



(12) UK Patent (19) GB (11) 2 208 829 (13) B

(54) Title of Invention

Liquid-discharge recording apparatus

(51) INT CL<sup>4</sup>; B41J 3/04

(21) Application No  
8828777.6

(22) Date of filing  
23 Dec 1985  
Date lodged  
9 Dec 1988

(30) Priority data

(31) 59280716  
59280717  
59280718

(32) 28 Dec 1984

(33) JP

(62) Derived from Application  
No. 8531677.6 under  
Section 15(4) of  
the Patents Act 1977

(43) Application published  
19 Apr 1989

(45) Patent published  
18 Oct 1989

(73) Proprietor(s)  
Canon Kabushiki Kaisha

(Incorporated in Japan)

30-2 3- chome  
Shimomaruko  
Ohta-ku  
Tokyo  
Japan

(72) Inventor(s)  
Takashi Ohba  
Hiroshi Iida  
Haruyuki Matsumoto

(74) Agent and/or  
Address for Service  
Beresford & Co  
2-5 Warwick Court  
High Holborn  
London WC1R 5DJ

(52) Domestic classification  
(Edition J)  
B6F FLT

(56) Documents cited  
GB 2159465 A  
US 4275402 A

(58) Field of search

As for published application  
2208829 A viz:  
UK CL B6F FLM FLQ FLT  
INT CL<sup>4</sup> B41J G01D  
updated as appropriate

2208829

1/5

FIG. 1

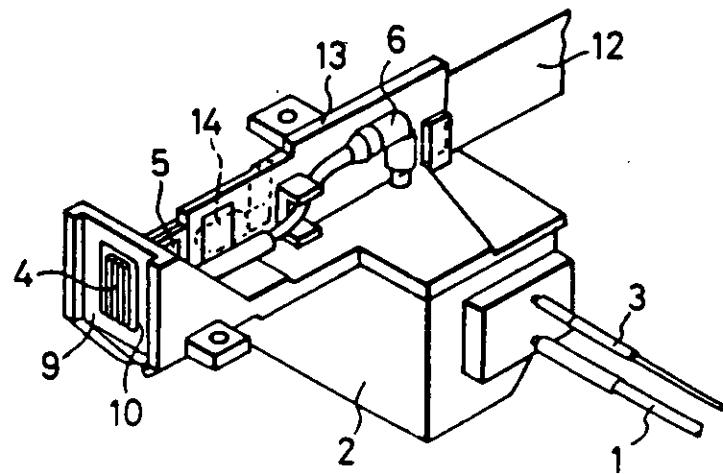
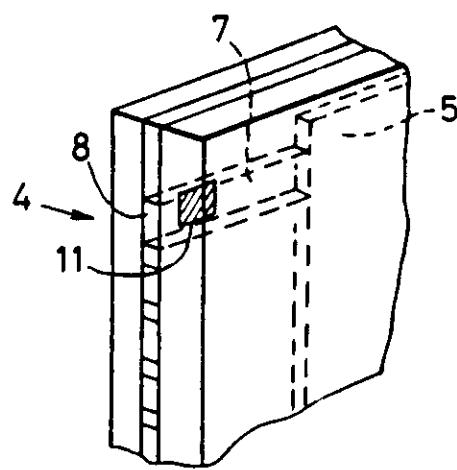




FIG. 2



2208829

25

FIG. 3

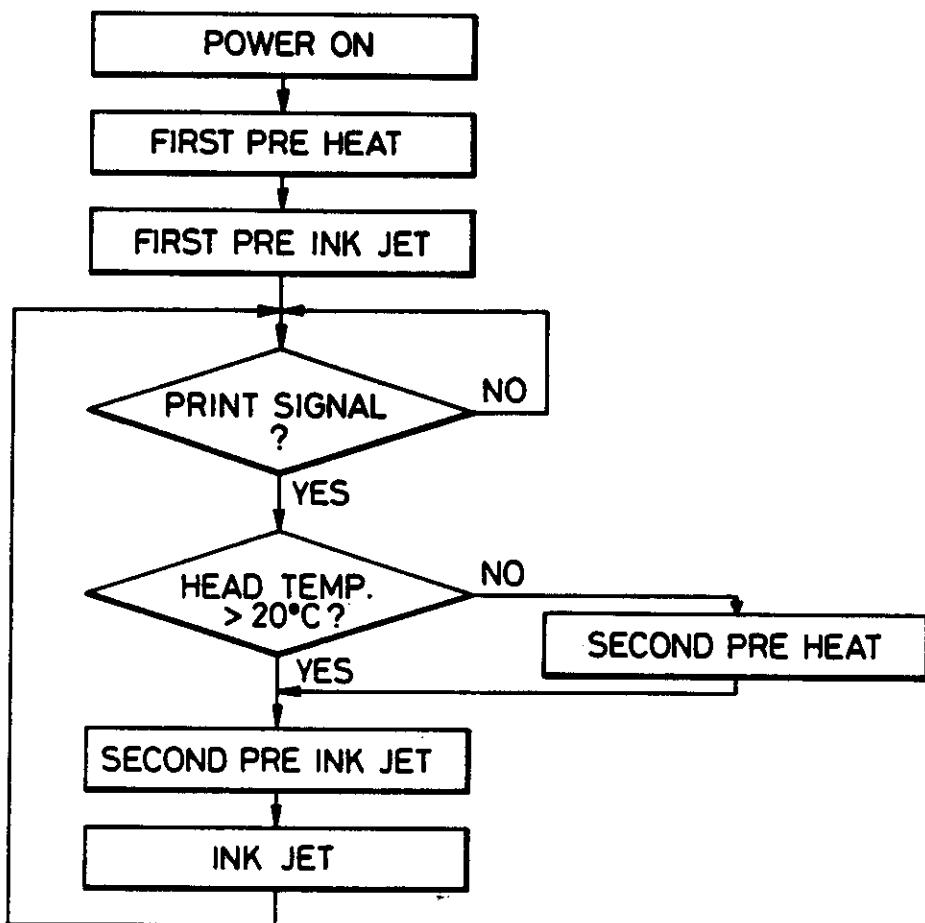
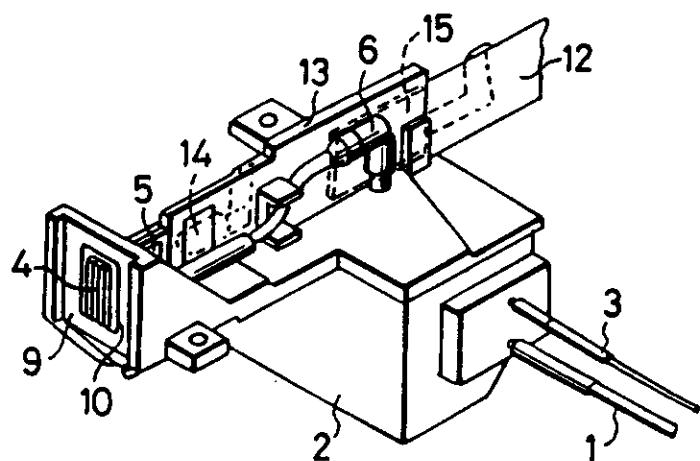




