woO 2007/0498177 A1 |10 00O OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

) IO O T OO 5O

International Bureau

(43) International Publication Date
3 May 2007 (03.05.2007)

(10) International Publication Number

WO 2007/049817 Al

(51) International Patent Classification:
GOG6F 21/00 (2006.01)

(21) International Application Number:

PCT/IP2006/322039
(22) International Filing Date: 27 October 2006 (27.10.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
2005-315472 28 October 2005 (28.10.2005) JP

(71) Applicant (for all designated States except US): MAT-
SUSHITA ELECTRIC INDUSTRIAL CO., LTD.
[JP/JP]; 1006, Oaza Kadoma, Kadoma-shi, Osaka,
5718501 (JP).

(72) Inventors; and
(75) Inventors/Applicants (for US only): NICOLSON, Ken-
neth Alexander. ASAIL Rieko. SATO, Taichi.

(74) Agent: NII, Hiromori; c/o NII Patent Firm, 6F, Tanaka
Ito Pia Shin-Osaka Bldg., 3-10, Nishi Nakajima 5-chome,
Yodogawa-ku, Osaka-shi, Osaka 5320011 (JP).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: OBFUSCATION EVALUATION METHOD AND OBFUSCATION METHOD

(57) Abstract: An obfuscation evaluation method which sufficiently

Insert block
identifier

k,s402

Compile original S404
code with
logging library

v $406

Run program
with data sets

412 H
S410-~ y :
...l Create initial N
Record obfuscation .
control record || :
Record ™" ---3
Iy Obfuscationf--------- - eon e -Z-Z-Q;
418 / P
Obfuscation s416 ; L
; Record s422 / D
1| 420 Compile P
! obfuscated code{ [
; with logging /
: library 218
Update y
result record Run obfuscated
vy code with data
{ l 5424 sets

5438 i 208

Analyze and
compare trace

Metrics output <. /Block
Report e 5428 Mapping

Report

Sufficient
quality?

evaluates an obfuscation performed on a program. The obfuscation
evaluation method includes: a step (S424) of executing an obfuscated
code module (204) produced by obfuscating an original code module
(200) of a program, and generating a trace output file (218) by logging
¥ a result of the execution; and a step (S428) of identifying the degree
of obfuscation of the obfuscated code module (204) by evaluating the
trace output file (218).

WO 2007/049817 A1 |00 0T 000 0 0000

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

DESCRIPTION
OBFUSCATION EVALUATION METHOD AND OBFUSCATION METHOD

Technical Field

The present invention relates to a method for evaluating
obfuscation performed on a program and a method for obfuscating a
program.

Background Art

Software applications (hereafter, referred to simply as
“applications”) often contain certain features that are critical in
ensuring that the applicatio.n can be deployed and used according to
the developér’s business plans. For instance, for many years
dongle-like devices have been used to attempt to enforce software
licensing schemes, and recently software-based digital rights
management (DRM) schemes have been used to attempt to ensure
digital contents such as music, video, and written words are
experienced by the consumer according to the contents licensing
schemes. To ensufe that the algorithms that implement these
features are robust against attacks from hackers, a number of
methods of code obfuscation, or in other words, rewriting code so
that it is difficult to understand and alter, have been proposed and
many made into commercial products.

Current obfuscation methodologies have varying degrees of
theoretical basis behind their design. Unfortunately, however good
these theoretical analyses may appear to be on paper, when applied
in the real world the actual result may be lacking. Even if the
application is accurate, due to the static nature of applying the
obfuscation to source code or object code, the effect of the
obfuscation when run under real conditions may be unpredictable.
Finally, even if the developer manages to detect a failure in the
theory or the application of obfuscation, there may be no easy way

-1-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

to try to correct this problem.‘ In a world where Java™ byte code
can be traced by programs like AddTracer, or where machine code
run _in a virtual in-circuit emulator environment through free
programs like Bochs or commercial solutions like VMware™, the
threat to code from dynamic analysis-based reverse engineering is
constantly increasing.

Existing obfuscation methods such as those disclosed in U.S. ‘
Patent Nos., 6,594,761 and 6,779,114 by Chow et al. or in U.S.
Patent No. 6,668,325 by Collberg et al. for control flow
reorganisation have little or no quality control methods barring
rough parameters for selecting the degree of obfuscation required;
the developer has to trust that the transformation process was
reliable, or m‘easur'e. the resulting obfuscated module in its entirety
and try to estimate if it meets the desired performance or other
requirements. U.S. Patent No. 6,668,325, however, did try to
address this problem, but only in a limited way, b'y profiling the
original code to identify such things as hot spots (places where
optimization is desirable) so as to direct the obfuscation prdcess
towards the key areas of the pre-obfuscated code module.
However, the strength of the obfuscations applied is evaluated
merely according to pre-determined heuristics, not in relation to the
final output code, so only the theoretical strength is used as a
measure.

Even if the developer manages to detect that the obfuscation
to be not as good as desired, there is no easy or automatic way to
repeat the obfuscation taking into account the weaknesses
discovered; the developer must just tweak the parameters and hope
something better comes out the other end. This manual tuning
method can be potentially very time-consuming as the developer
can only very roughly guide the obfuscation process towards its goal,
often discarding useful obfuscations along with the underperforming
transformations.

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

For example, the foIIowihg documents disclose prior art in the
field of obfuscation and fundamental techniques used in the present
invention:

Non-Patent Reference 1: Muchnick, Steven S. Advanced Compiler
Design & Implementation. 1997: Academic Press.

Non-Patent Reference 2: Cloakware/Transcoder™: The core of
Cloakware Code Protection™ (Cloakware product overview
advertising material). Date unknown.

Non-Patent Reference 3: AddTracer
(http://se.aist-nara.ac.jp/addtracer/)

Non-Patent Reference 4: Bochs (http://bochs.sourceforge.net)
Non-Patent Reference 5: VMware (http://www.vmware.com/)

Non-Patent Reference 6: Tamada, Haruaki; Monden, Akito;
Nakamura, Masahide; and Matsumoto, Ken-ichi. Injecting Tracers
into Java Class Files for Dynamic Analysis. Proc. 46th Programming
Symposium, Jan 2005, pp. 51-62.

Non-Patent Reference 7: Ball, T., and Larus, J.R. Efficient path
profiling. Proc. of Micro 96, Dec. 1996, pages 46-57.

Non-Patent Reference 8: Knuth, Donald. The Art of Computer
Programming, Volume 2: Seminumerical Algorithms. 1969:
Addison-Wesley.

Non-Patent Reference 9: Levenshtein, V. I. "Binary codes capable
of correcting spurious insertions and deletions of ones” (original in

-3-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

Russian). Russian Problemy Péredachi Informatsii 1; January 1965,
12-25.

.

Patent Reference 1: U.S. Patent No. 6,594,761 (Chow et al.)
Patent Reference 2: U.S. Patent No. 6,668,325 (Collberg et al.)
Patent Reference 3: U.S. Patent No. 6,779,114 (Chow et al.)

FIG. lis a diag'ram that illustrates an aspect of the prior art,
which is an obfuscation method as described by Tamada et al. in
their paperAInjecting Tracers into Java Class Files for Dynamic
Analysis. An'originall code module 100 may be linked with a logging
library 102 to produce a trace output file 104 that documents how
the program (the original code module 100) ran. Similarly, after
processing by the obfuscator 106, the obfuscated code module 108
may be linked with a logging library 110 to produce a trace output
file 112 that documents how the obfuscated program (the
obfuscated code module 108) ran. The trace output file 112 is used
in reverse engineering.

FIG. 2 is a diagram that illustrates another aspect of the prior
art, which is an obfuscation method suggested by Collberg in U.S.
Patent No. 6,668,325. Here, an original code module 150 may be
linked with a logging library 152 (specifically for profiling) to
produce a trace output file 154 that documents how the program
(the original code module 150) ran. This trace output file 154 feeds
into the obfuscation process of an obfuscator 156 in order to try to
create a better obfuscated code module 158.

However, the prior art does not attempt to analyse the
obfuscated code module 158 to analyse the quality of the actual
transformation; the only metrics specified are theoretical
evaluations of the complexity of transformations. So, it can be

-4-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

seen that both these objects of prior art have serious weaknesses.

FIG. 3 is a flowchart representing the obfuscation method
described by Cloakware. Here, the obfuscation method starts at
S300, and proceeds to the selection of parameters (5302). These
parameters are used to obfuscate the original code module (S304).
Evaluation of performance (5306) is a rough empirical process,
largely based on the crude size and performance of the obfuscated
code module as a whole. Ifitis found not to be good enough (No in
S308), then selection of “better” parameters (5312) selects a
different set of values (for example, if the obfuscated code module
was too large, then a smaller size may be selected) for the
obfuscation process (5304); and the loop continues; otherwise, the
process finishes (S310).

However, the prior art does not suggest any detailed means of
selecting better parameters, and subsequent iterations‘ of the
obfuscation process (S304) start again from scrati:h, discarding
both effective and ineffective obfuscations. This may be described
as a “black box obfuscation process”; that is, the mechanisms of the
obfuscation process are hidden away from the other components of
the system. Conversely, the “white box obfuscation process”
proposed in the present invention, in which certain details of the
obfuscation process are exposed and available to fine tuning, can
produce superior results.

FIG. 4 is a flowchart that illustrates the obfuscation method
indicated in FIG. 2. Here, the obfuscation method starts (S350)
and proceeds to compile an original code module with a logging
library (S352), much as suggested by the Tamada et al. paper. Run
program (original code module) with data sets (S356) uses data sets
354 to produce a trace output file 358 describing the performance of
the original code module. Set obfuscation limits of space,
performance, and the like (S360) specifies the metrics that will
determine when the code is sufficiently obfuscated. However, these

-5-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

metrics are either very crude code size measures or else measures
of the theoretical complexity of certain obfuscation techniques.

_ Next, select part to obfuscate (5362) chooses which portion
(basic block, module, or other sub-division of the original code
module 150) should next be optimised, and how it should be
optimised, based on various heuristics including hints from the trace
output file 358 as to which portions of the original code module 150 '
are important. Obfuscate part (S364) performs the required
transformation on the chosen portion, then sufficiently obfuscated
(S366) tests the obfuscation metrics limits set in S360 to see if the
iteration should either terminate at S368, or loop back round to
select another part to obfuscate S362. However, the prior art does
not suggest ‘any means for testing the output obfuscated code
module (the obfuscated code module 158 as shown in FIG. 2),
leaving such issues as measuring the actual performance of the
obfuscated code module 158 with real data sets unaddressed.

The conventional obfuscation evaluation methods as
mentioned above evaluate the obfuscation based on the obfuscated
code module. Mofeover, in the abovementioned conventional
obfuscation methods, obfuscation is performed on the original code
module based upon theoretical obfuscation methods, or based upon
a static target value (code size, and the like).

However, with the abovementioned conventional obfuscation
evaluation methods, evaluation of the obfuscation is based only on
the obfuscated code module and is performed statically; this means
that evaluation is performed to an insufficient degree.

In addition, with the abovementioned conventional
obfuscation method, dynamic obfuscation is not performed to a
sufficient degree; in other words, the obfuscation is insufficient, and
therefore the obfuscated code module is left open to attacks from
hackers.

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

Having been conceivéd in light of the aforementioned
problems, an object of the present invention is to provide an
obfuscation evaluation method, in which the obfuscation is
evaluated to a sufficient degree, and an obfuscation method,
whereby hackers and the like can be prevented from reading the
program in question.

