WO 2004/104938 A1 |0 00000 0 0O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
2 December 2004 (02.12.2004)

(10) International Publication Number

WO 2004/104938 Al

(51) International Patent Classification’: GO6T 15/70 GALLO, Kevin, Thomas; 19235 222nd Way NE, Wood-
inville, WA 98072 (US). WONG, Gilman, K.; 10509

(21) International Application Number: 176th P1. NE, Redmond, WA 98052 (US). BLANCO,
PCT/US2003/015988 Leonardo Esteban; 9935 225th Ave. NE, Redmond, WA

(22) International Filing Date: 15 May 2003 (15.05.2003)

98053 (US).

(74) Agents: JOY, Mark et al.; Leydig, Voit & Mayer, Ltd.,
(25) Filing Language: English Suite 4900, Two Prudential Plaza, 180 North Stetson,
Chicago, IL 60601-6780 (EP).
(26) Publication Language: English (81} Designated States (national): AE, AG, AL, AM, AT, AU,
L. AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(30) Priority Data: CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
10/434,718 9 May 2003 (09.05.2003) US GM, HR, HU, ID, IL, IN, IS, P, KE, KG, KP, KR, KZ, L.C,
. LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(71) Applicant: MICROSOFT CORPORATION [US/US]; MX. MZ. NL. NO. NZ. OM. PH. PL. PT. RO. RU. SC. SD
One Microsoft Way, Redmond, Washington 98052 (US). SE ’SG ’SK ’SL :FJ rl:M rfN rfR :FT ’TZ ’U A ’UG’UZ’
VC, VN, YU, ZA, ZM, ZW.
(72) Inventors: CALKINS, Matt; 503 E. Thomas Street, Suite
204, Seattle, WA 98102 (US). BEDA, Joseph, Stephen, (84) Designated States (regional): ARIPO patent (GH, GM,

III; 3819 Densmore Avenue N, Seattle, WA 98103 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: CREATING AND EXECUTING ANIMATION BEHAVIOR FOR GUI

Application
200

Property
System

220
|
Y Dynamic
[Animation
Element Tree |l Collection
202 Class
226
Presenter C&';Z‘:'eosn
System 224
208 m——
Media Animation
{ntegration Classes
Layer Interface 222
206
N N
Timing Tree J
228
‘ J 204
| /
— —_ e — — — - _
) ‘ I
| Render Queue Visual Tree Visual Tree |
ltem (High Level) (Low Level)
| 213 210 12 |
(R _—— ==

Remote Machine Network
Communication Driver
214

Graphical Display Driver
216

(57) Abstract: A graphical display animation system (100) is
disclosed that supports timed modification of element property values
of elements within a graphical display. The animation system utilizes a
display structure for maintaining a set of elements (202) corresponding
to displayed objects within a graphically displayed scene. The
elements include a variable property value. The animation system also
utilizes a property system that maintains properties associated with
elements maintained by the display structure. The properties include
dynamic properties (410) that are capable of changing over time
and thus affecting the appearance of the corresponding element on a
graphical display. The animation system includes animation classes
(222), from which animation objects are instantiated and associated
with an element property at runtime. The animation object instances
provide time varying values affecting values assigned to the dynamic
properties maintained by the property system.

WO 2004/104938 A1 1IN} A080H0 T 00000 OO0 A

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ance Notes on Codes and Abbreviations" appearing at the begin-
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, ning of each regular issue of the PCT Gazette.

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

SYSTEM SUPPORTING ANIMATION OF GRAPHICAL DISPLAY ELEMENTS
THROUGH ANIMATION OBJECT INSTANCES

FIELD OF THE INVENTION

The present invention relates generally to computing devices. More particularly,

the present invention relates to computing system components and sub-systems for
maintaining and providing graphical user interface views driven by data and instructional

input from an operating system and/or applications.

BACKGROUND OF THE INVENTION

Graphical user interfaces by their nature are highly visual. A typical interactive

session involving a user and a graphical user interface includes multiple instances of a
user performing an action with regard to a displayed element (e.g., moving a pointer and
selecting an icon or control) to invoke an operation and then visually observing the
consequences of the operation. One way to draw a user's attention to particular elements
on a graphical user interface, to indicate an active or changed status, is through animation
of the graphical element. Animation, as used herein, includes changing the appearance or
location of a graphical display element (e.g., an icon, a control, a window, etc.) through a
sequence of incremental changes applied to the display element over a period of time.
However, animation also includes time-based changes to non-visually displayed
elements. Thus, animation, as referred to herein, comprises both visual (i.e., changing a
visual display parameter value) and non-visual animation (i.e., changing a parameter
value over time without affecting a visual display element).

Animation has the potential to enhance the usability and aesthetic appeal of
computer systems and applications. User interfaces, and more particularly graphical user
interfaces, occupy an important role in computer/user interactions. Animation enhances
the computer/user interaction experience by providing an additional type of information
or way of conveying the status of a computer program, or component thereof, to the user.
For example, rather than causing a selected item to merely disappear or instantly change,
animation enables a progression of changes to be displayed that, in combination with an
understood context, informs a user what has occurred (e.g., a deleted file floating to a

recycle bin). Furthermore, many would agree that animation makes interaction with a

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

computer system more interesting and engages the attention of users more effectively.
Furthermore, animation can also automate changes to property values. In particular a
user-mode application sets up manual timers and then responding to those timers to
change a value.

Animation is likely not incorporated into many user interfaces where such
animation would be beneficial to a user. One reason is simply the cost of animating user
interface elements. Animation is generally a time-consuming/cumbersome task. Taking
a cost/benefit approach to implementing animation in graphical user interfaces, the
benefit of incorporating animation should exceed its cost. Due to the current relatively
high cost of animation programming, many applications that would benefit from
animation are not animated because of its relatively high implementation cost.

One way to reduce the cost of animation is to reuse animation programming for
multiple distinct uses. However, animation code is not generally reused. Instead, single
(application) use animation code is programmed completely within the applications
themselves at development time using programming tools. The animation behavior is
defined explicitly within the compiled program code. During runtime, the animation is
carried out by merely executing the previously programmed code segment. In addition to
being a time-consuming endeavor, incorporating animation into a program potentially
results in an unduly large program due to detailed data and instructions utilized to carry
out the desired animation behaviors in display elements.

Efforts to enhance the programmability of animation in user interfaces have
resulted in the design and provision of non-editable/monolithic animation script
sequences from which executable script segments are referenced to provide a desired
animation behavior. Such known animation programming methods, based for example
upon the Synchronized Multimedia Integration Language (SMIL) standard, incorporate
key-framing. The key-framing methods rely upon referencing particular segments of
monolithic, non-editable, animation scripts.

The prior known key-framing approach exhibits a relative lack of flexibility with
regard to programming new animation behaviors in a graphical user interface. The key-
framing script comprises a compiled, non-editable, sequence of animation instructions

that morph a display element (or composition of elements) between a designated

10

15

WO 2004/104938 PCT/US2003/015988

beginning and end point. The known key-framing animation approach of selecting two
points in an animation sequence and then executing the program script between those two
points aids programmers seeking to implement animation behavior embodied within the
previously created/compiled animation scripts. However, the key-framing approach
limits the scope of supported animations to the linear progressions defined by an existing
base animation script. The base animation script development is hindered by the need to
identify and code all the supported animation behaviors before shipping the animation
scripts to users/developers. During the lifetime of the animation script, many instances
are likely to arise where a desired animation behavior is not contained in the script.
However, the script is not editable by users/developers and therefore cannot be used to
execute new desired animation behavior that was not previously encoded in the compiled
animation script.

There is therefore a need for a more efficient, flexible, and less costly way of
implementing interesting, informative, and meaningful animation behaviors into

graphical user interface displays.

10

15

20

25

WO 2004/104938 PCT/US2003/015988

SUMMARY OF THE INVENTION

An animation system described, by way of example, and claimed herein below,
provides a framework for defining, creating, and executing animation behavior for both
graphical user interface display elements and non-visual parameter values. The
animation behavior, when applied to an element, causes the value associated with the
property to vary over time when the animation behavior is active.

The animation system is incorporated into a system that utilizes a display
structure for maintaining a set of elements that correspond to objects displayed within a
scene such as a display window of a computer system graphicai user interface. The
elements include a variable property value affecting a display characteristic of the
element. Examples of such a variable property is a position, a dimension, a color,
opacity, etc.

The animation system also utilizes a property system. The property system
maintains properties associated with the elements maintained by the display structure.
The property system supports dynamic properties -- ones that are capable of being
modified over time.

The animation system also includes animation classes that specify particular
animation behaviors executable upon a base value. Animation objects are instantiated
from the animation classes. Such animation object instances provide time varying values
affecting values assigned to the dynamic properties. Such animation objects are created
and attached to properties maintained by the property system under the direction of an
application that is driving a display including the elements that vary over the course of

time in accordance with associated animation objects.

