wo 2013/173550 A1 | I 0N OO R A A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/173550 A1

21 November 2013 (21.11.2013) WIPO | PCT
(51) International Patent Classification: nia 92121 (US). MCILVAINE, Michael Scott; 5775
GO6F 9/30 (2006.01) Morehouse Drive, San Diego, California 92121 (US).
. .) STEMPEL, Brian Michael;, 5775 Morehouse Drive, San
(21) International Application Number: PCT/US2013/041290 Diego, California 92121 (US). SMITH, Rodney Wayne;
CT/US 9 5775 Morehouse Drive, San Diego, California 92121 (US).
(22) International Filing Date: SCHOTTMILLER, Jeffery M.; 5775 Morehouse Drive,
16 May 2013 (16.05.2013) San Diego, California 92121 (US). IRWIN, Andrew S.;
- . 5775 Morehouse Drive, San Diego, California 92121 (US).
(25) Filing Language: English MORROW, Michael William; 5775 Morchouse Drive,
(26) Publication Language: English San Diego, California 92121 (US).
(30) Priority Data: (74) Agent: PAULEY, Nicholas J.; 5775 Morchouse Drive,
61/647,572 16 May 2012 (16.05.2012) Us San Diego, California 92121 (US).
13/676,146 14 November 2012 (14.11.2012) Us (81) Designated States (uniess otherwise indicated, for every
(71) Applicant (for all designated States except US): QUAL- kind of national protection available): AE, AG, AL, AM,
COMM INCORPORATED [US/US]; ATTN: INTER- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
NATIONAL IP ADMINISTRATION, 5775 Morehouse BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Drive, San Diego, California 92121 (US). DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(72) Inventors: BROWN, Melinda J.; 5775 Morehouse Drive, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

San Diego, California 92121 (US). DIEFFENDERFER,
James Norris; 5775 Morehouse Drive, San Diego, Califor-

ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

[Continued on next page]

(54) Title: FUSING CONDITIONAL WRITE INSTRUCTIONS HAVING OPPOSITE CONDITIONS IN INSTRUCTION PRO-
CESSING CIRCUITS, AND RELATED PROCESSOR SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA

Detect first conditional write instruction (42) writing a

first value to a target register based on a first
condition (44)

Y

y

70—

Detect a second conditional write instruction (50)

writing a second value to

a target register based on

a second condition (52) that is a logical opposite of
the first condition (44)

Y

4

72—

Select sither the first condition (44) or the second

condition (52) as a fused

instruction condition (60)

Y

y

Select either the first val

lue or the second value

corresponding to the fused instruction condition (60)
as an “if-true” value

Y

y

76—

Select either the first valu

e or the second value not

corresponding to the fused instruction condition (60)
as an “if-false” value

Y

y

78—

Generate a fused instruction (58) selectively writing
the “if-true” value to the target register if the fused
instruction condition (60) evaluates to true, and
selectively writing the “if-false” value to the target
register if the fused instruction condition (60)
evaluates to false

FIG. 3

(57) Abstract: Fusing conditional write instructions having opposite conditions
in instruction processing circuits and related processor systems, methods, and
computer-readable media are disclosed. In one embodiment, a first conditional
write instruction writing a first value to a target register based on evaluating a
first condition is detected by an instruction processing circuit. The circuit also
detects a second conditional write instruction writing a second value to the target
register based on evaluating a second condition that is a logical opposite of the
first condition. Either the first condition or the second condition is selected as a
fused instruction condition, and corresponding values are selected as if-true and
if-false values. A fused instruction is generated for selectively writing the if-true
value to the target register if the fused instruction condition evaluates to true,
and selectively writing the if-false value to the target register if the fused instruc-
tion condition evaluates to false.

WO 2013/173550 A1 WK 00N A0 O A AR

84)

NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2013/173550 PCT/US2013/041290

FUSING CONDITIONAL WRITE INSTRUCTIONS HAVING OPPOSITE
CONDITIONS IN INSTRUCTION PROCESSING CIRCUITS, AND RELATED
PROCESSOR SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA

PRIORITY APPLICATION
[0001] The present application claims priority to U.S. Provisional Patent Application
Serial No. 61/647,572 entitled “FUSING CONDITIONAL INSTRUCTIONS HAVING
OPPOSITE CONDITIONS IN INSTRUCTION PROCESSING CIRCUITS, AND
RELATED PROCESSOR SYSTEMS, METHODS, AND COMPUTER-READABLE

MEDIA” filed on May 16, 2012, which is hereby incorporated herein by reference in its

entirety.

BACKGROUND
1. Field of the Disclosure

[0002] The technology of the disclosure relates generally to processing of pipelined

computer instructions in central processing unit (CPU)-based systems.

IL. Background

[0003] The advent of “instruction pipelining” in modern computer architectures has
yielded improved utilization of CPU resources and faster execution times of computer
applications. Instruction pipelining is a processing technique whereby a throughput of
computer instructions being processed by a CPU may be increased by splitting the
processing of each instruction into a series of steps. The instructions are then executed
in a “processor pipeline” composed of multiple stages, with each stage carrying out one
of the steps for each of a series of instructions. As a result, in each CPU clock cycle,
steps for multiple instructions may be evaluated in parallel. A CPU may employ
multiple processor pipelines to further boost performance.

[0004] The performance of a CPU in a pipelined computing architecture may be
hampered both by the issuance of unnecessary or redundant instructions, as well as by
the occurrence of pipeline “hazards,” which may prevent an issued instruction from
executing during its designated CPU clock cycle. For instance, in some instruction set
architectures, execution of a conditional write instruction may include reading a value
from a target register, evaluating a condition, and writing a value to the target register

based on the evaluation of the condition. In such a case, a pipeline hazard (specifically,

WO 2013/173550 PCT/US2013/041290

a “read-after-write”” hazard) may be encountered. To resolve the read-after-write hazard,
the CPU may “stall” or delay execution of the second conditional write instruction until
the first conditional write instruction has completely executed, thus further decreasing

the effective throughput of the CPU.

SUMMARY OF THE DISCLOSURE

[0005] Embodiments of the disclosure provide fusing conditional write instructions

having opposite conditions in instruction processing circuits. Related processor
systems, methods, and computer-readable media are also disclosed. In this regard, in
one embodiment, an instruction processing circuit is provided. The instruction
processing circuit is configured to detect a first conditional write instruction in an
instruction stream indicating an operation writing a first value to a target register based
on evaluating a first condition. The instruction processing circuit is also configured to
detect a second conditional write instruction in the instruction stream indicating an
operation writing a second value to the target register based on evaluating a second
condition that is a logical opposite of the first condition. The instruction processing
circuit is further configured to select one of the first condition or the second condition as
a fused instruction condition. The instruction processing circuit is additionally
configured to select one of the first value or the second value corresponding to the fused
instruction condition as an if-true value, and to select one of the first value or the second
value not corresponding to the fused instruction condition as an if-false value. The
instruction processing circuit is also configured to generate a fused instruction
indicating an operation selectively writing the if-true value to the target register if the
fused instruction condition evaluates to true, and selectively writing the if-false value to
the target register if the fused instruction condition evaluates to false. In this manner,
the generation of the fused instruction improves performance of a CPU by avoiding
issuance of redundant instructions and by removing a potential for a read-after-write
hazard.

[0006] In another embodiment, an instruction processing circuit is provided, which
comprises a means for detecting a first conditional write instruction in an instruction
stream indicating an operation writing a first value to a target register based on
evaluating a first condition. The instruction processing circuit also comprises a means

for detecting a second conditional write instruction in the instruction stream indicating

WO 2013/173550 PCT/US2013/041290

an operation writing a second value to the target register based on evaluating a second
condition that is a logical opposite of the first condition. The instruction processing
circuit further comprises a means for selecting one of the first condition or the second
condition as a fused instruction condition. The instruction processing circuit
additionally comprises a means for selecting one of the first value or the second value
corresponding to the fused instruction condition as an if-true value, and a means for
selecting one of the first value or the second value not corresponding to the fused
instruction condition as an if-false value. The instruction processing circuit also
comprises a means for generating a fused instruction indicating an operation selectively
writing the if-true value to the target register if the fused instruction condition evaluates
to true, and selectively writing the if-false value to the target register if the fused
instruction condition evaluates to false.

[0007] In another embodiment, a method for processing computer instructions is
provided. The method comprises detecting a first conditional write instruction in an
instruction stream indicating an operation writing a first value to a target register based
on evaluating a first condition. The method also comprises detecting a second
conditional write instruction in the instruction stream indicating an operation writing a
second value to the target register based on evaluating a second condition that is a
logical opposite of the first condition. The method further comprises selecting one of
the first condition or the second condition as a fused instruction condition. The method
additionally comprises selecting one of the first value or the second value corresponding
to the fused instruction condition as an if-true value, and selecting one of the first value
or the second value not corresponding to the fused instruction condition as an if-false
value. The method also comprises generating a fused instruction indicating an operation
selectively writing the if-true value to the target register if the fused instruction
condition evaluates to true, and selectively writing the if-false value to the target register
if the fused instruction condition evaluates to false.

[0008] In another embodiment, a non-transitory computer-readable medium 1is
provided, having stored thereon computer-executable instructions to cause a processor
to implement a method for detecting a first conditional write instruction in an
instruction stream indicating an operation writing a first value to a target register based
on evaluating a first condition. The method implemented by the computer-executable

instructions further includes detecting a second conditional write instruction in the

WO 2013/173550 PCT/US2013/041290

instruction stream indicating an operation writing a second value to the target register
based on evaluating a second condition that is a logical opposite of the first condition.
The method implemented by the computer-executable instructions also includes
selecting one of the first condition or the second condition as a fused instruction
condition. = The method implemented by the computer-executable instructions
additionally includes selecting one of the first value or the second value corresponding
to the fused instruction condition as an if-true value, and selecting one of the first value
or the second value not corresponding to the fused instruction condition as an if-false
value. The method implemented by the computer-executable instructions also includes
generating a fused instruction indicating an operation selectively writing the if-true
value to the target register if the fused instruction condition evaluates to true, and
selectively writing the if-false value to the target register if the fused instruction

condition evaluates to false.