Disclosure of Invention ‘

To achieve the aforementioned object, the obfuscation
evaluation method of the present invention evaluates an obfuscation
performed on a program, and includes: a first execution step of
executing an obfuscated code generated by obfuscating original
code of a prdgram; a first logging step of generating first logging
data by logging execution details of the first execution step; and an
evaluation step of evaluating the first logging data, thereby
identifying the degree of obfuscation of the obfuscated code. For
example, in the evaluation step, a numerical value, which is an
indicator of the degree of obfuscation, is calculated as a metric,
based on the first Idgging data.

According to this aspect of the present invention, the extent
to which a code is obfuscated is quantified based on the details of
the obfuscated code being executed, or in other words, based on
dynamic analysis feedback, and thus it is possible to sufficiently
evaluate the obfuscation.

In addition, the obfuscation evaluation method may further
include a second execution step of executing the original code, and
a second logging step of generating second logging data by logging
execution details of the second execution step; in the evaluation
step, the first logging data is compared with the second logging data
and evaluated based on the comparison. For example, in the
evaluation step, the ratio between the number of executed paths
indicated in the first logging data and the number of executed paths

_7-

10

15

20

25

30

WO 2007/049817) PCT/JP2006/322039

indicated in the second logging data is calculated as the metric.
Alternatively, in the evaluation step, the degree to which the first
logging data and the second logging data resemble one another is
expressed as a Levenshtein distance.

According to this aspect of the present invention, the extent
of the obfuscation is quantified by comparing the execution details
of the original code to those of the obfuscated code, and thus it is
possible to sufficiently evaluate the obfuscation. _

Moreover, in the evaluation step, a frequency distribution of
executed paths within the path coverage according to the first
logging data may be calculated as the metric. For example, in the
evaluation step, a chi-squa're result of an Equidistribution Test of
path coveragé is calculated as the metric. Alternatively, in the
evaluation step, a chi-square result of a Poker Test of path coverage
is calculated as the metric.

According to this aspect of the present inventioﬁ, itis possible
to sufficiently evaluate the obfuscation from the standpoint of path
coverage distribution..

Furthermore, the obfuscation method according to the
present invention obfuscates a program, and includes: an
obfuscation step of generating an obfuscated code by obfuscating
the original code of a program; a first execution step of executing
the obfuscated code generated in the obfuscation step; a first
logging step of generating first logging data by logging execution
details of the first execution step; an evaluation step of evaluating
the first logging data, thereby identifying the degree of obfuscation
of the obfuscated code; and a re-obfuscation step of re-obfuscating
the original code based on a result of the evaluation performed in
the evaluation step. For example, in the evaluation step, a
numerical value, which is an indicator of the degree of obfuscation,
is calculated as a metric, based on the first logging data.

According to this aspect of the present invention, the extent

-8-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

to which a code is obfuscated is identified based on the details of the
obfuscated code being executed, or in other words, based on
dynamic analysis feedback, and thus it is possible to sufficiently
evaluate the obfuscation. Furthermore, by once again obfuscating
the original code based on the evaluation results, or in other words,
by producing feedback based on dynamic analysis, the quality of the
obfuscation can be improved. As a result, hackers and the like can ‘
be prevented from deciphering the program in question.

In addition, the obfuscation method may further include a
second execution step of executing the original code, and a second
logging step of generating second logging data by logging execution
details of the second execution step; in the evaluation step, the first
logging data is compared with the second logging data and
evaluated.

According to this aspect of the present invention, the extent
to which the obfuscated code has been obfuscated is identified by
comparing the execution details of the original code to those of the
obfuscated code, and thus it is possible to more completely evaluate
the obfuscation. As a result, the quality of the obfuscation can be
improved.

In addition, the obfuscation method may further include a
metric judgment step of judging whether or not the metric
calculated in the evaluation step is within a permissible range; each
time the metric is judged as not being within the permissible range
in the metric judgment step, a new obfuscated code is generated by
re-obfuscating the original code in the re-obfuscation step, and the
first execution step, the first logging step, the evaluation step, and
the metric judgment step are repeated for the new obfuscated code;
and when the metric is judged as being within the permissible range
in the metric judgment step, the original code is not re-obfuscated in
the re-obfuscation step.

According to this aspect of the present invention, obfuscation

-9.

10

15

20

25

30

WO 2007/049817) PCT/JP2006/322039

of the original code based on the execution details is repeated until
the metrics fall within a permissible range, which makes it possible
to improve the duality of the obfuscation. ’

In addition, the obfuscation method may further include a
number judgment step of judging whether or not the number of
times obfuscation has been performed on the original code has
exceeded a pre-set number of times; each time it is judged that the
pre-set number of times has not been exceeded in the number
judgment step, a new obfuscated code is generated by
re-obfuscating the original code in the re-obfuscation step, and the
first execution step, the first logging step, the evaluation step, and
the number judgment steb are repeated for the new obfuscated
code; and when it is judged that the pre-set number of times has
been exceeded in the number judgment step, the original code is not
re-obfuscated in the re-obfuscation step. Alteynatively, the
obfuscation method may further include a time judgment step of
judging whether or not the amount of time required for performing
obfuscation on the original code has exceeded a pre-set amount of
time; each time it is judged that the pre-set amount of time has not
been exceeded in the time judgment step, a new obfuscated code is
generated by re-obfuscating the original code in the re-obfuscation
step, and the first execution step, the first logging step, the
evaluation step, and the time judgment step are repeated for the
new obfuscated code; and when it is judged that the pre-set amount
of time has been exceeded in the time judgment step, the original
code is not re-obfuscated in the re-obfuscation step.

According to this aspect of the present invention, obfuscation
of the original code based on the execution details is repeated a
specified number of times, within a specified range of time, and so
on, which makes it possible to improve the quality of the obfuscation.
Furthermore, it becomes possible to select the obfuscated code with
the highest quality obfuscation from among the obfuscated codes

-10-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

that have been produced through the repetitions.

In addition, part of the original code may be selectively
obfuscated in at least one of the obfuscation step and the
re-obfuscation step. |

According to this aspect of the present invention, it is possible
to perform high-quality obfuscation on important portions of the\
original code.

In such a manner, the prese\nt invention makes it possible to
quantify how effective the obfuscating transformations have
actually been in relation to given problem sets.

Furthermore, the present invention makes it possible to take
that quantification and use it to feed back to the obfuscation process,
enabling an 6bfuscating transformation to be re-applied, but with
tuned parameters reflecting any issues detected when evaluating a
previous obfuscation of the same original code modu_le.

The background art does not suggest any way to try to

'quantify the quality of an obfuscation in relation to the observed

execution path of the obfuscated code. Furthermore, the idea of
feedback to the obfuscation process has never been disclosed by the
background art.

The quality of an obfuscation is measured by metrics, and by
examining these metrics in isolation, or by comparing these metrics
with the corresponding metrics for the program before obfuscation,
the effectiveness of an obfuscating transformation can be observed.

A primary means for performing metrics analysis is to study
the execution paths through the control flow graph. The control
flow graph is a standard representation of the structure of code, and
is described in detail in many standard reference books, such as in
Chapter 7 of Advanced Compiler Design and Implementation by
Steven S. Muchnick.

Feedback to the obfuscation process means having an
obfuscation process that is designed to execute a number of times,

-11 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

taking not only a static set of input parameters, but also having a
second dynamic set of inputs based on the performance of a
previous execution ~of the obfuscation process. Thus the
obfuscation process can be directed to tune up certain aspects of the
obfuscation based on metrics calculated from a previous obfuscation.
The tuning up process can include, but is not limited to: performing
more obfuscation on a portion of the module in order to increase ‘
security; performing less obfuscation on a portion of the module in
order to improve performance; or performing an alternative
obfuscation method on a portion of the module to increase diversity.

Therefore, there is an unmet need for, and it would be highly
useful to have, a system and method that can evaluate the quality of
an obfuscatioh, or more specifically, a control flow graph obfuscation
that replaces original code with obfuscated code that implements a
more complex control flow, containing dummy code (that is, code
that is never executed), fake-robust dummy code'(code that is
never executed but nonetheless appears to be valid), and clones of
active code with different obfuscations, then feedback to the
obfuscation processA the results of this evaluation to enable the
obfuscation process to produce more suitable results. The design
of such a feedback system should be performed in a generic manner
so that can be applied to any suitable existing or new obfuscation
technique.

In the present invention, evaluation of the transformation
process is performed by executing the original code and the
obfuscated code with execution tracing functions in place, to
produce detailed logs of the control flow before and after
transformation.

Also, in the present invention, the original code has logging
statements inserted to enable the program flow through the control
graph to be recorded.

In addition, in the present invention, the obfuscation process

-12-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

also produces a mapping of the fundamental blocks indicated in the
original logging statements to the new fundamental blocks in the
obfuscated code, enabling the obfuscated code’s execution tracing
logging statements to be cross-referenced with the original code’s
log.

Furthermore, in the present invention, an analysis tool takes
the two code modules and their respective output logs and analyses
the degree of similarity between these output logs to report on the
quality of the obfuscation.

Also, in the present invention, the report on the quality of the
obfuscation is used as another input to the obfuscation process to
fine-tune the obfuscation pi'ocess to address perceived weaknesses
in the previoﬁs transformation. »

It should be noted that the present invention can be
implemented not only as the aforementioned obfuscation evaluation
and obfuscation methods, but also as obfuscation evaluation
apparatuses and obfuscators or integrated circuits that perform
evaluation or obfuscation using these methods; as a program that
causes a computer to execute evaluation or obfuscation using these
methods; and as a storage medium in which the program is stored.

Brief Description of Drawings

These and other objects, advantages and features of the
invention will become apparent from the following description
thereof taken in conjunction with the accompanying drawings that
illustrate a specific embodiment of the invention. In the Drawings:

FIG. 1 is a diagram that illustrates a conventional obfuscation
method;

FIG. 2 is a diagram that illustrates another conventional
obfuscation method;

FIG. 3 is a flowchart that represents yet another conventional
obfuscation method;

-13-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

FIG. 4 is a flowchart that represents the obfuscation method
illustrated in FIG. 2;

_ FIG. 5 is a diagram that illustrates the obfuscation method of
the preferred embodiment;

FIG. 6 is a block diagram that shows the structure of an
obfuscator in the preferred embodiment;

FIG. 7 is a flowchart that indicates operations of the
obfuscator in the preferred embodiment; ‘

FIG. 8 is a diagram that shows examples of an original code
module and an obfuscated code module in the preferred
embodiment;

FIG. 9 is a diagram that shows an example of a block mapping
report in the 'preferr‘ed embodiment; ‘

FIG. 10 is a diagram that shows an example of a metrics
report in the preferred embodiment;

FIG. 11 is a diagram that shows an example of a result record
in the preferred embodiment;

FIG. 12 is a diagram that illustrates how to count the number
of paths in the preférred embodiment;

FIG. 13 is a diagram that illustrates obfuscation feedback
performed based on execution path patterns in the preferred
embodiment; and

FIG. 14 is a diagram that illustrates obfuscation performed
based on a degree of similarity.

Best Mode for Carrying Out the Invention

First, terminology used to describe the preferred embodiment
of the present invention shall be explained. As used hereinafter,
the following terms have the following meanings, except when
specifically indicated otherwise.

The term “metrics” refers to values that express the degree to
which the examined code satisfies some evaluation criterion. For

-14 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

example, one popular metric for measuring source code is lines per
function. The number in isolation does not mean much, but when
comparing two functions, an evaluation criterion might be “the lower
the metric, the better from the standpoint of ease of maintenance.”