FIG. 4



2208829

35

FIG. 5

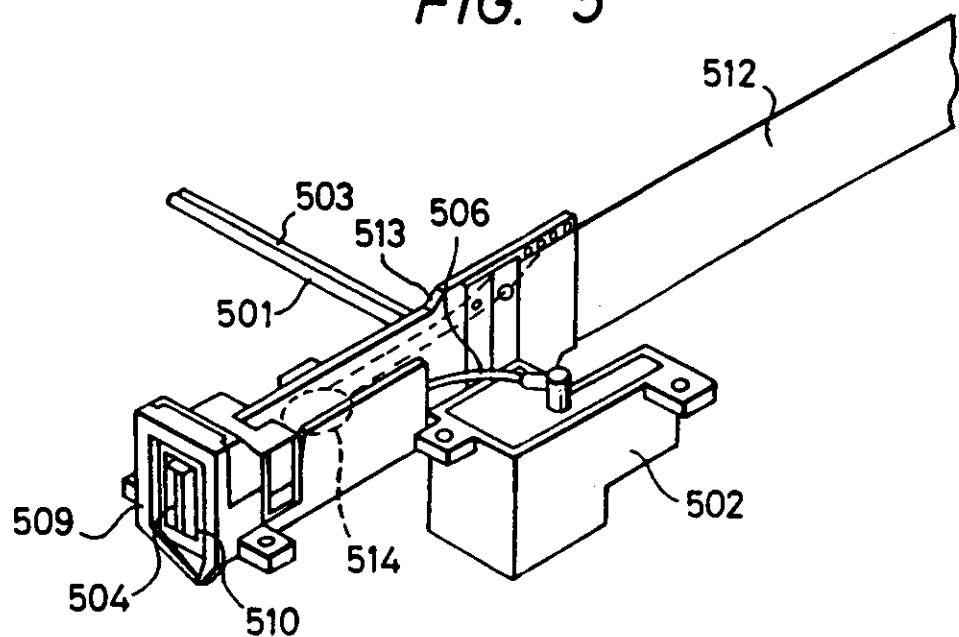
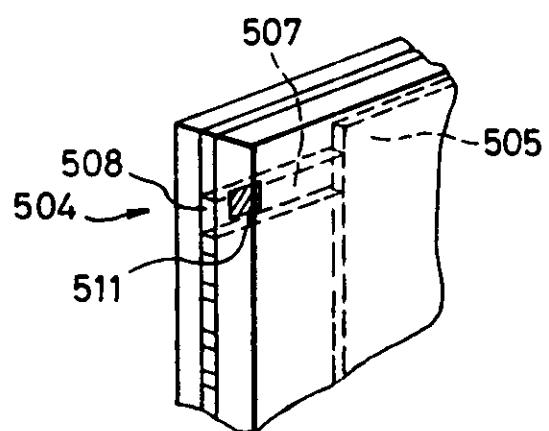




FIG. 6



4/5

FIG. 7

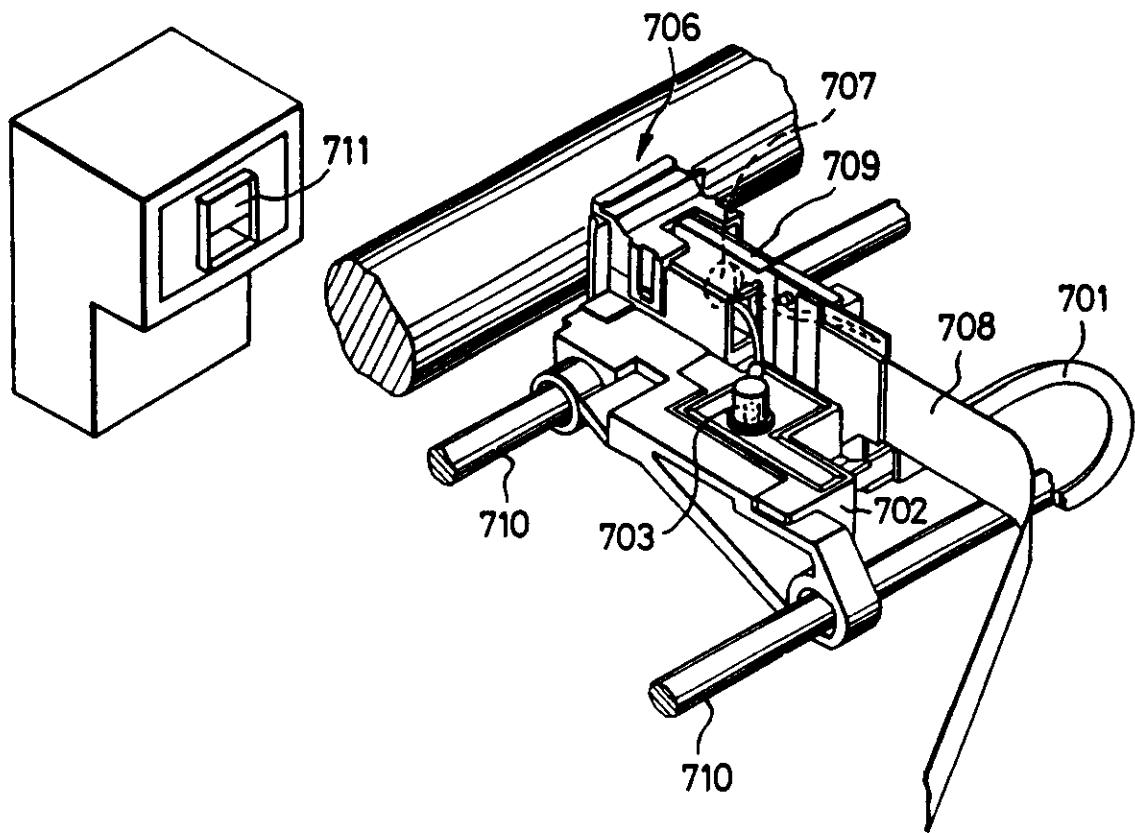
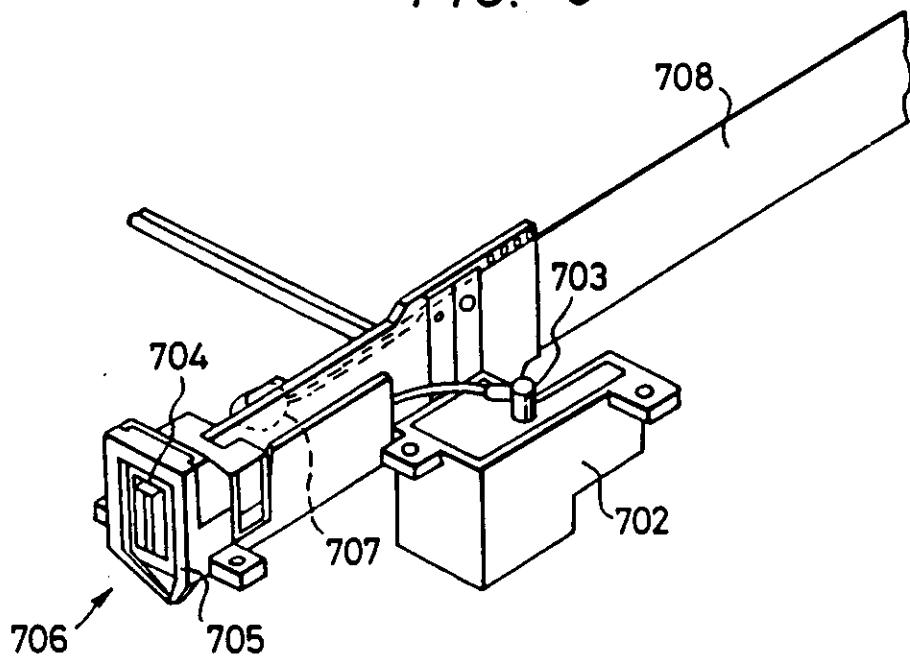