BRIEF DESCRIPTION OF THE FIGURES

[0009] Figure 1 is a block diagram of exemplary components provided in a

processor-based system for retrieving and processing computer instructions to be placed
into one or more execution pipelines, including an exemplary instruction processing
circuit configured to fuse conditional write instructions having opposite conditions;
[0010] Figure 2 is a diagram illustrating an exemplary fused instruction generated
based on detecting a first conditional write instruction indicating an operation writing a
first immediate value to a register, and detecting a second conditional write instruction,
having a condition that is logically opposite to that of the first conditional write
instruction, that writes a second immediate value to the same register;

[0011] Figure 3 is a flowchart illustrating an exemplary process of an instruction
processing circuit for generating a fused instruction based on detecting conditional write
instructions having opposite conditions;

[0012] Figures 4A-4C are flowcharts illustrating a more detailed exemplary process
of an instruction processing circuit for generating a fused instruction based on detecting
conditional write instructions having opposite conditions and indicating an operation to

write to a register;

WO 2013/173550 PCT/US2013/041290

[0013] Figure 5 is a diagram illustrating exemplary fused instructions generated
based on conditional write instructions having register operands and opposite
conditions;

[0014] Figure 6 is a diagram illustrating other exemplary fused instructions
generated based on conditional write instructions having zero and non-zero immediate
value operands and opposite conditions;

[0015] Figure 7 is a diagram illustrating other exemplary fused instructions
generated based on conditional write instructions having register operands;

[0016] Figure 8 is a diagram illustrating an exemplary fused instruction generated
based on non-consecutive conditional write instructions; and

[0017] Figure 9 is a block diagram of an exemplary processor-based system that can
include instruction processing circuits, including the instruction processing circuit of
Figure 1, configured to detect conditional write instructions having opposite conditions

and configured to generate a fused instruction.

DETAILED DESCRIPTION

[0018] With reference now to the drawing figures, several exemplary embodiments
of the present disclosure are described. The word “exemplary” is used herein to mean
“serving as an example, instance, or illustration.” Any embodiment described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other

2% <<

embodiments. It is also to be understood that, although the terms “first,” “second,” etc.
may be used herein to describe various elements, these terms are only used to
distinguish one element from another, and the elements thus distinguished are not to be
limited by these terms. For example, a first instruction could be termed a second
instruction, and, similarly, a second instruction could be termed a first instruction,
without departing from the teachings of the disclosure.

[0019] Embodiments of the disclosure provide fusing conditional write instructions
having opposite conditions in instruction processing circuits. Related processor
systems, methods, and computer-readable media are also disclosed. In this regard, in
one embodiment, an instruction processing circuit is provided. The instruction
processing circuit is configured to detect a first conditional write instruction in an

instruction stream indicating an operation writing a first value to a target register based

on evaluating a first condition. The instruction processing circuit is also configured to

WO 2013/173550 PCT/US2013/041290

detect a second conditional write instruction in the instruction stream indicating an
operation writing a second value to the target register based on evaluating a second
condition that is a logical opposite of the first condition. The instruction processing
circuit is further configured to select one of the first condition or the second condition as
a fused instruction condition. The instruction processing circuit is additionally
configured to select one of the first value or the second value corresponding to the fused
instruction condition as an if-true value, and to select one of the first value or the second
value not corresponding to the fused instruction condition as an if-false value. The
instruction processing circuit is also configured to generate a fused instruction
indicating an operation selectively writing the if-true value to the target register if the
fused instruction condition evaluates to true, and selectively writing the if-false value to
the target register if the fused instruction condition evaluates to false. In this manner,
the generation of the fused instruction improves performance of a CPU by avoiding
issuance of redundant instructions, and by removing a potential for a read-after-write
hazard and its associated consequences caused by dependencies between the conditional
write instructions in a pipelined computing architecture.

[0020] In this regard, Figure 1 is a block diagram of an exemplary processor-based
system 10 for retrieving and processing computer instructions to be placed into one or
more execution pipelines 12(0-Q). As will be discussed in more detail below, the
processor-based system 10 provides an instruction processing circuit 14 that is
configured to generate a fused instruction based on conditional write instructions having
opposite conditions. For example, instructions may indicate operations for reading data
from and/or writing data to registers 16(0-M), which provide local high-speed storage
accessible by the processor-based system 10. As discussed herein, “instructions” may
refer to a combination of bits defined by an instruction set architecture that direct a
computer processor to carry out a specified task or tasks. Exemplary instruction set
architectures include, but are not limited to, ARM, Thumb, and A64 architectures.
[0021] With continuing reference to Figure 1, instructions are processed in the
processor-based system 10 in a continuous flow represented by an instruction stream 18.
The instruction stream 18 may continuously advance as the processor-based system 10
is operating and executing the instructions. In this illustrated example, the instruction
stream 18 begins with an instruction memory 20, which provides persistent storage for

the instructions in a computer-executable program.

WO 2013/173550 PCT/US2013/041290

[0022] An instruction fetch circuit 22 reads an instruction represented by arrow 23
from the instruction memory 20 and/or optionally from an instruction cache 24. The
instruction fetch circuit 22 may increment a program counter, typically stored in one of
the registers 16(0-M). The instruction cache 24 is an optional buffer that may be
provided and coupled to the instruction memory 20 and to the instruction fetch circuit
22 to allow direct access to cached instructions by the instruction fetch circuit 22. The
instruction cache 24 may speed up instruction retrieval times, but at a cost of potentially
longer read times if an instruction has not been previously stored in the instruction
cache 24.

[0023] Once the instruction is fetched by the instruction fetch circuit 22, it proceeds
to an instruction decode circuit 26, which translates the instruction into processor-
specific microinstructions. In this embodiment, the instruction decode circuit 26 holds a
group of multiple instructions 28(0-N) simultaneously for decoding. After the
instructions have been fetched and decoded, they are optionally issued to an instruction
queue 30 (i.e., a buffer for storing instructions), or they may be issued to one of the
execution pipelines 12(0-Q) for execution. In some embodiments, the execution
pipelines 12(0-Q) may restrict the types of operations that may be carried out by
instructions that execute within the execution pipelines 12(0-Q). For example, pipeline
Py may not permit read access to the registers 16(0-M); accordingly, an instruction that
indicates an operation to read register Ry may only be issued to one of the execution
pipelines Py through Pg,.

[0024] With continuing reference to Figure 1, the instruction processing circuit 14 is
configured to detect conditional write instructions having opposite conditions, and
generate a fused instruction to remove redundant instructions and eliminate a potential
for read-after-write hazards for these instructions. The instruction processing circuit 14
may be any type of device or circuit, and may be implemented or performed with a
processor, a DSP, an Application Specific Integrated Circuit (ASIC), an FPGA or other
programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. In some embodiments, the instruction processing circuit 14 is incorporated into
the instruction fetch circuit 22, the instruction decode circuit 26, and/or the optional
instruction queue 30. The instruction processing circuit 14 may also employ an

instruction selection flag 32 to determine which detected conditional write instruction

WO 2013/173550 PCT/US2013/041290

may be replaced in the instruction stream 18 by the fused instruction, as will be
discussed in more detail with respect Figure 4C. Additionally, some embodiments of
the instruction processing circuit 14 may use a status register 34 to store a condition
code 36, which represents information regarding a state of the instructions executing in
the instruction stream 18 (e.g., the results of a comparison instruction).

[0025] To provide an explanation of fusing conditional write instructions having
opposite conditions in the processor-based system 10 of Figure 1, Figure 2 is provided.
Figure 2 illustrates an exemplary fused instruction generated by the instruction
processing circuit 14 of Figure 1. In this example, a detected instruction stream 38
represents a series of instructions fetched from the instruction stream 18 and detected by
the instruction processing circuit 14 of Figure 1. First in the detected instruction stream
38 is a SET_CONDITION instruction 40, which represents an instruction that results in
setting the condition code 36 in the status register 34 of Figure 1. For instance, in some
embodiments, the SET_CONDITION instruction 40 may comprise an instruction
comparing the contents of two of the registers 16(0-M) shown in Figure 1 (such as, for
instance, the ARM architecture CMP instruction). The SET_CONDITION instruction
40 may, in some embodiments, comprise a plurality of instructions indicating a plurality
of operations that collectively set the condition code 36 in the status register 34 of
Figure 1.

[0026] A first conditional write instruction 42 is then detected in the detected
instruction stream 38. In this example, the first conditional write instruction 42 is an
IF_EQ_WRITE (“if equal, then write”) instruction, which evaluates a first condition 44
of “EQ” or “equals,” and also specifies a target register designated by an operand 46
and a source register designated by an operand 48. In this example, the operands 46, 48
each point to one of the registers 16(0-M), referred to in this example as target register
R; and source register R, respectively. The IF_EQ_WRITE first conditional write
instruction 42 indicates an operation to write a value of the source register R, into the
target register R; if the condition code 36 in the status register 34 of Figure 1 indicates
an “equal” condition. In some embodiments, the I[F_EQ_WRITE first condition write
instruction 42 may read the target register Ry prior to evaluating whether the condition
code 36 indicates an “equal” condition. This may enable the IF_EQ_WRITE first
condition write instruction 42 to restore the original value of the target register R, if the

condition code 36 does not indicate an “equal” condition. It is to be understood that the

WO 2013/173550 PCT/US2013/041290

IF_EQ_WRITE first conditional write instruction 42 may be fetched immediately
following the SET_CONDITION instruction 40 in the detected instruction stream 38, or
the IF_EQ_WRITE first conditional write instruction 42 and the SET_CONDITION
instruction 40 may be separated in the detected instruction stream 38 by other
intervening instructions.