10

15

20

WO 2004/104938 PCT/US2003/015988

BRIEF DESCRIPTION OF THE DRAWINGS

While the appended claims set forth the features of the present invention with

particularity, the invention and its advantages are best understood from the following
detailed description taken in conjunction with the accompanying drawings, of which:

Fig. 1 is a block diagram depicting an exemplary computer system for carrying
out an embodiment of the invention;

Fig. 2 is an exemplary high level schematic diagram depicting the primary
components of a graphics management architecture including an animation system for
supporting animation of graphical display elements;

Fig. 3 is a flowchart summarizing an exemplary sequence of repeated steps
performed in a system embodying the present invention to maintain/render an animated
graphical user interface;

Fig. 4 is an exemplary animation class definition for carrying out animation on a
specified element property;

Fig. 5 summarizes a set of exemplary animation constructor types for animating
an element property;

- Fig. 6 summarizes an exemplary animation collection class for an animation
architecture embodying the present invention; and

Fig. 7 summarizes an exemplary dynamic animation collection class for an

animation architecture embodying the present invention.

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

DETAILED DESCRIPTION OF THE DRAWINGS

A graphical user interface architecture is described that includes an animation
system, a property system, and a display element organization structure. These
components, in combination, support property-based animation of graphical user
interface display elements — and even non-display values. The disclosed animation
architecture includes an animation system including animation classes, interfaces and
collections that facilitate creating and tracking animation instances that are attached to a
variety of graphical display (and non-display) elements (e.g., icons, dialog boxes, scroll
bars, etc.) to achieve desired animation behavior by the elements. Animating the display
elements is achieved by changing property values of the display elements. In an
embodiment of the invention, changes to a property value are driven by an animation
object instantiated from an animation class and attached to the property.

In an embodiment of the invention, graphical animation is achieved by associating
an animation collection with a rendering operation on a particular element within an
element tree. Once an animated element is initially drawn, the rendering system updates
the element's display state at intervals in accordance with an animation behavior defined
by components of animation objects instantiated from specified animation classes.

In an embodiment of the’invention, animation is designated at multiple levels in a
graphical display system having differing refresh cycles. Certain, easily calculated,
animations are updated at a relatively high refresh rate. Other, more complicated
animations, such as those affecting other graphical display objects, are updated at a
relatively low refresh rate.

When taken as a whole, the animation architecture described herein provides a
highly flexible platform for executing a variety of new animation behaviors and attach
the new behaviors to display elements to create new and highly engaging animated

display interfaces.

FIG. 1 illustratively depicts an example of a suitable operating environment 100
for carrying out the animation architecture embodying the present invention. The
operating environment 100 is only one example of a suitable operating environment and

is not intended to suggest any limitation as to the scope of use or functionality of the

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

invention. Other well known computing systems, environments, and/or configurations
that may be suitable for use with the invention include, but are not limited to, personal
computers, server computers, laptop/portable computing devices, hand-held computing
devices, multiprocessor systems, microprocessor-based systems, network PCs,
minicomputers, mainframe computers, distributed computing environments that include
any of the above systems or devices, and the like. |

The invention is described in the general context of a set of steps and processes
carried out by computer-executable instructions, such as program modules, being
executed by a computer. Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform particular tasks or implement
particular abstract data types. Though the exemplary embodiment is described with
reference to locally executed processes on a single computer system, the invention is
potentially incorporated within network nodes operating in distributed computing
environments where tasks are performed by remote processing devices that are linked
through a communications network. In a distributed computing environment, program
modules are generally located in both local and remote computer storage media including
memory storage devices.

With continued reference to FIG. 1, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120, a
system memory 130, and a system bus 121 that couples various system components
including the system memory to the processing unit 120. The system bus 121 may be
any of several types of bus structures including a memory bus or memory coniroller, a
peripheral bus, and a local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral Component -
Interconnect (PCI) bus also known as Mezzanine bus.

Computer 110 typically includes a variety of computer readable media. Computer
readable media can be any available media that can be accessed by computer 110 and

includes both volatile and nonvolatile media, removable and non-removable media. By

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media includes both volatile
and nonvolatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information and which can accessed by
computer 110. Communication media typically embodies computer readable instructions,
data structures, program modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any information delivery media.
The term “modulated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal.

By way of example, and not limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of the any of the above should also be
included within the scope of computer readable media.

The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is sometimes stored in ROM 131. RAM 132 typically contains data
and/or program modules that are immediately accessible to and/or presently being
operated on by processing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135, other program modules 136,
and program data 137.

The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates
a hard disk drive 140 that reads from or writes to non-removable, nonvolatile magnetic

media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable,
nonvolatile optical disk 156 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is typically connected to the
system bus 121 through an non-removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are typically connected to the system
bus 121 by a removable memory interface, such as interface 150.

The drives and their associated computer storage media discussed above and
illustrated in FIG. 1, provide storage of computer readable instructions, data structures,
program modules and other data for the computer 110. In FIG. 1, for example, hard disk
drive 141 is illustrated as storing operating system 144, application programs 145, other
program modules 146, and program data 147. Note that these components can either be
the same as or different from operating system 134, application programs 135, other
program modules 136, and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data 147 are given different
numbers here to illustrate that, at a minimum, they are different copies. A user may enter
commands and information into the computer 100 through input devices such as a
keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input interface 160 that is coupled to
the system bus, but may be connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A monitor 191 or other type of
display device may also be connected to the system bus 121 via an interface, such as a
video interface 190. In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected
through an output peripheral interface 195.

The computer 110 potentially operates in a networked environment using logical

connections to one or more remote computers, such as a remote computer 180. The

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

remote computer 180 may be a personal computer, a server, a router, a network PC, a
peer device or other common network node, and typically includes many or all of the
elements described above relative to the computer 110, although only a memory storage
device 181 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1
include a local area network (LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically includes a modem 172 or other
means for establishing communications over the WAN 173, such as the Internet. The
modem 172, which may be internal or external, may be connected to the system bus 121
via the user input interface 160, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
limitation, FIG. 1 illustrates remote application programs 185 as residing on memory
storage device 181. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers

may be used.

Figure 2 is a high level schematic diagram identifying components of a graphical
display architecture embodying the present invention and incorporating a set of
interacting functional components of an animation system. The graphical display
architecture depicted in FIG. 2 is divided into a set of functional components to aid the
description of an exemplary embodiment of the present invention. The present invention
is not limited to the arrangement of the components in the illustratively depicted manner.
Rather, the functionality of the components described herein below is grouped differently
in alternative embodiments of the invention.

The animation system includes a number of subcomponents that, in combination,
facilitate animating graphical display objects (as well as non-visual parameters) based

upon high level instructions submitted by an application 200. The application 200 can be

10

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

any application or control residing either inside or outside the operating system. The
animation infrastructure described herein enables delegating, to a substantial extent,
programming and executing animation to generalized animation components. In an
embodiment of the invention, rather than calculating updated bitmaps, the application
200 submits commands to the animation system specifying/defining animation for one or
more display objects.

In accordance with the application 200's commands, the animation system builds
animation objects. Animation objects, once instantiated, can be associated with an
element tree 202. The element tree 202 is created in response to events generated by the
application 200. Examples of such events include the start of the application 200, or
some other executed command resulting in the creation of a new view. Thereafter, the
application creates new elements, and later removes the elements, in the element tree 202.

The element tree 202 comprises a hierarchically arranged set of elements. In an
embodiment of the invention, the element tree 202 structurally defines a document. Each
element describes an object that, in most cases, corresponds to a visual image
displayable, for example, on a graphical user interface. Examples of elements include:
buttons, tables, table cells, list controls, frames, images, and paragraphs (flow panels).
Elements in the element tree 202 generally include one or more properties (e.g., color,
height, width, position, transparency, etc.). Values assigned to the properties of an
element contribute to defining a display state of the element. In an embodiment of the
invention, animation objects are assigned to one or more element/property combinations.
Thereafter, the animation object instances execute to render an animation behavior on an
element's property according to a timeline with which each of the animation object

instances is associated.

"TIMELINES"

Timing and timelines drive the animation system described herein. The timing
aspect of the animation system described herein is a derivative of the Synchronized
Multimedia Integration Language (SMIL 2.0) W3C specification. Each animation object,
once created and before execution, is associated with a timeline (e.g., a time sequence

definition) that controls the progression of a sequence of changes associated with the

11

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

animation object's defined behavior. Furthermore, the above-mentioned timeline only
defines a local/relative timing sequence of an animation behavior (e.g., duration of the
animation, repeats, accelerations, etc.). An animation object is thus incapable of
executing until the animation object has been assigned a "parent" timeline (either directly
or indirectly through another object). Therefore, in order to execute the animation object,
the relative timeline is attached to a "parent” timing definition ("parent timeline") that ties
the relative timing definition of the animation object to an actual execution time defined
by a parent timeline. Thus, the parent timeline does not govern the animation behavior of
an animation object. Instead, the parent timeline governs the external behavior such as,
for example, when the animation actually commences. The timelines are maintained in a
hierarchical timing tree structure, and individual timelines have attributes that define their
behavior relative to a parent timeline. A top level timeline is defined relative to a root
(e.g. document, page, frame, etc.) timeline.