The term “fundamental block” refers to a collection of one or
more executable statements that correspond to lines of code within
the original module. In the preferred embodiment each
fundamental block represents one basic block as defined, for
instance, by Aho, Sethi and Ullman in their book Compilers:
Principles, Techniques and Tools International Edition, chapter 9.4,
page 528; however, larger or smaller-grained blocks, or even
disjoint groupings of lines of code, may be used as necessary.

The term “obfuscation,” or “obfuscating transformation,”
refers to transforming program code in order to hide the original
intent of the code by, for example, increasing corhplexity.
Obfuscations may be measured by analysing the rhetrics of the
obfuscated code, or the original and obfuscated program together,
to obtain an understanding of the complexity and so on of the
transformed code.

The term “fundamental block transformation” refers to how
one or more fundamental blocks in the original code module have
been transformed into one or more fundamental blocks in the
obfuscated code module by the obfuscator.

The term “corresponding fundamental blocks” follows on
partially from the previous definition; one use of the term describes
one or more fundamental blocks in the original module and the
corresponding obfuscated blocks in the obfuscated module. The
other use of the term is for describing two sets of one or more
fundamental blocks in the obfuscated module that both have the
identical corresponding fundamental blocks in the original code.
The two sets may have one or more fundamental blocks in common
but must not be identical sets. In other words, the two sets

-15-

10

15

20

" 25

30

WO 2007/049817 PCT/JP2006/322039

represent two alternative obfuscating transformations of the same
original segment of code.

The term “black box obfuscating transformation” refers to an
obfuscating transformation that has only basic controls over the
transformation process, explicitly excluding any ability to input
information about previous obfuscating transformations.

The term “white box obfuscating transformation” refers to an
obfuscating transformation that has detailed control over the
transformation process, explicitly including the ability to input
information about brevious obfuscating transformations at a
fundamental block level.

The term “fake robust” refers transformations that look like
real valid code but have subtle errors in them, so that if executed in
response to attacks by a hacker, they appear to operate correctly,
but instead introduce bugs into the program that are designed to be
difficult to detect. '

The term “feedback loop” describes a process that is repeated
many times, and the results of the previous repetition are used to
guide the next repetition towards achieving its goal. As a simple
example, the standard binary search algorithm can be thought of as
possessing a feedback loop. In the binary search algorithm, each
iteration compares the target value with the mid-point of the range
of values to check, and then the next iteration selects a new upper
or lower bound based on the result of that comparison, thus homing
in on the desired value. One aspect of the present invention also
contains a feedback loop. The metrics provide a measure of a
previous iteration, and the next iteration uses these metrics to help
decide how to produce a different obfuscating transformation that
may get closer to the desired goal, via techniques such as white box
obfuscating transformations.

The term “obfuscation with dynamic analysis feedback” is a
combination of the above terms, meaning to have a feedback loop

-16 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

controlling, in a preferred embodiment, the white box obfuscating
transformation process. The term “dynamic analysis” refers to
analysis carried out while actually running the program, in contrast
to examples from the prior art that only consider static analysis of
the original code.

The term “original code,” and the associated “original. code
module” and “original module” terms, refers to files containing sets
of instructions that have yet to have obfuscating transformations
applied. In the preferred embodiment, the programming language
for each file can be one of C, C++, or Java, but other languages may
be used, even assembly language. Similarly, “obfuscated code”
and “obfuscated code module” also refer to files containing sets of
instructions, ‘but after an obfuscated transformation has been
applied. In the preferred embodiment, the same computer
programming language or encoding is used for both the original and
obfuscated modules, but as long as there is a mapbing from the
original module’s language to the obfuscated module’s language,
the techniques described by this document may be applied even
when the input language for an obfuscating transformation differs
from the output language.

Other terms shall be introduced and defined throughout the
detailed description hereafter.

Next, the preferred embodiment of the present invention shall
be described with reference to the diagrams.

The obfuscation method and obfuscator in the preferred
embodiment of the present invention incorporate feedback from
dynamic analysis to improve the strength of the obfuscations.
Hereafter, for purposes of explanation, numerous specific details are
set forth in order to provide a thorough understanding of the present
invention. It will be evident, however, to one of ordinary skill in the
art, that the present invention may be practiced without these

17 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

specific details. In addition, the description of the preferred
embodiment is not intended to limit the scope of the present
invention in any"way.

FIG. 5 is a diagram that illustrates the obfuscation method of
the present embodiment.

The obfuscation method in the present embodiment optimizes
the obfuscation process with feedback from analysing and |
evaluating the output produced from running the original code
module and the obfuscated code module using a logging library, as
indicated in FIG 5.

In the obfuscation method of the present embodiment, an
original code module 200 is'inputted into an obfuscator 202, and an
obfuscated ébde module 204 is produced through the obfuscation
process. Both the original code module 200 and the obfuscated
code module 204 can be linked with their respective logging libraries
206 and 212 (in the preferred embodiment the libraries are identical,
but different libraries may be used for each of the two code modules),
and are run using the data set 220 as input to the tests. |

The logging libraries 206 and 212 are libraries which output a
code module execution log, and produce respective trace output
files 214 and 218. The trace output files 214 and 218 are then
taken as input and used by a comparator and metrics module 216.
It should be noted that, in the present embodiment, the trace output
file 218 is configured as a first unit of logging data, and the trace
output file 214 is configured as a second unit of logging data.

The comparator and metrics module 216 also uses an output
block mapping report 210 produced through the obfuscation process
to produce a metrics report 208, which forms a white box
obfuscating transformation feedback loop.

Therefore, with the obfuscation method of the present
embodiment, the obfuscation process is performed based on
dynamic analysis. In other words, by evaluating metrics used on

-18 -

10

15

20

25

30

WO 2007/049817) PCT/JP2006/322039

the trace output file 218, which indicates the result of executing the
obfuscated code module 204, it can be determined whether or not
the obfuscated code module 204 has been obfuscated to the
optimum degree. If it is determined that the obfuscated code
module 204 has not been obfuscated to the optimum degree, the
obfuscation process is caused to reflect the result of the
aforementioned metrics evaluation, and is run again.

FIG. 6 is a block diagram that shows a configuration of the
obfuscator which obfuscates the original code module 200 according
to the aforementioned obfuscation method with dynamic analysis.

In the present embodiment, an obfuscator 1000 includes a
block identification unit 902, a logging insertion unit 904a, an
original code 'executi‘on unit 906a, an obfuscated code execution unit
906b, a comparator unit 912, and an obfuscation tuning unit 914.

The block identification unit 902 inserts block identifiers into
the original code module 200 in order to identify each fundamental
block present in the module 200.

The logging insertion unit 904a compiles the original code
module 200 with the logging library 206, producing an executable
program.

The original code execution unit 906a executes the program
produced by the logging insertion unit 904a using the data set 220.
In addition, the original code execution unit 906a further produces
the trace output file 214 which shows a result of executing the
program.

The obfuscation unit 910 acquires the original code module
into which the block identifiers have been inserted and obfuscates
the module 200, thereby producing the obfuscated code module 204.
The obfuscation unit 910 performs the obfuscation in accordance
with the metrics report 208 outputted by the obfuscation tuning unit
914. Furthermore, the obfuscation unit 910 performs the
obfuscation on the fundamental blocks present in the original code

-19-

10

15

20

25

30

WO 2007/049817 » PCT/JP2006/322039

module 200 on a block-by—bilock basis, and produces the block
mapping report 210, which shows the correspondence between the
fundamental blocks present in the original code module 210 and the
blocks present in the obfuscated code module 204.

The logging insertion unit 904b compiles the obfuscated code
module 204 with the logging library 212, producing an executable
program.

The obfuscated code execution unit 906b executes the
program produced byA the logging insertion unit 904b using the data
set 220. In addition, the obfuscated code execution unit 906b
further produces the trace output file 218 which shows the result of
executing the program. ‘Note that that the obfuscated code
execution unit 906b may be configured as an execution means in the
present embodiment.

The comparator unit 912 analyzes and compares the trace
output files 214 and 218 produced by the original éode execution
unit 906a and the obfuscated code execution unit 906b respectively,
based on the aforementioned comparator and metrics module 216.
In other words, the'comparator unit 912 compares and evaluates
the trace output files 214 and 218 based on metrics (described later)
using the block mapping report 210 produced by the obfuscation
unit 910. The comparator unit 912 then produces the metrics
report 208 which shows the results of the comparison and
evaluation.

It should be noted here that the comparator unit 912 may be
configured so as to compare the trace output file 218 produced by
the obfuscated code execution unit 906b with the trace output file
214 produced by the original code execution unit 906a only the first
time the obfuscation unit 910 performs the obfuscation. In such a
case, for each subsequent obfuscation, the comparator unit 912
compares the trace output file 218 produced in the previous
obfuscation with the newly-produced trace output file 218.

-20 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

Alternatively, the comparator 912 may evaluate the trace output file
218 and produce a metrics report without comparing the trace
output file 218 with the trace output file 214 or the trace output file
218 performed in the previous obfuscation. In this case, the
comparator unit 912 may use the obfuscated code module 204 and
evaluate the trace output file 218.

The obfuscation tuning unit 914 feeds back the metrics report ‘
208 produced by the comparator unit 912 into the obfuscation unit
910. That is, when the metrics report 208 does not fall within a
permissible range, or in other words, it is determined that the
obfuscation is insufficient, the obfuscation tuning unit 914 feeds
back that metrics report 208 into the obfuscation unit 910. Note
that the obfuscation tuning unit 914 may count the number of times
obfuscation has been performed by the obfuscation unit 910 and
feed back the metrics report 208 into the obfuscation unit 910 when
the count is less than or equal to a pre-set humber. ' Alternatively,
the obfuscation tuning unit 914 may measure the amount of time in
which obfuscation has been performed and feed back the metrics
report 208 into the obfuscation unit 910 when the measured time
falls within a pre-set amount.

Furthermore, the obfuscation unit 910 selects, based on the
metrics indicated in the metrics report 208, an obfuscation method
with an improved degree of obfuscation, in other words, an
obfuscation method that performs obfuscation more adequately,
and obfuscation of the original code module 200 may be performed
using such obfuscation method. In this case, when the degree of
obfuscation does not improve despite adopting the obfuscation
method with an improved degree of obfuscation, it is judged that the
obfuscation is already sufficient. In other words, the obfuscation
tuning unit 914 compares the degree of obfuscation identified in the
immediately preceding metrics report 208 with the degree of
obfuscation identified in the metrics report 208 ahead of the

-21 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

immediately preceding metric report. Subsequently, the
obfuscation tuning unit 914 feeds back that metrics report 208 into
the obfuscation unit 910 when the degree of obfuscation has
improved, and does not carry out the feedback of the metrics report
208 when the degree of obfuscation has not improved.

FIG. 7 is a flowchart that indicates operations of the
obfuscator 1000 in the preferred embodiment. |

First, when the obfuscation with dynamic feedback starts, the
block identification unit 902 of the obfuscator 1000 inserts block
identifiers (S402). This process identifies the fundamental blocks
within the original code module 200 to be obfuscated and analysed,
and is a key step to ensdring that the analysis and comparison
processes Iafer can perform correctly.

Next, the logging insertion means 904a compiles the original
code module 200 with the logging library 206 (S404). Through this
compile, the original code module 200 is compiled aﬁd linked using
an appropriate compiler tool set for the language of that module,
and the logging library 206 is incorporated into the output
executable.

The original code execution unit 906a runs the executable,
which is a runnable combination of the original code module 200 and
the logging library 206, with the data sets 220 (S406). It should be
noted that the data sets 220 are used as input to produce the trace
output file 214.