[0027] Further along in the detected instruction stream 38 is a second conditional
write instruction 50, which here is an IF_NE_WRITE (“if not equal, then write”)
instruction evaluating a second condition 52 of “NE” or “not equals” (i.e., a condition
that is the logical opposite of the first condition 44). The IF_NE_WRITE second
conditional write instruction 50 also specifies a target register designated by operand 54
and a source register designated by operand 56. In this example, the operand 54 points
to target register R;, while the operand 56 points to one of the registers 16(0-M),
referred to in this example as source register R;. The IF_NE_WRITE second
conditional write instruction 50 indicates an operation to write a value of the source
register Rs into the target register R; if the condition code 36 in the status register 34 of
Figure 1 indicates a “not equal” condition (i.e., the logical opposite of the first condition
44 of the IF_EQ_WRITE first conditional write instruction 42). As seen in Figure 2, the
operand 54 of the IF_NE_WRITE second conditional write instruction 50 designates the
same target register R; as the operand 46 of the IF_EQ_WRITE first conditional write
instruction 42. It is to be understood that the IF_NE_WRITE second conditional write
instruction 50 may be fetched immediately following the IF_EQ_WRITE first
conditional write instruction 42 in the detected instruction stream 38, or the
IF_NE_WRITE second conditional write instruction 50 and the IF_EQ_WRITE first
conditional write instruction 42 may be separated in the detected instruction stream 38
by other intervening instructions.

[0028] In some embodiments, the IF_NE_WRITE second conditional write
instruction 50 may read the target register R; prior to evaluating whether the condition
code 36 indicates a “not equal” condition. In this manner, the IF_NE_WRITE second
conditional write instruction 50 may restore the original value of the target register R if
the condition code 36 does not indicate a “not equal” condition. However, it is to be
understood that this may also create the potential for a read-after-write hazard between
the IF_NE_WRITE second conditional write instruction 50 and the IF_EQ_WRITE first

conditional write instruction 42.

WO 2013/173550 PCT/US2013/041290
10

[0029] The instruction processing circuit 14 of Figure 1 then generates a fused
instruction 58, which in this example is a PAIRED_IF_EQ_WRITE (“paired if equal,
then write”) instruction. The PAIRED_IF_EQ_WRITE fused instruction 58 in this
example evaluates a fused instruction condition 60, which is the same as the first
condition 44 of the IF_EQ_WRITE first conditional write instruction 42 (i.e., “EQ” or
“equals”). The PAIRED_IF_EQ_WRITE fused instruction 58 also specifies a target
register R; designated by an operand 62, an “if-true” value designated by an operand 64,
and an “if-false” value designated by an operand 66. If the fused instruction condition
60 of the PAIRED_IF_EQ WRITE fused instruction 58 evaluates to true, the
PAIRED_IF_EQ_WRITE fused instruction 58 will write a value of the register or
immediate value designated by the operand 64 to the target register R;; if false, the
PAIRED_IF_EQ_WRITE fused instruction 58 will write a value of the register or
immediate value designated by the operand 66 to the target register R;.

[0030] In this example, the PAIRED_IF_EQ_WRITE fused instruction 58 indicates
an operation to write a value of the register R, (designated by the operand 64) into the
target register R; (operand 62) if the condition code 36 in the status register 34 of Figure
I indicates an “equal” condition, and further indicates an operation to write a value of
the register Rs (operand 66) into the target register Ry (operand 62) if the condition code
36 in the status register 34 of Figure 1 indicates an “not equal” condition. By fusing the
IF_EQ_WRITE first conditional write instruction 42 and the IF_NE_WRITE second
conditional write instruction 50 into the PAIRED_IF_EQ_WRITE fused instruction 58,
issuance of a redundant conditional write instruction is avoided, and a potential for a
read-after-write hazard for the IF_EQ_WRITE/IF_NE_WRITE conditional instruction
pair is eliminated.

[0031] As described above with respect to Figure 2, the operand 48 and the operand
56 may each designate a register providing a value to be written to the target registers
R; designated by the operands 46, 54, respectively, depending on the result of the
SET_CONDITION instruction 40. In a typical embodiment, the operand 48 and the
operand 56 designate different registers. According to some embodiments described
herein, the operand 48 and the operand 56 may each designate an immediate value, with
one of the immediate values being zero and the other immediate value being non-zero.
According to some embodiments described herein, one of the operands 48, 56 may

designate a register providing a value to be written to the target registers R, while the

WO 2013/173550 PCT/US2013/041290
11

other may designate an immediate value having a value of zero or non-zero. Some
embodiments may provide that the first conditional write instruction 42 is an
IF_NE_WRITE instruction, and the second conditional write instruction 50 is an
IF_EQ_WRITE instruction. In some embodiments, the fused instruction condition 60
may be the same as the second condition 52 (i.e., “NE” or “not equal”); in such
embodiments, the values designated by the operand 64 and the operand 66 would be
reversed. According to some embodiments, an IF_EQ_WRITE instruction is, for
example, the ARM architecture MOVEQ instruction, while in some embodiments, an
IF_NE_WRITE instruction may be, for example, the ARM architecture MOVNE
instruction.

[0032] To further illustrate fusing conditional write instructions having opposite
conditions, an exemplary generalized process for an instruction processing circuit
configured to detect conditional write instructions and generate a fused instruction is
illustrated by Figure 3, with further reference to Figures 1 and 2. In this example, the
process begins by the instruction processing circuit 14 of Figure 1 detecting the first
conditional write instruction 42 writing a first value designated by the operand 48 to a
target register (one of the registers 16(0-M)) indicated by the operand 46, based on
evaluation of the first condition 44 (block 68). The instruction processing circuit 14
next detects the second conditional write instruction 50 writing a second value
designated by the operand 56 to a target register indicated by the operand 54, based on
evaluation of the second condition 52 (block 70). As noted above, the second condition
52 is the logical opposite of the first condition 44 (e.g., the first condition 44 may be
“EQ” or “equals,” and the second condition 52 may be “NE” or “not equals”).

[0033] The instruction processing circuit 14 then selects either the first condition 44
or the second condition 52 to use as the fused instruction condition 60 (block 72).
Either the first value or the second value corresponding to the fused instruction
condition 60 is selected by the instruction processing circuit 14 as an “if-true” value
designated by the operand 64 (block 74). The instruction processing circuit 14 also
selects either the first value or the second value corresponding to the fused instruction
condition 60 as an “if false” value designated by the operand 66 (block 76). The
instruction processing circuit 14 then generates the fused instruction 58 to selectively

write the “if-true” value to the target register if the fused instruction condition 60

WO 2013/173550 PCT/US2013/041290
12

evaluates to true, and to selectively write the “if-false” value to the target register if the
fused instruction condition 60 evaluates to false (block 78).

[0034] Figures 4A-4C illustrate a more detailed exemplary process of an instruction
processing circuit (e.g., the instruction processing circuit 14 of Figure 1) for detecting
conditional write instructions having opposite conditions in an instruction stream (e.g.,
the instruction stream 18 of Figure 1), and for generating a fused instruction (e.g., the
fused instruction 58 of Figure 2). Figure 4A details a process for determining whether
conditional write instructions that may be fused are detected in an instruction stream.
Figure 4B illustrates exemplary operations for generating a fused instruction depending
on the type of operands of the detected conditional write instructions (e.g., operands
specifying two registers, operands specifying a zero immediate value and a non-zero
immediate value, or some other combination of register/immediate value operands).
Figure 4C shows operations for replacing one of the conditional write instructions in the
instruction stream with a generated fused instruction.

[0035] The process in this example begins in Figure 4A with the instruction
processing circuit detecting whether more instructions remain to be processed (block
80). In some embodiments, this detection process is accomplished by detecting the
presence of unprocessed instructions in an instruction fetch circuit and/or an instruction
decode circuit (such as the instruction fetch circuit 22 and/or the instruction decode
circuit 26, respectively, of Figure 1). If no remaining instructions are detected, the
instruction processing circuit returns to block 80 of Figure 4A.

[0036] If any remaining instructions are detected, the instruction processing circuit
determines whether a detected instruction (“first instruction”) is a conditional write
instruction indicating an operation writing to a target register (such as one of the
registers 16(0-M) of Figure 1, referred to in this example as target register Rx) (block 82
of Figure 4A). Detection of such an instruction indicates that the instruction processing
circuit may be able to convert the first instruction and a second conditional write
instruction within the instruction stream into a fused instruction. In the event that the
first instruction is not a conditional write instruction, there is no opportunity for
generating a fused instruction, and processing of the first instruction continues (block 84
of Figure 4A). The instruction processing circuit then returns to block 80 of Figure 4A.
[0037] Returning to the decision point at block 82 of Figure 4A, if the first

instruction is a conditional write instruction, the instruction processing circuit detects a

WO 2013/173550 PCT/US2013/041290
13

second instruction in the instruction stream (block 86 of Figure 4A). The instruction
processing circuit then determines whether the second instruction meets the following
criteria: it is a conditional write instruction; it evaluates a condition that is the logical
opposite of the condition evaluated by the first instruction; and it indicates an operation
writing to the target register Rx, the same register written to by the first instruction
(block 88 of Figure 4A). If the second instruction fails to satisfy any one of these
criteria, it is not a candidate for fusion with the first instruction; however, it may still be
possible for another conditional write instruction fetched from further along in the
instruction stream (i.e., a conditional write instruction not adjacent to the first
instruction in the instruction stream) to be detected and used to generate a fused
instruction.

[0038] In preparation for such a possibility, the instruction processing circuit
determines whether the second instruction alters a condition code storing a result of a
previous comparison (such as the condition code 36 in the status register 34 of Figure
1), or writes to the target register Rx (block 90 of Figure 4A). If the former case is true,
the previous value of the condition code will become inaccessible upon execution of the
second instruction; if the latter case is true, it may not be possible to generate a fused
instruction that accurately reproduces the effects of the detected conditional write
instructions. Either of these occurrences, therefore, eliminates the possibility for
generation of a fused instruction. In that case, processing of the first instruction and the
second instruction continues (block 84 of Figure 4A), and the instruction processing
circuit then returns to block 80 of Figure 4A.