FIG. 8



2208829

5/5

FIG. 9

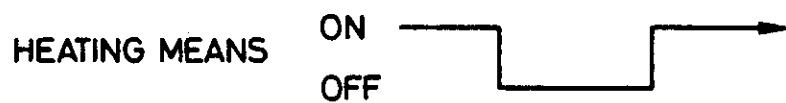
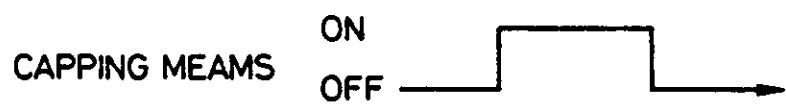
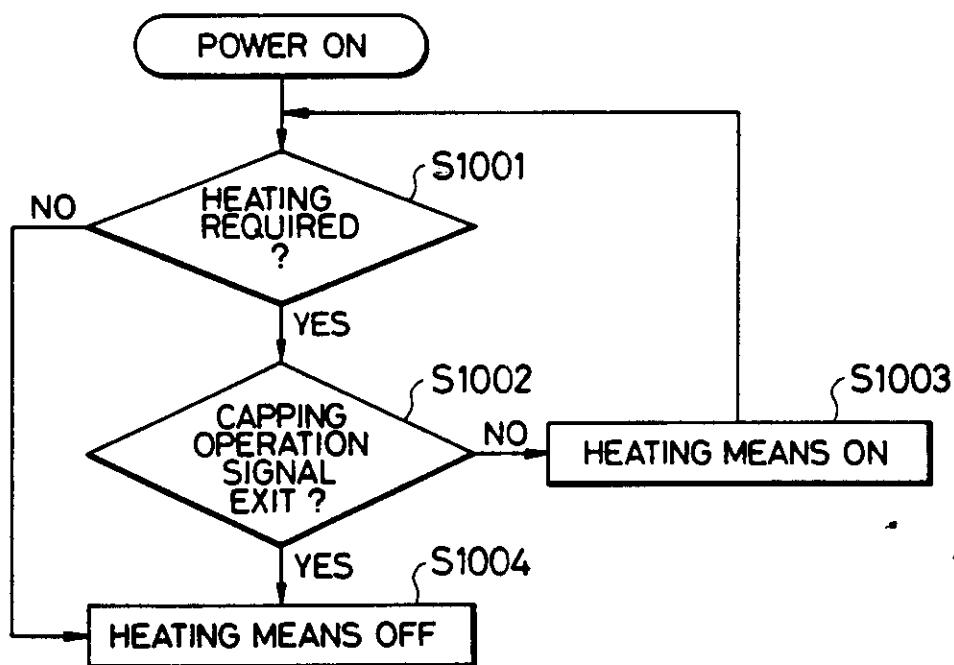





FIG. 10



Liquid-Discharge Recording Apparatus

5

The present invention relates to a liquid-discharge recording apparatus and, more particularly, to a liquid-discharge recording apparatus having the mechanism to maintain a viscosity of an ink 10 to be emitted so as to be fitted for emission at least when the ink is emitted.

According to liquid-discharge recording apparatuses, a recording liquid (for example, ink) is held in an ink vessel, the ink is led to a recording head unit from this ink vessel, a nozzle provided in the recording head unit is driven in response to a print pattern signal, and at the same time the ink is emitted from a discharge opening at the head of the 15 nozzle, thereby performing the recording such as the printing or the like on a recording material such as a paper or the like. The ink emitted forms a jet liquid droplet and is deposited on the recording material. 20

As methods of emitting the ink onto the 25 recording material, the method whereby an electro-mechanical converter such as, e.g., a piezoelectric device or the like is used, the method whereby an

1 electrothermal energy converter is used, and the like  
are known. According to the method whereby the  
electrothermal energy converter is used, the ink in  
the nozzle is heated by the electrothermal energy  
5 converter to cause a change in pressure of the ink,  
thereby emitting the ink.

In the liquid-discharge recording apparatuses  
to which the above-mentioned emitting methods and other  
conventional emitting methods are applied, it is a  
10 general manner that the discharge opening at the head  
of the nozzle to emit the ink is always open into the  
open air irrespective of whether the apparatus is  
operating or not. Therefore, in the case where the  
recording is not performed for a long time, the water  
15 and volatile organic solvent or the like which are the  
components of the ink evaporate into the open air from  
the inks remaining at the discharge opening and in the  
portion near the discharge opening. Thus, the viscosity  
of the residual ink increases and exceeds a range of  
20 viscosity necessary for emission, causing a problem  
such that no ink is emitted in spite of the fact that a  
print signal is applied immediately after the apparatus  
operated and the recording was restarted.

In addition, there is also another problem such  
25 that a temperature of the ink decreases at low  
temperatures in winter season or the like, so that the  
viscosity of the ink also increases.