The obfuscation unit 910 creates a control record 412 for the
obfuscation (S410). In other words, the obfuscation unit 910
creates a basic set of obfuscation control parameters, or the control
record 412, using either values from user input or a set of
predefined values. This control record 412 will play an important
role in the feedback process, as will be described later.

Next, the obfuscation unit 910 performs the obfuscation
(S416). Here, the obfuscation unit 910 takes the inputted original

-22-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

code module 200, the control record 412, the result record 418 (if
present), and the obfuscation record 420 (if present), and applies
one or more obfuscation techniques to the original code 200.

It should be noted here that the obfuscation techniques used
may be either previously-disclosed techniques, or new
yet-to-be-discovered inventions, as this invention may be adapted
to cope with various obfuscation techniques.

In addition, the obfuscation unit 910 produ‘ces and stores an
obfuscation record 420, which indicates the obfuscation technique
employed, at the time of obfuscating the original code module 200.

When in the feedback loop, the obfuscation unit 910 refers to
the obfuscation record 420. In other words, it is determined
whether or not an obfuscation of a fundamental block identified via
the block identifier is of a sufficient quality, and if the quality is
determined to be insufficient, the obfuscation unit 910 tjses the
obfuscation record 420 to discover what obfuscation techniques
were used in a previous obfuscation and employ a different
obfuscation technique in a new obfuscation. That is, the
obfuscation unit 910 selectively obfuscates part of the original code
module.

When the obfuscation in step S416 finishes, the obfuscation
unit 910 outputs the obfuscated code module 204 containing the
transformed code. In addition, the obfuscation unit 910 is caused
to reflect the newly-applied transformations (obfuscation
techniques), and creates the block mapping report 210 to indicate
how the fundamental blocks in the original code module 200 relate
to the obfuscated fundamental blocks in the obfuscated code module
204. See the following description of FIGS. 8 through 10 for a more
detailed description of the feedback loop and the files involved.

Next, the logging insertion unit 904b compiles the obfuscated
code module 204 with the logging library 212 (S422). The
compiling performed here is much like the compiling performed in

-23-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

Step S404; however, in the compiling performed in Step S422, the
obfuscated code module 204 is compiled and linked using an
appropriate compiler tool set for the language of that module, and
the logging library 212 is incorporated into the output executable.

The obfuscated code execution.unit 906b runs the executable,
which is a runnable combination of the obfuscated code module 204
and the logging library 212, with the data sets 220 (S424). The
data sets 220 are used as input to produce the trace output files
218.

Next, the com’parator unit 912 analyzes and compares the
trace output files 218 (S248). The processing performed in Step
S428 is one of the key features of the present invention. In
summary, the comparator unit 912 first obtains the trace output files
214 and 218 from the original code execution unit 906a and the
obfuscated code execution unit 906b, and then uses the information
contained within the block mapping report 210, or in other words,
the information on how the fundamental blocks have been
obfuscated, to produce the metrics report 208 on the quality of the
obfuscation of the fundamental blocks, according to various metrics
that will be described later. That is, the result of this analysis and
comparison is recorded in the metrics report 208 in either a
human-readable form or a computer-readable format such as
Extensible Markup Language (XML) that can be transformed by one
skilled in the art into a human-readable form.

The obfuscation tuning unit 914 determines whether or not
the obfuscation of the obfuscated code module 204 produced in Step
S416 is of sufficient quality based on the metrics report 218
produced in Step S428 (S432). In other words, the obfuscation
tuning unit 914 determines whether or not to continue iterating
round the feedback loop.

In the present invention, the determination whether or not to
continue iterating may be based on one or more of the following

-24 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

factors: average score of specific metrics (such as execution speed,
code size, path coverage, etc.), weighted as desired (including a
weight of zero to effectively ignore certain metrics), pass a
user-defined threshold (permissible range); specific metrics pass a
user-defined threshold (permissibie range); number of iterations
performed exceed a limit (predetermined number of iterations);
optimisation with feedback process execution time or memory
requirements exceed a limit, and so on. ~ Note that the
determination to iterate may be made in the case where the average
value of plural metrics does not fall within a permissible range
without the above weighting being performed.

Furthermore, in the case of adopting an obfuscation method
in which the degree of obfuscation improves with every iterat\ion, the
metrics report in the past iteration is compared with the current
metrics report and, when the current degree of obfuscation has not
improved, the determination not to iterate may be m'ade. .

Once the quality has been deemed sufficient in Step S432
(Yes of S432), the obfuscator 1000 terminates the obfuscation With
dynamic analysis feedback process.

However, if the quality is deemed to be insufficient in Step
S432 (No of S432), the obfuscation tuning unit 914 updates the
obfuscation result record 418 (5438). That is, the obfuscation
tuning unit 914 takes the metrics report 208 output by the
comparator unit 912 in Step S428, and processes and transforms
the data as necessary in order to produce the result record 418 that
is used as feedback in the obfuscation in Step S416. In other words,
the obfuscation tuning unit 914 produces the result record 418 by
converting the format of the metrics report 208 into a format
readable by the obfuscation unit 910.

In this embodiment, the above will be a simple transformation
process, as analyzing and comparing trace output files in Step S428
and obfuscation in Step S416 are designed to work together.

-25-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

Note that the analysis and comparison of trace output files
(S428) and the obfuscation (S416) may be designed independently.
In such a case, in updating the obfuscation result record 418 (S438)
may need to perform more complex transformations in order to
produce a result record 418 of a form suitable for input into
obfuscation (5416).

Here, in FIG. 7, the obfuscation in Step S416, and three data
items, or the obfuscation record 420, the control rgcord 412, and the
result record 418, are linked together to form part of the core of the
dynamic analysis feedback system. Their roles within the present
embodiment shall now be described. :

Before the obfuscation in Step S4»16, there is a process for
creating an initial obfuscation control record 412. This control
record 412 contains a set of instructions on how to obfuscate. In
the present embodiment, for zero or more fundamental blocks of
code (as identified by the insertion of block identifiers (5402))
within the original code module 200 there will be an entry in the
control record 412 to suggest at least the preferred obfuscation type
or the preferred level of obfuscation for the block in question, as well
as default values for the rest of the blocks of code.

FIG. 8 is a diagram that shows examples of the original code
module 200 and the obfuscated code module 204.

For example, an original code module 200 that includes a
Block (A) is obfuscated into an obfuscated code module 204 which
includes five blocks, or A0, A1, A2, A3, and A4. To put it differently,
the obfuscator 1000 creates the blocks AO, Al, A2, A3, and A4.

In order to select a block from the blocks A1, A2, A3, and A4,
the block A0 calls a pseudo-random number generation routine
(rand_func() in this example). Next, the block A0 uses the return
value from this call to determine which of the other blocks to
execute. Note that in this example rand_func() returns a value
between 0.0 and 1.0, so the block A4 is purposely a dummy block

-26 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

that should never be executed;

FIG. 9 is a diagram that shows an example of the block
mapping report 210.

For example, after the obfuscation process shown in FIG. 8 is
executed and completed, a block mapping report 210, such as the
one shown in FIG. 9, is generated. It should be noted that formats
such as XML may be used for the block mapping report 210 as long
as these do not detract from the novelty of the present invention.

The contents of the block mapping report 210 includes
information on how a fundamental block A of the original code
module 200 has been transformed into five new fundamental blocks,
namely AO and the succeeding four parallel blocks A1, A2, A3, and
A4. In the‘ present embodiment, the syntax of the mapping
illustrated in the second line of the block mapping report 200 uses
“+” to indicate sequential fundamental blocks and “|” to ‘indicate
parallel fundamental blocks. Brackets can be used to produce
nesting if desired, and of course other representations of the block
relationships may be employed by one skilled in the art.

In other words, the block mapping report 210 shown in FIG. 9
shows that block A of the original code module 200 has been
transformed into blocks AO. A1, A2, A3, and A4 in the obfuscated
code module 204. The block'mapping report 210 also shows which
of blocks A1, A2, A3, and A4 are to be executed after block AO, and
furthermore shows that block A4 is a dummy block.

Note that this information in the block mapping report 210
will also be written to the obfuscation record 420, along with other
internal private detailed information as required by the obfuscation
unit 910, to enable subsequent iterations round the feedback loop to
determine how to enhance the obfuscations applied.

FIG. 10 is a diagram that shows an example of the metrics
report 208.

In the present embodiment, the metrics report 208 illustrated

-27-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

in, for example, FIG. 10 is generated in the analysis and comparison
of trace outputs (S428 in FIG. 7).

_ The contents of the metrics report 208 are based upon the
block mapping report 210, a summary of the contents of the trace
output files 214 and 218, and the metrics for the original code
module 200 and the obfuscated code module 204.

As an example, the metrics report 208 contains the following '
typical contents: information on the number of executions of loops,
execution path coverage, and the quality of obfuscation. One
skilled in the art can extend this layout to include many other factors,
which shall be described later. In addition, the metrics report 208
shows the execution path coverage or the frequency distribution of
the executed 'paths as metrics.

FIG. 11 is a diagram that shows an example of a result record
418.

When the quality of obfuscation is judged to be insufficient in
Step S432 shown in FIG. 7, the obfuscation tuning unit 914 updates
the obfuscation result record 418 in the feedback loop. In other
words, the obfuscation tuning unit 914 takes the metrics report 208
and translates it into a format suitable for feedback into the
obfuscation process (Step S416 shown in FIG. 7).

For example, the result record 418 shown in FIG. 11 has been
created based on the metrics report 208 shown in FIG. 10.

In the obfuscation process (Step S416 shown in FIG. 7), the
obfuscation unit 910 attempts to re-obfuscate the original code
module 200 using different techniques in accordance with the result
record 418.

For example, the obfuscation unit 910 attempts to produce a
more even spread of execution paths through the blocks A1, A2, A3
and A4 by choosing a different random number generation method
in block AO; or, the obfuscation unit 910 rewrites the “if” statement
conditions of each block with different bounds. Other methods for

-28-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

re-obfuscation may be employed as well.

In order to aid understanding of the above paragraphs, the
sample output results in FIGS. 10 and 11 based on the analysis of
the code shown in FIG. 8 shall be described in more detail.

In the analysis and comparison of trace output files (Step
S428 in FIG. 7), a metrics report 208, as illustrated in FIG 10, is
produced. The metrics report 208 indicates the obfuscation
method used (in this example, “random branching”) and the total
number of times the original fundamental block A in the original
code module 200 has been executed, which is, in this example, 300
times. Next, each of the possible paths through the new
fundamental blocks in the obfuscated code module 204 is
enumerated élong with the percentage number of times through
each path. Note thatin the analysis and comparison of trace output
files (Step S428 in FIG. 7), the comparator unit obtains the
information about the pre- and post-obfuscation fundamental block
relationships from the block mapping report 210, illustrated in FIG.
9. \ |

The metrics réport 208 also has a quality rating (the Quality
shown in FIG. 7) for the obfuscation, based on metrics calculated in
the analysis and comparison of trace output files (Step S428 in FIG.
7). In the illustrated embodiment the rating is a percentage score
based on weighting the results of the metrics. Note that ratings
may be simple pass/fail marks. Alternatively, the ratings may be
detailed lists of each metric score.