There are a number of ways to associate a parent timeline with an animation
object that has its own internal timeline defining its local animation timing behavior. By
way of example, a parent timeline is a timing definition to which the animation object is
attached. In one exemplary mode of designating a timeline, an entity (e.g., an
application) requesting creation of an animation object specifies a parent timeline to
which the timeline for the animation object is attached. In this case, the timeline of the
animation object identifies the parent timeline at the time of creation, and the created
animation object is the actual executed animation object (as opposed to a copy) used by
one or more element/property combinations with which the animation object is thereafter
associated.

In another exemplary mode of designating a timeline for an animation object, a
partially complete animation object class is created that includes its own timeline, but
does not include a parent timeline. This incomplete form of animation object definition
(lacking a parent timeline) is referred to herein as an "animation template." The
animation templates are not executed, instead copies (or clones) of animation templates
are created, and the new animation instances are each assigned an animation parent
timeline of an element to which the new animation is attached. In such instances, the

parent timeline of a cloned animation object is the parent timeline specified by an

12

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

element to which the cloned animation object is attached. The absence of a specific
parent timeline timing definition enables creating multiple clones from a single animation
template, and each "cloned" animation object adopts element-specified animation
execution (e.g., start, pause, etc.) timing defined by the element to which it is attached.
Because the present system supports later designation of a parent timeline, animation
objects created for placement onto the element tree 202 do not require explicit
designation of a parent timeline at the time of creation. Though such timing information
is completed to enable the animation to be executed.

Alternatively, the Application 200 passes animation objects directly to a media
integration layer (MIL) 204 via a media integration layer (MIL) interface 206. The MIL
204 is described, by way of example, in Beda et al., U.S. Patent Application Serial No.
10/184795, filed on June 27, 2002, entitled "Multiple-Level Graphics Processing
System and Method," the contents of which are expressly incorporated herein by
reference, including the contents of any references contained therein. In an embodiment
of the invention, animation objects passed directly from the application 200 into the MIL
interface 206 require explicit designation of a parent timeline, or the animation object is
not executed.

The MIL 204 includes a set of graphical display object rendering and control
components accessed via the MIL interface 206. The MIL interface 206 is described, by
way of example, in Beda et al., U.S. Patent Application Serial No. 10/184796, filed on
June 27, 2002, entitled "Generic Parameterization for a Scene Graph," the contents
of which are expressly incorporated herein by reference, including the contents of any
references contained therein. The MIL interface 206 is an interface that the application
200 or a presenter system 208 (described below) rely upon to build up a low-level
description of a display frame of an application. The MIL interface 206 includes a set of
method calls, such as: DrawLine(...), PushTransform(...), and PopTransform(...). The
calls serviced by the MIL interface 206 describe a scene/document/or graphical‘user
interface.

The invention addressed herein provides an infrastructure for defining animation

for graphical objects as well as any parameter values that change over time. Thus, the

13

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

actual animation can be executed by any of a variety of graphics rendering engines,
including by way of example, the MIL 204 summarized herein.

The elements maintained by the element tree 202 represent high level graphical
items (e.g., buttons, scroll bars, etc). In an embodiment of the invention, such graphical
objects are described at high level that is not directly usable by the MIL 204 components.
Thus, a presenter within a presenter system 208 compiles/translates constituents of the
element tree 202, with which the presenter is associated, into visuals (e.g., lines, filled
rectangles, etc.) that make up the elements of the element tree 202. The presenter system
208 passes the visuals into the MIL 204 via the MIL interface 206. There are many ways
to carry out the functionality of the presenter system 208. An exemplary embodiment of
the presenter system 208 is described in detail in Parikh et al., U.S. Patent Application
Serial No. 10/(serial number not yet assigned), filed on May 9, 2003 (Express Mail
EV 329734584 US), and entitled "SYSTEM FOR HOSTING GRAPHICAL
LAYOUT/PRESENTATION OBJECTS," the contents of which are expressly
incorporafed herein by reference, including the contents of any references contained
therein.

In a particular embodiment of the invention, the MIL 204 includes a high-level
visual tree 210 that is capable of processing the visuals passed by the presenter system
208 into the MIL 204 via the MIL interface 206. The high level visual tree 210 contains
a structured set of primitives (e.g., lines, rectangles, images, etc.). The structured set of
primitives that describe a single image frame for an application. The high level visual
tree 210 supports a class of animations referred to as "independent animations." The
independent animations, described further herein below, do not rely upon the presenter
system 208 layout function to achieve animation.

A low level visual tree 212 is a potentially flattened version of the high level
visual tree 210. The low level visual tree 212 is configured to rapidly render and execute
independent animations passed to the low level visual tree 212 via the high level visual
tree 210. The low level visual tree 212 potentially executes multiple frames between
updates to its structure from, for example, the high level visual tree 210.

The low level visual tree 212 is configured to interface to output drivers. A

remote machine network communication driver 214 is an object corresponding to a

14

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

machine at which the application 200 renders output. The machine is potentially a
different machine from a machine upon which the application 200 executes. In such
case, the application 200 communicates its visual output over a network connection to
display output on a remote machine for a user of the application 200.

Alternatively, the low level visual tree 212 renders output to a graphical display
driver 216. The graphical display driver 216 represents the communication of the frame
display data to hardware on a local machine that is responsible for drawing the frame to
an output display device (e.g., a visual display screen) for a machine currently running
the application 200 for a local user.

When objects are being animated, a render queue item 213 ensures that the
animations stay in sync with one other. The render queue item 213 is created each time a
new frame needs to be rendered — e.g., when changes are made to the element tree 202 or
when animation objects cause values to change. The render queue item 213 dies as soon
as it is completely processed. The render queue item 213, in carrying out its
synchronization role, organizes the following processes: ticking a timing tree 228
(described below) and therefore invalidating dependently animated properties; invoking
the presenter system 208 to finalize a layout and update the high level visual tree 210
after the ticking procedure is complete; and after the presenter system 208 finalizes the
layout, requesting the visual tree 210 to compile and propagate the changes down to the
low level visual tree 212. The steps in carrying out the functions of the render queue item
213 are described herein below with reference to FIG. 3.

Having described certain exemplary function blocks that maintain and generate a
frame of data according to provided animated values, attention is now directed to the
sources of animated properties within the element tree 202 and their time-driven changes.
A property system 220 is responsible for maintaining values for properties. The property
system 220 stores and calculates values on elements so that they can be used by the
presenter system 208 to create the high level visual tree 210. The property system 220
supports an inheritance model for property values wherein an element's value for a
particular property is inherited by a set of children of the element.

As illustratively depicted in FIG. 2, the property system 220 receives input values

from many sources. The application 200 sets base values for dynamic properties (and

15

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

also retrieves their current values) maintained by the property system 220. The element
tree 202 requests values, for properties of elements within the element tree 202, from the
property system 220 to give to the presenter system 208. The presenter system 208, in
turn, uses the property values to generate input to the for calls to the MIL interface 206.
During the course of processing the elements of the element tree 202, the presenter
system 208 requests dynamic property base values and other information associated with
the elements from the property system 220 to organize and assign values to the elements
making up a particular view with which the presenter system 208 is associated.

The property system 220 prioritizes values from the different sources. For
instance, the property system 220 enables a property value specified loéally to take higher
precedence over a value specified in a property sheet or a value inherited from a parent.
The property system 220 includes logic to sort values provided by various sources and
return the highest priority value to any recipient of the value. The property system 220
takes into consideration any active animations attached to a property when calculating the
current value for the property. If a user requests a value from a particular source, then thej
property system 220 handles such request.

Animation objects, that make changes to property values maintained by the
property system 220, are instantiated from animation classes 222 that define and execute
ways to modify a property value based upon a timeline associated with the animation
object instances (or a parent thereof). An animation class object instance is created by
the application 200. The application 200 also sets values on the animation objects
instantiated from the animation classes 222. The application 200 is also capable of
requesting a current value on a particular animation class object. An animation class
object is removed when no references exist for the animation class object. The animation
classes 222 each have specifiable properties such as From, To, and Duration, that
describe a particular animation behavior.

Animation classes are typed so that different classes exist for different animation
behaviors and their corresponding data types. Examples of animation classes include:

FloatAnimation — providing a floating point value,

BoxUnitAnimation — providing dimensions for a presenter box,

PointAnimation — providing the top, left position of a rectangle,

16

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

ColorAnimation — providing a time-changing color value; and

BoolAnimation — providing a Boolean value,

Instances of the animation classes 220 are immutable. Thus, once they are created, their
property values can never be changed. This means an application writer can re-use an
animation instance in multiple places without concern that its defined behavior will be
changed.

Animation collection classes 224 organize animation classes 222. An animation
collection class is created by the application 200. The application 200 specifies one or
more animation classes 222 contained within an animation collection class. The
application 200 then sets an animation collection class as the collection of animations that
will animate a dynamic property in the property system 220. The application 200 can
also associate an animation collection class instance with any dynamic property
associated with any particular element in the element tree 202. The application 200 is
able to enumerate the contained animation classes in a particular animation collection
class of the animation collection classes 224, as well as request a composed animation
value from the animation collection class. An animation collection class instance is
garbage collected when no references exist for the particular animation collection class
instance.