1 To solve the problem of the increase of the  
viscosity of the ink mentioned above, there has been  
proposed the method whereby the ink is heated just  
before the recording is restarted, namely, just before  
5 the ink is again emitted, and the temperature of the  
ink is increased, thereby reducing the viscosity and  
maintaining it to a predetermined viscosity range.

Even when the environmental temperature  
is constant, the heating condition is also largely  
10 changed depending on the use state of the recording  
apparatus. Namely, due to the use of the recording  
apparatus, all of the thermal energy applied from the  
electrothermal energy converter to emit the ink  
droplets from the discharge opening, for example, is  
not necessarily used to form the ink droplets but a  
part of this thermal energy increases the temperature  
of the peripheral members of the electrothermal energy  
converter. Therefore, the temperature of the portion  
where the discharge opening is formed immediately after  
the completion of the recording is largely changed as  
compared with the temperature before the start of the  
recording, so that there is a problem such that, for  
instance, when the ink is heated at the restart of the  
recording just after the end of the recording, the ink  
is overheated and the viscosity overdecreases.

In order to take account of the above problem, the present invention provides a liquid-discharge recording apparatus comprising:

5 a recording head having electrothermal energy converting means for generating an energy which is used to emit a liquid in response to an emission signal;

emission signal generating means for generating said emission signal;

10 heating signal generating means for generating an electrical signal which has a level within a range such as not to emit any liquid but which is of a sufficient level to cause the liquid to be heated and is applied to said electrothermal energy converting 15 means; and

wherein the content of said electrical signal which is applied within the range such as not to emit any liquid droplet is made to differ to bring about a first heating mode when the power supply of said 20 apparatus is turned on and a second heating mode when recording is started after an interruption with the power supply of the apparatus turned on.

During preheating, the heating condition is largely changed due to the circumstances under which the recording apparatus is used. Namely, there is a drawback such that if the preheating condition is 5 determined so as to obtain good emission of the ink droplets even under low temperature environment (for example, 5°C), the viscosity of the ink becomes too low due to the heating under high temperature environment (e.g., 35°C), so that the ink viscosity is 10 out of the range necessary for good emission. On the contrary, in the case where the preheating condition is set so as to derive a good ink viscosity under high temperature environment, the necessary viscosity cannot be derived under low temperature environment.

15

In order to take account of this problem, in the apparatus of the present invention, there is preferably provided means for detecting a temperature of the liquid in the recording head, the heating 20 signal generating means being driven on the basis of the temperature information detected by said temperature detecting means.

Reference is directed to United Kingdom Patent Application No 8531677 (GB 2169856A) from which this application is divided.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention will now be described, by way of example only, in the accompanying drawings, in which

Fig. 1 is a schematic perspective view of a recording head unit of a liquid-discharge recording apparatus for explaining the first embodiment of the present invention;

Fig. 2 is an enlarged diagram of a nozzle unit of Fig. 1;

Fig. 3 is a flowchart showing the heating and pre-ink-jet controls in the apparatus of Fig. 1;

Fig. 4 is a schematic perspective view of a recording head unit for use in another example;

Fig. 5 is a schematic perspective view of a recording head unit in a liquid-discharge recording apparatus for use in the second embodiment;

Fig. 6 is an enlarged perspective view of a nozzle unit in Fig. 5;

Fig. 7 is a rear perspective view of the main part of a liquid-discharge recording apparatus according to the third embodiment;

1       Fig. 8 is a front perspective view of a  
recording head unit in Fig. 7;

5       Fig. 9 is a timing chart showing examples of  
operation timings of capping means and heating means;  
and

10      Fig. 10 is a flowchart showing an example of an  
operation procedure for controlling the operation of  
the heating means on the basis of the operation of the  
capping means.

10

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

15      In the case of the first embodiment of a  
liquid-discharge recording apparatus according to the  
present invention, a temperature sensor to detect a  
temperature of a recording head unit in which a  
discharge opening is formed is provided and the heating  
condition is selected on the basis of a detection  
signal of this temperature sensor.

20      An electrothermal energy converter for heating  
can also serve as an electrothermal energy converter  
for emission. Namely, in the recording apparatus of  
the type in which ink droplets are formed by heating  
and expanding the ink by the electrothermal energy  
converter for emission, two roles for emitting and  
25     heating can be achieved by changing a level of an  
electrical signal which is applied to the electro-  
thermal energy converter. In this case, as compared

- 1 with the case where another electrothermal energy converter for heating is separately provided, only the minimum portion which needs to be heated can be heated, so that the influence of the heat to the peripheral
- 5 portion of the electrothermal energy converter can be suppressed to the minimum degree.

Various kinds of controlling methods can be considered with regard to how to control the electrothermal energy converter for heating in dependence on the temperature of the head unit detected by the temperature sensor. However, it is the most general method that the electrical signal for heating is applied to the electrothermal energy converter for heating until the temperature of the recording head unit near the nozzle becomes a predetermined temperature.

The heating is ordinarily performed immediately before the recording is started. It is desirable that the control of the electrothermal energy converter for heating is carried out by changing the level of the electrical signal in consideration of the recording interruption or stop period before the recording is started.

The first embodiment of the invention will then be described hereinbelow with reference to Figs. 1 to 3. Fig. 1 is a schematic perspective view of the recording head unit of the liquid-discharge recording apparatus

1 according to the first embodiment. Fig. 2 is an  
enlarged diagram of the nozzle unit in Fig. 1.

In Fig. 1, an ink is led from a main tank (not shown) for storage of the ink to a sub-tank 2 for temporary storage of the ink by an ink supply tube 1. The ink a quality of which deteriorated and which could not be used is inhaled into a recovery pump (not shown) from the sub-tank 2 or the like through a suction tube 3. The sub-tank 2 is communicated with a liquid chamber 5 provided behind a nozzle unit 4 through an ink supply tube unit 6, thereby allowing the ink to be supplied and inhaled. In Fig. 2, twenty-four nozzles 7 are vertically arranged in front of the liquid chamber 5. The head of each of the nozzles 7 forms a discharge opening 8. The ink is emitted from the discharge opening 8 toward a recording material. Those plurality of nozzles 7 constitute the nozzle unit 4. The nozzle unit 4 is fixed to a bushing 10 locating at the center of a front plate 9 arranged in front of the recording head. An electrothermal energy converter 11 for both emitting ink droplets and heating the ink is provided in each nozzle 7. Electrical signals are supplied to the converters 11 through an electrical wiring section 12. The wiring section 12 and supply tube unit 6 are together supported to a base plate 13. A temperature sensor 14 consisting of a thermistor is attached near the liquid chamber 5 provided for the base plate 13.