[0039] If the instruction processing circuit determines at block 90 of Figure 4A that
the second instruction does not alter the condition code or the value previously written
to the target register Rx, the instruction processing circuit returns to block 86 of Figure
4A, where another instruction is detected in the instruction stream. As seen in Figure
4A, this process then repeats as described above until either the instruction processing
circuit detects an instruction that satisfies the criteria in block 88, or the instruction
processing circuit detects an instruction that alters the condition code or the value stored
in the target register in block 90.

[0040] Returning to the decision point at block 88 of Figure 4A, if the second
instruction meets the specified criteria (i.e., it is a conditional write instruction that

evaluates a condition that is the logical opposite of the condition evaluated by the first

WO 2013/173550 PCT/US2013/041290
14

instruction, and indicates an operation writing to the target register Rx), the instruction
processing circuit next determines whether the first and second instructions together
comprise a pairable instruction combination (block 91). Some embodiments may
permit only particular pairs of instructions or only pairs of instructions having particular
types of operands to be used for generating a fused instruction. For example, in some
embodiments, a fused instruction may only be generated based upon a pair of
instructions in which both instructions specify register operands, or a pair of instructions
in which one instruction specifies a non-zero immediate value and the other instruction
specifies an immediate value of zero. If the first and second instructions do not
comprise a pairable instruction combination, processing of the first instruction and the
second instruction continues (block 84 of Figure 4A), and the instruction processing
circuit then returns to block 80 of Figure 4A.

[0041] If the instruction processing circuit determines at block 91 of Figure 4A that
the first and second instructions comprise a pairable instruction combination, the
instruction processing circuit proceeds to block 92 of Figure 4B. It is to be understood
that, at this point, the first instruction and the second instruction may have been fetched
adjacently from the instruction stream, or they may have been separated in the
instruction stream by other intervening instructions. The instruction processing circuit
determines the operand types of the first instruction and the second instruction, and
selects a course of action based on the determined operand types (block 92 of Figure
4B). In some embodiments, discussed below with respect to Figures 5 and 6, the
selection of a condition to be evaluated by the generated fused instruction may be based
upon the types of operands of the first instruction and the second instruction.

[0042] If the instruction processing circuit determines, at the decision point in block
92 of Figure 4B, that the source operands for the first instruction and the second
instruction are both registers, the instruction processing circuit in this example selects
the condition evaluated by the first instruction as a fused instruction condition (block 94
of Figure 4B). The instruction processing circuit generates a fused instruction that
evaluates the fused instruction condition, and specifies as operands the target register
Rx, the source register of the first instruction, and the source register of the second
instruction (block 96 of Figure 4B). Although not illustrated in this example, it is to be
understood that, in some embodiments, the condition evaluated by the second

instruction could be selected as the fused instruction condition, in which case the

WO 2013/173550 PCT/US2013/041290
15

instruction processing circuit would specify as operands the target register Rx, the
source register of the second instruction, and the source register of the first instruction.
Processing then resumes at block 98 of Figure 4C, as discussed in greater detail below.
[0043] To better illustrate an exemplary generation of a fused instruction, in some
embodiments, based on conditional write instructions having register operands as
described in blocks 94 and 96 of Figure 4B, Figure 5 is provided. In Figure 5, a
detected instruction stream 112 depicts a series of instructions detected by the
instruction processing circuit 14 as they proceed through the instruction stream 18 of
Figure 1. It is assumed, for purposes of this example, that one or more previous
instructions have caused the condition code 36 in the status register 34 of Figure 1 to
indicate either an “equal” or a “not equal” condition (i.e., one of two logically opposite
conditions). Detected first in the detected instruction stream 112 is a first conditional
write instruction 114, which in this example is the ARM architecture MOVEQ (“move
if equal”) instruction. The MOVEQ first conditional write instruction 114 processes the
condition code 36 by evaluating a first condition 116 (i.e., “EQ” or “equal”). The
MOVEQ first conditional write instruction 114 also specifies a target register (one of
the registers 16(0-M) of Figure 1) designated by an operand 118, and a source register
(also one of the registers 16(0-M)) designated by an operand 120. In this example,
register R, is the target register, and register R, is the source register. The MOVEQ first
conditional write instruction 114 indicates an operation writing the value of the source
register R, designated by the operand 120 into the target register R; designated by the
operand 118 if the condition code 36 indicates an “equal” condition.

[0044] Further along in the detected instruction stream 112 is a second conditional
write instruction 122, which in this example is the ARM architecture MOVNE (“move
if not equal”) instruction. The MOVNE second conditional write instruction 122
processes the condition code 36 by evaluating a second condition 124 (“NE” or “not
equal,” which is the logical opposite of the first condition 116). The MOVNE second
conditional write instruction 122 also specifies a target register designated by an
operand 126 (which is the same register designated by the operand 118 of the MOVEQ
first conditional write instruction 114), and a source register (one of the registers 16(0-
M) of Figure 1) designated by an operand 128. In this example, register R; is the target
register, and register R is the source register. The MOVNE second conditional write

instruction 122 indicates an operation writing the value of the source register Rj

WO 2013/173550 PCT/US2013/041290
16

designated by the operand 128 into the target register R; designated by the operand 126
if the condition code 36 indicates a “not equal” condition.

[0045] A fused instruction 130 illustrates the results of processing the MOVEQ first
conditional write instruction 114 and the MOVNE second conditional write instruction
122 by the instruction processing circuit 14 of Figure 1. The fused instruction 130
evaluates a fused instruction condition 132, and also specifies a target register
designated by an operand 134, an “if-true” source value designated by an operand 136,
and an “if-false” source value designated by an operand 138. In the embodiment
illustrated in Figure 5, if the operand 120 of the MOVEQ first conditional write
instruction 114 and the operand 128 of the MOVNE second conditional write
instruction 122 both specify registers, the fused instruction 130 is generated according
to the following rules: the first condition 116 of the MOVEQ first conditional write
instruction 114 is used as the fused instruction condition 132; the operand 134
designates the same target register as the operand 118 and the operand 126; the operand
136 designates the source register identified by the operand 120 as the “if-true” source
value; and the operand 138 designates the source register identified by the operand 128
as the “if-false” source value. Although not illustrated in this example, it is to be
understood that, in some embodiments, the second condition 124 could be selected as
the fused instruction condition 132, in which case the values designated by the operands
136, 138 would be reversed.

[0046] Accordingly, in this example, the fused instruction 130 is a MOVPEQ
(“move [paired] if equal”) instruction, and the fused instruction condition 132, like the
first condition 116, is “EQ” or “equals” and is further used to process the condition code
36. If the fused instruction condition 132 evaluates to “true,” the MOVPEQ fused
instruction 130 indicates an operation writing the “if-true” source value designated by
the operand 136 (i.e., the value of register R,) into the target register designated by the
operand 134 (i.e., register R;). If the fused instruction condition 132 evaluates to
“false,” the MOVPEQ fused instruction 130 indicates an operation writing the “if-false”
value designated by the operand 138 (i.e., the value of register R3) into the target
register designated by the operand 134 (i.e., register Ry). As a result, the MOVPEQ
fused instruction 130 performs the operations of both the MOVEQ first conditional
write instruction 114 and the MOVNE second conditional write instruction 122 in a

single instruction, thus improving CPU performance by removing a redundant

WO 2013/173550 PCT/US2013/041290
17

conditional write instruction and eliminating the possibility of a read-after-write hazard
associated with the MOVEQ/MOVNE conditional instruction pair.

[0047] With continuing reference to Figure 5, the implementation of the rules
discussed above with respect to the fused instruction 130 is illustrated in an example
where the conditions of the conditional write instructions fetched from the instruction
stream 18 are reversed. As before, it is assumed, for purposes of this example, that one
or more previous instructions have caused the condition code 36 in the status register 34
of Figure 1 to indicate either an “equal” or a “not equal” condition (i.e., one of two
logically opposite conditions). Detected first in a detected instruction stream 140 is a
MOVNE first conditional write instruction 142, which evaluates a first condition 144
(i.e., “NE” or “not equal”), and which also specifies a target register R; designated by an
operand 146 and a source register R, designated by an operand 148. Following the
MOVNE first conditional write instruction 142 in the detected instruction stream 140 is
a MOVEQ second conditional write instruction 150. The MOVEQ second conditional
write instruction 150 evaluates a second condition 152 (“EQ” or “equal,” which is the
logical opposite of the first condition 144), and also specifies a target register R;
designated by an operand 154 (the same register designated by operand 146 of the
MOVNE first conditional write instruction 142), and a source register Rs designated by
an operand 156.

[0048] A fused instruction 158 illustrates the results of processing the MOVNE first
conditional write instruction 142 and the MOVEQ second conditional write instruction
150 by the instruction processing circuit 14 of Figure 1. The fused instruction 158
evaluates a fused instruction condition 160, and also specifies a target register
designated by an operand 162, an “if-true” source value designated by an operand 164,
and an “if-false” source value designated by an operand 166. In this example, if the
operand 148 of the MOVNE first conditional write instruction 142 and the operand 156
of the MOVEQ second conditional write instruction 150 both specify registers, the
fused instruction 158 is a MOVPNE (“move [paired] if not equal”) instruction, and the
first condition 144 (“NE” or “not equal”) of the MOVNE first conditional write
instruction 142 is used as the fused instruction condition 160. Additionally, the operand
162 designates the same target register R; as the operand 146 and the operand 154; the
operand 164 designates the source register R, indicated by the operand 148 as the “if-

WO 2013/173550 PCT/US2013/041290
18

true” source value; and the operand 166 designates the source register Rz indicated by
the operand 156 as the “if-false” source value.