An animation collection is a collection of animation objects that process a same
data type. An animation collection class is aware of the relative priority of the animation
classes in its list and how to compose the animation classes together according to a base
value passed into the animation collection class instance, and the animation class returns
a current value. In an embodiment of the invention, animation classes are chained
together in animation collection classes. The input of the animation collection receives a
base property value. The first stage (animation object) renders a modified property value
of the same type as the input to a next potential stage (in the case of multiple animation
objects within an animation collection class object). The pipelined processing of the base
value by the pipelined animation objects of the animation collection renders a current
value for the animated property. The result of such pipelining is the creation of a serially

executed composite animation function.

17

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

An animation collection class exists for each type of property value for which
animation is supported (e.g., FloatAnimationCollection, BoxUnitAnimationCollection,
PointAnimationCollection, ColorAnimationCollection, and BoolAnimationCollection).
This list of animation collection class types is merely exemplary. Those skilled in the art
will readily appreciate the potential wide breadth of different animation collection class
types. As with animation classes 220, instances of an animation collection class from the
animation collection classes 224 are immutable.

A dynamic animation collection class 226 builds upon the functionality of, the
animation collection classes 224. An instance of the dynamic animation collection class
226 holds onto a reference to an animation collection class instance of the animation
collection classes 224. In addition, a dynamic animation collection object instance holds
onto a reference to an element within the element tree 202 and to a property on the
element that the dynamic animation collection instance is animating. An application
writer, in an embodiment of the invention, cannot create or access a dynamic animation
collection instance. Instead, the property system 220 creates a dynamic animation
collection instance upon receiving a request from the application 220.

A dynamic animation collection object instance is created by the property system
220 when an animation collection class instance is associated with a dynamic property.
The dynamic property holds and/or calculates a value associated with a single defining
property for an element in the element tree 202, such as width, height, top, left, or any
other defining property of any kind of element. The dynamic animation collection also
holds an animation collection instantiated from an animation class of the animation
collection classes 224 and thus associates the animation collection class with a particular
element/property combination in the element tree 202. If the property system 220 is
asked for a current value of a dynamic property, the property system 220 determines
whether the dynamic property has an associated dynamic animation collection object
instantiated from the dynamic animation collection class 226, and the property system
220 processes the base value through any currently active animation classes in the
dynamic animation collection to provide a current animated value. In an embodiment of
the invention, when the property system 220 requests a particular dynamic animation

collection object for a current value, the specified dynamic animation collection passes

18

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

the request onto an appropriate animation collection object instantiated from one of the
animation collection classes 224. The animation collection object, in turn, loops through
its set of animation objects instantiated from the animation classes 222 to render their
current values to provide the basis for rendering a final vaiue by the animation collection
object to its calling dynamic animation collection.

Some animations created by the application 200 may not specify a parent timeline
and expect the animation system to choose the appropriate parent timeline for a requested
animation. During the association process, the property system 220 initially determines
whether each animation class within the animation collection class has a parent timeline.
If any animation class is not associated with a parent timeline, then a new animation class
is created that is associated with a parent timeline of a display element with which the
dynamic animation collection is associated. Furthermore, it is noted that if the parent
timeline associated with a display element is changed, then the dynamic animation
collection is rebuilt to reflect the change in the parent timeline.

To properly function, all animation classes within an animation collection class
must eventually specify a parent timeline that governs the timing of their execution. If all
of the animation classes in the specified animation collection class are associated with
parent timelines, then the dynamic animation collection uses the specified animation
collection class. Otherwise, in view of the immutability of animation classes and
animation collection classes, the property system 220 creates a new animation collection
class, and the new animation collection class includes new animation classes, each having
an assigned parent timeline. Once the property system 220 has created the new animation
collection class with each animation object having a parent timeline, the property system
220 gives the animation collection class to the dynamic animation collection associated
with the element/dynamic property pair. If there is not yet a dynamic animation
collection associated with this pair, the property system will create a new one. 226.

As noted many times above, timing drives the animation behaviors ass.ociated
with the animation objects attached to properties of elements in the element tree 202. As
used herein, a timeline is an instance of a timing entity that maintains a runtime state
according to a set of timing attributes. The timing tree 228, in an embodiment of the

invention, is a data structure containing timing nodes (timelines) arranged in a

19

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

hierarchical manner. The relationship between timing nodes is defined by inheritance
rules and by the node-specific timing attributes of each timeline corresponding to a
timing node in the timing tree 228. The inheritance rules include defining offsets of
children begin times relevant to parent begin time. Furthermore, the inheritance
relationships specify control relationships. For example, if a parent is restarted, repeated,
paused, resumed, seeked or ends, so to do all the children (and their children, etc.). Such
relationships enable starting a whole group of child timelines through an action on a
single parent timeline. The timing tree 228 holds onto: (1) timelines that potentially drive
changes to values of animation class instances, and (2) container timelines which contain
other timelines. Progress values derived from the timelines are used to calculate any
given animation object’s current value. The timing tree 228 is created at startup time of
the application 200.

The timing tree 228 carries out a timing event notification role for the animation
infrastructure depicted in FIG. 2. Initially, when a dynamic animation collection is
instantiated, a request is issued by the dynamic animation collection to the timing tree
228 to issue a notification whenever an animation instance in its animation collection
class object has progressed. When the dynamic animation collection receives a
notification from the timing tree 228 that one of it’s animations has progressed, the
dynamic animation collection instance notifies the property system 220 that the dynamic
property on the display element, with which it is associated, is now invalid. The
invalidation of a display element property in-turn begins a process referred to herein as
dependent animation. During dependent animation processing, the presenter system 208
is requested to build the high level visual tree 210 in accordance with the value change
associated with the animation.

The timing tree 228 also performs a progress measurement and reporting role for
instances of the animation classes 222. In response to invalidation, instances of the
animation classes 222 are requested to report their current values. The animation classes
222 query the timing tree 228 for a timeline progress value with which each is associated.
The animation classes 222 thereafter calculate their current values based upon a progress

value supplied by the timing tree, and provide the current values to any requesting entity.

20

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

The render queue item 213 also interacts with the timing tree 228. The render
queue item is a queue item in the operating system queue which, when executed, causes
the application/page/scene generated by the application 200 to be compiled down to the
low level visual tree 212 and eventually be rendered onto the display device. The first
thing the render queue item performs, once invoked, is “tick” the timing tree 228. This
has the effect of having the timing tree update its timelines to the current time. As a
result, the timing tree 228 sends out notifications which may cause many invalidations in
the property system 220. Progress values of independent animations are updated as well
when the tick is executed. If, during the processing of the render queue item 213, the
timing tree 228 is modified, the render queue item will loop and “re-tick” at the same

time until the timing tree 228 stabilizes.

Independent/Dependent Animations

Both independent and dependent animations have been mentioned above. In an
embodiment of the invention, the animation system depicted in FIG. 2 supports at least
these two types of animation instances — whose classification is based upon their
relationships to other animation instances. Independent animation instances do not
impact the layout of a view and can therefore be refreshed at a higher rate. An example
of an independent animation is a color animation. The color of an object does not modify
its width or height, and therefore the color-change animation does not affect how the
color-change animated element is laid out (e.g., size or position) on the page.

Dependent animations generally change a layout of an element with which the
dependent animations are associated, and therefore dependent animations require
recalculation of a graphic user interface layout. The dependent animation instances are
stored within the element tree 202 structure to ensure proper processing of all affected
display element properties. Due to potentially significantly greater calculation and
memory access requirements, dependent animations are calculated at a potentially lower

refresh rate by the MIL 204. “

Three Levels/Stages for "Animation" Classes

21

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

In an embodiment of the present invention, the animation behavior applied to
display element properties is implemented through three levels of classes, and their
corresponding instances. With continued reference to FIG. 2, the animation classes 222
comprise a set of object classes defining objects capable of computing particular defined
animation operations on a property value (typically a single animation behavior).

At the next level, the animation collection classes 224 define a set of objects that
group/assign one or more individual animation classes from the animation classes 222,
into a single animation class definition — thereby supporting creation of composite
animation behaviors on a single element property.

At the next level, the dynamic animation collection 226 defines an object type to
carry out/execute an animation behavior, defined by one of the animation collection
classes 224, on a property of an element within the element tree 202. Such functionality
is facilitated by instances of the dynamic animation collection 226 holding onto: a
reference to an animation collection class instance of the animation collection classes
224; and a reference to an element within the element tree 202 and to a property on the
element that the dynamic animation collection instance is animating. A dynamic
animation collection is created by the property system 220 when an animation collection
class instance is associated with a dynamic property. The dynamic property holds and/or
calculates a value associated with a single defining property for an element in the element
tree 202, such as width, height, top, left, or any other defining property of any kind of .
element. The dynamic animation collection also holds a reference to an animation
collection class object instantiated from one of the animation collection classes 224 and
thus associates the animation collection class object with a particular element/property

combination in the element tree 202.