1        A control method of the liquid-discharge  
recording apparatus having the above-mentioned  
arrangement will then be explained with reference to  
Fig. 3. As described above, the electrothermal energy  
5      converter 11 is used for both emitting and heating.  
The heating of the ink is carried out in two kinds of  
heating modes; namely, the first heating mode in that  
the heating is performed at the restart of the  
recording after the stop of the recording when a power  
10     supply of the apparatus is OFF; and the second heating  
mode in that the heating is performed at the restart of  
the recording after the stop of the recording when the  
power supply of the apparatus is ON. In this example,  
the pre-ink-jet of ink droplets is also carried out  
15     prior to performing the actual printing. The applying  
levels of the foregoing first and second heating  
electrical signals and of the emitting electrical  
signal are shown in Table 1.

1

TABLE 1

|    | Voltage<br>(V)                             | Pulse<br>width<br>(μsec) | Frequency<br>(kHz) | Applying time,<br>the number of<br>pulses, etc.                        |
|----|--------------------------------------------|--------------------------|--------------------|------------------------------------------------------------------------|
| 5  | 1st heating<br>electrical<br>signal        | 23.5                     | 2                  | 16<br>Apply until the<br>recording head<br>temperature<br>becomes 45°C |
| 10 | 2nd heating<br>electrical<br>signal        | 23.5                     | 2                  | 35<br>Apply for one<br>second                                          |
| 15 | Emitting<br>electrical<br>signal           | 23.5                     | 10                 | 2                                                                      |
|    | 1st pre ink<br>jet<br>electrical<br>signal | 23.5                     | 10                 | 2<br>Apply 100<br>pulses                                               |
|    | 2nd pre ink<br>jet<br>electrical<br>signal | 23.5                     | 10                 | 2<br>Apply 100<br>pulses                                               |

TABLE 2 (Compositions of the ink)

|                      |                 |
|----------------------|-----------------|
| C.I. direct black 19 | 2 weight parts  |
| Diethylene glycol    | 30 weight parts |
| Water                | 70 weight parts |

20  
25  
Namely, after the recording was stopped in the  
OFF state of the power supply of the apparatus, when  
this power supply is turned on, the first heating is  
performed and the first heating electrical signal of a

1 voltage 23.5 V, a pulse width 2  $\mu$ sec, and a frequency  
16 kHz is applied until the temperature of the  
recording head becomes 45°C. Thereafter, to perform  
the pre-ink-jet which is not used for printing, the  
5 first pre-ink-jet electrical signal of a voltage 23.5 V,  
a pulse width of 10  $\mu$ sec, and a frequency 2 kHz is  
applied by 100 pulses. The apparatus waits for a  
printing signal after completion of the preliminary  
emission of the ink. When the printing signal is  
10 applied, if the temperature of the recording head  
exceeds 20°C, the second pre-ink-jet is carried out.  
This is because a consideration is made to the case  
where the recording interruption period after the end  
of the first pre-ink-jet becomes long. The second  
15 pre-ink-jet is performed by applying 100 pulses of the  
second pre-ink-jet electrical signal of a voltage  
25.5 V, a pulse width 10  $\mu$ sec, and a frequency 2 kHz.  
After completion of the second pre-ink-jet, the  
inherent emission of ink droplets is carried out and  
20 the recording is started. When the temperature of the  
recording head is below 20°C, the second heating is  
performed and the recording head temperature is  
controlled so as to become 20°C or more. This second  
heating is executed by applying the second heating  
25 electrical signal of a voltage 23.5 V, a pulse width  
2  $\mu$ sec, and a frequency 35 kHz for one second.

1        To explain the effect of this embodiment, the inventors of this application have performed the experiments to compare the embodiment and Comparison Examples 1 and 2, which will be explained later.

5        **Experimental conditions:**

      The environmental condition under which the liquid-discharge recording apparatus is used was set to two kinds: one is the condition at 10°C and 20%RH; and the other is the condition at 40°C and 20%RH. The 10 compositions of the ink used are shown in Table 2. The condition before the recording is restarted is set to three kinds: the first condition is that the recording was interrupted for five seconds when the power supply of the apparatus was ON; the second condition is that 15 the recording was interrupted for one hour when the power supply of the apparatus was ON; and the third condition is that the recording was stopped for 72 hours when the power supply of the apparatus was OFF. The dimensions of each of the 24 discharge openings are 20 50 x 40 µm and the recording unit in which they are vertically arranged in a line at regular intervals of 0.141 mm was used. It has been confirmed that when the signal to emit the ink droplets was applied for five minutes just before the recording is interrupted or 25 stopped, the ink droplets were accurately emitted.

      The control was performed in accordance with the flowchart of Fig. 3 as the experimental condition of the embodiment.

1        For Comparison Example 1, the recording was  
      restarted without performing the first and second  
      heating operations nor executing the first and second  
      emitting operations.

5        For Comparison Example 2, in the case of  
      restarting the recording in the recording stop state,  
      the signal of the same voltage, pulse width, and  
      frequency as those of the first heating electrical  
      signal of the embodiment was heated for twenty seconds,  
10       and the same signals as the electrical signals for the  
      pre-ink-jet of the embodiment were applied, and the  
      heating and pre-ink-jet were carried out. In the case  
      of restarting the recording in the recording inter-  
      ruption state, the electrical signal of the same  
15       voltage, pulse width, and frequency as those of the  
      second heating electrical signal of the embodiment was  
      applied for one second and the heating was performed.

      The results of those three experiment examples  
      are shown in Table 3 for comparison.

1

TABLE 3

The number of ink droplets which are not emitted until the ink droplets are emitted from all of 24 discharge openings

5

10

15

20

|                                                                                           | Recording interruption or stop period | Environment | Experiment 1                                    | Comparison Example 1                            | Comparison Example 2 |
|-------------------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------------------------------------|-------------------------------------------------|----------------------|
| Recording interruption when the power supply of the recording apparatus is ON (5 seconds) | 10°C<br>20%RH                         | ○           | ○                                               | ○                                               |                      |
|                                                                                           | 40°C<br>20%RH                         | ○           | ○                                               | No droplet is emitted from 5 discharge openings |                      |
| Recording interruption when the power supply of the recording apparatus is ON (1 hour)    | 10°C<br>20%RH                         | ○           | 2,000                                           | ○                                               |                      |
|                                                                                           | 40°C<br>20%RH                         | ○           | ○                                               | ○                                               |                      |
| Recording stop when the power supply of the recording apparatus is OFF (72 hours)         | 10°C<br>20%RH                         | ○           | No droplet is emitted from 3 discharge openings | ○                                               |                      |
|                                                                                           | 40°C<br>20%RH                         | ○           | ○                                               | No droplet is emitted from 5 discharge openings |                      |

25

It has been found from the results of the experiments shown in Table 3 that the case of the embodiment of the invention in which the control was performed in accordance with the flowchart of Fig. 3 is superior to Comparison Examples 1 and 2.

