein also include a system for determining sequentially relevant content. The system comprises: a processing circuitry; and a memory coupled to the processing circuitry, the memory containing instructions that, when executed by the processing circuitry, configure the system to: generate at least one signature for a multimedia content item stored in a mobile device; match the generated at least one signature to a plurality of signatures of content items; and determine, based on the matching, at least one sequentially relevant content item.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodi-
ments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.

[0016] FIG. 1 is a schematic block diagram of a system utilized to describe the various disclosed embodiments.

[0017] FIG. 2 is a flowchart describing the process of matching a content item to multimedia content displayed on a web-page according to an embodiment.

[0018] FIG. 3 is a block diagram depicting the basic flow of information in the signature generator system.

[0019] FIG. 4 is a diagram showing the flow of patches generation, response vector generation, and signature generation in a large-scale speech-to-text system.

[0020] FIG. 5 is a flowchart describing a process of matching sequentially relevant content items to a multimedia content item according to an embodiment.

DETAILED DESCRIPTION

[0021] It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claims. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.

[0022] FIG. 1 shows an exemplary and non-limiting schematic diagram of a system 100 for providing content items for matching multimedia content displayed in a web-page in accordance with one embodiment. A network 110 is used to communicate between different parts of the system. The network 110 may be the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and other networks capable of enabling communication between the elements of the system 100.

[0023] Further connected to the network 110 are one or more computing devices, 120-1 through 120-n (collectively referred to hereinafter as computing devices 120 or individually as a computing device 120, merely for simplicity purposes). Each computing device 120 may be, for example, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, a wearable computing device, and other kinds of wired and mobile appliances, equipped with browsing, capturing, viewing, listening, filtering, and managing content capabilities, etc., that are enabled as further discussed herein below.

[0024] Each computing device 120 executes at least one application 125 that can render multimedia content captured by the device (e.g., from a video camera) over the device’s display. An application 125 also communicates with the server 130, enabling performance of the embodiments disclosed in detail above. As a non-limiting example, an application 125 is a web browser, independent application, or plug-in application.

[0025] The server 130 is further connected to the network 110. The server 130 communicates with the devices 120 to receive captured multimedia content or links to such content. The content provided by the devices 120 may be associated with a request to view the content on a different device 120 or the same device at a different time. Such a request is sent by the application 125. The multimedia content may include, for example, an image, a graphic, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, and an image of signals (e.g., spectrograms, phasograms, scalograms, etc.), and/or combinations thereof and portions thereof.

[0026] The server 130 is also communicatively connected to a signature generator system (SGS) 140, either directly or through the network 110. In one embodiment, the SGS 140 may be embedded in the server 130. The server 130 is enabled to receive and serve multimedia content and causes the SGS 140 to generate a signature respective of the multimedia content. The generated signature(s) may be robust to noise and distortion. The process for generating the signatures for multimedia content is explained in more detail herein below with respect to FIGS. 3 and 4.

[0027] It should be noted that the server 130 typically comprises a processing unit and a memory (not shown). The processor is coupled to the memory, which is configured to contain instructions that can be executed by the processing unit. The server 130 also includes a network interface (not shown) to the network 110. In one embodiment, the server 130 is communicatively connected or includes an array of Computing Cores configured as discussed in more detail below.

[0028] A plurality of web servers 150-1 through 150-n are also connected to the network 110, each of which is configured to generate and send content to the server 130. In an embodiment, the web servers 150-1 through 150-n typically, but not necessarily exclusively, are resources for information that be utilized to provide multimedia content relevant to a multimedia content items captured by the devices 120. In one embodiment, the content and the respective generated signatures may be stored in a data warehouse 160 which is connected to the server 130 (either directly or through the network 110) for further use.