Turning to FIG. 3, a set of steps are summarized for an exemplary rendering
sequence performed by the render queue item 213 of FIG. 2. As explained above, the
render queue item 213, when executed, causes the application/page/scene generated by
the application 200 to be compiled down to the low level visual tree 212 for rendering by
a display device. It is noted that this sequence of steps is exemplary, and the render

queue item operation is modified in other embodiments of the invention.

22

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

j

Initially, during step 300, the render queue item 213 causes a ticking of the timing
tree 228. Ticking the timing tree 228 has the effect of having the timing tree 228 update
its timelines to the current time. As a result, the timing tree 228 sends out notifications
which may cause many invalidations (e.g., invalidating dependently animated properties)
in the property system 220. In an embodiment of the invention, a Changed event is raised
by animation objects that have been affected by the updated time. These events are
collected and processed by an animation object's associated Dynamic Animation
Collection object instance. The Dynamic Animation Collection object, in turn,
invalidates its dynamic property on an element. Progress values of independent
animations are updated as well when the tick is executed at step 300.

After ticking the timing tree 228, during step 310 a layout process is performed by
the render queue item 213. During the layout process 310 the high level visual tree 210 is
updated according to any changes to the element tree 202 since the last execution ofa
render queue item. In an embodiment of the invention, presenters that are responsible for
laying out graphical elements in a view that have changed property values (as a result of
the ticking of the time), are invalidated — meaning they must recalculate their layout and
create a new high level visual tree incorporating the changes to the affected dynamic
properties. Also during step 310, the display system receives and dispatches requésts
from applications, the operating system shell, etc. that potentially affect the layout.
Examples of such requests include hit tests, callbacks to user programs, and general
application actions affecting the graphical display.

During the layout process 310, the timing tree 228 structure can potentially
change (e.g., a new timing node was added, an existing node was removed, a new
reference was established to an existing timing node, etc.). If, at step 320 it is determined
that the timing tree structure changed, then control passes back to step 300 and the timing
tick is re-executed on the timing tree 228 structure in its new form.

If the timing tree 228 has not changed in structure, then control passes from step
320 to a Render step 330 wherein the high level visual tree 210 compiles and propagates
new/updated graphical display data to the low level visual tree 212. The low level visual
tree 212, based upon the received changes, renders recalculated output to the drivers 262
and/or 264.

23

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

Thereafter, during step 340, the timelines associated with the dynamic animation
collection are queried to determine a next time that it needs to be ticked (nearest event).
If no further ticks are needed, then control passes to the End 360. If additional ticks of
the tree are needed, then control passes to step 350 wherein a new instance of the render
queue item 213 is created for the animated element property's dynamic animation
collection instance. The new render queue item specifies a time at which it should be
executed. If the specified time of execution is some time that has not yet been reached,
then the render queue item is initially placed in an inactive list. When the time is
reached, the render queue item is placed within an active queue for execution in
accordance with the steps set forth in FIG. 3. After created the new render queue item,
control then passes to the End 360.

Animation behavior for an element property, is carried out by one or more
animation objects instantiated from the animation classes 222. Each animation object
includes an animation function that takes a first set of inputs (including at least a current
timeline value) and produces an output of a type suitable for rendering an animated
display element. Various ones of the animation classes 222 (e.g., PointAnimation)
convert a timeline progress value into an appropriate data type (e.g., a point) for an

element property.

Turning to FIG. 4, an exemplary high-level animation class structure is
summarized. The various animation classes follow a common pattern and implement a
similar set of interfaces. The differences arise primarily in the data types of properties,
and in the calculations performed (in view of the particular data type such as: floating
point, Boolean, point, etc.) to assign a current value to an input value in view of a
calculated progress value. Such modifications are well within the skill of those skilled in
the art in view of the examples and description of the functionality of animation classes
contained herein.

In an embodiment of the invention, the animation class structure includes a set of
Animation Properties 400. A From property designates a starting animation value. A To
property specifies an ending animation value. A By property specifies a change (delta)

value at the end of an animation. Rather than specifying an explicit end value in the To

24

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

property, the By property specifies a difference between an ending animation value and
an initial animation value.

‘An animation class can comprise multiple segments utilizing different timing

parameters within each segment. A KeyValues property specifies a list of values for an

animation. An interpolation method property specifies a method for interpolating
between two key values specified in the KeyValues property. Examples of interpolation
methods include: discrete, linear, paces, and spline. A KeyTimes property designates a
list of time values used to control the pacing of the animation. This list contains the same
number of elements as the KeyValues list. The list is ordered in increasing time values,
and the first value in this list is 0 and the last 1 (unless InterpolationMethod is set to
Discrete, in which case the last value may be anything less than or equal to 1). A
KeySplines property specifies a set of Bezier control points associated with a KeyTimes
list. The Bezier control points define a cubic function that controls the interval pacing of
the animation. This list contains one less element than the KeyTimes list. This list is only
used if the InterpolationMethod attribute is set to Spline.

The animation properties within an animation class structure include certain
Boolean atiributes. An IsOverridingBaseValue property is set to True if the timeline of
the animation object is active or in a fill period. Furthermore, an IsAccumulating
property enables a repeated animation sequence to have a cumulative effect upon an
element's property. When the IsAccumulating property is set to True, rather than
repeating the same trajectory on every iteration of a repeated animation sequence, an
animation accumulates the effect of each iteration, in essence composing with itself and
building upon a previous animation-induced change to an element's property.

A UsesBaseValue property returns True if the return value of GetValue for the
animation object (described below in association with a set of methods 420) depends on
the base value (provided to the animation object). If the UsesBaseValue property returns
False, then the animation object ignores the base value altogether. If the animation object
is in a list, the UsesBaseValue property allows an optimization where only a subset of the
animation objects need to be evaluated in some cases.

The animation class structure also includes a set of timing properties 410. A

CurrentTime property provides a current time local to the timeline for the animation

25

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

object. A ParentTimeline property designates a timeline that is the timing parent of the
animation object's timeline. The ParentTimeLine property can reference any other
timeline, or one of two special reference values: Timeline.VisualParent or
Timeline.RootTimeline. If the ParentTimeline property is set to Timeline.VisualParent
then the timeline is auto-parented on use to the timeline associated with the visual in
which it is used. If the visual does not have an associated DefaultTimeline, then the
parent visual is inspected, recursively. If the ParentTimeline property is set to
Timeline.RootTimeline then this timeline is auto-parented on use to the “root” of the
timing tree 228. ,

The set of timing properties also includes a Begin property for designating a time
at which the timeline for the particular animation object should begin. By default the
begin time value is relative to a parent timeline’s begin time, but a offset is also
potentially specified providing a time relative to some other timeline’s begin or end time.
In the latter case, the other timeline must be parented to the same timeline as the timeline
for this particular animation object. A Duration property on an animation object
designates a duration of a single period from beginning to end. A Progress property
designates the current progress value of the timeline. If IsOverridingBaseValue
(described herein below) is false, then the Progress property returns 0. In all cases, the
return value of the Progress property is always a value between 0 and 1, inclusive.

In an embodiment of the invention, repeating an animation is supported. A
RepeatCount property specifies a number of times a begin to end period should be
repeated during the life of this animation object. The RepeatCount property value is
potentially a fractional value. A special value, float.Positivelnfinity, indicates that the
timeline should repeat continuously. A CurrentRepeat property specifies a current
iteration of the timeline, if it repeats. The first iteration is iteration 1. If the
IsOverridingBaseValue animation property is false the CurrentRepeat property returns 0.

A RepeatDuration propeﬁy specifies a length of time for which a begin to end
period should be repeated. This potentially results in a fractional execution (repeat count).
The RepeatDuration property value of Time.Indefinite indicates that the timeline should
repeat forever. If the IsOverridingBaseValue property is false this property returns
Time.Unspecified. If values are specified for both the RepeatCount property and the

26

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

RepeatDuration property, then the total active duration is the minimum of the two
specified properties.

The timing properties for the animation classes also include an acceleration
property that designates a value, between 0 and 1, representing a fraction of the simple
duration spent in the time acceleration phase. A deceleration property designates a value,
between 0 and 1, representing a fraction of the simple duration spent in the time
deceleration phase. Since the animation cannot simultaneously accelerate and decelerate,
the sum of the acceleration and deceleration property values does not exceed 1 (the
simple duration).

An Autoreverse property designates whether the animation is to progress from
beginning to end and then back. If the Autoreverse property has a value of “True”, then
the timeline progresses from beginning to end and then immediately progresses
backwards from end to beginning. The timeline will be active for twice the amount of
time specified by the Duration property of the animation object.

An End property maintains a value specifying a maximum end time for the
timeline for the animation object. If the End property value is less than the sum of the
Begin and Duration property values, then the activation period is cut short by the End
property value. In addition, all specified animation beginnings (scheduled or interactive)
past the time specified by the End attribute are ignored.

An EndSync property value defines an implicit duration of a timeline. The
implicit duration specified by the EndSync property is used if the Duration property is not
set explicitly. The implicit duration of a timeline can be defined by the timed object that
it controls or by other timelines that may be parented to it.