[0049] Returning now to the decision point at block 92 of Figure 4B, if the source
operands for the first instruction and the second instruction include both a non-zero
immediate value and an immediate value of zero, the instruction processing circuit, in
this example, determines which of the instructions specifies the non-zero immediate
value as a source operand (block 100 of Figure 4B). The instruction processing circuit
then selects the condition evaluated by the instruction having the non-zero immediate
value source operand for use as a fused instruction condition (block 102 of Figure 4B).
The instruction processing circuit generates a fused instruction that evaluates the fused
instruction condition, and specifies as operands the target register Rx, the non-zero
immediate value, and an immediate value of zero (block 104 of Figure 4B). Although
not illustrated in this example, it is to be understood that, in some embodiments, the
condition evaluated by the instruction having the zero immediate value source operand
could be selected for use as the fused instruction condition, in which case the instruction
processing circuit would specify as operands the target register Rx, an immediate value
of zero, and the non-zero immediate value. Processing then resumes at block 98 of
Figure 4C, as discussed in detail below.

[0050] An exemplary fused instruction generated based on conditional write
instructions having zero and non-zero immediate value operands is shown in Figure 6,
with reference to Figure 1. In the example illustrated by Figure 6, a detected instruction
stream 168 depicts a series of instructions detected by the instruction processing circuit
14 as they proceed through the instruction stream 18 of Figure 1. In this example, it is
assumed that one or more previous instructions have caused the condition code 36 in the
status register 34 of Figure 1 to indicate either an “equal” or a “not equal” condition
(i.e., one of two logically opposite conditions).

[0051] Detected first in the detected instruction stream 168 is a first conditional
write instruction 170, which in this example is the ARM architecture MOVEQ (“move
if equal”) instruction. The MOVEQ first conditional write instruction 170 processes the
condition code 36 by evaluating a first condition 172 (i.e., “EQ” or “equal”). The
MOVEQ first conditional write instruction 170 also specifies a target register (one of
the registers 16(0-M)) designated by an operand 174, and a source immediate value

designated by an operand 176. Here, the target register is register Ry, and the source

WO 2013/173550 PCT/US2013/041290
19

immediate value designated by the operand 176 is an immediate value #0x1234. If the
condition code 36 indicates a condition of “equal,” the MOVEQ first conditional write
instruction 170 indicates an operation writing the source immediate value #0x1234
designated by the operand 176 into the target register R designated by the operand 174.
[0052] Next in the detected instruction stream 168 is a second conditional write
instruction 178, which is the ARM architecture MOVNE (“move if not equal”)
instruction. The MOVNE second conditional write instruction 178 processes the
condition code 36 by evaluating a second condition 180 (“NE” or “not equal,” which is
the logical opposite of the first condition 172). The MOVNE second conditional write
instruction 178 also specifies a target register designated by an operand 182 (which is
the same register designated by the operand 174 of the MOVEQ first conditional write
instruction 170), and a source immediate value designated by an operand 184. In this
example, the target register is register Ry, and the source immediate value designated by
the operand 184 is a zero immediate value (#0x0000). If the condition code 36 indicates
a condition of “not equal,” the MOVNE second conditional write instruction 178
indicates an operation writing the source immediate value 0x#0000 designated by the
operand 184 into the target register Ry designated by the operand 182.

[0053] A fused instruction 186 illustrates the results of processing the MOVEQ first
conditional write instruction 170 and the MOVNE second conditional write instruction
178 by the instruction processing circuit 14 of Figure 1. The fused instruction 186
evaluates a fused instruction condition 188, and also specifies a target register
designated by an operand 190, an “if-true” source value designated by an operand 192,
and an “if-false” source value designated by an operand 194. If the operand 176 of the
MOVEQ first conditional write instruction 170 and the operand 184 of the MOVNE
second conditional write instruction 178 both designate immediate values, and if one of
the source immediate values designated by the operand 176 and the operand 184 is non-
zero while the other is zero, the fused instruction 186 is generated according to the
following rules: the condition of the conditional write instruction specifying a non-zero
immediate value is used as the fused instruction condition 188 (in this example, the first
condition 172 is used as the fused instruction condition 188); the operand 190
designates the same target register as the operand 174 and the operand 182; the operand
192 designates the non-zero source immediate value (in this example, the source

immediate value #0x1234 designated by the operand 176) as the “if-true” source value;

WO 2013/173550 PCT/US2013/041290
20

and the operand 194 designates an immediate value of zero (#0x0000) (designated by
the operand 184) as the “if-false” source value. Although not illustrated in this example,
it is to be understood that, in some embodiments, the second condition 180 could be
selected as the fused instruction condition 188, in which case the values designated by
the operands 192, 194 would be reversed.

[0054] Accordingly, in this example, the fused instruction 186 is a MOVPEQ
(“move [paired] if equal”) instruction, and the fused instruction condition 188, like the
first condition 172, is “EQ” or “equals™ and is used to process the condition code 36. If
the fused instruction condition 188 evaluates to “true,” the MOVPEQ fused instruction
186 indicates an operation writing the “if-true” source value designated by the operand
192 (i.e., the source immediate value #0x1234) into the target register designated by the
operand 190 (i.e., register R;). If the fused instruction condition 188 evaluates to
“false,” the MOVPEQ fused instruction 186 indicates an operation writing the “if-false”
value designated by the operand 194 (i.e., the source immediate value #0x0000) into the
target register designated by the operand 190 (i.e., register R;). As a result, the
MOVPEQ fused instruction 186 performs the operations of both the MOVEQ first
conditional write instruction 170 and the MOVNE second conditional write instruction
178 in a single instruction, thus improving CPU performance by removing a redundant
conditional write instruction and eliminating the possibility of a read-after-write hazard
associated with the MOVEQ/MOVNE conditional instruction pair.

[0055] With continuing reference to Figure 6, the implementation of the rules
discussed above with respect to the MOVPEQ fused instruction 186 is illustrated in an
example where the source immediate values specified by the conditional write
instructions fetched from the instruction stream 18 of Figure 1 are reversed. In this
example, as before, it is assumed that one or more previous instructions have caused the
condition code 36 in the status register 34 of Figure 1 to indicate either an “equal” or a
“not equal” condition (i.e., one of two logically opposite conditions). Detected first in a
detected instruction stream 196 is a MOVEQ first conditional write instruction 198,
which evaluates a first condition 200 (i.e., “EQ” or “equal”), and which also specifies a
target register R; designated by an operand 202 and a source immediate value #0x0000
designated by an operand 204. Following the MOVEQ first conditional write
instruction 198 in the detected instruction stream 196 is a MOVNE second conditional

write instruction 206. The MOVNE second conditional write instruction 206 evaluates

WO 2013/173550 PCT/US2013/041290
21

a second condition 208 (“NE” or “not equal,” which is the logical opposite of the first
condition 200), and also specifies a target register R; designated by an operand 210 (the
same register designated by the operand 202 of the MOVEQ first conditional write
instruction 198), and a source immediate value #0x1234 designated by an operand 212.
[0056] A fused instruction 214 illustrates the results of processing the MOVEQ first
conditional write instruction 198 and the MOVNE second conditional write instruction
206 by the instruction processing circuit 14 of Figure 1. The fused instruction 214
evaluates a fused instruction condition 216, and also specifies a target register
designated by an operand 218, an “if-true” source value designated by an operand 220,
and an “if-false” source value designated by an operand 222. Here, because the operand
204 of the MOVEQ first conditional write instruction 198 designates a source
immediate value of zero while the operand 212 of the MOVNE second conditional write
instruction 206 specifies a non-zero source immediate value, the fused instruction 214 is
a MOVPNE (“move [paired] if not equal”) instruction, and the second condition 208
(“NE” or “not equal”) of the MOVNE second conditional write instruction 206 is used
as the fused instruction condition 216. Additionally, the operand 218 designates the
same target register Ry as the operand 202 and the operand 210; the operand 220
designates the source immediate value #0x1234 designated by the operand 212 as the
“if-true” source value; and the operand 222 designates the source immediate value
#0x0000 designated by the operand 204 as the “if-false” source value.

[0057] Referring back to the decision point at block 92 of Figure 4B, some
embodiments may provide that detected conditional write instructions having other
types of source operands (e.g., one conditional instruction having a register operand and
a second conditional instruction having a zero or non-zero immediate value operand)
may be fused. In this case, the instruction processing circuit selects the condition of one
of the detected conditional instructions as the fused instruction condition (block 106 of
Figure 4B). The instruction processing circuit then generates a fused instruction that
evaluates the fused instruction condition, and specifies as operands the target register
Rx, an “if-true” operand comprising the operand of the detected conditional instruction
that corresponds to the fused instruction condition, and an “if-false” operand comprising
the operand of the detected conditional instruction that evaluates the condition logically
opposite to the fused instruction condition (block 108 of Figure 4B). Processing then

resumes at block 98 of Figure 4C.

WO 2013/173550 PCT/US2013/041290
22

[0058] Figure 4C 1is provided to illustrate operations for replacing one of the
conditional write instructions in the instruction stream with a generated fused
instruction. In Figure 4C, the instruction processing circuit, after generating the fused
instruction, replaces either the first instruction or the second instruction in the
instruction stream with the fused instruction, based on an instruction selection flag such
as the instruction selection flag 32 of Figure 1 (block 98 of Figure 4C). In some
embodiments, the instruction selection flag may indicate that the instruction fetched
from the instruction stream in a specified position (e.g., first or second) is always
replaced. The instruction processing circuit then determines whether the first or second
instruction was replaced in the instruction stream with the fused instruction (block 109
of Figure 4C). If the first detected instruction was replaced with the fused instruction,
the instruction processing circuit substitutes an instruction indicating no operation (i.e.,
NOP) for the second instruction, or removes the second instruction from the instruction
stream (block 110 of Figure 4C). If the second detected instruction was replaced with
the fused instruction, the instruction processing circuit may optionally substitute an
instruction indicating no operation (i.e., NOP) for the first instruction, or may remove
the first instruction from the instruction stream (block 111 of Figure 4C). In some
embodiments, the first instruction may remain unmodified in the instruction stream, as
the subsequent fused instruction will either repeat the function of the first instruction or
perform the function of the second instruction. Processing then resumes at block 80 of
Figure 4A.