Whatever the representation of the ratings, one role of the
obfuscation tuning unit 914 is to transform the ratings shown in the
metrics report 208 from the format produced in the analysis and
comparison of trace output files (Step S428 in FIG. 7) to the format
that the obfuscation (Step S416 in FIG. 7) can understand. The
obfuscation (Step S416 in FIG. 7) in the preferred embodiment
expects to find, in the feedback, information on the absolute number

-29 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

of times each block has executed; therefore, by comparing the
metrics report 208 and the result record 418, it can be seen how the
format has been transformed. Of course, the result record 418 may
have a different format, if such a format is required in the
obfuscation (Step S416 in FIG. 7).

When the process iterates back round to the obfuscation
(Step S416 in FIG. 7), the result record 418 described above is
inputted into the obfuscation unit 910. The obfuscation unit 910
can use the data contained in the result record 418 to decide how to
re-obfuscate the original code module 200. As described previously,
the obfuscation record 420 contains sufficient information to exactly
reproduce the obfuscation. | Therefore, in the present embodiment,
the additional information contained within the result record 418
can be used in order to produce a hopefully better-quality
obfuscation. The quality will of course be verified by a subsequent
execution of the analysis and comparison of trace out'put files (Step
S428 in FIG. 7). In the present embodiment, in the result record
418 in FIG. 11, the "if” statements at the end of block A0 and block
A2 may be altered in order to try to increase the relative number of
executions of block Al and block A3. Another course of action that
may be taken could be to try a completely different obfuscation
method, for instance.

Note that the embodiment described requires a considerable
degree of tight coupling between the obfuscation (Step S416 in FIG.
7) and the updating of the result record 418 (Step S438 in FIG. 7)
that is not necessary. In addition, the analysis and comparison of
trace output files (Step S428 in FIG. 7) and the updating of the
result record (Step S438 in FIG. 7) are similarly tightly coupled.
One skilled in the art could design a set of protocols or file formats
to reduce this interdependence; for instance, a standardised XML
schema would provide a solid foundation.

-30 -

10

15

20

25

30

WO 2007/049817 _ PCT/JP2006/322039

Next, several examples of metrics used for evaluating the
trace output file 218 that indicates the results of executing the
obfuscated code module 204 shall be given.

(Path Coverage)

In the present embodiment, path coverage, for example, can
be used as a metric. |

To be more specific, the paths taken through the code after
obfuscation are analyzed by calculating the number of paths through
the control flow graph of the obfuscated code module 204 after
transformation, then comparing the number with the number of
actual paths as recorded in the trace output file 218. 1In a preferred
embodiment this information may be used to direct the obfuscation
unit 910 to produce obfuscations that contain less dead paths by, for
example, deleting never-executed code from the obfuscated code
module 204, or more live paths, by, for example, altering conditional
values (see the discussion above of FIGS. 10 and 11 for an example
of this sort of behaviour) to attempt to change the unused path into
a used one. The details of how to perform this analysis shall be
described hereafter.

Given the control flow graph of the obfuscated code module
204 under consideration, let Npawn be the total number of paths
through the control flow graph for the module, excluding paths that
go through fundamental blocks explicitly marked as dummy code in
the block mapping report 210. Of course, there will be consistency
checking to ensure that if a fundamental block marked in the block
mapping report 210 as dummy code is not actually executed
according to the information contained within the trace output file
218. Let Nexec be the number of execution paths observed through
the code from analysing the trace output file 218 for the obfuscated
code module 204.

Here, the metric to measure simple path coverage, Mgpc, is

-31-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

specified by the following equation. (equation 1):

N
Equation 1: Mg = N”""’

exec

The lower this value is, the better the spread of paths through
the code. |

FIG. 12 is a diagram that illustrates how to count the number
of paths.

The following procedure may be used when counting the
number of paths, such as the aforementioned Npawn, in a cyclic
control flow graph that has the same Start and Exit nodes.

When éounting the paths in a cyclic control flow graph with a
single Start and Exit node, it must be transformed into an acyclic
form by identifying the one back edge for each cycle w—v, and

adding edges from Start—v and w—Exit, and then del'eting the back

edge.

For example, five paths can be counted in the cyclic control
flow graph shown in FIG. 12; to be more specific, these countable
paths are the path indicated by A, the path indicated by D — B, the
path indicated by D — C, the path indicated by E — B, and the path
indicated by E — C. Note that paths from the trace output file 218
that passed through any of the back edges are split into sub-paths
as required.

(Change in Path Coverage)

Moreover, in the present embodiment, the change in path
coverage may be used as a metric.

To be more specific, before and after obfuscation control flow
graphs of the original code module 200 and the obfuscated code
module 204, and before and after trace outputs 214 and 218 are
taken, and how paths have changed according to the obfuscation

-32-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

process is identified, so that in one instance the obfuscation process
can be tuned to produce more even spreads of new paths from
existing paths. The details of how to perform this analysis shall be
described hereafter.

Here, let the following equation. (equation 2) be the number of
execution paths observed through the original code module 200
from analysing the trace output file 214: |

Equation 2: N
Then, let the following equation (equation 3) be the number

of execution paths observed through the obfuscated code module
204 from analysing the trace output file 218:

Equation 3: N2

Note that in counting the paths in a cyclic control flow graph
with a single Start and Exit node is performed in the same manner as
has been described Using FIG. 12.

Now, the metric to measure change in path co‘verage, Mcec, is

specified by:
, N
Equation 4: Mo = ij‘rf;

exec

The larger this value, the better the change in path coverage.

(Patterns of Execution Paths)

Furthermore, in the present embodiment, the change in path
coverage may be used as a metric.

Here, the patterns of execution paths to be found in the trace
output file 218 after execution, such as, for example, observing how

-33-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

the paths through a given Ioob change over time, or how regularly
paths change over subsequent iterations, are evaluated.

_ One method of measuring these patterns of execution paths is
to determine how random the paths through an obfuscated set of
fundamental blocks are, by using an Equidistribution Test (Knuth,
pg. 59) and calculating the chi-square value (Knuth pg. 39) for the
observed results versus the expected theoretical values. This tells
how evenly-distributed (compared to the desireq distribution) the
paths through the obfuscated control flow are. This test is
important because if the observed execution flow passes through
one code path a disproportionately large number of times, for
instance, an attacker can focus efforts on that single path and
perhaps uncover a Iarge percentage of the secret information in a
shorter amount of time than if there was a more even distribution of
paths.

First, all the execution paths observed through the
obfuscated code module 204 are collected by analysing the trace
output file 214 for the obfuscated code module 204.

Note that col'lecting the paths is performed in the same
manner as counting the paths in a cyclic control flow graph with a
single Start and Exit node, as has been described using FIG. 12.

Next, the paths are then numbered using the Ball-Larus
scheme for numbering paths. For zero or more specific sets of
obfuscated blocks with a single dominator node, determined by
analysing the block mapping report 210, first select the set of
executed paths that pass through the dominator node and let the
size of that set be Nexec. Next, let Npatn be the number of possible
paths through the obfuscated module 204. For each distinct path
Dp where 1 = p < Npawh, let P, be the expected probability of that
path being executed; by default this will be, for each path Dp, the
following equation (equation 5):

-34 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

Equation 5: Necee

path

FIG. 13 is a diagram that illustrates obfuscation feedback
performed based on execution path patterns.

The obfuscator 1000 obfuscates the original code module 200,
which includes, for example, “x=x*2", where the symbol e
indicates multiplication. As a result of this. obfuscation, the
obfuscator 1000 produces an obfuscated code module 204a (204)
that has four blocks, or blocks A, B, C, and D.

For example, block A includes “x=x<<2"; block B includes
“x=x*4"; block C includes “x=x>>1"; and block D includes ‘fx=x/2”.
Note that N indicates a left bit shift, while *>>" indicates a right
bit shift. This means that “x=x<<2” and "x=x*4” indicate an
identical process. In the same manner, “x=x>>1" indicates
“x=x/2". ‘ l

The obfuscator 1000 executes the produced obfuscated code
module 204a, and then creates a metrics report 208a (208) that
includes metrics for-evaluating the patterns of the execution paths.

The percentage of paths actually executed, from among the
executable paths within the obfuscated code module 204a, are
denoted as metrics within this metrics report 208a.

'For example, 0% for the block A — block C path, 50% for the
block A — block D path, 50% for the block B — block C path, and 0%
for the block B — block D path are denoted as the metrics. Note
that in the obfuscated code module 204a shown in FIG. 13, the block
A — block C path has no possibility of being executed; however, here,
such paths shall be described as possibly being executed when
judging based solely on the obfuscated code module 204a.

The obfuscator 1000 analyzes the trace output file 218a, and
because the percentages of the block A — block C path and the block
B — block D path are significantly lower than the expected

-35-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

probability P, it is deemed th'at the obfuscation is insufficient, and
thus the obfuscation process is repeated with an increase in the
percentages of these paths.

The obfuscator 1000 produces an obfuscated code module
204b (204) through the re-obfuscation. Comparing the obfuscated
code module 204b with the obfuscated code module 204a produced
through the previous obfuscation, it can be seen that the “ifr
statement between block B and block C has been changed.

In the same manner as the obfuscated code module 204a
mentioned above, the obfuscated code module 204b is executed
upon being produced by the obfuscator 1000. Then, the obfuscator
1000 generates a metrics feport 208b (208), that includes metrics
for evaluatinvg the patterns of the execution paths. ‘

20% for the block A — block C path, 30% for the block A —
block D path, 20% for the block B — block C path, and 30% for the
block B — block D path are denoted in the metrics r'eport 208b.

The obfuscator 1000 analyzes the metrics report 208b, and
because the percentages in each path are close to the expécted
probability Py, or in—other words, fall within a permissible range, the
original code module 200 is deemed to have been optimally
obfuscated into the obfuscated code module 204b. As a result, the
obfuscator 1000 ends the obfuscation feedback process.

It should be noted that the block mapping report 210 may '
contain an alterative expected probability. For each distinct path
D, where1l = p < Npatn, let O, be the observed number of times that
the path is executed. Now, perform a chi-square test to compare
the observed number of times a path is taken with the expected path
probability, using the following equation (equation 6) to generate
the chi-square Equidistribution Test metric:

Npa:h _P
Equation 6: Xor = Z(—Qf—”)i
= P

236 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

The smaller the chi-square value shown in this equation is,
the better the observed path distribution matches the expected path
distribution, with the caveat that too low a chi-square value might in
fact indicate a seemingly non-random distributioﬁ. Sample tables
of the critical values of a chi-square distribution can be found in
many standard statistical reference books, such as in the‘
NIST/SEMATECH e-Handbook of Statistical Methods, available
online at:

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.h
tm

Alternatively, the critical values may be computed explicitly
as required.

Another method of measuring these patterné of execution
paths is to determine how random the paths through an obfusc\ated
set of fundamental blocks are, by using a Poker Test (Knuth pg. 62)
and calculating the éhi-square value for the observed results versus
the expected theoretical values. This tells how well-distributed
patterns in the paths through the obfuscated control flow are,
according to another evaluation function different from the
Equidistance Test above. This test is important because if the
observed execution flow follows a regular pattern of execution, an
attacker may be able to conclude that, for instance, the path
selection method is just an obfuscation artefact and thus can be
ignored.

To illustrate, if there were four paths a, b, ¢, and d, and the
pattern observed was a, b, c,a, b, c,a, b,c,a,d,a,b,c,a,b,c, a,
b, c, a, d, then the hacker may conclude that paths a, b, and c are
chosen from the modulus remainder after division by 3 of some
index value, and d is perhaps some end condition, and thus can

-37-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

easily divert effort from understanding the condition statement and
move on to determining the real process hidden behind the
obfuscations.

So, to calculate this value, first, all the execution paths
observed through the obfuscated module 204 by ahalysing the trace
output 214 for the obfuscated module 204 are collected.