[0029] The system 100 may be configured to generate customized channels of multimedia content. Accordingly, a web browser 125 or a client channel manager application (not shown) available either on the server 130, on the web browser 120, or as an independent or plug-in application, may enable a user to create customized channels of multimedia content by receiving selections made by a user as inputs. Such customized channels of multimedia content are personalized content channels that are generated in response to selections made by a user of the application 125 or the client channel manager application. The system 100, and in particular the server 130 in conjunction with the SGS 140, determines which multimedia content is more suitable to be viewed, played or otherwise utilized by the user with respect to a given channel, based on the signatures of selected multimedia content. These channels may optionally be shared with other users, used and/or further developed cooperatively, and/or sold to other users or providers, and so on. The process for defining, generating, and customizing the channels of multimedia content are described in greater detail in the co-pending Ser. No. 13/344,400 application referenced above.

[0030] To demonstrate the disclosed embodiments, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that computing device 120-1 is a mobile or handheld device belonging to a certain user.

[0031] According to the disclosed embodiments, a multimedia content item is captured by the device 120-1. The capturing of the multimedia content item may be performed
by, e.g., one or more sensors integrated within the device 120-1. In an embodiment, the capturing also includes selection of a multimedia content item stored locally in the device 120-1. A sensor may be, for example, but not limited to, a camera, a microphone, a temperature sensor, a global positioning system (GPS), a light intensity sensor, an image analyzer, a sound sensor, an ultrasound sensor, a speech recognizer, and so on.

[0032] The server 130 is configured to receive and analyze the captured multimedia content item. This includes querying or requesting the SGS 140 to generate for the multimedia content item, provided by the server 130, at least one signature. Then, using the generated signature(s) the server 130 is configured to search web servers 150-1 through 150-n for sequentially relevant multimedia content items.

[0033] Sequentially relevant content items are content items related to a particular multimedia content item (MMCI) through a predetermined sequence or series such as, but not limited to, episodes of a television show; pages or chapters of a book; books in a series (e.g., the Harry Potter series of books); pages or issues of a comic strip or magazine; groups of similar items arranged in chronological order; etc. Such sequentially relevant items may be the content item that the MMCI was captured from (e.g., a video containing a captured MMCI in the form of an image), a successively related content item, etc. Successively related content items are content items that occur later in a sequence or series than a given content item.

[0034] For example, if the MMCI being analyzed is an image from the first episode of the television show “Breaking Bad,” a successively related content item to the first episode of the show may be the second episode of “Breaking Bad.” Note that any given sequence or series may have a length of 1 (e.g., only 1 content item in the sequence or series). As a non-limiting example, if the signature of an image indicates that the image belongs to a particular episode of the television (TV) series “Lost” (e.g., episode 1) then sequentially relevant episode of “Lost” (episode 1) or a link thereto, is sent to the user device 120-1.

[0035] In an embodiment, a relevant video content item may feature associations of particular times within the video to given MMCIs. For example, if the signature of an image indicates that the image represents a frame related to a particular time of an episode of the television show American Idol® (e.g., season 1, episode 5, 20 minutes and 31 seconds from the beginning of the episode), then a sequentially relevant video of season 1 episode 5 would begin playing at 20 minutes and 31 seconds from the beginning of the episode after the episode is returned to the user device.

[0036] In an embodiment, MMCIs may belong to more than one sequence and/or series. For example, if a user captures a video clip from the movie Rocky, a sequence of related content items may consist solely of movies in the Rocky series. Another sequence of related items to the image of the Rocky movie may be a list of all movies in which actor Sylvester Stallone appears ordered chronologically. In a further embodiment, a user may be prompted to select which sequence or series he or she would like to receive sequentially related content from.

[0037] In another embodiment, the server 130 may return a successive issue of the magazine (e.g., issue 5 from 2013). As a non-limiting example, a user may capture an image of a page from an issue of Time® magazine (e.g., issue 4 from 2013, page 50). Based on this image, the server 130 may determine which page and/or issue the image is from, and return that page and/or issue to the user. In yet another embodiment, the options for sequences or series presented to a user are pre-populated based on inputs from other users.