[0059] As noted above with respect to Figure 4C, either the first instruction or the
second instruction will be replaced by the generated fused instruction, and the
instruction that is not replaced may be replaced by an instruction indicating no operation
(i.e., NOP) or removed entirely from the instruction stream. Thus, the instruction
processing circuit may process a given detected instruction stream into different
resulting instruction streams that include the generated fused instruction. In this regard,
Figure 7 shows an exemplary detected instruction stream 224 including a set of non-
fused conditional write instructions, and corresponding resulting instruction stream
examples 226(1)-226(4) that may be generated by the instruction processing circuit 14
of Figure 1. In this example, a detected instruction stream 224 includes two consecutive
ARM instructions: a MOVEAQ first conditional write instruction conditionally writing a

value from source register R, to target register R if the condition code 36 indicates an

WO 2013/173550 PCT/US2013/041290
23

“equal” condition, immediately followed by a MOVNE second conditional write
instruction conditionally writing a value from source register Rs to target register R if
the condition code 36 indicates a “not equal” condition.

[0060] Resulting instruction stream examples 226 illustrate exemplary sequences of
instructions, including fused instructions, into which the instructions in the detected
instruction stream 224 may be processed by the instruction processing circuit 14 of
Figure 1. In some embodiments, the MOVEQ first conditional write instruction in the
detected instruction stream 224 may be replaced with the fused instruction, and the
MOVNE second conditional write instruction may be replaced with an instruction
indicating no operation (i.e., NOP). Accordingly, exemplary instruction stream 226(1)
comprises a fused instruction MOVEPEQ, followed by an NOP.

[0061] Some embodiments may provide that the MOVEQ first conditional write
instruction in the detected instruction stream 224 may be replaced with an NOP
instruction, while the MOVNE second conditional write instruction is replaced with the
fused instruction. Thus, in instruction stream 226(2), an NOP instruction is followed by
the fused instruction MOVPEQ.

[0062] According to some embodiments, the MOVEQ first conditional write
instruction in the detected instruction stream 224 may remain unmodified in the
resulting instruction stream, while the MOVNE second conditional write instruction is
replaced with the fused instruction. Therefore, in instruction stream 226(3), the original
MOVEQ first conditional write instruction is followed by the fused instruction
MOVPEQ.

[0063] In some embodiments described herein, either the MOVEQ first conditional
write instruction or the MOVNE second conditional write instruction will be replaced
by the generated fused instruction, and the instruction that is not replaced will be
removed entirely from the instruction stream. Accordingly, instruction stream 226(4)
comprises only the fused instruction MOVPEQ.

[0064] As mentioned above with respect to Figure 4A, the conditional write
instructions that may be used to generate a fused instruction may be fetched adjacent to
one another from the instruction stream, or they may be separated in the instruction
stream by other intervening instructions. With respect to the latter scenario, Figure 8§,
with reference to Figure 1, illustrates an exemplary conversion of non-consecutive

conditional write instructions into a fused instruction. In Figure 8, a detected instruction

WO 2013/173550 PCT/US2013/041290
24

stream 228 depicts a series of instructions detected by the instruction processing circuit
14 as they proceed through the instruction stream 18 of Figure 1. For purposes of this
example, it is assumed that one or more previous instructions have caused the condition
code 36 in the status register 34 of Figure 1 to indicate either a “greater than” or a “less
than or equal” condition (i.e., one of two logically opposite conditions).

[0065] Detected first in the detected instruction stream 228 is a first conditional
write instruction 230, which in this example is the ARM architecture MOVGT (“move
if greater than”) instruction. The MOVGT first conditional write instruction 230
processes the condition code 36 by evaluating a first condition 232 (i.e., “GT” or
“greater than). The MOVGT first conditional write instruction 230 also specifies a
target register (one of the registers 16(0-M)) designated by an operand 234, and a source
immediate value designated by an operand 236. In this example, the target register is
register Ry, and the source immediate value designated by the operand 236 is an
immediate value #0x1234. If the condition code 36 indicates a condition of “greater
than,” the MOVGT first conditional write instruction 230 indicates an operation writing
the source immediate value #0x1234 designated by the operand 236 into the target
register Ry designated by the operand 234.

[0066] Following the MOVGT first conditional write instruction 230 in the detected
instruction stream 228 is at least one intervening instruction 238. As discussed above,
the at least one intervening instruction 238 may be any valid instruction, other than an
instruction that alters a value of the condition code 36, or that writes to the target
register Ry (block 90 of Figure 4A). Either of these occurrences eliminates the
possibility for generating a fused instruction. For instance, if the at least one
intervening instruction 238 modifies the value of the condition code 36, a later-fetched
conditional write instruction will evaluate its condition based on a different result than
that upon which the MOVGT first conditional write instruction 230 evaluated its
condition. Similarly, if the at least one intervening instruction 238 writes to the target
register R;, then it may not be possible to generate a fused instruction that accurately
reproduces the effects of the detected conditional write instructions.

[0067] After the at least one intervening instruction 238, a second conditional write
instruction 240, which is the ARM architecture MOVLE (“move if less than or equal™)
instruction, is fetched in the detected instruction stream 228. The MOVLE second

conditional write instruction 240 processes the condition code 36 by evaluating a second

WO 2013/173550 PCT/US2013/041290
25

condition 242 (“LE” or “less than or equal,” which is the logical opposite of the first
condition 232). The MOVLE second conditional write instruction 240 also specifies a
target register designated by an operand 246 (which is the same register designated by
the operand 234 of the MOVGT first conditional write instruction 230), and a source
immediate value designated by an operand 248. In this example, the target register is
register Ry, and the source immediate value designated by the operand 248 is a zero
immediate value (#0x0000). If the condition code 36 indicates a condition of “less than
or equal,” the MOVLE second conditional write instruction 240 indicates an operation
writing the source immediate value 0x#0000 designated by the operand 248 into the
target register R; designated by the operand 246.

[0068] A fused instruction 250 illustrates the results of processing the MOVGT first
conditional write instruction 230 and the MOVLE second conditional write instruction
240 by the instruction processing circuit 14. The fused instruction 250 evaluates a fused
instruction condition 252, and also specifies a target register designated by an operand
254, an “if-true” source value designated by an operand 256, and an “if-false” source
value designated by an operand 258. According to the exemplary rules for processing
conditional write instructions having non-zero/zero immediate value operands, as
discussed above with respect to Figure 6, the fused instruction 250 is a MOVPGT
(“move [paired] if greater than”) instruction, and the fused instruction condition 252,
like the first condition 232, is “GT” or “greater than,” and is used to process the
condition code 36. If the fused instruction condition 252 evaluates to ‘“‘true,” the
MOVPGT fused instruction 250 indicates an operation writing the “if-true” source value
designated by the operand 256 (i.e., the source immediate value #0x1234) into the target
register designated by the operand 254 (i.e., register R;). If the fused instruction
condition 252 evaluates to “false,” the MOVPGT fused instruction 250 indicates an
operation writing the “if-false” value designated by the operand 258 (i.e., the source
immediate value #0x0000) into the target register designated by the operand 254 (i.e.,
register Ry). Although not illustrated in this example, it is to be understood that, in
some embodiments, the second condition 242 could be selected as the fused instruction
condition 252, in which case the values designated by the operands 256, 258 would be
reversed.

[0069] The instruction processing circuits fusing conditional write instructions

having opposite conditions according to embodiments disclosed herein may be provided

WO 2013/173550 PCT/US2013/041290
26

in or integrated into any processor-based device. Examples, without limitation, include
a set top box, an entertainment unit, a navigation device, a communications device, a
fixed location data unit, a mobile location data unit, a mobile phone, a cellular phone, a
computer, a portable computer, a desktop computer, a personal digital assistant (PDA), a
monitor, a computer monitor, a television, a tuner, a radio, a satellite radio, a music
player, a digital music player, a portable music player, a digital video player, a video
player, a digital video disc (DVD) player, and a portable digital video player.

[0070] In this regard, Figure 9 illustrates an example of a processor-based system
260 that can employ the instruction processing circuit 14 illustrated in Figure 1. In this
example, the processor-based system 260 includes one or more central processing units
(CPUs) 262, each including one or more processors 264. The processor(s) 264 may
comprise the instruction processing circuit (IPC) 14. The CPU(s) 262 may have cache
memory 266 coupled to the processor(s) 264 for rapid access to temporarily stored data.
The CPU(s) 262 is coupled to a system bus 268 and can intercouple master and slave
devices included in the processor-based system 260. As is well known, the CPU(s) 262
communicates with these other devices by exchanging address, control, and data
information over the system bus 268. For example, the CPU(s) 262 can communicate
bus transaction requests to a memory controller 270, as an example of a slave device.
Although not illustrated in Figure 9, multiple system buses 268 could be provided.
[0071] Other master and slave devices can be connected to the system bus 268. As
illustrated in Figure 9, these devices can include a memory system 272, one or more
input devices 274, one or more output devices 276, one or more network interface
devices 278, and one or more display controllers 280, as examples. The input device(s)
274 can include any type of input device, including but not limited to input keys,
switches, voice processors, etc. The output device(s) 276 can include any type of output
device, including but not limited to audio, video, other visual indicators, etc. The
network interface device(s) 278 can be any device(s) configured to allow exchange of
data to and from a network 282. The network 282 can be any type of network,
including but not limited to a wired or wireless network, a private or public network, a
local area network (LAN), a wide local area network (WLAN), and the Internet. The
network interface device(s) 278 can be configured to support any type of
communication protocol desired. The memory system 272 can include one or more

memory units 284(0-N).