1        In the above embodiment, when the power supply  
of the apparatus is turned on in the recording stop  
state, the heating electrical signal is applied until  
the temperature of the recording head becomes a set  
5        value, and in the case where the recording is restarted  
in the recording interruption state, the content  
(voltage, pulse width, frequency, applying time) of the  
heating electrical signal is determined in accordance  
with the temperature of the recording head. Further,  
10      as a modified form of this embodiment, the recording  
stop or interruption period of the apparatus is counted  
and the supply of the heating electrical signal may be  
controlled on the basis of the count data of the  
recording stop or interruption period and the  
15      temperature data of the recording head. In addition,  
as shown in Fig. 4, the electrothermal energy converter  
for heating may be replaced by an external heater 15  
which is separately provided.

      In the case of the second embodiment of a  
20      liquid-discharge recording apparatus of the present  
invention, the foregoing object is accomplished by a  
constitution comprising: first heating signal  
generating means which has an electrothermal energy  
converter for heating a liquid to emit the liquid in  
25      response to the supply of an electrical signal and  
which generates an electrical signal which is applied  
within a range such as not to emit any liquid to the

- 1 electrothermal energy converter; and second heating signal generating means for generating an electrical signal which is applied to an electrothermal energy converter provided to heat the liquid separately from
- 5 the foregoing electrothermal energy converter, wherein the first and second heating signal generating means are constituted by the same means.

Namely, the electrothermal energy converter provided to form the ink droplets and the electrothermal energy converter separately provided to preheat are used to preheat the ink.

The liquid-discharge recording apparatus according to the second embodiment of the invention will then be described with reference to Figs. 5 and 6.

15 Fig. 5 is a schematic perspective view of a recording head unit in the liquid-discharge recording apparatus and Fig. 6 is an enlarged diagram of a nozzle unit in Fig. 5.

In Fig. 5, the ink is led from a main tank (not shown) for storage of the ink to a sub-tank 502 for temporary storage of the ink through an ink supply tube 501. The ink a quality of which deteriorated and which could not be used is inhaled to a recovery pump (not shown) from the sub-tank 502 or the like through a suction tube 503. The sub-tank 502 is communicated with a liquid chamber 505 (see Fig. 6) arranged behind the nozzle unit 504 through an ink supply tube unit 506,

1 thereby allowing the ink to be supplied and inhaled.  
In Fig. 6, a nozzle 507 is formed in front of the  
liquid chamber 505. For example, twenty-four nozzles  
507 are vertically arranged. The head of each nozzle  
5 507 forms an ink discharge opening, namely, an orifice  
508. The ink is emitted toward a recording material  
from the orifice 508. Each nozzle 507 constitutes the  
nozzle unit 504. The nozzle unit 504 is fixed to a  
bushing 510 locating at the center of a front plate 509  
10 arranged in front of the recording head.

An electrothermal energy converter 511 to emit  
the ink and form ink droplets is provided in each  
nozzle 507 and serves to emit the ink. Another  
electrothermal energy converter 514 is arranged near  
15 the liquid chamber 505. Electrical signals are supplied  
to the electrothermal energy converters 511 and 514  
through an electrical wiring section 512. The  
electrical wiring section 512 and supply tube unit 506  
are together supported by a base plate 513.

20 According to the liquid-discharge recording  
apparatus shown in Figs. 5 and 6 described above, the  
electrothermal energy converter 511 provided to form  
the ink droplets and the electrothermal energy  
converter 514 provided separately to preheat are  
25 together used to preheat the ink. The use of both of  
those converters makes it possible to reduce the  
preheating time and to prevent the heat from being

1 concentrated to a single portion, so that the bad influence on the peripheral parts can be prevented. On one hand, the electrical signal which is applied is determined in accordance with various conditions such

5 as the applying condition of the ink-jet signal in the liquid-discharge recording apparatus, temperature characteristic of the ink which is used, particularly, the temperature characteristic of the viscosity of the ink, viscosity change characteristic of the ink in the

10 recording interruption or stop state, and the like. For example, it is necessary to individually control the voltage, frequency, pulse width, and the like of the electrical signal to predetermined values and then apply the signal.

15 As the heating electrical signal generating means for applying the electrical signals to those two kinds of electrothermal energy converters 511 and 514, one electrical signal generating means is commonly used. The heating electrical signal to heat the electrothermal

20 energy converter 511 to form the ink droplets and the heating electrical signal to heat (i.e., preheat) the electrothermal energy converter 514 within a range such as not to emit any ink droplet are together generated from the common heating electrical signal generating

25 means.

Various kinds of timings to preheat the ink are considered. As one of them, the preheating signal may

- 1 be applied immediately before the ink-jet signal is applied. On one hand, the preheating signal may be also always applied in the ON state of the power supply of the recording apparatus although no recording is
- 5 performed (in the recording interruption state). Or, the preheating signal may be applied for a temporary period when the power supply is again turned on after the state whereby the power supply of the recording apparatus is OFF (after the recording stop state).
- 10 Further, the recording interruption period is automatically counted in the recording interruption state and after an expiration of the recording interruption period longer than a predetermined time, the preheating signal may be also applied.
- 15 To which extent the ink is preheated, namely, to which degree the level of the preheating electrical signal is controlled differs depending on various conditions. Namely, various cases are considered in dependence on the characteristic of the recording apparatus, the physical property of the ink, and the environmental condition such as the temperature, humidity, and the like at the location where the recording apparatus is installed and used. The level of the preheating electrical signal may be properly
- 20 determined in accordance with the respective conditions or the like.
- 25

1        Next, an explanation will be made with respect  
to the results of the comparison experiments in the  
cases where the recording is restarted after the ink  
was preheated according to the embodiment of the  
5        invention using the liquid-discharge recording  
apparatus shown in Figs. 1 and 2 and where the  
recording is restarted without performing the  
preheating at all. As the ink used in the experiments,  
the ink of the compositions shown in Table 2 was used.