Note that collecting the paths is performed in the same
manner as counting the paths in a cycliccontro\l flow graph with a
single Start and Exit node, as has been described using FIG. 12.

Paths from the trace outpUt 214 that passed through any of
the back edges are split into sub-paths as required. The paths are
then numbered using the BalI-Larus~scheme for numbering paths,

and let Ng. be the number of unique paths identified by the

Ball-Larus numbering scheme. Next, taking the paths in order in
sets of k paths at a time, using the conventional k=5, éount the
number of unique paths numbers in'each set. For in'stanc‘e, with 10
paths, the set of five paths {1,6,4,1,7} will have four unique
entries; {1,1,2,3,3} will have three. For 0 < r =< k, let O, be the
observed number of times that a set with r unique entries is
observed. Let P, be the expected probability of that number of
unique entries, calculated from the following equation (equation 7):

Equation 7: ' P

r

— ‘;VBL(NBL _1)“'(NBL —r+1){k}

k
Ny, r

Here, the Stirling Number of the Second Form (shown in
equation 8) is defined by equation 9:

Equation 8: {k}

-38-

10

15

20

25

WO 2007/049817 PCT/JP2006/322039

S(e(e)

The binomial coefficient shown in equation 10 is defined by

\In—l

Equation 9: {k}=
,

equation 11:
; r
Equation 10: [J
l
. r it
Equation 11: =
q (J (i—r)!r!

i

Now, a chi-square test is performed to compare the observed
number of unique entries in all sets with the expected probability,
using the following equation (equation 12) to generate the
chi-square Poker Test metric: ‘ '

r _ 2
Equation 12: - Zhr =Z__(0rPP.r_)
p=l r

The smaller the chi-square value indicated in equation 12, the
better the observed path distribution matches the expected path
distribution, with the caveat that too low a chi-squaré value mightin
fact indicate a too good to be true distribution. See above for
details on where to find information regarding the critical values of
a chi-square distribution.

(Degree of Similarity)

In addition, a degree of similarity may be used as a metric in
the present embodiment.

In other words, the degree of similarity between
corresponding fundamental blocks in different paths taken by the

-39 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

obfuscated code module 204 are evaluated. This mép,ping
information is obtained from the block mapping report 210 produced
by the obfuscation unit 910. A high degree of similarity between
different obfuscations of the same fundamental block, for instance,
indicates a potentially low effectiveness of the obfuscation process.
The details of how to perform this analysis shall be described
hereafter. |

To compare two blocks of code, either two individual
fundamental blocks or two path segments built up from consecutive
fundamental blocks, that implement two different representations of
the same functionality (in'other words, a block of code that has been
obfuscated by two different obfuscation methods, or the same
obfuscatioh method but with different obfuscation paramefers) the
trace output files 214 or 218 for these blocks are examined and
translated into an alphabet.

In other words, the trace is translated into én alphabet by
representing each. operation by a different code unique for gach
operation, and optionally representing variable references by other
codes to produce two streams of data that encode the module
execution trace in a string-like fashion, and further optionally
representing control flow structures and other program elements by
yet further codes. The Levenshtein distance between these two
streams can be calculated. In the preferred embodiment, for
simple encoding, where just the operations are encoded, 8-bit wide
characters may suffice. For a full encoding, 32-bit wide characters
may be necessary.

In other words, two path segments that share the same
functionality are converted into alphabet strings, and movements,
deletions, insertions, and so on occurring between these alphabet
strings are detected. Based on the results of this detection, the
degree of similarity between the aforementioned two path segments
is set as a Levenshtein distance and accordingly as a metric.

-40 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

The larger the value of this Levenshtein distance, the larger
the difference between the pairs of fundamental blocks or execution
paths, so the h\igher the score (Levenshtein distance) the better.
Very low scores will indicate blocks that may need to be obfuscated
again using a different technique. ..

Here, Levenshtein distance is a criteria for evaluating the
degree of similarity of character strings. This distance is
represented by the number of times the processes (replacement,
transferring, deleting, or insertion) performed on one of the
character strings in'order to transform it to the other character
string are carried out.

In the present inve‘ntion, respective processes within the
program cdde are alphabetized and lined up. By treating that
program code as a character étring, the degree of similarity between
program codes can be calculated using the Levenshtein diétance.

For example, by assuming the alphabet “"M” for multiplication
the alphabet “A” for addition, and the alphabet “B” for assign, the
degree of similarity. of the original code module 200 and the
obfuscated code module 204a shown in FIG. 14 are evaluated using
the Levenshtein distance between the character strings "MBABAB”
and "ABBAAB”. ‘

Note that in place of alphabet such as “M”, “"A”, and “B”, the
expressions "MULTIPLE, ADD, and ASSIGN” are used in the following
description for the sake of easier comprehension.

The Levenshtein distance between the trace output file 218
from the previous obfuscated code module 204 and the trace output
file 218 from the presently-obfuscated code module 204 may be
measured each time obfuscation feedback is performed.
Alternatively, the Levenshtein distance between the trace output file
214 from the original code module 200 and the trace output file 218
from the presently-obfuscated code module 204 may be measured
each time obfuscation feedback is performed. Low scores indicate

-41 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

a poor performance by the obfuscator 1000; in other words, low
scores indicate that the obfuscation was not of sufficient quality.

Regarding dummy code and fake robust dummy code in the
obfuscated code module 204, it should be noted that the lower the
score the better, the reason being that the goal of generating such
dummy code is to divert the hacker from the main code, and thus
very similar code is a desirable outcome.

FIG. 14 is a diagram that illustrates obfuscation performed
based on the degree of similarity. \

The obfuscaton; 1000 obfuscates an original code module 200
that includes, for example, “x=x*2, y=x+7, z=x+y”. As a result,
the obfuscator 1000 produces an obfuscated code module 204a
(204) includ'ing the fake robust "X=X+X, Y=X, z=y+x+6’; and an
obfuscated code module 204b (204) including “y=2*(x+3)+1,
Z=y+X+X, X=x<<1".

Note that the trace output file 214 that indicatés the result of
the original code module 200 being executed shows the same
contents as the original code module 200 shown in FIG. 14,
Similarly, the trace'output file 218 that indicates the result of the
obfuscated code module 204 being executed shows the same
contents as the obfuscated code module 204 shown in FIG. 14.

When such obfuscated code module 204a is produced and
executed, the obfuscator 1000 compares the trace output file 218 of »
the obfuscated code module 204a with the trace output file 214 of
the original code module 200, and uses the degree of similarity as a
metric.

The obfuscator 1000 determines that the trace output file 218
from a fake robust obfuscated code module 204a has been
constructed through replacing “MULTIPLE” with "ADD” in the first
line of the trace output file 214 from an original code module 200
and moving "ADD” in the second line of that trace output file 214.
In other words, the obfuscator 1000 produces a metric based on the

-42 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

one “replace” and the one “mdve”. As a result, the obfuscator 1000
determines that the metric score is low, and thus that the
obfuscated code module 204a resembles the original code module
200; that is, the obfuscator 1000 judges the obfuscation to be
sufficient. ‘

It should be noted that the obfuscated code module 204a is a
fake robust code. Although the fake robust code may seem to
accomplish the same function as the original code module 200, it is
a code which confuses parties attempting to perfofnj unauthorized
analysis, by hiding a bug that is difficult to distinguish. Accordingly,
the more the obfuscated code module 204a is similar to the original
module, the more the obfuscation is rated as being satisfactory.

Alternétively, the obfuscator 1000 determines that the trace
output file 218 from an obfuscated code module 204b has been
constructed through adding two “"ADDs” in the first line of fhe trace
output file 214 from an original code module 200, adding one “ADD”

'in the second line of that trace output file 214, and replaces “"ADD”

with “"SHIFT” in the third line of the trace output file 214. 1In other
words, the obfuscator 1000 produces a metric based on the three
“adds” and the one “replace”. As a result, the obfuscator 1000
determines that the metric score is high, and thus that the
obfuscated code module 204b does not resemble the original code
module 200; that is, the obfuscator 1000 judges the obfuscation to
be sufficient.

The goal of the obfuscated code module 204b is to realize the
same functions as the original code module 200. As such, in order
to make the analysis by an unauthorized analyzing party difficult, it
is preferrable to make the obfuscated code module 204b look as if it
is different from the original code module 200. As such, the more
the obfuscated code module 204b is dissimilar to the original module,
the more the obfuscation is rated as being satisfactory.

In this manner, the obfuscator 1000 ends the obfuscation

-43 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

feedback process when it judges the obfuscation to be sufficient.

(Code Size and Execution Speed)

Furthermore, in the present embodiment, code size and
execution speed may be used as a metric. ‘

When using code size and the like as a metric, there are other
ways of measuring performance that are much simpler and more
direct than using the complex metrics defined abqve. For example,
the code execution speed before and after the obf‘uscation can be
evaluated. This pérformance measurement is not just at the
overall module granularity, but instead, each individual fundamental
block transformation can be measured, thus gaining much finer
performance' tuning over methods suggested by the pfior art.
Similarly, code size can measure the size of the actually executed
code, not just the size of the obfuscated code module 204, active
and dead code included. -

In this manner, in the present embodiment, it is possible to
evaluate the trace output file 218 with all types of metrics\and
produce the metrics report 208; in addition, the metrics report 208,
which includes plural types of metrics, may be produced.

Note that when plural types of metrics are included in the
metrics report 208, these metrics may be averaged, or the metrics
weighted and averaged, and a representative metric calculated
thereby. In such a case, the obfuscation with feedback ends when
that representative metric falls within a permissible range, and the
obfuscated code module 204 corresponding to that representative
metric is judged to have the highest obfuscation quality, and is thus
determined to be the optimum module.

It should be noted that, as mentioned above, the obfuscation
tuning unit 914 measures the number of obfuscations or the amount
of time used in obfuscation, and when that number or time is below
a set number of times or set amount of time, the obfuscation tuning

-44 -

10

15

20

25

30

WO 2007/049817) PCT/JP2006/322039

unit 914 may feed the metrics report 208 back into the obfuécation
unit 910. In this case, the obfuscated code module 204 that
corresponds to the metrics that indicate the highest-quality
obfuscation may be selected from among the generated obfuscated
code modules 204 as the optimum module with the highest
obfuscation quality.

It should be noted that although the present invention is‘
described based on the aforementioned embodiment, the present
invention is obviously not limited to such embodiment. The
following cases are also included in the present invention.

(1) Each of the aforementioned apparatuses is, specifically,
a computer system including a microprocessor, a ROM, a RAM, a
hard disk un‘it, a display unit, a keyboard, a mouse, and the so on.
A computer program is stored in the RAM or the hard disk unit. The
respective apparatuses achieve their functions through the
microprocessor’s operation according to the compﬁter program.
Here, the computer program is configured by combining plural
instruction codes indicating instructions for the computer.

(2) A part or all of the constituent elements constituting the
respective apparatuses may be configured from a single System-LSI
(Large-Scale Integration). The System-LSI is a
super-multi-function LSI manufactured by integrating constituent
units on one chip, and is specifically a computer sysfem configured
by including a microprocessor, a ROM, a RAM, and so on. A
computer program is stored in the RAM. The System-LSI achieves
its function through the microprocessor’s operation according to the
computer program.

Furthermore, each unit of the constituent elements
configuring the respective apparatuses may be made as an
individual chip, or as a single chip to include a part or all thereof.