[0038] According to another embodiment, the SGS 140 is integrated in the computing device 120-1, thereby allowing the computing device 120-1 to capture and analyze one or more MMCIs while operating without a network connection. As an example, an image of a TV screen presenting an advertisement of a Dodge® automobile is captured by the camera of the device 120-1 while operating off-line. According to another embodiment, the request for relevant content is sent to the server 130, which searches the network 110 for relevant content. As an example, such content may be pictures of similar vehicles ordered by the user each year or release in that are stored in the pictures storage folder of the mobile device 610. If the device 120-1 can access the server 130, then the server 130 will initiate the search for matching content relevant to the captured multimedia element item.

[0039] The SGS 140 is configured to analyze the captured image and to generate one or more signatures respective thereto. Upon receiving a request for sequentially relevant content to the captured image, the mobile device 120-1 searches for relevant content locally stored therein. According to one embodiment, the determination of which content is relevant may be performed by, for example, a signature matching process based on signatures generated as discussed hereinabove. In an exemplary embodiment, two signatures are determined to be matching if their respective signatures at least partially match (e.g., in comparison to a predefined threshold).

[0040] It should be appreciated that the signature generated for a captured multimedia content element would enable accurate recognition of sequentially relevant content, because the signatures generated, according to the disclosed embodiments, allow for recognition and classification of multimedia elements, such as, content-tracking, video filtering, multimedia taxonomy generation, video fingerprinting, speech-to-text, audio classification, element recognition, video/image search and any other application requiring content-based signatures generation and matching for large content volumes such as, web and other large-scale databases.

[0041] FIG. 2 depicts an exemplary and non-limiting flowchart 200 describing the process of matching an advertisement to multimedia content displayed on a web-page. In S205, the method starts when a web-page is uploaded to an application 125 (e.g., a web-browser). In S210, a request to match at least one MMCI (or a multimedia content element) contained in the uploaded web-page to an appropriate advertisement item is received. The request can be received from a web server (e.g., a server 150-1), a script running on the uploaded web-page, or an agent (e.g., an add-on) installed in the web-browser. S210 can also include extracting the at least one MMCI and requesting that signatures be generated.

[0042] In S220, a signature to the multimedia content element is generated. The generation of the signature for the multimedia content element by a signature generator is described below. In S230, an advertisement item matched to the multimedia content element respective of its generated signature. In one embodiment, the matching process includes searching for at least one advertisement item respectively of the signature of the multimedia content and a display of the at least one advertisement item within the
display area of the web-page. In one embodiment, the matching of an advertisement to a multimedia content element can be performed by the computational cores that are part of a large scale matching discussed in detail below.

[0043] In S240, upon a user’s gesture the advertisement item is uploaded to the web-page and displayed therein. The user’s gesture may be: a scroll on the multimedia content element, a press on the multimedia content element, and/or a response to the multimedia content. This ensures that the user attention is given to the advertised content. In S250 it is checked whether there are additional requests to analyze multimedia content elements, and if so, execution continues with S210; otherwise, execution terminates.

[0044] As a non-limiting example of a matching process, a user uploads a web-page that contains an image of a sea shore. The image is then analyzed and a signature is generated respective thereto. Respective of the image signature, an advertisement item (e.g., a banner) is matched to the image, for example, a swim suit advertisement. Upon detection of a user’s gesture, for example, a mouse scrolling over the sea shore image, the swim suit ad is displayed.

[0045] The web-page may contain a number of multimedia content elements; however, in some instances only a few content items may be displayed in the web-page. Accordingly, in one embodiment, the signatures generated for the multimedia content elements are clustered and the cluster of signatures is matched to one or more advertisement items.

[0046] FIGS. 3 and 4 illustrate the generation of signatures for the multimedia content elements by the SGS 140 according to one embodiment. An exemplary high-level description of the process for large scale matching is depicted in FIG. 3. In this example, the matching is for a video content.

[0047] Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the computational Cores generation are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in FIG. 4. Finally, Target Robust Signatures and/or Signatures are effectively matched, by a matching algorithm 9, to Master Robust Signatures and/or Signatures database to find all matches between the two databases.

[0048] To demonstrate an example of signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames.