WO 2013/173550 PCT/US2013/041290
27

[0072] The CPU(s) 262 may also be configured to access the display controller(s)
280 over the system bus 268 to control information sent to one or more displays 286.
The display controller(s) 280 sends information to the display(s) 286 to be displayed via
one or more video processors 288, which process the information to be displayed into a
format suitable for the display(s) 286. The display(s) 286 can include any type of
display, including but not limited to a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, etc.

[0073] Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in connection with the
embodiments disclosed herein may be implemented as electronic hardware, instructions
stored in memory or in another computer-readable medium and executed by a processor
or other processing device, or combinations of both. The master devices and slave
devices described herein may be employed in any circuit, hardware component,
integrated circuit (IC), IC chip, or semiconductor die, as examples. Memory disclosed
herein may be any type and size of memory and may be configured to store any type of
information desired. To clearly illustrate this interchangeability, various illustrative
components, blocks, modules, circuits, and steps have been described above generally
in terms of their functionality. How such functionality is implemented depends upon
the particular application, design choices, and/or design constraints imposed on the
overall system. Skilled artisans may implement the described functionality in varying
ways for each particular application, but such implementation decisions should not be
interpreted as causing a departure from the scope of the present disclosure.

[0074] The various illustrative logical blocks, modules, and circuits described in
connection with the embodiments disclosed herein may be implemented or performed
with a processor, a DSP, an Application Specific Integrated Circuit (ASIC), an FPGA or
other programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. A processor may be a microprocessor, but in the alternative, the processor may
be any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or more

microprocessors in conjunction with a DSP core, or any other such configuration.

WO 2013/173550 PCT/US2013/041290
28

[0075] The embodiments disclosed herein may be embodied in hardware and in
instructions that are stored in hardware, and may reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), Electrically
Programmable ROM (EPROM), Electrically FErasable Programmable ROM
(EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of
computer readable medium known in the art. An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
Sserver.

[0076] It is also noted that the operational steps described in any of the exemplary
embodiments herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the illustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed in a number of different steps. Additionally, one or more operational steps
discussed in the exemplary embodiments may be combined. It is to be understood that
the operational steps illustrated in the flow chart diagrams may be subject to numerous
different modifications as will be readily apparent to one of skill in the art. Those of
skill in the art would also understand that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

[0077] The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be applied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but rather is to be accorded the widest scope consistent with

the principles and novel features disclosed herein.

WO 2013/173550 PCT/US2013/041290
29

What is claimed is:

1. An instruction processing circuit configured to:

detect a first conditional write instruction in an instruction stream indicating an
operation writing a first value to a target register based on evaluating a first condition;

detect a second conditional write instruction in the instruction stream indicating
an operation writing a second value to the target register based on evaluating a second
condition that is a logical opposite of the first condition;

select one of the first condition or the second condition as a fused instruction
condition;

select one of the first value or the second value corresponding to the fused
instruction condition as an if-true value;

select one of the first value or the second value not corresponding to the fused
instruction condition as an if-false value; and

generate a fused instruction indicating an operation selectively writing the if-true
value to the target register if the fused instruction condition evaluates to true, and
selectively writing the if-false value to the target register if the fused instruction

condition evaluates to false.

2. The instruction processing circuit of claim 1 configured to:

detect the first conditional write instruction indicating a first source register
providing the first value; and

detect the second conditional write instruction indicating a second source

register providing the second value.

3. The instruction processing circuit of claim 1 configured to:

detect the first conditional write instruction indicating the first value comprising
a first immediate value that is non-zero; and

detect the second conditional write instruction indicating the second value

comprising a second immediate value of zero.

WO 2013/173550 PCT/US2013/041290
30

4. The instruction processing circuit of claim 1 configured to:

detect the first conditional write instruction indicating a first source register
providing the first value; and

detect the second conditional write instruction indicating the second value

comprising an immediate value that is non-zero.

5. The instruction processing circuit of claim 1 configured to:

detect the first conditional write instruction indicating a first source register
providing the first value; and

detect the second conditional write instruction indicating the second value

comprising an immediate value that is zero.

6. The instruction processing circuit of claim 1 configured to detect the second
conditional write instruction located adjacent to the first conditional write instruction in

the instruction stream.

7. The instruction processing circuit of claim 1 further configured to:

detect at least one intervening instruction fetched between the first conditional
write instruction and the second conditional write instruction in the instruction stream;
and

determine whether the at least one intervening instruction maintains a value of a
condition code in a status register and does not write to the target register;

the instruction processing circuit configured to generate the fused instruction if
the at least one intervening instruction maintains the value of the condition code and

does not write to the target register.

8. The instruction processing circuit of claim 1 disposed in a circuit comprised
from the group consisting of: an instruction fetch circuit, an instruction decode circuit,

and an instruction queue.

WO 2013/173550 PCT/US2013/041290
31

0. The instruction processing circuit of claim 1 configured to detect an
IF_EQ_WRITE as the first conditional write instruction and detect an IF_NE_WRITE

as the second conditional write instruction.

10. The instruction processing circuit of claim 1, further configured to:
select one of the first conditional write instruction or the second conditional
write instruction as a selected instruction based on an instruction selection flag; and
replace the selected instruction in the instruction stream with the fused

instruction.

I1. The instruction processing circuit of claim 10 further configured to:
replace the first conditional write instruction or the second conditional write
instruction not corresponding to the selected instruction with an instruction indicating

no operation.

12. The instruction processing circuit of claim 10 further configured to:
remove the first conditional write instruction or the second conditional write

instruction not corresponding to the selected instruction from the instruction stream.

13. The instruction processing circuit of claim 1 integrated into a semiconductor die.

14. The instruction processing circuit of claim 1 further comprising a device
selected from the group consisting of: a set top box, an entertainment unit, a navigation
device, a communications device, a fixed location data unit, a mobile location data unit,
a mobile phone, a cellular phone, a computer, a portable computer, a desktop computer,
a personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

WO 2013/173550 PCT/US2013/041290
32

15. An instruction processing circuit, comprising:

a means for detecting a first conditional write instruction in an instruction stream
indicating an operation writing a first value to a target register based on evaluating a
first condition;

a means for detecting a second conditional write instruction in the instruction
stream indicating an operation writing a second value to the target register based on
evaluating a second condition that is a logical opposite of the first condition;

a means for selecting one of the first condition or the second condition as a fused
instruction condition;

a means for selecting one of the first value or the second value corresponding to
the fused instruction condition as an if-true value;

a means for selecting one of the first value or the second value not
corresponding to the fused instruction condition as an if-false value; and

a means for generating a fused instruction indicating an operation selectively
writing the if-true value to the target register if the fused instruction condition evaluates
to true, and selectively writing the if-false value to the target register if the fused

instruction condition evaluates to false.

16. A method for processing computer instructions, comprising:

detecting a first conditional write instruction in an instruction stream indicating
an operation writing a first value to a target register based on evaluating a first
condition;

detecting a second conditional write instruction in the instruction stream
indicating an operation writing a second value to the target register based on evaluating
a second condition that is a logical opposite of the first condition;

selecting one of the first condition or the second condition as a fused instruction
condition;

selecting one of the first value or the second value corresponding to the fused
instruction condition as an if-true value;

selecting one of the first value or the second value not corresponding to the
fused instruction condition as an if-false value; and

generating a fused instruction indicating an operation selectively writing the if-

true value to the target register if the fused instruction condition evaluates to true, and

WO 2013/173550 PCT/US2013/041290
33

selectively writing the if-false value to the target register if the fused instruction

condition evaluates to false.

17. The method of claim 16, comprising:

detecting the first conditional write instruction indicating a first source register
providing the first value; and

detecting the second conditional write instruction indicating a second source

register providing the second value.

18. The method of claim 16, comprising:

detecting the first conditional write instruction indicating the first value
comprising a first immediate value that is non-zero; and

detecting the second conditional write instruction indicating the second value

comprising a second immediate value of zero.

19. The method of claim 16, comprising:

detecting the first conditional write instruction indicating a first source register
providing the first value; and

detecting the second conditional write instruction indicating the second value

comprising an immediate value that is non-zero.

20. The method of claim 16, comprising:

detecting the first conditional write instruction indicating a first source register
providing the first value; and

detecting the second conditional write instruction indicating the second value

comprising an immediate value that is zero.

21. A non-transitory computer-readable medium, having stored thereon computer-

executable instructions to cause a processor to implement a method comprising:

WO 2013/173550 PCT/US2013/041290

34

detecting a first conditional write instruction in an instruction stream indicating an
operation writing a first value to a target register based on evaluating a first condition;

detecting a second conditional write instruction in the instruction stream indicating an
operation writing a second value to the target register based on evaluating a second condition that
is a logical opposite of the first condition;

selecting one of the first condition or the second condition as a fused instruction
condition;

selecting one of the first value or the second value corresponding to the fused instruction
condition as an if-true value;

selecting one of the first value or the second value not corresponding to the fused
instruction condition as an if-false value; and

generating a fused instruction indicating an operation selectively writing the if-true value
to the target register if the fused instruction condition evaluates to true, and selectively writing

the if-false value to the target register if the fused instruction condition evaluates to false.

22. The non-transitory computer-readable medium of claim 21, having stored thereon the
computer-executable instructions to cause the processor to implement the method comprising:
detecting the first conditional write instruction indicating a first source register providing
the first value; and
detecting the second conditional write instruction indicating a second source register

providing the second value.

[[22]] 23. 'The non-transitory computer-readable medium of claim 21, having stored thereon the
computer-executable instructions to cause the processor to implement the method comprising:
detecting the first conditional write instruction indicating the first value comprising a first
immediate value that is non-zero; and
detecting the second conditional write instruction indicating the second value comprising

a second immediate value of zero.