A Fill property specifies a behavior of the timeline of the animation object after
the end time passes. By default, the timeline is only “on” from begin to end, but if the Fill
property is set to “Freeze”, then the timeline remains on past the end time. In that case,
the progress value for the animation object after the end time is equal to whatever it was
at the end time. Settings for the Fill property value are Remove (the global default),
Freeze, and Hold. A FillDefault property designates a default value for the Fill property.
If the Fill property value is not specified, then the value of the DefaultFill property
specifies the fill behavior. In addition, this default is inherited by timelines parented to

27

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

this one, unless they have their own FillDefault attribute set. The possible values for the
DefaultFill property are the same as for the Fill attribute.

A Restart property designates a behavior of the animation object's timeline when
a second (or later) begin time is reached. By default, a begin time interrupts any active
period and goes back to time t=0 for the timeline. However, if the Restart property is set
to WhenNotActive, then a begin time that would interrupt an active period is ignored.
The possible values for the Restart property are: Always, WhenNotActive and Never. A
Restart Default property designates a default value for the Restart property.

A Speed property designates a relative speed at which time should pass for the
timeline for the animation object (compared to its parent timeline). E.g., A value of 1
means normal speed, whereas a value of 2 means that time elapses twice as fast (and,
therefore, the perceived duration ends up being only half that specified by the Duration
attribute). This value may be negative, in which case time flows backwards in this
timeline, from end to begin times, as if the parent timeline was reversed.

A set of Boolean properties are included to identify the state of the animation
object's animation. An IsForwardProgressing property identifies whether progress in this
timeline moves from 0 to 1 in relation to wall-clock time. The IsForwardProgressing
property takes into account the effect of being nested in potentially reversed timelines. If
IsOverridingBaseValue is false, then IsForwardProgressing returns the same value as that
which this timeline’s parent timeline would return. An IsReversed property identifies
whether the timeline is in a reversed period, as seen from the timeline’s own local frame
of reference. This property, in contrast to the IsForwardProgressing property, does not
take into account the effect of being nested in potentially reversed timelines. If the
IsOverridingBaseValue property value is false, then the Is Reversed property returns
false.

Other properties relate to the state of the animation's state of activity. An
IsChanging property identifies whether the timeline of the animation object is active. In
contrast, an IsPaused property returns true if the timéline is active, but the animation is
paused.

The animation class also includes a set of methods 420. A set of constructor

methods, within a particular animation class, create animation objects incorporating

28

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

particular animation behaviors of a specific animation class type (e.g., float, Boolean,
point, etc.). A set of animation constructor method types, corresponding to particular
animation behaviors, are identified, by way of example, in FIG. § described herein
below.

A Beginln method receives as input an offset time value. The Beginln method
triggers an interactive begin at a point in time in the future or past corresponding to the
offset value. The input offset parameter specifies a time in reference to the animation
object's parent timeline. If the parent timeline is not active, this method has no effect.

Similarly, an EndIn method receives as input another relative time value. The
EndIn method triggers an interactive end at the specified point in time in the future or
past. The parameter is in the frame of reference of the animation object’s parent timeline.
If the parent timeline is not active, this method has no effect.

Methods are provided to stop/start the progression of the animation object while it
is active. A pause method pauses the animation object's timeline and children that
reference the animation object's timeline. If this timeline is not active this method has no
effect. Conversely, a resume method restarts the animation object's timeline and all of its
children timelines. If this timeline is not active and paused this method has no effect.

A seek method enables moving directly to a particular point in an animation
execution sequence based upon a specified offset value. The seek method changes the
current time for this timeline — that potentially affects all of its children timelines. If the
timeline is not active this method has no effect.

A GetUniquelnstance method receives a timeline as input, and returns an instance
of an animation object that can maintain its own run-time state separately from other
instances. If the animation object contains auto-parented timelines, the returned instance
has those timelines parented to the timeline passed in as a parameter.

A GetValue method takes as an input a base value, of a certain type, and returns
another value of the same type as the input base value. The value of the output depends
both on the input (base value) and on the internal state of the modifier (e.g., animation
object/collection) to which itis passed. In particular, this means that calling GetValue
more than once with the same input is not guaranteed to return the same output, and in

fact it is expected to change during the course of an animation sequence. In the case of

29

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

the animation object classes 222, the GetValue method receives a passed base value and
returns a value based upon its internal modifier definition computation of a progress
value.

Finally, the animation class structure supports a set of events. A Changed event
430 is raised whenever the animation object's internal state changes. The Changed event
430 flag is used to indicate that re-rendering is needed (something has changed in
position or dimension). A Begun event signal is raised when an object enters a period in
which its internal state is continually changing. An Ended event signal is raised
whenever the object leaves a period when its internal state is continually changing. A
Repeated event is raised whenever the animation object's timeline repeats its simple
duration. A Reversed event is raised whenever the direction of time changes on the
animation object's timeline. The events Paused, Resumed, and Seeked are raised in
response to completing a corresponding Pause, Resume and Seek method on the

animation object's timeline.

Turning to FIG. 5, a set of animation object behaviors are identified. Each of the
identified behaviors corresponds to a particular constructor class supported, where
appropriate, by each of the animation class types listed previous herein above. A From
constructor type 500 creates an animation object that takes as its initial value a passed
"From" value and progresses to a base value specified on the associated property. A To
constructor type 510 creates an animation object that takes as its initial value the base
value specified on the associated property and progressed to a passed "To" value. A
From-To constructor type 520 receives passed parameters designating the From and To
property values for the animation object — the base value on the animated element's
property is not used during the animation. However, when the animation sequence ends
the element property reverts to the base value unless the Fill timing property on the
animation object is "Freeze."

Rather than specifying endpoints for an animation, an animation value range can
be specified through an end point and an amount of change (delta) value. A By
constructor 530 receives a delta Vaiue, starts an animation at a base value, and proceeds

to change the base value by the amount specified by the delta value during the course of

30

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

the animation cycle. A From-by constructor 540 receives as its input a starting "From"

value and proceeds to change the initial "From" value by a passed delta value during the
animation cycle. Having described a basic set of constructors for animation objects, it is
noted that the present invention contemplates a wide variety of animation behaviors (and
corresponding constructors) — including composites/combinations of the aforementioned

behaviors.

Having described an exemplary animation class structure, attention is now
directed to the container of the animation objects, the animation collection classes 224.
Turning to FIG. 6, an exemplary structure for an animation collection class is depicted.
Animation collection objects maintain a list of animation objects instantiated from
animation classes 224. Turning first to a set of methods 600 supported by the animation
collection classes, a GetUniqueInstance method returns an animation collection instance
with a default parent timeline corresponding to a passed timeline identification. The
animation collection class also supports an interface for setting a DefaultParentTimeline
property on an animation collection class. In an exemplary embodiment of the invention,
the property system 220 calls the GetUniquelnstance method to obtain a copy of a
particular animation collection for a dynamic animation collection object. The animation
collection object contains a list of animation objects. A builder function/entity adds
animation objects to the created animation collection instance. The animation objects
within the animation collection are indexed and referenced/accessed by specifying a
particular position within the list (as in an array).

A GetValue method takes as an input a base value, of a certain type, and returns
another value of the same type as the input base value. The value of the output depends
both on the input (base value) and on the internal state of the modifier (e.g., animation
object/collection) to which it is passed. In particular, this means that calling GetValue
more than once with the same input is not guaranteed to return the same output, and in
fact it is expected to change during the course of an animation sequence. In the case of
the animation collection class, the GetValue method provides a passed base value to the
first animation object in its collection. The output of the first animation object becomes

the input base value to a next animation object (if present) in the animation collection.

31

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

This process repeats until the last animation object in the animation collection has

computed an output. The GetValue method returns the output value provided by the last

animation object within the pipeline of animation objects within the animation collection.
The animation collection class also includes a set of properties 610. An

IsChanging property and IsOverridingBaseValue property are similar to the

" correspondingly named properties on animation objects. However, in the case of an

animation collection class, the properties are merged such that if any one of the animation
object's corresponding properties returns "True," then the corresponding property on the
animation collection returns "True." The Animations(array) property maintains a list of
the animation objects within the animation collection.

The animation collection also supports a set of events 620. The Changed events
coalesce and report the corresponding events, described herein above, fired from the

constituent animation objects of the animation collection.

Turning now to FIG. 7, a set of methods and properties are identified for the
dynamic animation collection class 226. The set of methods 700 includes a dynamic
animation collection constructor method. The dynamic animation collection constructor
method receives as input, an element reference (on the element tree 202), a dynamic
property on the element, and an animation collection instance, the constructor returns a
dynamic animation collection object that operates as an interface between the timeline
induced changes to animation objects within the passed animation collection object, and
the dynamic property on the element contained in the element tree 202.

An interface on the dynamic animation collection object supports setting/getting
the animation collection object with which the dynamic animation collection object is
associated. A SetDefaultParentTimeline method repairs timeline connections in the event
that the element, to which the dynamic animation collection object is attached, is
relocated in the element tree 202 or the timing for the element is otherwise changed.

A GetValue method returns the current value for the element's animated property
(provided by the animation collection to which the dynamic animation collection is

attached).