10       The dimensions of each of the 24 orifices  
(discharge openings) 507 are 50 x 40  $\mu\text{m}$ . These  
orifices are vertically arranged in a line at regular  
intervals of 0.141 mm. The liquid-discharge (i.e.,  
ink-jet) recording apparatus was used under the  
15       environment at 25°C and 30%RH. The ink-jet recording  
apparatus was kept in the recording interruption state  
for one hour. In this example, the electrical signal  
to heat (preheat) the ink was sent to the electro-  
thermal energy converter 511 to form the ink droplets  
20       (to emit the ink) during this interval and the heating  
electrical signal was also sent to the other  
electrothermal energy converter 514 which always  
operates within a range such as not to emit any ink.  
As the comparison example, the method whereby those  
25       preheating operations are not performed at all was used.  
Table 4 shows the voltages, pulse widths, and  
frequencies of those heating electrical signals and of

1 the electrical signal to emit the ink (to form the ink  
droplets) to the electrothermal energy converter 511.

TABLE 4

|                                                       | Voltage<br>(V) | Pulse<br>width<br>( $\mu$ sec) | Frequency<br>kHz |
|-------------------------------------------------------|----------------|--------------------------------|------------------|
| Ink-jet electrical signal<br>to the converter 511     | 23.5           | 10                             | 2                |
| Ink heating electrical<br>signal to the converter 511 | 23.5           | 5                              | 10               |
| Heating electrical signal<br>to the converter 514     | 23.5           |                                |                  |

The results are as shown in Table 5.

TABLE 5

|                    | Recording<br>interruption<br>period | The number of ink droplets<br>which are not emitted until<br>the ink droplets are emitted<br>from all of 24 orifices |
|--------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| The embodiment     | One hour                            | 0                                                                                                                    |
| Comparison example | One hour                            | 1000                                                                                                                 |

15 In the case of the third embodiment of a  
liquid-discharge recording apparatus of the present  
invention, the viscosity of the ink is maintained by  
20 controlling the operation of heating means in response  
to the operation of capping means. Due to this, the  
unnecessary heating of the ink during the recording

1 interruption period can be prevented and the viscosity  
range of the ink can be maintained to the necessary  
range.

The ink heating means mentioned above includes  
5 the means in which a heat generation level of an  
electrothermal energy converter (heating device) which  
is used to emit the ink and to form the ink droplets is  
reduced and this converter is used, the means in which  
a separate auxiliary heating device is used, and the  
10 means in which both of those electrothermal energy  
converter and auxiliary heating device are used. The  
capping means, on one hand, is not limited to the  
foregoing cap but an evaporating device containing an  
ink evaporation component may be positioned at a  
15 discharge opening.

An example of a structure of the liquid-discharge  
recording apparatus according to the third embodiment of  
the invention will then be explained with reference to  
Figs. 7 and 8. The ink is supplied from a main tank  
20 (not shown) for storage of the ink to a sub-tank 702  
for temporary storage of the ink through a supply tube  
arranged in a tube 701. A suction tube, which will be  
explained hereinafter, to inhale the choked ink from a  
discharge opening or the like is also arranged in the  
25 tube 701 and connected to a suction pump (not shown).  
The sub-tank 702 is communicated with a liquid chamber  
arranged behind a nozzle, which will be explained

1 hereinafter, by a supply tube unit 703. A plurality  
of nozzles are vertically arranged in front of the  
liquid chamber. The heads of the nozzles are supported  
by a bushing 704 and open. The bushing 704 is fixed  
5 to a front plate 705 and constitutes a nozzle unit 706.  
An electrothermal energy converter 707 provided in the  
liquid chamber (not shown) is used to keep the  
temperature of the ink constant. Electrical signals to  
apply energies to the electrothermal energy converter  
10 707 and to a heating device, provided in correspondence  
to each discharge opening, for emitting the ink and  
forming the ink droplets are supplied through an  
electrical wiring section 708 consisting of an FPC  
(flexible printed circuit). The electrical wiring  
15 section 708, supply tube unit 703, and nozzle unit 706  
are supported by a base plate 709. The case plate 709  
and sub-tank 702 and the like constitute a recording  
head unit as a whole. This recording head unit moves  
along a shaft 710 and performs the recording operation.

20 This recording head unit is returned to a  
predetermined home position when the recording is  
interrupted. The nozzle unit 706 is covered with a cap  
711 at the home position, thereby preventing the  
evaporation component of the ink from being evaporated  
25 from the head of the nozzle. No electrical signal is  
applied to the electrothermal energy converter 707 at  
the home position, so that the heating of the ink is

1 stopped. Due to this, it is possible to prevent that  
the heating device 707 further operates in the state  
in that the cap 711 was coupled and the viscosity  
range of the ink exceeds the necessary range. It is  
5 further possible to prevent that the evaporation  
component of the ink which is heated and is likely to  
be evaporated leaks from the cap 711 when the recording  
is interrupted for a long time and the viscosity of the  
ink contrarily increases.

10 In the above example, another heating device  
707 different from a heating device which is provided  
for a nozzle (not shown) and serves to form the ink  
droplets was used as the ink heating means. However,  
in this modified form, an electrical signal to this  
15 heating device is set to a low level and applied,  
thereby enabling the heating device to form the ink  
droplets to be also used as the heating means for  
keeping the ink temperature constant. On one hand,  
although the cap 711 was used as the capping means at  
20 the head of the nozzle in the foregoing example, in  
another modified form, further, an evaporating device  
containing an evaporation component of the ink may be  
allowed to exist in the cap 711 and may be also used as  
the capping means. In this case as well, it is  
25 possible to prevent that the ink evaporation component  
is evaporated at the home position when the recording  
is interrupted and the ink viscosity increases.

1 Therefore, the further heating of the ink can be  
2 stopped, so that the viscosity range of the ink can  
3 optimized.

4 As the above-mentioned evaporating device, the  
5 ink droplets emitted from the discharge opening may be  
6 preliminarily emitted into an absorption material such  
7 as a sponge or the like and the ink may permeate this  
8 absorption material. In this case, it is preferable  
9 to perform the pre-ink-jet immediately after the  
10 recording head unit was returned to the home position.

11 The operation of the heating means for  
12 maintaining the ink temperature to a predetermined  
13 value as mentioned above is controlled by control means  
14 in response to the operation of the capping means.

15 In this control means, the operation of the  
16 capping means is discriminated by, for example, an  
17 operation signal of the capping means or the ON/OFF of  
18 a switch which operates interlockingly with the  
19 movement of the capping means, or the like.

20 Fig. 9 is a timing chart showing an example of  
21 the operation timing between the capping means and the  
22 heating means. Under a fixed condition, it is possible  
23 to control in a manner such that the heating means is  
24 set to the inoperative mode (OFF state) when the  
25 capping means is operating (ON state) as shown in Fig. 9.

Fig. 10 is a flowchart showing an example of an  
operation procedure of the control means in the case

1 of controlling the heating means in response to the  
operation of the capping means as shown in the timing  
chart of Fig. 9.