[0049] The Signatures generation process will now be described with reference to FIG. 4. The first step in the process of signatures generation from a given speech-segment is to breakdown the speech-segment to K patches 14 of random length P and random position within the speech segment 12. The breakdown is performed by the patch generator component 21. The value of the number of patches K, random length P and random position parameters is determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of the server 130 and SGS 140. Thereafter, all the K patches are injected in parallel to all computational Cores 3 to generate K response vectors 22, which are fed into a signature generator system 23 to produce a database of Robust Signatures and Signatures 4.

[0050] In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: S which is a Signature vector, and R which is a Robust Signature vector.

[0051] For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core $C = \{ \eta_1, \} (1 \leq i \leq L)$ may consists of a single leaky integrator-to-threshold unit (LTU) node or more nodes. The node n_i equations are:

$$V_i = \sum_j w_{ij} k_j$$

$$n_i = \theta(V_i - Th_i)$$

[0052] where, θ is a Heaviside step function, w_{ij} is a coupling node unit (CNU) between node i and image component j for example, grayscale value of a certain pixel j; k_j is an image component ‘j’ for example, grayscale value of a certain pixel j; Th_i is a constant Threshold value, where ‘θ’ is ‘S’ for Signature and ‘R’ for Robust Signature; and V_i is a Coupling Node Value.

[0053] The Threshold values Th_i are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of V_i values (for the set of nodes), the thresholds for Signature (Th_i) and Robust Signature (Th_{geo}) are set apart, after optimization, according to at least one or more of the following criteria:

[0054] 1: For $V_i > Th_{bas}$

$$1 - p(V_i > Th_{bas}) - 1 - (1 - e)^{-\epsilon} \leq 1$$

i.e., given that l_1 nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these l nodes will belong to the Signature of same, but noisy image I is sufficiently low (according to a system’s specified accuracy).

[0055] 2: $p(V_i > Th_{geo}) < \frac{1}{L}$

i.e., approximately l out of the total L nodes can be found to generate a Robust Signature according to the above definition.

[0056] 3: Both Robust Signature and Signature are generated for certain frame I.

[0057] It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos.
A Computational Core generation is a process of definition, selection, and timing of the parameters of the cores for realizing certain goals in a specific system and application. The process is based on several design considerations, such as:

(a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.

(b) The Cores should be optimally designed for the type of signals being used, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.

(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.

Detailed description of the Computational Core generation, the computational architecture, and the process for configuring such cores is discussed in more detail in the co-pending U.S. patent application Ser. No. 12/084,150 referenced above.

FIG. 5 depicts an exemplary and non-limiting flowchart 500 of a method for analyzing multimedia content items captured by a mobile device and returning sequentially relevant content items to a user according to an embodiment. In an embodiment, the method is performed by the server 130 using the SGS 140.

In SS10, the method starts when a multimedia content item (MMCI) captured by the mobile device and a request to match relevant content to the MMCI are received. In SS20, a signature to the MMCI is generated as discussed above. The signature for the MMCI is generated by the SGS 140 as described hereinabove. In SS30, the MMCI together with the respective signature is stored in a data warehouse such as, for example, the database 160, for further use. The data warehouse may be native or cloud-based over the web.

In SS40, sequentially relevant multimedia content is matched to the retrieved multimedia content item. It should be understood that one or more content items may be provided to the user respective to the request. The relevant content may be identified locally, on the mobile device, or over the network 110 through one or more of the web sources 150. Content may be determined to be relevant based on one or more parameters related to the user. Such parameters may relate to, e.g., the time of the day during which the request was received, the location of the mobile device, the weather in the location of the mobile device, etc. The user’s parameters may be collected by one or more of the sensors integrated in the mobile device 610.

In SS50, the one or more relevant content items are sent to the user device. According to one embodiment (not shown), the relevant content is then displayed on the mobile device.

In SS60, it is checked whether there are additional requests, and if so, execution continues with SS10; otherwise, execution terminates. It should be understood to one of ordinary skill in the art that the operation of capturing and analyzing the multimedia content item may be performed off-line without communicating with the server 130 through the network 110 in such cases where the SGS 140 is integrated within the mobile device 610.