32

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

An OnChanged method is called when the progress of any animation object
within the animation collection has changed. When invoked, the OnChanged method
causes an invalidation of the dynamic property. This in-turn invokes the re-rendering of
affected elements.

Turning to the properties 710, an OriginalDynamicProperty property returns a
reference to the dynamic property with which the dynamic animation collection is
associated. An Element property returns the element with which the dynamic animation
collection is associated. The IsOveridingBaseValue returns a value based upon a call to
the correspondingly named property on the animation collection with which it is
associated.

Having described an animation architecture, using the described architecture to
animate properties on elements by giving them time-varying values is described by way
of example. In general, every animated resource, method or object includes an interface
enabling notification of the entity's animation capabilities, its default parent timeline,
whether it has changed, a current value of the object, and whether the entity is changing.
By way of particular example, the interface of an animatable entity includes a
DoesChange property that returns True if the object may vary with time. In general, the
DoesChange property is true if the object is holding any animation collections. A
DefaultParentTimeline property returns a reference to a timeline that is the parent of any
auto-parented timelines. If the DefaultParentTimeline property is set, then any auto-
parented timelines are re-parented, but a new clone is not created either for the timelines
or for this animatable object. An IsChanging property returns True if any of the

animations in an animatable object are changing. An IsOverridingBaseValue property

" returns True if any timeline of the animatable object is active or in a fill period. A

Changed event is raised whenever the animatable entity's value changes.

In addition, the animatable entity includes a CurrentValue method that returns an

* object that is used as the value of the property. The value is the instantaneous value of

the object, but it does not change once it is set. A GetUniqueInstance method, specifying
a particular timeline, returns an object that can be used as the value of a property. If the
object refers to any auto-parented timelines, the instance returned has those timelines

parented to the specified default parent timeline.

33

10

15

20

25

30

35

40

WO 2004/104938 PCT/US2003/015988

An animatable entity also specifies for every animatable property, a
corresponding reference to an animation collection type to facilitate creation of a
dynamic animation collection by the property system. In an embodiment of the
invention, animation collections are used rather than basic animation objects since such
usage would preclude animation composition.

Resources are animated by adding animation collections to individual properties.

The following example shows how to create a SolidColorBrush with an animate color.

Animate resources can be used in rendering operations or as values for element
properties. A rendering operation is animated, by way of example, by adding animation
collections to drawing context method calls, or by using animate resources. The

following example shows how to push an animated opacity value into a drawing context.

’ an:LmBur» "der B
| ‘animBuilder.
" animBuilder:
" animBuilder.Duration =’
anlmBuJ.lder Flll Tlmer‘iA'llf'Free

, myDraw1ngContext PushOpac:.ty(O Of
animBuilder. ToFloatAnlmatlon() Y4

Elements can be animated by adding animation collections to Element properties.

The following example shows how to animate the width of a button in C sharp.

34

10

15

20

25

30

35

40

45

WO 2004/104938 PCT/US2003/015988

. BoxUnitAnimationBuilder anlmBullder = new
BoxUnltAnlmatlonBullder(), ‘ K Ge T
; - animBuilder. I

“animBuilder.
“animBuilder..

Ay

Whenever an animation (or an animated resource) is used, the animation (or
resource) is cloned to provide the destination with a unique, independently controllable
timeline. A consequence of this particular way of implementing animation on a property
is that the original animation is never part of a visual scene, and therefore it doesn’t
respond to control calls through an animation object's timing interface. To achieve this
effect, the calling code must first use an animation and then read the animation back. The
value that is read back can then be cached and used for timing control. The following

example shows a pattern that code intending to control animations follows:

prlvate FloatAnlmatlon myOpac1ty‘

fmation;
public v01d Inltlallze()

‘ FloatAnlmatlonBullder anlmBullder ' newf
FloatAnlmatlonBullder() 'f‘\ﬁ:'} v ;-Jr,{f'$”‘

, /7 Set the- Begln property to Indeflnlte because we
want to start' = + : RN s d

35

10

15

20

25

30

, 35

40

45

WO 2004/104938 PCT/US2003/015988

. // this anlmatlon 1nteract:|_ve1y, not"a,

.,anlmBullder Be,gln = Time. Indeflnltely :

~animBuilder.From = 1.0f; // Fully opadqt
T ,,anlmBullder Duratlon ‘ new Tlme(SOO) ;
second . | L : -

omatically.

, Q'anj;mBuild:ér; .
animBuilder.
AR

It will be appreciated by those skilled in the art that a new exemplary platform
and exemplary interfaces, classes and structures incorporated therein have been described
for attaching and executing animation behaviors to graphical display elements within a
computing environment including graphical output devices such as a graphical user
interface display. In view of the many possible environments to which the principles of
this invention may be applied and the flexibility of designing and carrying out the above-
described animation architecture, it should be recognized that the embodiments described
herein are meant to be illustrative and should not be taken as limiting the scope of
invention. Those skilled in the art to which the present invention applies will appreciate

that the illustratively presented embodiments can be modified in arrangement and detail

36

WO 2004/104938 PCT/US2003/015988

without departing from the spirit of the invention. Therefore, the invention as described

herein contemplates all such embodiments as may come within the scope of the following

claims and equivalents thereof.

37

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

WHAT IS CLAIMED IS:

1. A graphical display animation system supporting timed modification of
element property values, the graphical display animation system comprising:

a display structure for maintaining a set of elements, wherein an element includes
a variable property value affecting a display characteristic of the element;

a property system for maintaining properties associated with elements maintained
by the display structure, including dynamic properties that are capable of changing over
time; and

animation classes, from which animation objects are instantiated, wherein the
animation object instances provide time varying values affecting values assigned to the

dynamic properties.

2, The graphical display animation system of claim 1 further comprising:
a dynamic animation class, that associates one or more animation objects with a

dynamic property of an element within the display structure.

3. The graphical display animation system of claim 1 further comprising:
an animation collection class, for grouping a set of animation class objects,
wherein an instance of the animation collection class provides a composed output value

by applying the set of animation class objects to a base value.

4, The graphical display animation system of claim 1 wherein the animation

classes each specify an internal timeline.
5. The graphical display animation system of claim 4 wherein animation
object instances are attached to a parent timeline that provides a context for a timing

sequence defined by the internal timeline.

6. The graphical display animation system of claim 5 wherein the parent

timeline is specified by a container for the animation object instances.

38

10

15

WO 2004/104938 PCT/US2003/015988

7. The graphical display animation system of claim 1 wherein ones of the
animation classes are associated with a particular data type for which they render a time

variable value.

8. The graphical display animation system of claim 7 wherein an animation

class of the animation classes provides a floating point value.

9. The graphical display animation system of claim 7 wherein an animation

class of the animation classes provides dimensions for a presenter box.

10. The graphical display animation system of claim 7 wherein an animation

class of the animation classes provides the top, left position of a rectangle.

11. The graphical display animation system of claim 7 wherein an animation

class of the animation classes provides a time-changing color value.

12. The graphical display animation system of claim 7 wherein an animation

class of the animation classes provides a Boolean value.

39

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

13. A method for animating display elements in a graphical display system
including a display structure for maintaining a set of runtime display elements generated
by an executing program and a property system for managing properties associated with
the display elements, and wherein animating ones of the display element is achieved by
modifying display element property values in response to a passage of time, the method
comprising:

creating a graphical display element including a modifiable property;

defining an animation behavior assignable to the modifiable property;

associating, in accordance with requests from a program at runtime, the animation
behavior with the modifiable property of the element; and

providing a sequence of time-varying values to the modifiable property in

accordance with the animation behavior.

14. The method of claim 13 further comprising providing a set of animation

classes, wherein each animation class defines an animation behavior.

15. The method of claim 13 wherein the set of animation classes specify an
animation type, wherein an animation type corresponds to a type of data processed by

instances of an animation class.

16. The method of claim 13 wherein the providing step is facilitated by an

animation object instantiated from an animation class embodying the animation behavior.

17. The method of claim 13 wherein the defining an animation behavior step
comprises grouping a set of animation class instances within an animation collection
class, wherein an instance of the animation collection class provides a composed output

value by applying the set of animation class instances to a base value.
18. The method of claim 13 wherein the associating step comprises

instantiating a dynamic animation class that attaches one or more animation objects to the

modifiable property on the element.

40

10

15

WO 2004/104938 PCT/US2003/015988

19. The method of claim 13 wherein timing for the progression of the
sequence of time-varying values is specified in accordance with a timing tree node

associated with one or more animation objects defining the animation behavior.

20. The method of claim 13 further corﬁprising attaching a parent timeline to
an animation object thereby providing a global timing context for a local timing sequence

defined by an internal timeline.

21. The method of claim 20 wherein the parent timeline of the animation

object is specified by a container for a collection of animation object instances.

22. The method of claim 13 wherein the providing a sequence of time-varying
values step comprises applying multiple times, over an active animation period, a current
time and a base property value to an animation value generator embodying the animation
behavior, to render a current value for the modifiable property; and

generating an updated layout in accordance with the current value for the

modifiable property.