Furthermore, here, LSI is mentioned, but there are instances
where, due to a difference in the degree of integration, the

-45-

10

15

20

30

WO 2007/049817 PCT/JP2006/322039

designations IC, LSI, super LSI, and ultra LSI are used.
Furthermore, the means for circuit integration is not limited to an
LSI, and imblementation with a dedicated circuit or a
general-purpose processor is also possible. In addition, it is also
acceptable to use a Field Programmable Gate Arréy (FPGA) that is
programmable after the LSI has been manufactured, and a
reconfigurable processor in which connections and settings of circuit
cells within the LSI are reconfigurable. \

Furthermore, should integrated circuit téchnology that
replaces LSI appear through progress in semiconductor technology
or other derived technology, that technology can naturally be used
to carry out integration of the constituent elements. Application of
biotechnoldg'y is also a possibility.

(3) A partor all of the constituent elements constituting the
respective apparatuses may be configured as an IC card which can
be attached and detached from the respective appar:atuses or as a
stand-alone module. The IC card or the module is a computer
system configured from a microprocessor, a ROM, a RAM, and tHé SO
on. The IC card or the module may also be included in the
aforementioned super-multi-function LSI. The IC card or the
module achieves its function through the microprocessor’s operation
according to the computer program. The IC card or the module
may also may also tamper-resistant. _

(4) The present invention, may be a computer program for
realizing the previously illustrated method, using a computer, and
may also be a digital signal including the computer program.

Furthermore, the present invention may also be realized by
storing the computer program or the digital signal in a computer
readable recording medium such as a flexible disc, a hard disk, a
CD-ROM, an MO, a DVD, a DVC-ROM, a DVD-RAM, a BD (Blu-ray
Disc), and a semiconductor memory. Furthermore, it may also be
the digital signal recorded in these recording media.

- 46 -

10

15

20

25

WO 2007/049817 PCT/JP2006/322039

Furthermore, the present invention may also be realiied by
the transmission of the aforementioned computer program or digital
signal via a “telecommunication line, a wireless or wired
communication line, a network represented by the Internet, a data
broadcast, and so on.]

The present invention may also be a computer system
including a microprocessor and a memory, in which the memory‘
stores the aforementioned éomputer program and the
microprocessor operates according to the computef program.

Furthermore, by transferring the program or the digital signal
by recording onto the aforementioned recording media, or by
transferring the program or digital signal via the aforementioned
network and the like, execution using another indépendent
computer system is also made possible \

Although only one exemplary embodiment of this invention

has been described in detail above, those skilled 'in the art will

readily appreciate that many modifications are possible in the
exemplary embodiment without materially departing from the ﬁovel
teachings and adva'ntages of this invention. Accordingly, all such
modifications are intended to be included. within the scope of this
invention.

Industrial Applicability

The obfuscation evaluation method and obfuscation method
of the present invention has the effected of sufficiently evaluating
an obfuscation and effectively preventing a hacker from deciphering
a program, and thus is applicable in obfuscators which obfuscate
software application programs and so on.

-47 -

10

15

20

25

30

WO 2007/049817 v PCT/JP2006/322039

CLAIMS

1. An obfuscation evaluation method for evaluating an
obfuscation pefformed on a program, comprising: i

a first execution step of executing an obfuscated code
generated by obfuscating original. code of the program;

a first logging step of generating first logging data by logging
execution details of said first execution step; and

an evaluation step of evéluating the first logging data,
thereby identifying the degree of obfuscation of the obfuscated
code. ‘

2. The obfuscation evalxuation method according to Claim 1,

wherein in said evaluation step, a numerical value, which is
an indicator of the degree of obfuscation, is calculated as a metric,
based on the first logging data.

3. The obfuscation evaluation method according to Claim 2,
further comprising: .

a second exeéution step of executing the original code; and

a second logging step of generating second logging data by
logging execution details of said second execution step,

~wherein in said evaluation step, the first logging data is
compared with the second logging data and evaluated based on the
comparison.

4. The obfuscation evaluation method according to Claim 3,
wherein the obfuscated code is produced by obfuscating each
of fundamental blocks present in the original code, per fundamental
block, and
in said evaluation step, the first logging data is evaluated per
corresponding fundamental block using block mapping information,
which indicates a correspondence between a fundamental block of

-48 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

the original code and a fundamental block of the obfuscated code.

5. The obfuscation evaluation method according to Claim 4,
wherein in said evaluation step, the number of executed paths
indicated in the first logging data is compared to the number of
executed paths indicated in the second logging data, and the
comparison result is calculated as the metric. |

6. The obfuscation evaluation method according to Claim 5,

wherein in said evaluation étep, the ratio between the number
of executed paths indicated in the first logging data and the number
of executed paths indicated in the second logging data is calculated
as the metr-ic'.

7. The obfuscation evaluation method according to Claim 4,

wherein in said evaluation step, the degr‘ee of change
between path coverage indicated in the first logging data and path
coverage indicated in the second logging data is calculated aé fhe
metric.

8. The obfuscation evaluation method according to Claim 7,
wherein in said evaluation step, the ratio between the path

coverage indicated in the first logging data and the path coverage

indicated in the second logging data is calculated as the metric.

9. The obfuscation evaluation method according to Claim 4,

wherein in said evaluation step, a degree of similarity
between the first logging data and the second logging data is
calculated as the metric.

10. The obfuscation evaluation method according to Claim 9,
wherein in said evaluation step, the degree to which the first

-49 -

10

15

20

25

30

WO 2007/049817] PCT/JP2006/322039

logging data and the second logging data resemble one another is

expressed as a Levenshtein distance.

11. The obfuscation evaluation method according to Claim 3,
wherein in said evaluation step, a frequency distribution of

executed paths within the path coverage according to the first

logging data is calculated as the metric.

12. The obfuscation evaluation method according to Claim 11,
wherein in said evaluation step, a chi-square result of an
Equidistribution Test of path coverage is'calculated as the metric.

13. The obfuscation evaluation method according to Claim 11,
wherein in said evaluation step, a chi-square result of a Poker
Test of path coverage is calculated as the metric.

14. The obfuscation evaluation method according to Claim 2,
further comprising: .

a third execufion step of executing an other obfuscated code
generated by obfuscating the original code using a method which is
different from a method used for the obfuscated code; and

~a third logging step of generating third logging data by
logging execution details of said third execution step,

wherein in said evaluation step, the first logging data is
compared with the third logging data and evaluated based on the
comparison.

15. An obfuscation method for obfuscating a program,
comprising:

an obfuscation step of generating an obfuscated code by
obfuscating the original code of the program;

a first execution step of executing the obfuscated code

-50-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

generated in said obfuscation steb; ,

a first logging step of generating first logging data by logging
execution details of said first execution step;

an evaluation step of evaluating the first logging data,
thereby identifying the degree of obfuscation df the obfuscated
code; and

a re-obfuscation step of re-obfuscating the original code
based on a result of the evaluation performed in said evaluation
step.

16. The obfuscation method according to Claim 15, further
comprising:

a second execution step of executing the original code; and

a second logging step of generating second logging data by
logging execution details of said second execution step,

wherein in said evaluation step, the first Iégging data is
compared with the second logging data and evaluated.

17. The obfuscation method according to Claim 16,

wherein in said obfuscation step, fundamental blocks present
in the original code are obfuscated and block mapping information
produced, the block mapping information indicating a
correspondence between the fundamental blocks of the original
code and the fundamental blocks of the obfuscated code, and

in said evaluation step, the first logging data is evaluated per
corresponding fundamental block using the block mapping
information.

18. The obfuscation method according to Claim 17,

wherein in said re-obfuscation step, a block of the original
code is selected based on a result of the evaluation in said
evaluation step, and the selected block is re-obfuscated.

-51-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

19. The obfuscation method according to Claim 15,

wherein in said obfuscation step, control information that
includes obfuscation parameters is used, and the original code is
obfuscated in accordance with the parameters. |

20. The obfuscation method according to Claim 15,

wherein in said evaluation step, evaluation result data, which
indicates a result of evaluating the first logging data; is generated in
a format that is readable in said re-obfuscation step.

21. The Qbfuscation method according to Claim 15,

wherein in said evaluation step, evaluation result dafa, which
indicates a result of evaluating the first logging data, is ggnerated,
and the format of the evaluation result data is converted into a

format that is readable in said re-obfuscation step.

22. The obfuscation method according to Claim 15,

, wherein in sa'id evaluation step, a numerical value, which is
an indicator of the degree of obfuscation, is calculated as a metric,
based on the first logging data.

23. The obfuscation method according to Claim 22, further
comprising

a metric judgment step of judging whether or not the metric
calculated in said evaluation step is within a permissible range,

wherein each time the metric is judged as not being within the
permissible rangé in said metric judgment step, a new obfuscated
code is generated by re-obfuscating the original code in said
re-obfuscation step, and said first execution step, said first logging
step, said evaluation step, and said metric judgment step are
repeated for the new obfuscated code, and

-52-

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

when the metric is judged as being within the permissibie
range in said metric judgment step, the original code is not
re-obfuscated in said re-obfuscation step.

24. The obfuscation method according to CIaim'23,

wherein in said evaluation step, an average value of plural
numerical values, which are indicators of the degree of obfuscation,'
is calculated as the metric, based on the first I‘ogging data.

25. The obfuscation method aecording to-Claim 23,

wherein in said evaluation step, plural numerical values,
which are indicators of the degree of obqucation, are weighted, and
an average of the weighted plural numerical values is calculated as
the metric, based on the first logging data.

26. The obfuscation method according to Claim 15, further
comprising

a number judgment step of judging whether or not the
number of times obfuscation has been performed on the original
code has exceeded a pre-set humber of times,

wherein each time it is judged that the pre-set number of
times has not been exceeded in said number judgment step, a new
obfuscated code is generated by re-obfuscating the briginal code in
said re-obfuscation step, and said first execution step, said first
logging step, said evaluation step, and said number judgment step
are repeated for the new obfuscated code, and

when it is judged that the pre-set number of times has been
exceeded in said number judgment step, the original code is not
re-obfuscated in said re-obfuscation step.

27. The obfuscation method according to Claim 15, further
comprising

-53-

10

15

20

30

WO 2007/049817 PCT/JP2006/322039

a time judgment step ofjudging whether or not the amount of
time required for performing obfuscation on the original code has
exceeded a pre-set amount of time,

wherein each time it is judged that the pre-set amount of time
has not been exceeded in said time judgment step,‘a new obfuscated
code is generated by re-obfuscating the original code in said
re-obfuscation step, and said first execution step, said first Iogging‘
step, said evaluation step, and said time judgment step are repeated
for the new obfuscated code, and ‘

when it is judged that the pre-set amount of time has been
exceeded in said time judgment step, the original code is not
re-obfuscated in said re-obfuscation step. |

28. The obfuscation method according to Claim 15, .

wherein said first execution step, said first logging step, and
said evaluation step are repeated for a new obfuscated ‘code
generated by the re-obfuscating in said re-obfuscation step, and

said obfuscation method further comprises |

a continuance step of comparing a degree of obfuscation
identified in an immediately preceding evaluation step with a degree
of obfuscation identified in an obfuscation step ahead of said
immediately preceding evaluation step, and repeating said steps
from said re-obfuscation step, based on the a>result of the
comparison.

29. An obfuscation evaluation apparatus for evaluating an
obfuscation performed on a program, comprising:

an execution unit operable to execute an obfuscated code
generated by obfuscating original code of the program;

a logging unit operable to generate logging data by logging
execution details of said execution unit; and

an evaluation unit operable to evaluate the logging data,

-54 -

10

15

20

25

30

WO 2007/049817 PCT/JP2006/322039

thereby identifying the degree of obfuscation of the obfuscated
code.