As a non-limiting example, a user captures an image of a video clip displaying over the screen of the mobile device. The image is then analyzed and a signature is generated respective thereto. The image together with the respective signature is stored in a data warehouse. Upon receiving a request to match relevant content to the captured image, the captured image and the respective signature are retrieved from the data warehouse. The server 130 then generates the subsequent stream of the video clip and displays the full video clip over the mobile device.

The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units ("CPUs"), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstructions code. The various processes and functions described herein may be either part of the microinstructions code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.

All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

What is claimed is:

1. A method for determining sequentially relevant content, comprising:
 generating at least one signature for a multimedia content item stored in a mobile device;
 matching the generated at least one signature to a plurality of signatures of content items; and
 determining, based on the matching, at least one sequentially relevant content item.

2. The method of claim 1, further comprising:
 sending the determined at least one sequentially relevant content item to the mobile device.
3. The method of claim 2, wherein the at least one sequentially relevant content item is a video, wherein the sent at least one sequentially relevant content item begins playing on the mobile device at a time of the multimedia content item indicated by the generated at least one signature.

4. The method of claim 1, further comprising: extracting the multimedia content item from the mobile device.

5. The method of claim 1, further comprising: receiving, from the mobile device, the multimedia content item, wherein the multimedia content item is captured by at least one sensor of the mobile device.

6. The method of claim 1, wherein the at least one sequentially relevant content item includes at least two sequences of sequentially relevant content items, wherein each sequentially relevant content item belongs to at least one of the sequences.

7. The method of claim 6, further comprising: sending, to the mobile device, a notification prompting a user of the mobile device to select one of the at least two sequences; receiving, from the mobile device, a selection of one of the sequences; and sending, to the mobile device, each sequentially relevant content item of the selected sequence.

8. The method of claim 7, wherein the at least two sequences are pre-populated based on inputs from other users.

9. The method of claim 1, wherein the multimedia content item shows a page of a magazine, wherein the at least one sequentially relevant multimedia content includes at least one of: at least one subsequent page of the magazine, and at least one subsequent issue of the magazine.

10. A non-transitory computer readable medium having thereon instructions for causing a processing circuitry to execute a process, the process comprising: generating at least one signature for a multimedia content item stored in a mobile device; matching the generated at least one signature to a plurality of signatures of content items; and determining, based on the matching, at least one sequentially relevant content item.

11. A system for determining sequentially relevant content, comprising: a processing circuitry; and a memory containing instructions that, when executed by the processing circuitry, configure the system to: generate at least one signature for a multimedia content item stored in a mobile device; match the generated at least one signature to a plurality of signatures of content items; and determine, based on the matching, at least one sequentially relevant content item.

12. The system of claim 11, wherein the system is further configured to:

send the determined at least one sequentially relevant content item to the mobile device.

13. The system of claim 12, wherein the at least one sequentially relevant content item is a video, wherein the sent at least one sequentially relevant content item begins playing on the mobile device at a time of the multimedia content item indicated by the generated at least one signature.

14. The system of claim 11, wherein the system is further configured to:

extract the multimedia content item from the mobile device.

15. The system of claim 11, wherein the system is further configured to:

receive, from the mobile device, the multimedia content item, wherein the multimedia content item is captured by at least one sensor of the mobile device.

16. The system of claim 11, wherein the at least one sequentially relevant content item includes at least two sequences of sequentially relevant content items, wherein each sequentially relevant content item belongs to at least one of the sequences.

17. The system of claim 16, wherein the system is further configured to:

send, to the mobile device, a notification prompting a user of the mobile device to select one of the at least two sequences; receive, from the mobile device, a selection of one of the sequences; and send, to the mobile device, each sequentially relevant content item of the selected sequence.

18. The system of claim 17, wherein the at least two sequences are pre-populated based on inputs from other users.

19. The system of claim 11, wherein the multimedia content item shows a page of a magazine, wherein the at least one sequentially relevant multimedia content includes at least one of: at least one subsequent page of the magazine, and at least one subsequent issue of the magazine.

* * * * *