SUBSTITUTE SHEET (RULE 26)

WO 2013/173550 PCT/US2013/041290
35

24. The non-transitory computer-readable medium of claim 21, having stored
thereon the computer-executable instructions to cause the processor to implement the
method comprising:

detecting the first conditional write instruction indicating a first source register
providing the first value; and

detecting the second conditional write instruction indicating the second value

comprising an immediate value that is non-zero.

25. The non-transitory computer-readable medium of claim 21, having stored
thereon the computer-executable instructions to cause the processor to implement the
method comprising:

detecting the first conditional write instruction indicating a first source register
providing the first value; and

detecting the second conditional write instruction indicating the second value

comprising an immediate value that is zero.

PCT/US2013/041290

WO 2013/173550

111

L "OId

0l (9¢) ep0oD ans
/ uoIIpUoY
(¥g) Jorsibay snieis (zg) Bel4 uonosjes uononsul :
oz (0)d
e N o (91) (s)Ieys16oy
||||||||||||||||||||||||| i
M | ! _ | i
_ _ .
°d I+ N _ (N) _ |
: R : @ | e | e
. L enenp e 0 L ynoud yore e ayoen
] m I'l vogonuysup | | 0N | | “uononnsui” | 1 1 1 uononysu !
d Alm__llll|_ _ (92) _ | § e ——
0 |ady! | [ynong eposeqg| | |
m_ _ uolnoNIISu| _ |
(zh) (s)pouedid 1 — — — — — - - S d i
CO_“—DOQXM m / # \ m
m
| (1) unosD Buissasold uonoNIIsu| ;
| J
<

(02)
Aows\

uonoNJISU|

uonoNJISu|

(81) weans uononisul

PCT/US2013/041290

WO 2013/173550

2/11

¢ Old

vV v v _
£ “d *Y 31EdM O3 4l a3divd
99”7 o\ zg oo

(gG) uononusu| pasn

ed|"Y|3 LM 3N dI | «—0s
@@.\ _II/
128 ~NM—2cS
cd[td[aLam foT] dI | <z
ov/ F
ov-/ vy _
NOILIANOD 13S | «ov

(g¢) weans uononisu| pajoslaqg

WO 2013/173550 PCT/US2013/041290

3/11

Detect first conditional write instruction (42) writing a
68— first value to a target register based on a first
condition (44)

'

Detect a second conditional write instruction (50)
writing a second value to a target register based on

70— 4 second condition (52) that is a logical opposite of
the first condition (44)
79 Select either the first condition (44) or the second

condition (562) as a fused instruction condition (60)

'

Select either the first value or the second value
74— corresponding to the fused instruction condition (60)
as an “if-true” value

'

Select either the first value or the second value not
76— corresponding to the fused instruction condition (60)
as an “if-false” value

'

Generate a fused instruction (58) selectively writing
the “if-true” value to the target reqister if the fused
instruction condition (60) evaluates to true, and
78— selectively writing the “if-false” value to the target
register if the fused instruction condition (60)
evaluates to false

FIG. 3

WO 2013/173550

PCT/US2013/041290
4/11
_) No
80 More instructions
to process?
Yes
Is first . .
- : " Continue with
instruction a conditional _ e
82 write instruction writing to No > n%??nas!t%gggﬁg)‘g 84
register Rx?

A

Yes <
i
86— Detect second instruction | M No
Yes

88 Is second

instruction a conditional
write instruction that has a
condition logically opposite
to that of detected
instruction, and writes to
register Rx?

Does second
instruction alter condition
code in status register or
write to register Rx?

Yes

Do first and
second instructions
comprise a
pairable instruction
combination?

91 No

Yes

@ FIG. 4A

WO 2013/173550

92

Select condition of
first detected
conditional
instruction as fused
instruction condition

Generate fused
instruction
evaluating fused
instruction condition
and including as
operands register
Rx, first source
register, and second
source register

PCT/US2013/041290
5/11
Determine source
operand types of first and
second detected conditional
instructions
Both are Registers Other-
Zero /Non-Zero
Immediate Value Pair
100 — Determine which Select condition of
detected conditional one of detected
instruction has a source 106 — conditional
value that is a non-zero instructions as fused
— 94 immediate value instruction condition
Select condition of
102 — _instruqtion with non-zero Generate fused
'mmef“at$ value %gt.fused instruction evaluating
instruction conaition fused instruction condition
and including as
operands the target
108 —| register R, the operand
— 96 of the conditional
instruction that
Generate fused corresponds to the fused
instruction evaluating instruction condition, and
fused instruction condition the operand of the
and including as conditional |nstruct|on.that
104 —| operands register Rx evaluates the condition

non-zero immediate
value, and zero
immediate value.

logically opposite to the
fused instruction condition

FIG. 4B

WO 2013/173550

PCT/US2013/041290

6/11

98 —

Replace one of detected
conditional instructions with
fused instruction based on

instruction selection flag

109

l—First replaced

First or second
detected conditional
instruction replaced?

Substitute NOP for the
second detected
conditional instruction, or
remove second detected
conditional instruction
from instruction stream

110—

instruction from instruction
stream '

__________ =

: Substitute NOP for the first |

| detected conditional |

| instruction, or remove first |

| detected conditional L—111
I I

I

FIG. 4C

PCT/US2013/041290

WO 2013/173550

7111

G Ol

\vm_\
_
¢ £l
/09! @mr\m_ d @M\W%E <05
vy V_I
£ ‘Y " INdAOWN 2y Wﬁ_m_z ON
91491'z0r) 81y, e | T

(8G1) uononusu| pesn4

(Ov1) spueiadQ Jsisibay BuineH
WweaJllS uononasu| pajoale(

\Nm_\

vy Vv [
\mm_ ‘Y ‘'Y OIJdAOIN
sel—e1” ver/ A

4| INAOW | sy

\NN_;N__OM_ O <«
0Cl7g, 7 T\ g1}

(0g1) uononssu| pesnd

(21 1) spuesadQ Jalsibay BuineH
weallS uoljonJisu| pajoala(

PCT/US2013/041290

WO 2013/173550

8/11

9 "OId

912

v v v
0000X0# ‘YEZLX0# ‘*Y
zzz? oz qiz/

_m%_hn_>o N

(¥71¢) uononisu| pesny

\\\orw
vez1Lxo#| ralBNAOW
z1z” 802
0000X0# | "d[o3IAONW

¥0z” 7077 <002

«—90¢

<«—861

(961) spuelad anje) ajeipawiw|
BuineH weaJl)S uononasu| pajoale(

\ww_\

v] v
0000%X0# ‘VEZLX0# ‘Y
w1l ze1” 0617

ﬂm_pn_>o_>_

+
[

\Nw_\

]
0000%X0#|" " ANAOIN
yg1/ 081
pezLxo#| doIron

911/ v 17 T~zLL

(981) uononusu| pasnd

«Q/l

(0.l

(g9|) spuelad anje ajeipawiw|
BuineH weal)S uononasu| pajoale(

PCT/US2013/041290

WO 2013/173550

9/11

(¥)oge—>

(£)oge—>

(2)92c—>

(L)9ge—>

(9¢z) uononunsu| pasn4 Buipnjouy
so|dwex3 weaug uononiisu| buljnsay

£ Y "9 O3IJAON

£ Y "9 O3IJAON

°d "4 OINOIN

Z "Old

£ Y "9 O3IJAON

£ " INAOI

dON

°d "4 OINOIN

dON

£ Y "9 O3IJAON

(¥22) weans
uononJsu|

pajoslaQ

PCT/US2013/041290

WO 2013/173550

1011

8 "OId

x\mvN
0000X0#| Y| 3TIAON
w._wN\ _IAN._\N

2S¢

\J

\/

L

\/
0000X0# ‘vECLX0# “*Y LDOdAON

gsz”/

asz’ vsz/ A

YETLX0# " H| LOP\OIN

9cz” pez”

Nzee

(0GZ) uononJsu| pasn4

0¥

(8€2) (s)uononysu
“— Buuanigyuj

«0¢¢

(82Z) weans uonodniisu| pajoala(

PCT/US2013/041290

6 ‘OId (282) (NW8Z | r———————— -

3JOMION /_/T
| T'INgQaQe ¢ «04aa

I
| |
| I
| I
(022) _
(822) | _

(912) (v22) J8||onu0)
(s)aoinaQ (s)ao1naQ (s)edireg “ Aiows\ _
ndino nduy SoELIsU] _ _
}IOMIBN]

1111

(89¢2) sng weisAg

WO 2013/173550

(082)
(s)19)1053u0D Ag|dsIq

(¥1)
Odl A|v (992)

ayoe)n
(¥92) (992) (882)
(s)J08s900.1d (s)Ae(dsiq «— (s)Jossad0.d
(292) (s)ndO O9PIA

09¢

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/041290

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 20027019929 Al (KURATA KAZUSHI [JP])
14 February 2002 (2002-02-14)

paragraph [0009]

paragraph [0119]

paragraph [0174] - paragraph [0181]

A EP 2 372 529 Al (CEVA D S P LTD [IL])
5 October 2011 (2011-10-05)

paragraph [0015] - paragraph [0017]

A US 5 774 687 A (NAKAMURA KAZUO [JP] ET AL)
30 June 1998 (1998-06-30)

the whole document

1,15,16,
21

1,15,16,

21

1,15,16,
21

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other

"P" document published prior to the international filing date but later than

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

the priority date claimed

"&" document member of the same patent family

Date of the actual completion of the international search

14 August 2013

Date of mailing of the international search report

22/08/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Klocke, Lynn

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/041290
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2002019929 Al 14-02-2002 JP 3532835 B2 31-05-2004
JP 2002024008 A 25-01-2002
US 2002019929 Al 14-02-2002
EP 2372529 Al 05-10-2011 EP 2372529 Al 05-10-2011
US 2011231634 Al 22-09-2011
US 5774687 A 30-06-1998 CN 1148206 A 23-04-1997
JP 3452989 B2 06-10-2003
JP HO895782 A 12-04-1996
us 5774687 A 30-06-1998

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report