30. An obfuscation apparatus for obfuscating a program,
comprising: _

an obfuscation unit operable to generate an obfuscated code
by obfuscating the original code of the program; l

an execution unit operable to execute the obfuscated code
generated by said obfuscation unit; ‘

a logging unitloperable to generate logging data by logging
execution details of said execution unit;:

an evaluation unit operable to evaluate the logging data,
thereby idehtifying the degree of obfuscation of the obfuscatedl
code; and

a re-obfuscation unit operable to re-obfuscate the‘ original
code based on a result of the evaluation perfo'rmed, by said
evaluation unit.

31. An obfuscation evaluation program for evaluating an
obfuscation performed on a program, said obfuscation evaluation
program causing a computer to execute: \

a first execution step of executing an obfuscated code
generated by obfuscating original code of the program;

a first logging step of generating first logging data by logging
execution details of said first execution step; and

an evaluation step of evaluating the first logging data,
thereby identifying the degree of obfuscation of the obfuscated
code.

32. An obfuscation program for obfuscating a program, said
obfuscation program causing a computer to execute:
an obfuscation step of generating an obfuscated code by

-55-

10

15

20

25

30

WO 2007/049817) PCT/JP2006/322039

obfuscating the original code of the program; ,

a first execution step of executing the obfuscated code
generated in said obfuscation step;

a first logging step of generating first logging data by logging
execution details of said first execution step;

an evaluation step of evaluating the first logging data,
thereby identifying the degree of obfuscation of the obfuscated‘
code; and ‘ \

a re-obfuscation step of re-obfuscating the original code
based on a result of the evaluation performed in said evaluation
step.

33. A stfoi'age medium in which an obfuscation e\}aluation
program for evaluating an obfuscation performed on a program is
stored, |

wherein said obfuscation evaluation progllam causes a
computer to execute: \

an execution step of executing an obfuscated code generated
by obfuscating origi‘nal code of the program;

a logging step of generating logging data by logging execution
details of said execution step; and

an evaluation step of evaluating the logging data, thereby
identifying the degree of obfuscation of the obfuscated code.

34. A storage medium in which an obfuscation program for
obfuscating a program is stored,

wherein said obfuscation program causes a computer to
execute:

an obfuscation step of generating an obfuscated code by
obfuscating the original code of the program;

an execution step of executing the obfuscated code generated
in said obfuscation step;

-56-

10

15

20

25

30

WO 2007/049817) PCT/JP2006/322039

a logging step of generating logging data by logging execution
details of said execution step;

an evaluation step of evaluating the logging data, thereby
identifying the degree of obfuscation of the obfuscated code; and

a re-obfuscation step of re-obfuscating the original code
based on a result of the evaluation performed in said evaluation
step.

35. An integrated circuit for evaluating an obfuscation performed
on a program, comprising:

an execution unit operable to execute an obfuscated code
generated by obfuscating 6rigina| code of the program;

a Iog@jing unit operable to generate logging data by logging
execution details of said execution unit; and

an evaluation unit operable to evaluate thg logging data,
thereby identifying the degree of obfuscation of the obfuscated

code.

36. An integrated circuit for obfuscating a program, comprising:

an obfuscation unit operable to generate an obfuscated code
by obfuscating the original code of the program;

_an execution unit operable to execute the obfuscated code

generated by said obfuscation unit;

a logging unit operable to generate logging data by logging
execution details of said execution unit;

an evaluation unit operable to evaluate the logging data,
thereby identifying the degree of obfuscation of the obfuscated
code; and

a re-obfuscation unit operable to re-obfuscate the original
code based on a result of the evaluation performed by said
evaluation unit.

-57-

WO 2007/049817 PCT/JP2006/322039

FIG. 1
Obfuscated
— Code
Original Code I Obfuscator Module
Module
Logging 1\06 ‘ |
100 L:bfary Logging
P 108 Library
102 P4
- 110
Trace
Output
104 ~| File (T)race
utput
1 112 -"| File
"~

1/12

WO 2007/049817 PCT/JP2006/322039

FIG. 2
, Obfuscated
Code
Original Code I l Obfuscator
Module \ Module
Logging
15}0 Library 156
\ 158
~
152
Trace
Output
154 — | File ,
J

2/12

WO 2007/049817 PCT/JP2006/322039

FIG. 3.
<::S_,SBOO
/ S302
Select
parameters
S304
> Obfuscate I
Select
"better" Evaluate
parameters performance

3/12

WO 2007/049817

FIG. 4

S352 i

Compile original
code with
logging library

S350

S356-_ 4

Run program with
data sets

S360 v

Set obfuscation
limits of space,
performance, and
the like

S362_. y

Select ’
—>1 part to

obfuscate

S364—_ vy
Obfuscate |

selected
part

Sufficiently
obfuscated?

4/12

PCT/JP2006/322039

Data Set

354

154

Trace
Output
File

PCT/JP2006/322039

WO 2007/049817

S
a1l | _—81¢C 91¢.
Indino S
’ {NPOI all
2oeus]| SHUI9I pue u:BL.m_ _—V1d
Jojesedwo) aoel]
\WHN
4 90¢
.ejeqg
Ateign 0te Guidde Mum%ww_w_,_ e
buibbo L »00|9 ! Aueiqn
buibbo
_J
g_ 3INPOI
uoeossn
9INPOW 3poD Hesnq0 9poD |eulblo
pa3edsniqo \
077 00¢
~
14014
18S |ejeq
S 'Ol

5/12

WO 2007/049817 PCT/JP2006/322039

FIG. 6

, 200
Original Code
Module

Block Identification]
Unit ‘
V94
Logging Insertion I 910
Unit Obfuscation Unit I(——
_ v 906a 7 504b’
Original Code Logging Insertion
Execution Unit Unit
T °,220 Y 906b
Obfuscated Code
L Data Set I >| Execution Unit |
V912
> Comparator Unit I
v 914
Obfuscation Tuning |
Unit

2\

1000

6/12

WO 2007/049817

FIG. 7

PCT/JP2006/322039

Insert block
identifier

t_/s402

2

Compile original
code with
logging library

I_,S4o4

/

412

Run program
with data sets

S410 -

/

Control
Record

Create initial
obfuscation

Result] control record Data Set
Record ¥ ,
T A >Obfuscation| --------- R LR
418 | Rl \
/Obfuscatioy S416
E 5ec9rd % S422
420 Compile
; obfuscated code}
: with logging N
! library
Update 2 y
result record Run obfuscated
. /| code with data |----
(' S424 sets
S438 : v)
v 2 .
| 08 Analyze and -l
compare trace f<-----cmmmmmooo
Metrics output ... [Block
Report | “sazg] Mapping
No_—~Sufficient =l

AN
os 5432

WO 2007/049817 PCT/JP2006/322039

FIG. 8

Before: After: | /204

//**Block(A) //**Block(A0)
i += 2; , r = rand_func(...);
if (r<=0.333)
{ '
//**Block(Al)
i = increment(i);
i = increment(i);

Obfuscation ’}

else if (r <= 0.666)
{ ‘
//**Block(A2)
i+=3;

__i-

b
elseif (r<=1.0)
{
//**Block(A3)
i++,;
++i;
¥
else
{
//**Block(A4)
i += *global_pointer,

¥

!

8/12

WO 2007/049817 PCT/JP2006/322039

FIG. 9

Block mapping report for:

Block(A) => Blocks(AO+(A1 | A2 | A3 | A4))
Obfuscation method: Random branching
Dummy: Blocks(A4)

210

FIG. 10

Comparator report for:

Block(A) => Blocks(AO+(A1 | A2 |'A3 | A4))
Obfuscation method: Random branching
Number of executions: 300

Execution path coverage:

AO+A1:5%

A0+A2:82%

AO0+A3:13%

Dummy Path AO+A4:0%

Quality: 10%

208

FIG. 11

Block(A):

Random branching=> Blocks(A0,A1,A2,A3,A4)
Block coverage:

A0:300

Al:15

A2:246

A3:39

A4:0

Quality: Fail

__/__

9/12

418

PCT/JP2006/322039

WO 2007/049817

FIG. 12

10/12

WO 2007/049817

FIG. 13
Re-obfuscation
_204a(204) ™= __204b(204)
200
. .. | if(temp=odd) if(temp=o0dd)
bfuscahon =YL Dmemm —(A)-q{---- x=x<<2
else ‘ else
X=X%4 ----- --(B)--{----x=x%*4
if(temp=even) | if(temp%3=0)
Xx=x>>1----- --(C)--1----x=x>>1
else else
X=X/2 ----- --(D)--4----x=x/2
w
\'Z

A—C - 0%
A—D ... 50%
B—C ... 500
B—D .. 0%

11/12

PCT/JP2006/322039

/7

0

O

17
A—>C - 20%
A—D... 30%
B—=C..20%
B=D ... 30%

PCT/JP2006/322039

WO 2007/049817

NDISSY

SZals

T+(E+X)x2=A

. ~
(¥02)av0z

uonedIsnqo

uol3edSnNIqO

1SNqoYy axed \/

NOISSY
. aav | NDISSV__
9AOW > AQV aav
. NDISSY | NDISSY__
IS aav
NDISSY ___}._. NOISSY __
 day. J1dILTNI
wum_amyﬂ ~
(¥02)ev0t
T 'Ol

\
00¢

12/12

INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2006/322039

A. CLASSIFICATION OF SUBJECT MATTER
N GO6F 21700

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where approptiate, of the relevant passages Relevant to claim No.

Y COLLBERG C ET AL: "MANUFACTURING CHEAP, 1-36
RESILIENT, AND STEALTHY OPAQUE CONSTRUCTS"
CONFERENCE RECORD OF POPL ’98 : THE 25TH
ACM SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES
OF PROGRAMMING LANGUAGES. SAN DIEGO, CA,
JAN. 19 - 21 1998, ANNUAL ACM
SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF
PROGRAMMING LANGUAGES, NEW YORK, NY : ACM,
US, 19 January 1998 (1998-01-19), pages
184-196, XP000792008

ISBN: 0-89791-979-3

* 2 The Design of a Java Obfuscator -
3.2.4 Measure of Execution Costx*

Y US 6 643 775 Bl (GRANGER MARK J [US] ET 1-36
AL) 4 November 2003 (2003-11-04)

column 20, 1ine 59 - coliumn 21, line 28
figures 10,11

—f—

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :) . R .
"T* later document published afier the international filing date

or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not § i i
considered to be of particular relevance %S/eedn }i% [l.]mderstand the principle or theory underlying the
“E* efa}lljlier éiotcument but published on or afterthe international "X* document of particular relevance; the claimed Invention
ling qale cannot be considered novel or cannot be considered to
"L do%un;lent whié:h may tll)llrohw (r:i]oubt% lon prior(ijty clafim(s) t?r involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *v* document of pari . : i i
iova + P particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
0O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemnational search report
24 January 2007 31/01/2007
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk I

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31~70) 340-3016 Chabot, Pedro

Form PCT/ISA/210 {second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2006/322039

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

US 5 950 003 A (KANESHIRO SHAUN [US] ET
AL) 7 September 1999 (1999-09-07)
figures 1,11

column 1, line 40 - line 50

column 13, 1ine 60 - column 14, Tine 14
column 21, line 50 - Tine 63

1-36

Form PCT/ISA/210 {continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/JP2006/322039
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6643775 B1 04-11-2003 NONE
us 5950003 A 07-09-1999 JP 3290567 B2 10-06-2002
JP 9062544 A 07-03-1997

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report
	Page 74 - wo-search-report