41

10

15

20

25

WO 2004/104938 PCT/US2003/015988

23. A method for applying an animation behavior to an element property
maintained by a property system to implement sequential modifications to the element
property value over the course of time, said method comprising:

instantiating animation object instances from animation object classes specifying
basic animation behaviors;

instantiating an animation collection object from an animation collection class
specifying a list of constituent animation objects; and

instantiating a dynamic animation collection from an animation collection class
that associates the animation collection object with the element property maintained by
the property system.

24. The method of claim 23 further comprising assigning parent timelines to

instances of the animation object classes.

25. ' The method of claim 23 further comprising locking the properties of

animation object instances.

26. The method of claim 23 further comprising locking the properties of

animation collection object instances.

27. The method of claim 23 further comprising:

applying a current time and a base property value to the constituent animation
objects of the animation collection object to render a current property value for the
element property; and

generating an updated layout in accordance with the current property value for the

element property.

42

10

15

20

25

30

WO 2004/104938 PCT/US2003/015988

28. A computer-readable medium including computer executable instructions
for providing a graphical display animation system supporting timed modification of
element property values, the graphical display animation system comprising:

a display structure for maintaining a set of elements, wherein an element includes
a variable property value affecting a display characteristic of the element;

a property system for maintaining properties associated with elements maintained
by the display structure, including dynamic properties that are capable of changing over
time; and

animation classes, from which animation objects are instantiated, wherein the
animation object instances provide time varying values affecting values assigned to the

dynamic properties.

29. The computer-readable medium of claim 28 wherein the graphical display
animation system further comprises:
a dynamic animation class, that associates one or more animation objects with a

dynamic property of an element within the display structure.

30. The computer-readable medium of claim 28 wherein the graphical display
animation system further comprises:

an animation collection class, for grouping a set of animation class objects,
wherein an instance of the animation collection class provides a composed output value

by applying the set of animation class obj ects to a base value.

31. The computer-readable medium of claim 28 wherein the animation classes

each specify an internal timeline.
32. The computer-readable medium of claim 31 wherein animation object

instances are attached to a parent timeline that provides a context for a timing sequence

defined by the internal timeline.

43

10

15

20

WO 2004/104938 PCT/US2003/015988

33. The computer-readable medium of claim 32 wherein the parent timeline is

specified by a container for the animation object instances.

34. The computer-readable medium of claim 28 wherein ones of the animation
classes are associated with a particular data type for which they render a time variable

value.

35. The computer-readable medium of claim 34 wherein an animation class of

the animation classes provides a floating point value.

36. The computer-readable medium of claim 34 wherein an animation class of

the animation classes provides dimensions for a presenter box.

37. The computer-readable medium of claim 34 wherein an animation class of

the animation classes provides the top, left position of a rectangle.

38. The computer-readable medium of claim 34 wherein an animation class of

the animation classes provides a time-changing color value.

39. The computer-readable medium of claim 34 wherein an animation class of

the animation classes provides a Boolean value.

44

PCT/US2003/015988

WO 2004/104938

115

BT SWYMO0Nd .
NOLLY)ITddv y~ 00 | 'Ol
30NN __ __ _ _
It} oV 77 D
ey 3SNOW VLY STINAON SIYHO0Nd WALSAS
e WVHO0Md | WYDONd §3HIO | NOILYOMddY | ONIIVE3do
wanan0o [) o) NN
A10A3d | 08l \oB8 ohohobotny TR
oDo oooonoooDo o @J/ AN \\\\\
A% \NN_‘ f . T
W3AOW T TIPTT W
MOMIINVIAY JAM Ve e e mp oo N gL N A ——
Oy =1 03k OS/E — m
7N | IEF ylya "
{ 2oy | | 30V 39V-IIN NI WYd904d "
MR 1NdNI RIQATOINON | | AYOIAR TORENON "
SRONLAN vaay WooT1 V] : e 3 1AVAONTY T1AVAONZ-NON "
m ﬁ 09} Aﬁ b Aﬂ A# ETE |
! | SN ILSAS v WY¥508d ¥43H10 | |!
NIWYId _ @ @ ¢ SEl SWYH90Yd m
Lol | NOIYOdY | |!
“ VRN — |
(| N T g 7T _IWALSAS "
! | 1AdIN0 LIND 0} ONILVYI0 “
_ \ ONISSIO0Nd |\ |
y “ g6 061 T _(avy) |
/// | Ssmmmmmo m
_ el !
" T (o) |
o (] JIOWN NAISAS ||

WO 2004/104938

PCT/US2003/015988

2/5
Application > Property
200 —] System
220
\
\ Dynamic
——| Animation
Element Tree | | Collection |«
202 Class
226
> Y
Y Animation
Presenter CColllectlon
System —] ;;jes
208 ==
. R FIG. 2
\
Media Animation
Integration Classes
Layer Interface 222
206
r____»,
\
Timing Tree <
228
/ 204
]
I Render Queue Visual Tree Visual Tree
[tem (High Level) » (Low Level)
| 213 210 212
|]

\

214

Remote Machine Network
Communication Driver

A

Graphical Display Driver
216

WO 2004/104938

213

3/5

RenderQueueltem

Tick

Layout Process

Has timing tree
tructure changed?

no
A 4

Render

Is anything
still animating?

yes

A 4
Submit another
RenderQueueltem

A

End

PCT/US2003/015988

300

310

320

360

FIG. 3

WO 2004/104938

4/5

ANIMATION CLASS

PCT/US2003/015988

400

Animation Properties
From
To
By
KeyValues
Interpolation Method
KeyTimes
KeySplines
IsAccumulating
IsOverridingBaseValue
UsesBaseValue

410

Timing Properties
CurrentTime
ParentTimeline
Begin
Duration
Progress
RepeatCount
CurrentRepeat
RepeatDuration
Accelleration
Deceleration
Autoreverse
End
EndSynch
Fill
FillDefault
Restart
RestartDefault
Speed
IsForwardProgressing
IsReversed
IsChanging
IsPaused

420

Methods

Animation Constructors (See Fig. 5)

Beginln

EndIn

Pause

Resume

Seek
GetUniquelnstance
GetValue

430

Events
Changed
Begun
Ended
Paused
Repeated
Resumed
Reversed
Seeked

FIG. 4

WO 2004/104938 PCT/US2003/015988

5/5

ANIMATION CONSTRUCTOR TYPES

500 From
510 To

520 From-To
530 By

540 From-By

FIG. 5

ANIMATION COLLECTION CLASS
600 Methods
GetUniquelnstance
GetValue
DefaultParentTimeline

610 Properties

IsChanging
IsOverridingBaseValue
Animations(array)

620 Events
Changed

FIG. 6

DYNAMIC ANIMATION COLLECTION CLASS
700 Methods
Constructor
Animation Collection
SetDefaultParentTimeLine
GetValue
OnChanged
710 Properties
OriginalDynamicProperty
Element
IsOveridingBaseValue

FIG. 7

INTERNATIONAL SEARCH REPORT Tnternatioral application No.

PCT/US03/15988
A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) . GO6T 15/70

USCL : 345/473

According to International Patent Classification (IPC) or to both national classification and JPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 345/473, 474, 475

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,537,641 A (DA VITORIA LOBO et al.) 16 July 1996, entire document. 1-39
A US 5,689,618 A (GASPER et al.) 18 November 1997, entire document. 1-39
A US 5,877,777 A (COLWELL) 02 March 1999, entire document. 1-39
A US 5,877,778 A (DOW et al.) 02 March 1999, entire document. 1-39
A US 6,433,784 B1 (MERRICK et al.) 13 August 2002, entire document. 1-39

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T™ later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X» document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yn» document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O™ document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&n document member of the same patent family

priority date claimed

Date of the actual completion of the international search Date of mailing of the intematingearch rglgort
19 October 2003 (19.10.2003) “ OC 200:)3 .

Name and mailing address of the ISA/US Authorized officer // i .
Mail Stop PCT, Attn: ISA/US . {
Commissioner for Patents Mark Zimmerman
P.O. Box 1450 .
Alexandria, Virginia 22313-1450 Telephone No. 703 306-03

Pacsimile No. (703)305-3230
Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US03/15988
INTERNATIONAL SEARCH REPORT

Continuation of B. FIELDS SEARCHED Item 3:

USPT, PGPB 345/473,474,475.ccls.

USPT, PGPB 345/473,474,475.ccls. and behavior$4

USPT, PGPB 345/473,474,475.ccls. and behvior$4 same animat$5

USPT, PGPB 345/473,474,475 .ccls. and behavior$4 same animat$5 and dynamic$4

USPT, PGPB 345/473,474,475 .ccls. and behavior$4 same animat$5 and dynamic$4 adj propert$5s
USPT, PGPB (345/473,474,475 .ccls. and behavior$4 same animat$5) and dynamic$4

USPT, PGPB (345/473,474,475 .ccls. and behavior$4 same animat$5) and dynamic$4 and tim$4
USPT, PGPB (345/473,474,475 .ccls. and behavior$4 same animat$5) and dynamic$4 and timed
USPT, PGPB and behavior$4 same animat$5 and dynamic$4 adj propert$s

USPT, PGPB (behavior$4 same animat$5) and dynamic$4 and tim$4

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