In Fig. 10, when the power supply of the  
5 apparatus is turned on, in step S1001, the ink  
temperature is first detected by a temperature sensor  
attached to the recording head unit, or the like, and  
a check is made to see if it is necessary to heat the  
ink or not. If YES, a check is then made in step  
10 S1002 to see if the capping means is operating or not.  
If the capping means is in the inoperative mode and no  
operation signal is supplied, namely, if NO in step  
S1002, the heating means is turned on to heat the ink  
in step S1003. When the heating means is ON, the  
15 operations in steps S1001 to S1003 are repeated and the  
heating operation is continued until the ink temperature  
reaches a predetermined value.

When it is determined that the ink temperature  
has increased and reached the temperature at which the  
20 heating is not required in step S1001, step S1004  
follows irrespective of the presence and absence of the  
capping operation signal and the heating means is  
turned off to interrupt the heating.

On one hand, even if the ink temperature does  
25 not increase to the predetermined value yet, when the  
capping operation signal exists in step S1002, namely,  
when the capping means is operating, step S1004 follows

1 and the heating means is turned off to interrupt the  
heating.

5 All of the above-described examples can be  
applied irrespective of the presence and absence of the  
sub-tank 2 or the presence and absence of the carriage,  
or the like.

10 As described above, the temperature of  
the recording head unit in which the ink discharge  
openings are formed is detected and the electrothermal  
energy converter for heating is controlled on the  
basis of this temperature. Therefore, the ink can be  
heated in consideration of the environmental condition  
under which the recording apparatus is used and of the  
15 recording interruption or stop period before the  
restart of the recording. In other words, since the  
operating environmental temperature and the recording  
interruption and stop periods are reflected in the  
temperature of the recording head unit, the optimum  
20 heating can be carried out by properly selecting the  
heating condition in accordance with the temperature of  
the recording head unit.

25 Further, as described above, the preheating of  
the ink which is performed when the recording is  
restarted is carried out using both the electrothermal  
energy converter provided to form the ink droplets and

1 the electrothermal energy converter separately  
provided to preheat the ink. Thus, the preheating  
time can be reduced and it is further prevented that  
the heat for preheating is concentrated to a single  
5 portion, so that the bad influence on the peripheral  
parts can be prevented.

In addition,  
there is provided the control means for controlling the  
operation of the heating means for holding the ink  
10 temperature to a predetermined value on the basis of  
the operation of the capping means for covering the ink  
discharge opening. Therefore, it is possible to obtain  
the liquid-discharge recording apparatus which can  
automatically suppress that the ink viscosity changes  
15 to a value out of a desired viscosity range and can  
efficiently perform the recording with an excellent  
quality.

CLAIMS

1. A liquid-discharge recording apparatus comprising:

5           a recording head having electrothermal energy  
converting means for generating an energy which is  
used to emit a liquid in response to an emission  
signal;

10           emission signal generating means for generating  
said emission signal;

15           heating signal generating means for generating an  
electrical signal which has a level within a range  
such as not to emit any liquid but which is of a  
sufficient level to cause the liquid to be heated and  
is applied to said electrothermal energy converting  
means; and

20           wherein the content of said electrical signal  
which is applied within the range such as not to emit  
any liquid droplet is made to differ to bring about a  
first heating mode when the power supply of said  
apparatus is turned on and a second heating mode when  
recording is started after an interruption with the  
power supply of the apparatus turned on.

2. An apparatus as claimed in claim 1, further comprising means for detecting a temperature of the liquid in the recording head, the heating signal generating means being driven on the basis of the 5 temperature information detected by said temperature detecting means.

3. A liquid-discharge recording apparatus according to claim 2, wherein said apparatus is arranged so that 10 when a power supply of said apparatus is turned on, a temperature of said recording head reaches a set temperature by said electrical signal which is applied within the range such as not to emit any liquid droplet.

15  
4. A liquid-discharge recording apparatus according to any preceding claim, wherein a frequency of the electrical signal applied within the range such as not to emit any liquid droplet at the time when said power supply is turned on is lower than a frequency of the 20 electrical signal at the time when the recording is restarted.

25  
5. A liquid-discharge recording apparatus according to any preceding claim, wherein after conducting the heating, the emission signal is applied to said

electrothermal energy converting means, so as to bring about preliminary emission irrelevant to the recording.

5       6. A liquid-discharge recording apparatus according to claim 5, wherein the emission irrelevant to the recording is conducted responsive to different emission signals at initial power-on and after a period of interruption of recording.

10      7. A liquid-discharge recording apparatus according to claim 6, wherein the signal for emission irrelevant to recording after a period of interruption of recording has a voltage level higher than that at power on.

15      8. A liquid-discharge recording apparatus according to any preceding claim, wherein another heating device different from said electrothermal energy converting means which is used to form liquid droplets is provided for said recording head.

20      9. A liquid-discharge recording apparatus according to any preceding claim, further comprising a  
25      subtank.

10. A liquid-discharge recording apparatus according to any preceding claim, further comprising a plurality of discharge openings for emitting liquids.

---

## REGISTER ENTRY FOR GB2208829

Form 1 Application No GB8828777.6 filing date 23.12.1985

## Priorities claimed:

28.12.1984 in Japan - doc: 59280716  
28.12.1984 in Japan - doc: 59280717  
28.12.1984 in Japan - doc: 59280718

Earlier Application Under Section 15(4): GB8531677.6 Pubn. No GB2169856 filed on 23.12.1985

## Title LIQUID-DISCHARGE RECORDING APPARATUS

## Applicant/Proprietor

CANON KABUSHIKI KAISHA, Incorporated in Japan, 30-2 3-chome, Shimomaruko, Ohta-ku, Tokyo, Japan [ADP No. 00363044001]

## Inventors

TAKASHI OHBA, 84-2 Tomuro, Atsugi-chi, Kanagawa-ken, Japan [ADP No. 03687043001]

HIROSHI IIDA, 3-10 Haramachida 5-chome, Machida-shi, Tokyo, Japan [ADP No. 03687027001]

HARUYUKI MATSUMOTO, 11-1-509 Shishigaya 3-chome, Setagaya-ku, Tokyo, Japan [ADP No. 03687050001]

## Classified to

B6F  
B41J

## Address for Service

BERESFORD & CO, 2-5 Warwick Court, High Holborn, London, WC1R 5DJ, United Kingdom [ADP No. 00001826001]

Publication No GB2208829 dated 19.04.1989

Examination requested 09.12.1988

Patent Granted with effect from 18.10.1989 (Section 25(1)) with title  
LIQUID-DISCHARGE RECORDING APPARATUS

---

\*\*\*\*\* END OF REGISTER ENTRY \*\*\*\*\*